
Package ‘spgs’
October 3, 2023

Type Package

Encoding UTF-8

Title Statistical Patterns in Genomic Sequences

Version 1.0-4

Date 2023-10-02

Author Andrew Hart [aut, cre],
Servet Martínez [aut],
Universidad de Chile [cph],
INRIA-Chile [cph]

Maintainer Andrew Hart <ahart@dim.uchile.cl>

Copyright Universidad de Chile, INRIA-Chile

Depends R (>= 3.0)

Imports graphics, stats

Enhances seqinr

Description A collection of statistical hypothesis tests and other
techniques for identifying certain spatial relationships/phenomena in
DNA sequences. In particular, it provides tests and graphical methods for determining
whether or not DNA sequences comply with Chargaff's second parity rule
or exhibit purine-pyrimidine parity. In addition, there are functions for
efficiently simulating discrete state space Markov chains and testing
arbitrary symbolic sequences of symbols for the presence of first-order
Markovianness.
Also, it has functions for counting words/k-mers (and cylinder patterns) in
arbitrary symbolic sequences. Functions which take a DNA sequence as input
can handle sequences stored as SeqFastadna objects from the 'seqinr' package.

License GPL (>= 2)

NeedsCompilation yes

Classification/MSC 62F03, 62G10, 62M07, 62P10, 92D20

Repository CRAN

Date/Publication 2023-10-03 14:20:02 UTC

1

2 spgs-package

R topics documented:
spgs-package . 2
ag.test . 4
agct.test . 6
array2vector . 8
chargaff.gibbs.test . 9
chargaff0.test . 11
chargaff1.test . 13
chargaff2.test . 15
chisq.unif.test . 17
complement . 18
cylinder.counts . 20
diffsign.test . 22
diid.disturbance . 23
diid.test . 24
disambiguate . 27
estimateMarkovChain . 28
ks.unif.test . 29
lb.test . 30
markov.disturbance . 31
markov.test . 32
Nanoarchaeum equitans Kin4-M Chromosome . 34
oligoProfile . 35
pair.counts . 37
Pieris Rapae Granulovirus Genome . 38
quadruple.counts . 39
rank.test . 40
rcspr2mat . 42
reverseComplement . 43
rstochmat . 44
rstochvec . 45
simulateMarkovChain . 46
triple.counts . 47
turningpoint.test . 48

Index 50

spgs-package Statistical Patterns in Genomic Sequences

Description

provides functions for exploring and testing statistical properties and patterns in DNA sequences.

spgs-package 3

Details

Package: spgs
Type: Package
License: GPL (>= 2)

This package provides a range of statistical tests for various properties of DNA and/or other genomic
sequences. There are eight groups of functions:

Testing for Chargaff’s second parity rule in bacteria and other DNA sequences chargaff0.test,
chargaff1.test, chargaff2.test, chargaff.gibbs.test, oligoProfile

Testing for purine-pyrimidine parity in viruses and other DNA sequences ag.test, agct.test

Testing for Bernoulli/Markov processes markov.test, diid.test

Independence tests diffsign.test, turningpoint.test, rank.test, lb.test

Tests for uniform distribution ks.unif.test, chisq.unif.test

Simulation of random vectors, stochastic matrices, Bernoulli processes and Markov chains simulateMarkovChain,
estimateMarkovChain, rstochvec, rstochmat, rcspr2mat

Functions for obtaining the complement or reverse complement of a DNA sequence complement,
reverseComplement

Functions for counting words/k-mers and cylinders in symbolic sequences pair.counts, triple.counts,
quadruple.counts, cylinder.counts

The word/k-mer counting functions are general and can deal with arbitrary symbolic sequences, not
only DNA sequences.

Functions which take a DNA sequence as input are able to work with sequences stored as SeqFastadna
objects generated by the seqinr package.

Author(s)

Andrew Hart and Servet Martínez

Maintainer: Andrew Hart <ahart@dim.uchile.cl>

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

Hart, A.G. and Martínez, S. (2014) Markovianness and Conditional Independence in Annotated
Bacterial DNA. Stat. Appl. Genet. Mol. Biol. 13(6), 693-716. arXiv:1311.4411 [q-bio.QM].

Hart, A.G. and Martínez, S. (2012) A Gibbs approach to Chargaff’s second parity rule. J. Stat.
Phys. 146(2), 408-422. arXiv:1105.0685 [math.pr].

See Also

seqinr

4 ag.test

ag.test Test of Purine-Pyrimidine Parity Based on Purine Count

Description

Performs a test proposed by Hart and Martínez (2011) for the equivalence of the relative frequencies
of purines (A+G) and pyrimidines (C + T) in DNA sequences. It does this by checking whether
or not the mononucleotide frequencies of a DNA sequence satisfy the relationship A+G=C+T.

Usage

ag.test(x, type=c("interval", "simplex"))

Arguments

x either a vector containing the relative frequencies of each of the 4 nucleotides A,
C, G, T, a character vector representing a DNA sequence in which each element
contains a single nucleotide, or a DNA sequence stored using the SeqFastadna
class from the seqinr package.

type Specifies one of two possible tests to perform, both of which are based on the
same test statistic, but assuming different forms of the Dirichlet distribution un-
der the null. “‘simplex”’ assumes a Dirichlet(1,1,1,1) distribution on the 3-
simplex while “‘interval”’ assumes a Dirichlet(1,1) (uniform) distribution on
the unit interval. The default is “‘interval”’.

