Package ‘splitstackshape’

October 14, 2022
Type Package

Title Stack and Reshape Datasets After Splitting Concatenated Values
Version 1.4.8

Date 2019-04-21

Author Ananda Mahto

Maintainer Ananda Mahto <mrdwab@gmail.com>

Description Online data collection tools like Google Forms often export
multiple-response questions with data concatenated in cells. The
concat.split (cSplit) family of functions splits such data into separate
cells. The package also includes functions to stack groups of columns and
to reshape wide data, even when the data are ““unbalanced"---something
which reshape (from base R) does not handle, and which melt and dcast from
reshape2 do not easily handle.

License GPL-3

LazyData TRUE
LazyLoad yes

Depends R (>=2.10)
Imports data.table (>=1.9.4)

URL http://github.com/mrdwab/splitstackshape

BugReports http://github.com/mrdwab/splitstackshape/issues
RoxygenNote 6.1.1

Suggests covr, testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2019-04-21 20:00:03 UTC

http://github.com/mrdwab/splitstackshape
http://github.com/mrdwab/splitstackshape/issues

2

splitstackshape-package

R topics documented:

Index

splitstackshape-package L 2
charMat e 4
concat.Split 5
concat.split.compacto e 7
concat.split.expanded 8
concat.split.list L e 9
concat.splitmultiple L 10
COMCALLESE . . . o . v i i e e e e e e e e e e 11
CSPLit . . L 12
expandROWS 13
FacsToChars 14
getanlD 15
ListCol_l e 16
LStCOLW . . . o 17
merged.stack L 18
NAMeS o v v e 19
NOSEp . . . o e e 20
numMat e e e 21
othernames L. e e 22
read.concat e 22
Reshape e 23
Stacked 25
stratified L 26

29

splitstackshape-package

splitstackshape

Description

Stack and Reshape Datasets After Splitting Concatenated Values

Details

Package: splitstackshape
Type: Package
Version: 1.4.8

Date: 2019-04-21
License: GPL-3

Online data collection tools like Google Forms often export multiple-response questions with data
concatenated in cells. The concat.split() family of functions splits such data into separate cells.

splitstackshape-package 3

The package also includes functions to stack groups of columns and to reshape wide data, even
when the data are "unbalanced"—something which stats: : reshape() does not handle, and which
reshape2::melt() and reshape2: :dcast() from reshape2 do not easily handle.

Author(s)
Ananda Mahto

Maintainer: Ananda Mahto mrdwab @ gmail.com
Examples

concat.split
head(cSplit(concat.test, "Likes"”, drop = TRUE))

Reshape
set.seed(1)
mydf <- data.frame(id_1

N

:6, id_2 = c("A", "B"), varA.1 = sample(letters, 6),

varA.2 = sample(letters, 6), varA.3 = sample(letters, 6),
varB.2 = sample(10, 6), varB.3 = sample(10, 6),
varC.3 = rnorm(6))
mydf
Reshape(mydf, id.vars = c("id_1", "id_2"),
var.stubs = c("varA", "varB", "varC"))
Stacked
Stacked(data = mydf, id.vars = c("id_1", "id_2"),
var.stubs = c("varA", "varB", "varC"),
sep = ".")
Not run:

Processing times

set.seed(1)

Nrow <- 1000000

Ncol <- 10

mybigdf <- cbind(id = 1:Nrow, as.data.frame(matrix(rnorm(Nrow*Ncol),
nrow=Nrow)))

head(mybigdf)

dim(mybigdf)

tail(mybigdf)

A <- names(mybigdf)

names(mybigdf) <- c("id"”, paste("varA”, 1:3, sep = "_"),
paste("varB", 1:4, sep = "_"),
paste("varC”, 1:3, sep = "_"))

system. time({
01 <- Reshape(mybigdf, id.vars = "id",
var.stubs = c("varA", "varB", "varC"), sep = "_")
01 <- O01[order(01$id, O1$time), 1

»

system.time({
02 <- merged.stack(mybigdf, id.vars="id",
var.stubs=c("varA", "varB", "varC"), sep = "_")

b

mailto:mrdwab@gmail.com

4 charMat

system. time({
03 <- Stacked(mybigdf, id.vars="id",
var.stubs=c("varA", "varB", "varC"), sep = "_")
»
DT <- data.table(mybigdf)
system.time({
04 <- merged.stack(DT, id.vars="id",
var.stubs=c("varA”, "varB", "varC"), sep = "_")

b

End(Not run)

charMat Create a Binary Matrix from a List of Character Values

Description

Create a binary matrix from a list of character values

Usage

charMat(listOfValues, fill = NA, mode = "binary")

Arguments

listOfValues A list of input values to be inserted in a matrix.

fill The initializing fill value for the empty matrix.
mode Either "binary"” or "value". Defaults to "binary"”.
Details

This is primarily a helper function for the concat.split() function when creating the "expanded"
structure. The input is anticipated to be a 1ist of values obtained using base: :strsplit().