Details

The first argument may be a character vector representing a DNA sequence, a DNA sequence rep-
resented using the SeqFastadna class from the seqinr package, or a vector containing the relative
frequencies of the A, C, G and T nucleic acids.

Let A, C, G and T denote the relative frequencies of the nucleotide bases appearing in a DNA
sequence. This function carries out a statistical hypothesis test that the relative frequencies satisfy
the relation A+G = C + T , or that purines {A,G} occur equally as often as pyrimidines {C, T}
in a DNA sequence. The relationship can be rewritten as A − T = C − G, from which it is
easy to see that the property being tested is a generalisation of Chargaff’s second parity rule for
mononucleotides, which states that A = T and C = G. The test is set up as follows:

H0: A+G 6= C + T
H1: A+G = C + T

If ‘type’ is set to “‘simplex”’, the vector (A,C,G, T) is assumed to come from a Dirichlet(1,1,1,1)
distribution on the 3-simplex under the null hypothesis. Otherwise, if ‘type’ is set to “‘interval”’,
it is assumed under the null hypothesis that (A + G,C + T) ~ Dirichlet(1,1) or, in other words,
A+G and C + T are uniformly distributed on the unit interval and satisfy A+G+ C + T = 1.

In both cases, the test statistic is η∗V = |A+G− 0.5|.

ag.test 5

Value

A list with class "htest.ext" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test. Only included if ‘no.p.value’ is ‘FALSE’.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

estimate the probability vector used to derive the test statistic.

stat.desc a brief description of the test statistic.

null the null hypothesis (H0) of the test.

alternative the alternative hypothesis (H1) of the test.

Author(s)

Andrew Hart and Servet Martínez

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

See Also

chargaff0.test, chargaff1.test, chargaff2.test, agct.test, chargaff.gibbs.test

Examples

#Demonstration on real viral sequence
data(pieris)
ag.test(pieris)
ag.test(pieris, type="simplex")

#Simulate synthetic DNA sequence that does not exhibit Purine-Pyrimidine parity
trans.mat <- matrix(c(.4, .1, .4, .1, .2, .1, .6, .1, .4, .1, .3, .2, .1, .2, .4, .3),
ncol=4, byrow=TRUE)
seq <- simulateMarkovChain(500000, trans.mat, states=c("a", "c", "g", "t"))
ag.test(seq)

6 agct.test

agct.test Test of Purine-Pyrimidine Parity Based on Euclidean distance

Description

Performs a test proposed by Hart and Martínez (2011) for the equivalence of the relative frequencies
of purines (A+G) and pyrimidines (C + T) in DNA sequences. It does this by checking whether
or not the mononucleotide frequencies of a DNA sequence satisfy the relationship A+G=C+T.

Usage

agct.test(x, alg=c("exact", "simulate", "lower", "Lower", "upper"), n)

Arguments

x either a vector containing the relative frequencies of each of the 4 nucleotides A,
C, G, T, a character vector representing a DNA sequence in which each element
contains a single nucleotide, or a DNA sequence stored using the SeqFastadna
class from the seqinr package.

alg the algorithm for computing the p-value. If set to “‘simulate”’, the p-value
is obtained via Monte Carlo simulation. If set to “‘lower”’, an analytic lower
bound on the p-value is computed. If set to “‘upper”’, an analytic upper bound
on the p-value is computed. “‘lower”’ and “‘upper”’ are based on formulae
in Hart and Martínez (2011). a Tighter (though unpublished) lower bound on
the p-value may be obtained by specifying “‘Lower”’. If ‘alg’ is specified as
“‘exact”’ (the default value), the p-value for the test is computed exactly.

n The number of replications to use for Monte Carlo simulation. If computation-
ally feasible, a value >= 10000000 is recommended.

Details

The first argument may be a character vector representing a DNA sequence, a DNA sequence rep-
resented using the SeqFastadna class from the seqinr package, or a vector containing the relative
frequencies of the A, C, G and T nucleic acids.

Let A, C, G and T denote the relative frequencies of the nucleotide bases appearing in a DNA
sequence. This function carries out a statistical hypothesis test that the relative frequencies satisfy
the relation A+G = C + T , or that purines {A,G} occur equally as often as pyrimidines {C, T}
in a DNA sequence. The relationship can be rewritten as A − T = C − G, from which it is
easy to see that the property being tested is a generalisation of Chargaff’s second parity rule for
mononucleotides, which states that A = T and C = G. The test is set up as follows:

H0: A+G 6= C + T
H1: A+G = C + T

The vector (A,C,G, T) is assumed to come from a Dirichlet(1,1,1,1) distribution on the 3-simplex
under the null hypothesis.

agct.test 7

The test statistic ηV is the Euclidean distance from the relative frequency vector (A,C,G, T) to the
closest point in the square set θV = {(x, y, 1/2−x, 1/2− y) : 0 <= x, y <= 1/2}, which divides
the 3-simplex into two equal parts. ηV lies in the range [0,

√
3/8].

Value

A list with class "htest.ext" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

estimate the probability vector used to derive the test statistic.

stat.desc a brief description of the test statistic.

null the null hypothesis (H0) of the test.

alternative the alternative hypothesis (H1) of the test.

Note

agct.test(x, alg="upper") is equivalent to ag.test(x,alg="simplex") except that the p-value
computed using the formula for ‘alg="upper"’ is exact for the test statistic η∗V used in ag.test,
whereas it is merely an upper bound on the p-value for ηV .

Author(s)

Andrew Hart and Servet Martínez

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

See Also

chargaff0.test, chargaff1.test, chargaff2.test, ag.test, chargaff.gibbs.test

Examples

#Demonstration on real viral sequence
data(pieris)
agct.test(pieris)

#Simulate synthetic DNA sequence that does not exhibit Purine-Pyrimidine parity
trans.mat <- matrix(c(.4, .1, .4, .1, .2, .1, .6, .1, .4, .1, .3, .2, .1, .2, .4, .3),
ncol=4, byrow=TRUE)
seq <- simulateMarkovChain(500000, trans.mat, states=c("a", "c", "g", "t"))
agct.test(seq)

8 array2vector

array2vector Convert Arrays and Tables to Vectors with Named Elements

Description

Convert an array/table into an integer vector, preserving the names corresponding to each element
in a sensible way. These functions differ from as.vector in that they name each element of the re-
sulting vector by combining appropriate names from the various dimensions that together uniquely
identify the position of each element in the original array/table.

Usage

array2vector(x, sep=".", sort=FALSE, rev=FALSE, ...)
table2vector(x, sep=".", sort=FALSE, rev=FALSE, ...)

Arguments

x an array or table.

sep a character string to be used to separate the name corresponding to each dimen-
sion when constructing the element names for the vector. The default value is
".".

sort Should the elements in the resulting vector be sorted in lexicographic order ac-
cording to the names they are assigned? The default is FALSE.

rev For the purposes of sorting, should the names of the vector’s elements be read
from right-to-left, i.e. in reverse order? The default is FALSE.

... Arguments to be passed from or to other functions.

Details

table2vector is merely a convenience alias for array2vector, which converts a multi-dimensional
array or table to a vector using as.vector, but names each of the elements in the resulting vector
according to the names contained in its dimnames attribute.

the name of each element is constructed by concatenating names (one from each dimnames member)
seperated by the value specified in sep.

Note that dimensions of x which lack a corresponding vector of names in the dimnames attribute
will be assigned a names vector of the form 1:d where d is the dimension size specified in the
corresponding entry of the dim attribute.

Value

An integer vector with names set as described in ‘Details’.

Author(s)

Andrew Hart and Servet Martínez

chargaff.gibbs.test 9

See Also

pair.counts, triple.counts, quadruple.counts, cylinder.counts

Examples

a <- array(1:8, dim=rep(2,3), dimnames=list(c("a","b"), c("x","p"), c("v","u")))
array2vector(a)
array2vector(a, sep="")
array2vector(a, sep="", sort=TRUE)
array2vector(a, sep="", sort=TRUE, rev=TRUE)
array2vector(a, sep="", sort=TRUE, decreasing=TRUE)

chargaff.gibbs.test Test of CSPR for Dinucleotides Under Gibbs Distribution

Description

Performs a test of Chargaff’s second parity rule (CSPR) for dinucleotides under a Gibbsian assump-
tion on the DNA sequence, which was proposed in Hart and Martínez (2012).

Usage

chargaff.gibbs.test(x, maxLag=200)

Arguments

x either a character vector representing a DNA sequence in which each element
contains a single nucleotide, or a DNA sequence stored using the SeqFastadna
class from the seqinr package.

maxLag The maximum number of lags (cylinder lengths) to use in computing variances.
the default value is ‘200’.

Details

This function performs a test of Chargaff’s second parity rule for dinucleotides assuming the DNA
sequence was generated by a Gibbs distribution. Under the null hypothesis, the test statistic η is
asymptotically χ2 on 5 degrees of freedom.

The test is set up as follows:

H0: the sequence complies with CSPR for dinucleotides
H1: the sequence does not comply with CSPR for dinucleotides

10 chargaff.gibbs.test

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

FHat the 5-element vector nF̂ used in calculating the test statistic.

pairs the stochastic matrix of dinucleotide counts used to derive nF̂ .

v The asymptotic covariance matrix of nF̂ .

n the length of the DNA sequence.

cutoff the actual number of lags used by the algorithm to calculate covariances.

maxCutoff the value specified for the maxLag parameter when the test was performed.

Author(s)

Andrew Hart and Servet Martínez

References

Hart, A.G. and Martínez, S. (2012) A Gibbs approach to Chargaff’s second parity rule. J. Stat.
Phys. 146(2), 408-422.