Value

A matrix.

Author(s)
Ananda Mahto

See Also

base::strsplit(), numMat().

concat.split

Examples

"o non

invec <- c("rock,electro”,"electro”, "rock, jazz")

A <- strsplit(invec, ",

non

splitstackshape:::charMat(A)
splitstackshape:::charMat(A, 0)
splitstackshape:::charMat(A, mode = "value")

concat.split

Split Concatenated Cells in a Dataset

Description

The concat.split function takes a column with multiple values, splits the values into a 1ist or
into separate columns, and returns a new data. frame or data. table.

Usage
concat.split(data, split.col, sep = ",", structure = "compact”,
mode = NULL, type = NULL, drop = FALSE, fixed = FALSE,
fill = NA,)
Arguments

data The source data.frame or data. table.

split.col The variable that needs to be split; can be specified either by the column number
or the variable name.

sep The character separating each value (defaults to ",).

structure Can be either "compact”, "expanded”, or list. Defaults to "compact”. See
Details.

mode Can be either "binary” or "value"” (where "binary” is default and it recodes
values to 1 or NA, like Boolean data, but without assuming 0 when data is not
available). This setting only applies when structure = "expanded”; a warning
message will be issued if used with other structures.

type Can be either "numeric” or "character"” (where "numeric” is default). This
setting only applies when structure = "expanded”; a warning message will be
issued if used with other structures.

drop Logical (whether to remove the original variable from the output or not). De-
faults to FALSE.

fixed Is the input for the sep value fixed, or a regular expression? See Details.

fill The "fill" value for missing values when structure = "expanded”. Defaults to

NA.
Additional arguments to cSplit().

6 concat.split

Details
structure
» "compact" creates as many columns as the maximum length of the resulting split. This is the
most useful general-case application of this function.

* When the input is numeric, "expanded” creates as many columns as the maximum value of
the input data. This is most useful when converting to mode = "binary”.

* "list"” creates a single new column that is structurally a list within a data.frame or

data.table.
fixed
* When structure = "expanded” or structure = "1ist", it is possible to supply a a regular
expression containing the characters to split on. For example, to split on ",", ";", or "|",
you can set sep=",];|\|" or sep="[,;|]", and fixed = FALSE to split on any of those
characters.

Note

This is more of a "legacy" or "convenience" wrapper function encompassing the features available
in the separated functions of cSplit(), cSplit_1(), and cSplit_e().

Author(s)
Ananda Mahto

See Also
cSplit(), cSplit_1(), cSplit_e()

Examples

Load some data
temp <- head(concat.test)

Split up the second column, selecting by column number
concat.split(temp, 2)

... or by name, and drop the offensive first column
concat.split(temp, "Likes", drop = TRUE)

The "Hates” column uses a different separator
concat.split(temp, "Hates”, sep = ";", drop = TRUE)

Not run:
You'll get a warning here, when trying to retain the original values

concat.split(temp, 2, mode = "value”, drop = TRUE)

End(Not run)

concat.split.compact 7

Try again. Notice the differing number of resulting columns

concat.split(temp, 2, structure = "expanded”,
mode = "value”, type = "numeric”, drop = TRUE)
Let's try splitting some strings... Same syntax

concat.split(temp, 3, drop = TRUE)

Strings can also be split to binary representations
concat.split(temp, 3, structure = "expanded”,
type = "character”, fill = @, drop = TRUE)

Split up the "Likes column” into a list variable; retain original column
head(concat.split(concat.test, 2, structure = "list”, drop = FALSE))

View the structure of the output to verify

that the new column is a list; note the

difference between "Likes” and "Likes_list".
str(concat.split(temp, 2, structure = "list"”, drop = FALSE))

concat.split.compact Split Concatenated Cells into a Condensed Format

Description

The default splitting method for concat. split. Formerly based on read.concat() but presently
a simple wrapper around cSplit().