See Also

chargaff0.test, chargaff1.test, chargaff2.test, agct.test, ag.test

Examples

#Demonstration on real bacterial sequence
data(nanoarchaeum)
chargaff.gibbs.test(nanoarchaeum)

#Simulate synthetic DNA sequence that does not satisfy Chargaff's second parity rule
trans.mat <- matrix(c(.4, .1, .4, .1, .2, .1, .6, .1, .4, .1, .3, .2, .1, .2, .4, .3),
ncol=4, byrow=TRUE)
seq <- simulateMarkovChain(500000, trans.mat, states=c("a", "c", "g", "t"))
chargaff.gibbs.test(seq)

chargaff0.test 11

chargaff0.test Vector Test of Chargaff’s Second Parity Rule (CSPR) for Mononu-
cleotides

Description

Performs the vector test of Chargaff’s second parity rule (CSPR) for mononucleotides proposed in
Hart and Martínez (2001).

Usage

chargaff0.test(x, alg=c("exact", "simulate", "lower", "upper", "Lower", "Upper"), n,
no.p.value=FALSE)

Arguments

x either a vector containing the relative frequencies of each of the 4 nucleotides A,
C, G, T, a character vector representing a DNA sequence in which each element
contains a single nucleotide, or a DNA sequence stored using the SeqFastadna
class from the seqinr package.

alg the algorithm for computing the p-value. If set to “‘simulate”’, the p-value
is obtained via Monte Carlo simulation. If set to “‘lower”’, an analytic lower
bound on the p-value is computed. If set to “‘upper”’, an analytic upper bound
on the p-value is computed. “‘lower”’ and “‘upper”’ are based on formulae in
Hart and Martínez (2011). a Tighter (though unpublished) lower /upper bound
on the p-value may be obtained by specifying “‘Lower”’/“‘Upper”’. If ‘type’
is specified as “‘exact”’ (the default value),the p-value for the test is computed
exactly for small values of the test statistic and crudely approximated for large
values. See the note below for further details.

n The number of replications to use for Monte Carlo simulation. If computation-
ally feasible, a value >= 10000000 is recommended.

no.p.value If ‘TRUE’, do not compute the p-value. The default is ‘FALSE’.

Details

The first argument may be a character vector representing a DNA sequence, a DNA sequence rep-
resented using the SeqFastadna class from the seqinr package, or a vector containing the relative
frequencies of the A, C, G and T nucleic acids.

Letting A, C, G and T denote the relative frequencies of their corresponding nucleic acids, this
function performs the following hypothesis test:

H0: A 6= T or C 6= G
H1: A = T and C = G

The vector (A,C,G, T) is assumed to come from a Dirichlet(1,1,1,1) distribution on the 3-simplex
under the null hypothesis.

The test statistic is η0 =
√
(A− T)2/2 + (C −G)2/2.

12 chargaff0.test

Value

A list with class "htest.ext" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test. Only included if no.p.value is FALSE.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

estimate the probability vector used to derive the test statistic.

stat.desc a brief description of the test statistic.

null the null hypothesis (H0) of the test.

alternative the alternative hypothesis (H1) of the test.

Note

Currently, regardless of the algorithm (alg) selected, the p-value or bound is only computed cor-
rectly when the test statistic is smaller than or equal to

√
2/4. A value of 1 is returned when the

test statistic is greater than
√
2/4. This is not accurate, but shouldn’t matter as it is well within the

acceptance region of the null hypothesis.

The algebraically computed bounds on the p-value obtained when ‘alg’ is set to either “‘lower”’or
“‘upper”’ are not as tight as those corresponding to “‘Lower”’ and “‘Upper”’, which should be
generally preferred. However, “‘exact”’ or “‘simulate”’ should be employed for real- world
analysis.

‘no.p.value’ suppresses computation of the p-value when it is set to ‘TRUE’. This may be useful
wen using this function to help simulate the test statistic.

Author(s)

Andrew Hart and Servet Martínez

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

See Also

chargaff1.test, chargaff2.test, agct.test, ag.test, chargaff.gibbs.test

Examples

#Demonstration on real bacterial sequence
data(nanoarchaeum)
chargaff0.test(nanoarchaeum)

#Simulate synthetic DNA sequence that does not satisfy Chargaff's second parity rule
trans.mat <- matrix(c(.4, .1, .4, .1, .2, .1, .6, .1, .4, .1, .3, .2, .1, .2, .4, .3),
ncol=4, byrow=TRUE)

chargaff1.test 13

seq <- simulateMarkovChain(500000, trans.mat, states=c("a", "c", "g", "t"))
chargaff0.test(seq)

chargaff1.test Matrix Test of CSPR for Mononucleotides

Description

Performs a test of Chargaff’s second parity rule (CSPR) for mononucleotides on a genomic se-
quence using a 4X4 stochastic matrix estimated from the sequence. The test was proposed by Hart
and Martínez (2011).