Usage
concat.split.compact(data, split.col, sep = ","”, drop = FALSE,
fixed = TRUE, ...)
Arguments
data The input data. frame or data. table.
split.col The column that need to be split.
sep The character separating each value.
drop Logical. Should the original variable be dropped? Defaults to FALSE.
fixed Logical. Should the split character be treated as a fixed pattern (TRUE) or a
regular expression (FALSE)? Defaults to TRUE.
optional arguments to pass to cSplit.
Value

A data.table.

8 concat.split.expanded

Note

THIS FUNCTION IS DEPRECATED AND WILL BE REMOVED FROM LATER VERSIONS
OF "SPLITSTACKSHAPE". It no longer does anything different from cSplit(). It is recom-
mended that you transition your code to the cSplit function instead.

Author(s)
Ananda Mahto

See Also

read.concat(), cSplit()

Examples

Not run:

temp <- head(concat.test)
concat.split.compact(temp, "Likes")
concat.split.compact(temp, 4, ";")

Extra arguments to cSplit
concat.split.compact(temp, "Siblings”, drop = TRUE, stripWhite = TRUE)

End(Not run)

concat.split.expanded Split Concatenated Values into their Corresponding Column Position

Description
"Expand" concatenated numeric or character values to their relevant position in a data. frame or
data.table or create a binary representation of such data.

Usage

cSplit_e(data, split.col, sep = ","”, mode = NULL, type = "numeric”,
drop = FALSE, fixed = TRUE, fill = NA)

Arguments
data The source data.frame or data. table.
split.col The variable that needs to be split (either name or index position).
sep The character separating each value. Can also be a regular expression.
mode Can be either "binary"” (where presence of a number in a given column is con-

verted to "1") or "value” (where the value is retained and not recoded to "1").
Defaults to "binary".

concat.split.list

type

drop
fixed
fill

Value

Can be either "numeric” (where the items being split are integers) or "character”
(where the items being split are character strings). Defaults to "numeric”.

Logical. Should the original variable be dropped? Defaults to FALSE.
Used for base: :strsplit() for allowing regular expressions to be used.

Desired "fill" value. Defaults to NA.

A data.frame or data. table depending on the source input.

Author(s)

Ananda Mahto

See Also

cSplit(), cSplit_1(), numMat(), charMat()

Examples

temp <- head(concat.test)
cSplit_e(temp, "Likes")
cSplit_e(temp, 4, ";", fill = @)

The old function name still works
concat.split.expanded(temp, "Likes")
concat.split.expanded(temp, 4, ";", fill = @)

n,n

concat.split.expanded(temp, 4, ";"”, mode = "value”, drop = TRUE)

concat.split.expanded(temp, "Siblings"”, type = "character"”, drop = TRUE)

concat.split.list

Split Concatenated Cells into a List Format

Description

Takes a column in a data. frame or data. table with multiple values, splits the values into a 1list,
and returns a new data. frame or data.table.

Usage

cSplit_l(data, split.col, sep = ",", drop = FALSE, fixed = FALSE)

10 concat.split.multiple

Arguments
data The source data. frame or data. table.
split.col The variable that needs to be split (either name or index position).
sep The character separating each value. Can also be a regular expression.
drop Logical. Should the original variable be dropped? Defaults to FALSE.
fixed Used for base: :strsplit() for allowing regular expressions to be used.
Value

A data.frame or data.table with the concatenated column split and added as a 1ist.

Author(s)
Ananda Mahto

See Also

cSplit(), cSplit_e()

Examples

temp <- head(concat.test)
str(cSplit_l(temp, "Likes"))
cSplit_1(temp, 4, ";")

The old function name still works
str(concat.split.list(temp, "Likes"))

concat.split.list(temp, 4, ";
concat.split.list(temp, 4, ";", drop = TRUE)

concat.split.multiple Split Concatenated Cells and Optionally Reshape the Output

Description

This is a wrapper for the cSplit() function to maintain backwards compatibility with earlier ver-
sions of the "splitstackshape" package. It allows the user to split multiple columns at once and
optionally convert the results into a "long" format.

Usage

non

concat.split.multiple(data, split.cols, seps = ","”, direction = "wide",

.2

concat.test 11

Arguments
data The source data.frame or data. table.
split.cols A vector of columns that need to be split.
seps A vector of the separator character used in each column. If all columns use the
same character, you can enter that single character.
direction The desired form of the resulting data. frame or data. table, either "wide" or
"long". Defaults to "wide".
Other arguments to cSplit().
Value

A data.table.