Usage

chargaff1.test(x, alg=c("table", "simulate", "upper"), n, no.p.value=FALSE)

Arguments

x either a vector containing the relative frequencies of each of the 4 nucleotides A,
C, G, T, a character vector representing a DNA sequence in which each element
contains a single nucleotide, or a DNA sequence stored using the SeqFastadna
class from the seqinr package.

alg the algorithm for computing the p-value. If set to “‘simulate”’, the p-value
is obtained via Monte Carlo simulation. If set to “‘upper”’, an analytic upper
bound on the p-value is computed. “‘upper”’ are based on formulae in Hart
and Martínez (2011). If ‘type’ is specified as “‘table”’ (the default value),the
p-value for the test is obtained from a linear interpolation of a look-up table. See
the note below for further details.

n The number of replications to use for Monte Carlo simulation. If computation-
ally feasible, a value >= 10000000 is recommended.

no.p.value If ‘TRUE’, do not compute the p-value. The default is ‘FALSE’.

Details

The first argument may be a character vector representing a DNA sequence, a DNA sequence rep-
resented using the SeqFastadna class from the seqinr package, or a vector containing the relative
frequencies of the A, C, G and T nucleic acids.

This function performs a test of Chargaff’s second parity rule for mononucleotides based on a 4X4
stochastic matrix P estimated from the empirical dinucleotide distribution of a genomic sequence
. The a, b) entry of P gives the empirical probability (relative frequency) that a nucleotide a is
followed by a nucleotide b in the sequence. The test is set up as follows:

H0: the sequence (or matrix P) does not comply with CSPR for mononucleotides
H1: the sequence (or matrix P) complies with CSPR for mononucleotides

14 chargaff1.test

Value

A list with class "htest.ext" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test. Only included if no.p.value is FALSE.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

f the 2-element vector used in calculating the test statistic.

estimate the stochastic matrix P used to derive the test statistic.

stat.desc a brief description of the test statistic.

null the null hypothesis (H0) of the test.

alternative the alternative hypothesis (H1) of the test.

Note

Currently, the look-up table that is employed when ‘alg’ is set to “‘table”’ does not provide an
accurate p-value when the statistic is smaller than 0.00806. Care should be taken when adjusting
p-values for multiple testing.

The algebraically computed upper bound on the p-value obtained when ‘alg’ is set to “‘upper”’ is
not very tight and not suitable for real- world applications.

‘no.p.value’ suppresses computation of the p-value when it is set to ‘TRUE’. This may be useful
wen using this function to help simulate the test statistic.

Author(s)

Andrew Hart and Servet Martínez

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

See Also

chargaff0.test, chargaff2.test, agct.test, ag.test, chargaff.gibbs.test

Examples

#Demonstration on real bacterial sequence
data(nanoarchaeum)
chargaff1.test(nanoarchaeum)

#Simulate synthetic DNA sequence that does not satisfy Chargaff's second parity rule
trans.mat <- matrix(c(.4, .1, .4, .1, .2, .1, .6, .1, .4, .1, .3, .2, .1, .2, .4, .3),
ncol=4, byrow=TRUE)
seq <- simulateMarkovChain(500000, trans.mat, states=c("a", "c", "g", "t"))
chargaff1.test(seq)

chargaff2.test 15

chargaff2.test Matrix Test of CSPR for Dinucleotides

Description

Performs the matrix test of Chargaff’s second parity rule (CSPR) for dinucleotides proposed in Hart
and Martínez (2011).

Usage

chargaff2.test(x, alg=c("table", "simulate", "upper"), n, no.p.value=FALSE)

Arguments

x either a vector containing the relative frequencies of each of the 4 nucleotides A,
C, G, T, a character vector representing a DNA sequence in which each element
contains a single nucleotide, or a DNA sequence stored using the SeqFastadna
class from the seqinr package.

alg the algorithm for computing the p-value. If set to “‘simulate”’, the p-value
is obtained via Monte Carlo simulation. If set to “‘upper”’, an analytic upper
bound on the p-value is computed. “‘upper”’ are based on formulae in Hart
and Martínez (2011). If ‘type’ is specified as “‘table”’ (the default value),the
p-value for the test is obtained from a linear interpolation of a look-up table. See
the note below for further details.

n The number of replications to use for Monte Carlo simulation. If computation-
ally feasible, a value >= 10000000 is recommended.

no.p.value If ‘TRUE’, do not compute the p-value. The default is ‘FALSE’.

Details

This function performs a test of Chargaff’s second parity rule for dinucleotides based on a 4X4
stochastic matrix P̂ estimated from the empirical dinucleotide distribution of a genomic sequence
. The a, b) entry of P̂ gives the empirical probability (relative frequency) that a nucleotide a is
followed by a nucleotide b in the sequence. The test is set up as follows:

H0: the sequence (or matrix P̂) does not comply with CSPR for dinucleotides
H1: the sequence (or matrix P̂) complies with CSPR for dinucleotides

Value

A list with class "htest.ext" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test. Only included if no.p.value is FALSE.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

16 chargaff2.test

f the 5-element vector used in calculating the test statistic.

estimate the stochastic matrix P̂ used to derive the test statistic.

stat.desc a brief description of the test statistic.

null the null hypothesis (H0) of the test.

alternative the alternative hypothesis (H1) of the test.

Note

Currently, the look-up table that is employed when ‘alg’ is set to “‘table”’ does not provide an
accurate p-value when the statistic is smaller than 0.05899. Care should be taken when adjusting
p-values for multiple testing.