Author(s)
Ananda Mahto

See Also
cSplit()

Examples

Not run:
temp <- head(concat.test)
concat.split.multiple(temp, split.cols = c("Likes"”, "Hates", "Siblings"),

seps = c(",", ", ")
concat.split.multiple(temp, split.cols = c("Likes"”, "Siblings"),
seps = ",", direction = "long")
End(Not run)
concat. test Example Dataset with Concatenated Cells

Description
This is a sample dataset to demonstrate the different features of the concat.split() family of
functions.

Format

A data. frame in which many columns contain concatenated cells.

12 cSplit

cSplit Split Concatenated Values into Separate Values

Description

The cSplit function is designed to quickly and conveniently split concatenated data into separate
values.

Usage

non

cSplit(indt, splitCols, sep = ",", direction = "wide", fixed = TRUE,
drop = TRUE, stripWhite = TRUE, makeEqual = NULL,
type.convert = TRUE)

Arguments

indt The input data. frame or data. table.

splitCols The column or columns that need to be split.

sep The values that serve as a delimiter within each column. This can be a single
value if all columns have the same delimiter, or a vector of values in the same
order as the delimiters in each of the splitCols.

direction The desired direction of the results, either "wide"” or "long".

fixed Logical. Should the split character be treated as a fixed pattern (TRUE) or a
regular expression (FALSE)? Defaults to TRUE.

drop Logical. Should the original concatenated column be dropped? Defaults to
TRUE.

stripWhite Logical. If there is whitespace around the delimiter in the concatenated columns,
should it be stripped prior to splitting? Defaults to TRUE.

makeEqual Logical. Should all groups be made to be the same length? Defaults to FALSE.

type.convert Logical. Should utils: :type.convert() be used to convert the result of each
column? This would add a little to the execution time.

Value

A data. table with the values split into new columns or rows.

Note

The cSplit function replaces most of the earlier concat.split* functions. The earlier functions
remain for compatibility purposes, but now they are essentially wrappers for the cSplit function.

Author(s)
Ananda Mahto

expandRows 13

See Also

concat.split()

Examples

Sample data
temp <- head(concat.test)

Split the "Likes"” column
cSplit(temp, "Likes")

Split the "Likes"” and "Hates"” columns --
they have different delimiters...
cSplit(temp, c("Likes"”, "Hates"), c(",”, ";"))

Split "Siblings” into a long form...

n on

cSplit(temp, "Siblings”, ",", direction = "long")

Split "Siblings” into a long form, not removing whitespace
cSplit(temp, "Siblings”, ",", direction = "long", stripWhite = FALSE)

Split a vector
y <- c(”a_b_c”, ”a_b", "c_a_b")
cSplit(data.frame(y), "y", "_"

expandRows Expand the Rows of a Dataset

Description
Expands (replicates) the rows of a data. frame or data. table, either by a fixed number, a specified
vector, or a value contained in one of the columns in the source data.frame or data. table.
Usage

expandRows (dataset, count, count.is.col = TRUE, drop = TRUE)

Arguments
dataset The input data. frame or data. table.
count The numeric vector of counts OR the column from the dataset that contains

the count data. If count is a single digit, it is assumed that all rows should be
repeated by this amount.

count.is.col Logical. Is the count value a column from the input dataset? Defaults to TRUE.

drop Logical. If count.is.col = TRUE, should the "count" column be dropped from
the result? Defaults to TRUE.

14 FacsToChars

Value

A data.frame or data.table, depending on the input.

Author(s)
Ananda Mahto

References

http://stackoverflow.com/a/19519828/1270695

Examples

mydf <- data.frame(x = c("a", "b", "q"),
y = c("c”, "d", "r"),
count = c(2, 5, 3))
library(data.table)
DT <- as.data.table(mydf)
mydf
expandRows (mydf, "count")
expandRows (DT, "count”, drop = FALSE)
expandRows(mydf, count = 3) ## This takes values from the third column!
expandRows (mydf, count = 3, count.is.col = FALSE)
expandRows (mydf, count = c(1, 5, 9), count.is.col = FALSE)
expandRows (DT, count = c(1, 5, 9), count.is.col = FALSE)

FacsToChars Convert All Factor Columns to Character Columns

Description

Sometimes, we forget to use the stringsAsFactors argument when using utils: :read. table()
and related functions. By default, R converts character columns to factors. Instead of re-reading
the data, the FacsToChars function will identify which columns are currently factors, and convert
them all to characters.