The algebraically computed upper bound on the p-value obtained when ‘alg’ is set to “‘upper”’ is
not very tight and not suitable for real- world applications.

‘no.p.value’ suppresses computation of the p-value when it is set to ‘TRUE’. This may be useful
wen using this function to help simulate the test statistic.

Author(s)

Andrew Hart and Servet Martínez

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

See Also

chargaff0.test, chargaff1.test agct.test, ag.test, chargaff.gibbs.test

Examples

#Demonstration on real bacterial sequence
data(nanoarchaeum)
chargaff2.test(nanoarchaeum)

#Simulate synthetic DNA sequence that does not satisfy Chargaff's second parity rule
trans.mat <- matrix(c(.4, .1, .4, .1, .2, .1, .6, .1, .4, .1, .3, .2, .1, .2, .4, .3),
ncol=4, byrow=TRUE)
seq <- simulateMarkovChain(500000, trans.mat, states=c("a", "c", "g", "t"))
chargaff2.test(seq)

chisq.unif.test 17

chisq.unif.test Test of Uniformity Based on Pearsons’s Chi-Squared test

Description

Tests if a set of data points is uniformly distributed over a specified interval [a,b].

Usage

chisq.unif.test(x, bins=NULL, interval=c(0,1), min.bin.size=10, all.inside=TRUE,
rightmost.closed=TRUE, ...)

Arguments

x A numeric vector of data values.

bins If specified, the number of bins to use to discretise the interval. Otherwise, the
number of bins will be chosen automatically.

interval A two-element vector giving the support of the uniform distribution. The default
is c(0,1).

min.bin.size The minimum number of data points to have in each bin. If bins cannot be
chosen without violating this constraint, an error is generated. The default is 10.
This parameter is ignored if ‘bins’ is specified.

all.inside Determines if data points outside the interval should be counted as belonging to
the extremal bins. The default is ‘TRUE’.

rightmost.closed

Determines if data points that coinside withinterval[2] are counted as be-
longing to the last bin. This parameter only has an effect if all.inside is set to
FALSE. The default is TRUE.

... Additional parameters to be passed to chisq.test.

Details

This function tests the fit of a set of data points to a uniform distribution on [a, b] by partitioning
[a, b] into ‘bins’ bins, counting how many points fall in each bin and then testing that the points are
equally distributed among the bins using Pearson’s chi-squared test.

When ‘bins’ is not specified, its value is selected using the following heuristic. Let n be the number
of data points. If n > 200, then ‘bins’ is set to 20. Otherwise, ‘bins’ is set to n/10. Next,while
there is a bin containing fewer than ‘min.bin.size’ points in the resulting partition, ‘bins’ is
decremented by one. This process stops either when ‘bins’ is equal to 1 or every bin contains at
least ‘min.bin.size’ points.

18 complement

Value

A list with class “htest” containing the following components:

statistic the value of the test statistic.
parameter A vector containing the degrees of freedom of the chi-squared test (df), the left

end of the interval (a) and the right end of the interval (b).
p.value the p-value of the test.
method a character string indicating what type of test was performed.
data.name a character string giving the name of the data.
bins The number of bins used for the test.
min.bin.size The minimum bin size.
interval The interval used for the test.

Warning

The arguments ‘all.inside’ and ‘rightmost.closed’ are included for experimentation and should
be altered with caution.

Author(s)

Andrew Hart and Servet Martínez

See Also

chisq.test, findInterval, ks.unif.test

Examples

#Generate an IID uniform(0,1) sequence
u <- runif(1000)
chisq.unif.test(u)

complement Complement of a DNA/RNA Sequence

Description

Compute the complement of a DNA or RNA sequence.

Usage

Default S3 method:
complement(x, content=c("dna", "rna"),
case=c("lower", "upper", "as is"), ...)
S3 method for class 'SeqFastadna'
complement(x, ...)
S3 method for class 'list'
complement(x, ...)

complement 19

Arguments

x A character vector, an object that can be coersed to a character vector or a list of
objects that canbe be converted to character vectors. this argument can also be a
SeqFastadna object provided by the seqinr package.

content The content type of sequence(s). At present, supported types include “dna” and
“rna”. the default type is “dna”.

case Determines how symbols in x should be treated before translating them into
their complements. “lower”, the default behaviour, converts all symbols to low-
ercase while “upper” converts them to uppercase. “as is” allows the symbols
to pass unchanged so that the case of each output symbol matches that of the
corresponding input symbol.

... Arguments to be passed from or to other functions.

Details

If x is a SeqFastadna object or a character vector in which each element is a single nucleobase, then
it represents a single sequence and its complementary sequence will be returned in the same form.

On the other hand, if x is a vector of character strings, each of which represents a nucleic sequence,
then the result will bea a character vector in which each element contains the complement of the
corresponding element in x as a character string.

Value

According to the input x, a character vector, SeqFastadna object or list containing the complement(s)
of the sequence(s) in x.