Usage

FacsToChars(mydf)
Arguments

mydf The name of your data. frame
Author(s)

Ananda Mahto

http://stackoverflow.com/a/19519828/1270695

getanlD 15

See Also

utils::read.table()

Examples

Some example data

dat <- data.frame(title = c("titlel”, "title2", "title3"),
author = c("author1”, "author2”, "author3"),
customerID = c(1, 2, 1))

str(dat) # current structure
dat2 <- splitstackshape:::FacsToChars(dat)
str(dat2) # Your new object
str(dat) # Original object is unaffected

getanID Add an "id" Variable to a Dataset

Description

Many functions will not work properly if there are duplicated ID variables in a dataset. This function
is a convenience function for .N from the "data.table" package to create an .id variable that when
used in conjunction with the existing ID variables, should be unique.

Usage

getanID(data, id.vars = NULL)

Arguments
data The input data. frame or data. table.
id.vars The variables that should be treated as ID variables. Defaults to NULL, at which
point all variables are used to create the new ID variable.
Value

The input dataset (as a data.table) if ID variables are unique, or the input dataset with a new
column named . id.

Author(s)

Ananda Mahto

16 listCol 1

Examples

mydf <- data.frame(IDA = c("a", "a", "a", "b", "b"),
IDB = c(1, 1, 1, 1, 1), values = 1:5)

mydf
getanID(mydf, c("IDA", "IDB"))

mydf <- data.frame(IDA = c("a", "a”, "a", "b", "b"),

IDB = c(1, 2, 1, 1, 2), values = 1:5)
mydf
getanID(mydf, 1:2)
listCol_1 Unlist a Column Stored as a List

Description

Unlists a column stored as a list into a long form.

Usage
listCol_1(inDT, listcol, drop = TRUE)

Arguments

inDT The input dataset.

listcol The name of the column stored as a list.

drop Logical. Should the original column be dropped? Defaults to TRUE.
Value

A data.table.

Author(s)
Ananda Mahto

See Also

listCol_w to flatten a 1ist column into a "wide" format.

Examples

dat <- data.frame(A = 1:3, B = I(list(c(1, 2), c(1, 3, 5), c(4))))
listCol_1(dat, "B")

listCol_w

17

listCol_w Flatten a Column Stored as a List

Description

Flattens a column stored as a 1ist into a wide form.

Usage

listCol_w(inDT, listcol, drop = TRUE, fill = NA_character_)

Arguments
inDT The input dataset.
listcol The name of the column stored as a 1ist.
drop Logical. Should the original column be dropped? Defaults to TRUE.
fill The desired fill value. Defaults to NA_character_.
Value

A data.table.

Author(s)

Ananda Mahto

See Also

listCol_1 to unlist a 1ist column into a "long" format.

Examples

dat <- data.frame(A = 1:3, B = I(list(c(1, 2), c(1, 3, 5), c(4))))
listCol_w(dat, "B")

18 merged.stack

merged. stack Take a List of Stacked data.tables and Merge Them

Description

A wrapper around the Stacked function to merge the resulting list into a single data. table.

Usage
merged.stack(data, id.vars = NULL, var.stubs, sep, keep.all = TRUE,
.2)
Arguments
data The input data. frame.
id.vars The columns to be used as "[D" variables. Defaults to NULL, at which point, all
names which are not identified as variable groups are used as the identifiers.
var.stubs The prefixes of the variable groups.
sep The character that separates the "variable name" from the "times" in the source
data.frame. Alternatively, can be set to "var.stubs"” (in quotes) if you do not
have a value for sep.
keep.all Logical. Should all the variables in the source data.frame be kept (keep.all

=TRUE) or only those which comprise the id.vars and split data from the
var.stubs (keep.all = FALSE).

Other arguments to be passed on to Stacked (for example, keep.rownames to
retain the rownames of the input dataset, or atStart, in case sep = "var.stubs”
is specified).

Value

A merged data. table.

Note

The keyed argument to Stacked has been hard- coded to TRUE to make merge work.

Author(s)

Ananda Mahto

See Also

Stacked, Reshape

Names

Examples

set.seed(1)
mydf <- data.frame(id_1

1:6, id_2 = c("A", "B"),

19

varA.1l sample(letters, 6),
varA.2 = sample(letters, 6),
varA.3 = sample(letters, 6),
varB.2 = sample(10, 6),
varB.3 = sample(10, 6),
varC.3 rnorm(6))
mydf
merged.stack(mydf, var.stubs = c("varA”, "varB", "varC"), sep = ".")
Names Dataset Names as a Character Vector, Always
Description

A convenience function using either character vectors or numeric vectors to specify a subset of

names of a data.frame.

Usage

Names(data, invec)

Arguments
data The input data. frame.
invec The names you want.
Value

A character vector of the desired names.