Author(s)

Andrew Hart and Servet Martínez

See Also

reverseComplement

Examples

complement("actg")
complement(c("t", "g", "a"))

#List of sequences
some.dna <- list("atgcgtcgttaa", c("g", "t", "g", "a", "a", "a"))
complement(some.dna)

#RNA sequence example
complement(c("a", "u", "g"), content="rna")

#Examples of lowercase, uppercase and as-is conversion
mixed.case <- c("t", "G", "g", "C", "a")
complement(mixed.case)

20 cylinder.counts

complement(mixed.case, case="upper")
complement(mixed.case, case="as is")

cylinder.counts Count Cylinders (Fixed-Offset Patterns) in Character Vectors

Description

Count fixed tuples of not necessarily adjacent symbols/elements in a character vector.

Usage

cylinder.counts(x, cylinder, case=c("lower", "upper", "as is"), circular=TRUE)

Arguments

x a character vector or an object that can be coersed to a character vector.
cylinder A vector of indices specifying the form of cylinders to count. See ‘Details’.
case determines how labels for the array should be generated: in lowercase, in up-

percase or left as is, in which case labels such as “b” and “B” will be seen as
distinct symbols and counted separately.

circular Determines if the vector should be treated as circular or not. The default is
TRUE, meaning that the start and end of the sequence will be joined together for
the purpose of counting.

Details

cylinder represents a set of symbol patterns that one wishes to count in the sequence x. For
example, if cylinder is c(1,3,5), then this function will count occurrences of all patterns of the
form ‘u.v.w’, where ‘u’, ‘v’ and ‘w’ can be any symbol present in x and . stands for a symbol
whose value is not relevant to the pattern.

Suppose that x is a sequence of the nucleotides a, c, g and t. Then, cylinder=1:2 will count the
occurrences of all 16 dinucleotides: aa, ac, ag, at, ca, cc, In contrast, cylinder=c(1,3) will
counts 16 sets of trinucleotides: a.a, a.c, a.g, a.t, c.a, c.c, c.g, the dot “.” stands for any
nucleotide, so that a.c represents the set aac, acc, agc, atg. In both of these examples, a 4 × 4
array of counts will be produced, but in the first case the array will represent counts of dinucleotides,
while in the second case it will represent counts of groups of trinucleotides.

If circular is TRUE, the vector x is treated as circular so that the some of all the counts in the
resulting array is equal to the length of the vector and the sums across all dimentions of the array
are equivalent, that is: writing
counts <- cylinder.counts(x, cylinder=c(1,3,5))
for some character sequence x, then
apply(counts,1,sum), apply(counts,2,sum) and apply(counts,3,sum)
will all be identical.

On the other hand, if circular is FALSE, the sum of all the entries in the counts array will be less
than the length of the vector and there will be a discrepancy between the sums over the various
dimensions.

cylinder.counts 21

Value

An n-dimensional array of counts, where n is the length of cylinder.

Note

tableis more efficient (by almost a factor of 2) at computing the counts of cylinders of length 1,
whereas cylinder.counts is faster and uses less memory than for cylinders of length greater than
1.

Author(s)

Andrew Hart and Servet Martínez

See Also

pair.counts, triple.counts, quadruple.counts, array2vector, table2vector

Examples

#Generate an IID uniform DNA sequence
seq <- simulateMarkovChain(5000, matrix(0.25, 4, 4), states=c("a","c","g","t"))
cylinder.counts(seq, 1) #essentially the same as unclass(table(seq))
cylinder.counts(seq, 1:5) #counts of all 5-mers in the sequence

#counts of all patterns of the form a.b where a and b represent
#specific symbols and . denotes an arbitrary symbol.
pat <- cylinder.counts(seq, c(1, 3))

#For example, pat["a","c"] gives the number of times that any of
#the following 4 words appears in the sequence: aac, acc, agc, atc.
identical(cylinder.counts(seq, c(1,3)), apply(cylinder.counts(seq, 1:3), c(1, 3), sum))

##some relationships between cylinder.counts and other functionns
identical(cylinder.counts(seq, 1:2), pair.counts(seq))
identical(cylinder.counts(seq, 1:3), triple.counts(seq))
identical(cylinder.counts(seq, 1:4), quadruple.counts(seq))

#The following relationship means that counts on circular sequences are
#invariant under translationn
identical(cylinder.counts(seq, 1:6), cylinder.counts(seq, 10:15))

#Treating seq as non circular, most of the preceding relationships continue to hold
identical(cylinder.counts(seq, 1:2, circular=FALSE),

pair.counts(seq, circular=FALSE))
identical(cylinder.counts(seq, 1:3, circular=FALSE),
triple.counts(seq, circular=FALSE))
identical(cylinder.counts(seq, 1:4, circular=FALSE),

quadruple.counts(seq, circular=FALSE))
#The following relationship no longer holds; that is, non-circular counts
#are not invariant under translation.
identical(cylinder.counts(seq, 1:6, circular=FALSE),

cylinder.counts(seq, 10:15, circular=FALSE))

22 diffsign.test

diffsign.test the Differents-Sign Test of Statistical Independence

Description

Tests for a trend in a data series by comparing the number of positive differences between successive
elements in the series to the number expected in an i.i.d. series.