Author(s)
Ananda Mahto

Examples

mydf <- data.frame(a = 1:2, b = 3:4, ¢ = 5:6)
splitstackshape: : :Names(mydf, c("a", "c"))
splitstackshape: ::Names(mydf, c(1, 3))

20 NoSep

NoSep Split Basic Alphanumeric Strings Which Have No Separators

Description

Used to split strings like "Abc8" into "Abc" and "8".

Usage

NoSep(data, charfirst = TRUE)

Arguments
data The vector of strings to be split.
charfirst Is the string constructed with characters at the start or numbers? Defaults to
TRUE.
Value

A data. frame with two columns, .var and .time_1.

Note

This is a helper function for the Stacked() and Reshape () functions.

Author(s)

Ananda Mahto

See Also

base::strsplit()

Examples

x <- paste@("Var", LETTERS[1:3], 1:3)
splitstackshape: ::NoSep(x)

y <- paste@(1:3, "Var", LETTERS[1:3])
splitstackshape:::NoSep(y, charfirst = FALSE)

numMat 21

numMat Create a Numeric Matrix from a List of Values

Description

Create a numeric matrix from a list of values

Usage

numMat(listOfValues, fill = NA, mode = "binary")

Arguments

listOfValues A list of input values to be inserted in a matrix.

fill The initializing fill value for the empty matrix.
mode Either "binary” or "value”. Defaults to "binary"”.
Details

This is primarily a helper function for the concat.split() function when creating the "expanded"
structure. The input is anticipated to be a 1ist of values obtained using base: :strsplit().

Value

A matrix.

Author(s)
Ananda Mahto

See Also

base: :strsplit(), charMat().

Examples

invec <- ¢("1,2,4,5,6", "1,2,4,5,6", "1,2,4,5,6",
"1,2,4,5,6", "-1,1,2,5,6", "1,2,5,6")
A <- strsplit(invec, ",")
splitstackshape:::numMat(A)
splitstackshape:::numMat(A, fill
splitstackshape:::numMat(A, mode

0)
"value")

22 read.concat

othernames Extract All Names From a Dataset Other Than the Ones Listed

Description

A convenience function for setdiff(names(data), -some_vector_of_names-).

Usage

othernames(data, toremove)

Arguments
data The input data. frame.
toremove The names you want to exclude.
Value

A character vector of the remaining names.

Author(s)
Ananda Mahto

See Also
base: :setdiff ()

Examples

mydf <- data.frame(a = 1:2, b = 3:4, ¢ = 5:6)
splitstackshape:::othernames(mydf, "a")

read.concat Read Concatenated Character Vectors Into a data.frame

Description
Originally a helper function for the concat.split.compact() function. This function has now
been effectively replaced by cSplit().

Usage

read.concat(data, col.prefix, sep, ...)

Reshape 23

Arguments
data The input data.
col.prefix The desired column prefix for the output data. frame.
sep The character that acts as a delimiter.
Other arguments to pass to utils: :read.table().
Value

A data.frame.

Author(s)

Ananda Mahto

See Also

utils::read.table()

Examples

vec <- C(”a,b”, ”C,d,e”, ”'F, gn’ ”h, i, j,k”)
splitstackshape:::read.concat(vec, "var”, ",")

More than 5 lines the same

‘read.table‘ would fail with this

vec <- c("12,51,34,17", "84,28,17,10", "11,43,28,15",
"80,26,17,91", "10,41,25,13", "97,35,23,12,13")
splitstackshape:::read.concat(vec, "var”, ",")

Reshape Reshape Wide Data Into a Semi-long Form

Description

The stats: :reshape() function in base R is very handy when you want a semi-long (or semi-
wide) data. frame. However, base R’s reshape has problems is with "unbalanced" panel data, for
instance data where one variable was measured at three points in time, and another only twice.

Usage

Reshape(data, id.vars = NULL, var.stubs, sep = ".", rm.rownames, ...)

24 Reshape

Arguments
data The source data. frame.
id.vars The variables that serve as unique identifiers. Defaults to NULL, at which point,
all names which are not identified as variable groups are used as the identifiers.
var.stubs The prefixes of the variable groups.
sep The character that separates the "variable name" from the "times" in the wide
data.frame.
rm.rownames Ignored as data. tables do not have rownames anyway.
Further arguments to NoSep () in case the separator is of a different form.
Details

This function was written to overcome that limitation of dealing with unbalanced data, but is also
appropriate for basic wide-to-long reshaping tasks.

Related functions like utils::stack() in base R and reshape2: :melt() in "reshape2" are also
very handy when you want a "long" reshaping of data, but they result in a very long structuring of
your data, not the "semi-wide" format that reshape produces. data.table::melt() can produce
output like reshape, but it also expects an equal number of measurements for each variable.

Value
A "long" data.table of the reshaped data that retains the attributes added by base R’s reshape
function.

Author(s)
Ananda Mahto

See Also

Stacked(), utils: :stack(), stats: :reshape(), reshape2::melt(), data.table::melt()

Examples

set.seed(1)

mydf <- data.frame(id_1 = 1:6, id_2 = c("A", "B"), varA.1 = sample(letters, 6),
varA.2 = sample(letters, 6), varA.3 = sample(letters, 6),
varB.2 = sample(1@, 6), varB.3 = sample(10, 6),
varC.3 = rnorm(6))

mydf

Note that these data are unbalanced

reshape() will not work

Not run:

reshape(mydf, direction = "long", idvar=1:2, varying=3:ncol(mydf))

End(Not run)

Stacked

25

The Reshape() function can handle such scenarios

Reshape(mydf, id.vars = c("id_1", "id_2"),
var.stubs = c("varA”, "varB", "varC"))

Stacked

Stack Columns from a Wide Form to a Long Form

Description

A function to conveniently stack groups of wide columns into a long form which can then be merged

together.

Usage

Stacked(data, id.vars = NULL, var.stubs, sep, keep.all = TRUE,

keyed = TRUE,

Arguments

data

id.vars

var.stubs

sep

keep.all

keyed

keep.rownames

Value

keep.rownames = FALSE, ...)

The source data. frame.

The variables that serve as unique identifiers. Defaults to NULL, at which point,
all names which are not identified as variable groups are used as the identifiers.

The prefixes of the variable groups.

The character that separates the "variable name" from the "times" in the wide
data.frame. Alternatively, can be set to "var.stubs” (in quotes) if you do not
have a value for sep.

Logical. Should all the variables from the source data. frame be kept (keep.all
=TRUE) or should the resulting data.table comprise only columns for the
id.vars, var.stubs, and "times" (keep.all = FALSE). Other variables are re-
cycled to appropriate length. For this to work, both id.vars and var.stubs
must be specified.

Logical. Should the Stacked function automatically set the key for the resulting
data.tables. If TRUE (default) the key is set to the id.vars and the "time"
variables that are created by Stacked.

Logical. Should rownames be kept when converting the input to a data. table?
Defaults to FALSE.

Other arguments to be passed on when sep = "var.stubs” (specifically, atStart:
A logical argument to indicate whether the stubs come at the start or at the end
of the variable names).

A list of data.tables with one data.table for each "var.stub". The key is set to the id.vars

and . time_# vars.

26

Note

stratified

This is the function internally called by merged. stack.

Author(s)

Ananda Mahto

See Also

stack, melt from "reshape2".

Examples

set.seed(1)
mydf <- data.frame(id_1

1:6, id_2 = c("A", "B"),

varA.1 = sample(letters, 6),
varA.2 = sample(letters, 6),
varA.3 = sample(letters, 6),
varB.2 = sample(10, 6),
varB.3 = sample(10, 6),
varC.3 = rnorm(6))
mydf
Stacked(data = mydf, var.stubs = c("varA", "varB", "varC"), sep = ".")
stratified Take a Stratified Sample From a Dataset
Description

The stratified function samples from a data. table in which one or more columns can be used
as a "stratification" or "grouping" variable. The result is a new data.table with the specified
number of samples from each group.

Usage
stratified(indt, group, size, select = NULL, replace = FALSE,
keep.rownames = FALSE, bothSets = FALSE, ...)
Arguments

indt The input data. table.

stratified 27

group The column or columns that should be used to create the groups. Can be a char-
acter vector of column names (recommended) or a numeric vector of column
positions. Generally, if you are using more than one variable to create your
"strata", you should list them in the order of slowest varying to quickest varying.
This can be a vector of names or column indexes.

size The desired sample size.

* If size is a value between 0 and 1 expressed as a decimal, size is set to be
proportional to the number of observations per group.

» If size is a single positive integer, it will be assumed that you want the
same number of samples from each group.

 If size is a named vector, the function will check to see whether the length
of the vector matches the number of groups and that the names match the
group names.

select A named list containing levels from the "group” variables in which you are in-
terested. The list names must be present as variable names for the input dataset.

replace Logical. Should sampling be with replacement? Defaults to FALSE.

keep.rownames Logical. If the input is a data.frame with rownames, as.data.table would
normally drop the rownames. If TRUE, the rownames would be retained in a
column named rn. Defaults to FALSE.

bothSets Logical. Should both the sampled and non-sampled sets be returned as a 1ist?
Defaults to FALSE.

Optional arguments to base: :sample().

Value

If bothSets = TRUE, a 1ist of two data. tables; otherwise, a data. table.

Note

Slightly different sizes than requested: Because of how computers deal with floating-point arith-
metic, and because R uses a "round to even" approach, the size per strata that results when spec-
ifying a proportionate sample may be one sample higher or lower per strata than you might have
expected.

Author(s)

Ananda Mahto

See Also

sampling: :strata() from the "strata" package; dplyr: :sample_n() and dplyr: :sample_frac()
from "dplyr".

28 stratified

Examples

Generate a sample data.frame to play with
set.seed(1)
DF <- data.frame(

ID = 1:100,
sample(c("AA", "BB", "CC", "DD", "EE"), 100, replace = TRUE),
= rnorm(100), C = abs(round(rnorm(100), digits=1)),
sample(c(”"CA", "NY", "TX"), 100, replace = TRUE),
sample(c("M", "F"), 100, replace = TRUE))

m o ™ >
|

Take a 10% sample from all -A- groups in DF
stratified(DF, "A", .1)

Take a 10% sample from only "AA" and "BB" groups from -A- in DF
stratified(DF, "A", .1, select = list(A = c("AA", "BB")))

Take 5 samples from all -D- groups in DF, specified by column number
stratified(DF, group = 5, size = 5)

Use a two-column strata: -E- and -D-
stratified(DF, c("E", "D"), size = .15)

Use a two-column strata (-E- and -D-) but only use cases where -E- == "M"
stratified(DF, c("E", "D"), .15, select = list(E = "M"))

As above, but where -E- == "M" and -D- == "CA" or "TX"
stratified(DF, c("E", "D"), .15, select = list(E = "M", D = c("CA", "TX")))

Use a three-column strata: -E-, -D-, and -A-
stratified(DF, c("E", "D", "A"), size = 2)

Not run:

The following will produce errors
stratified(DF, "D", c(5, 3))
stratified(DF, "D", c(5, 3, 2))

End(Not run)

Sizes using a named vector
stratified(DF, "D", c(CA =5, NY = 3, TX = 2))

Works with multiple groups as well
stratified(DF, c("D", "E"),
c("NY F" =2, "NY M" =3, "TX F" =1, "TX M" = 1,
"CA F" =5, "CA M" = 1))

Index

* datasets
concat.test, 11

+ package
splitstackshape-package, 2

base::sample(), 27
base::setdiff(), 22
base::strsplit(), 4,9, 10, 20, 21

charMat, 4

charMat(), 9, 21

concat.split, 5
concat.split(), 2,4, 11,13,21
concat.split.compact, 7
concat.split.compact(), 22
concat.split.expanded, 8
concat.split.list,9
concat.split.multiple, 10
concat.test, 11

cSplit, 12

cSplit(), 5-11, 22

cSplit_e (concat.split.expanded), 8
cSplit_e(), 6, 10

cSplit_1 (concat.split.list),9
cSplit_1(), 6,9

data.table, 25
data.table::melt(), 24
dplyr::sample_frac(), 27
dplyr::sample_n(), 27
expandRows, 13
FacsToChars, 14
getanlD, 15

key, 25

listCol_1, 16, 17
listCol_w, 16, 17

29

melt, 26
merge, 18, 25
merged. stack, 18, 26

Names, 19
NoSep, 20
NoSep(), 24
numMat, 21
numMat(), 4, 9

othernames, 22

read.concat, 22
read.concat(), 7, 8
Reshape, 18, 23
Reshape(), 20
reshape2: :dcast(), 3
reshape2::melt(), 3, 24

sampling::strata(), 27

splitstackshape
(splitstackshape-package), 2

splitstackshape-package, 2

stack, 26

Stacked, /8, 25

Stacked(), 20, 24

stats: :reshape(), 3, 23, 24

stratified, 26

utils::read.table(), 14, 15,23
utils::stack(), 24
utils::type.convert(), /12

	splitstackshape-package
	charMat
	concat.split
	concat.split.compact
	concat.split.expanded
	concat.split.list
	concat.split.multiple
	concat.test
	cSplit
	expandRows
	FacsToChars
	getanID
	listCol_l
	listCol_w
	merged.stack
	Names
	NoSep
	numMat
	othernames
	read.concat
	Reshape
	Stacked
	stratified
	Index