Usage

diffsign.test(x)

Arguments

x a numeric vector or univariate time series.

Details

Perform a test for trend based on the signs of successive differences in a data series. #this function
counts the number of positive successive differences in the data, standardises #it to have mean 0
and variance 1 and asymptotically tests it against a standard normal distribution. the test statistic is:

D = (pd - mu)/sigma, where
pd is the number of positive differences in the data series,
mu = (n-1)/2,
sigma = sqrt((n+1)/12) and
n is the number of points in the data series.

The test is set up as follows:

H0: the data series is i.i.d. (not trending)
H1: the data series is not i.i.d. (trending)

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

n the number of points in the data series.

mu The expected number of positive differences that would be seen in an i.i.d. se-
ries.

sigma The standard deviation of the number of positive differences that would be seen
in an i.i.d. series.

diid.disturbance 23

Note

Missing values are not handled.

Points followed by a point having the exact same value are removed from the data series before
computing the test statistic.

This test is useful for detecting linear trends in data series.

Author(s)

Andrew Hart and Servet Martínez

References

Brockwell, Peter J., Davis, Richard A. (2002) Introduction to Time Series and Forecasting. Springer
Texts in Statistics, Springer-Verlag, New York.

See Also

turningpoint.test, rank.test, lb.test markov.test, diid.test,

Examples

#Generate an IID standard normal sequence
n <- rnorm(1000)
diffsign.test(n)

diid.disturbance Construct feasible Random Noise Generating a Bernoulli Process

Description

Produces a sequence of random noise which would generate an observed sequence of finite symbols
provided that the sequence of symbols results from a Bernoulli process.

Usage

diid.disturbance(x, random = TRUE, estimates = FALSE)

Arguments

x A sequence of finite symbols represented as a character vector.

random This can be a logical value or a number in the range 0-1. If ‘TRUE’, random
noise will be generated. If ‘FALSE’, the constant value 0.5 will be used as the
noise source. If a value in the range 0-1 is specified, that value will be used as a
constant noise source. the default value is ‘TRUE’.

estimates A logical value specifying if the distribution estimated for the Bernoulli process
should be included in the return.

24 diid.test

Value

If ‘estimates’ is ‘TRUE’, returns a list containing the following components:

disturbance the sequence of random noise as a numeric vector.

stat.dist The stationary distribution estimated from x.

Otherwise, if ‘estimate’ is ‘FALSE’, returns the sequence of random noise as a numeric vector.

Author(s)

Andrew Hart and Servet Martínez

See Also

markov.test, diid.test, markov.disturbance

diid.test A Test for a Bernoulli Scheme (IID Sequence)

Description

Tests whether or not a data series constitutes a Bernoulli scheme, that is, an independent and identi-
cally distributed (IID) sequence of symbols, by inferring the sequence of IID U(0,1) random noise
that might have generated it.

Usage

diid.test(x, type = c("lb", "ks"), method = "holm", lag = 20, ...)

Arguments

x the data series as a vector.

type the procedures to use to test whether or not the noise series is independently and
identically distributed on the unit interval. See ‘Details’.

method the correction method to be used for adjusting the p-values. It is identical to
the method argument of the p.adjust function, which is called to adjust the
p-values.

lag the number of lags to use when applying the Ljung-Box (portmanteau) test
(lb.test).

... parameters to pass on to functions that can be subsequently called.

diid.test 25

Details

This function tests if a symbolic sequence is a Bernoulli scheme, that is, independently and identi-
cally distributed (IID). It does this by reverse- engineering the sequence to obtain a sample of the
kind of output from a pseudo- random number generator that would have produced the observed
sequence if it had been generated by simulating an IID sequence. The sample output is then tested
to see if it is an independent and identically distributed siequence of uniform numbers in the range
0-1. this involves the application of at least two tests, one for independence and another for unifor-
mity over the unit interval. One concludes that the sequence is IID if the sample output passes the
tests (that is, all null hypotheses are accepted) and not IID otherwise.

The test is set up as follows:

H0: the sequence is IID
H1: the sequence is not IID

To simplify the use of the test, correction for multiple testing is carried out, which yields a single
adjusted p- value. If this p-value is less than the significance level established for the test procedure,
the null hypothesis of Markovianness is rejected. Otherwise, the null hypothesis should be accepted.

To correctly apply the test, use the type argument to specify at least one test of independence and
one test of uniformity from the options displayed in the following table.

Category Function Test
Uniformity ks.unif.test Kolmogorov-Smirnov test for uniform$(0,1)$ data

chisq.unif.test Pearson’s chi-squared test for discrete uniform data,
Independence lb.test Ljung-Box Q test for uncorrelated data

diffsign.test signed difference test of independence
turningpoint.test turning point test of independence
rank.test rank test of independence

If type is not specified, lb.test and ks.unif.test are used by default.

As this procedure performs multiple tests in order to assess if the sequence is IID, it is necessary
to adjust the p-values for multiple testing. By default, the Holm-Bonferroni method (holm) is used
to correct for multiple testing, but this can be overridden via the method argument. The adjusted
p-values are displayed when the result of the test is printed.

The smallest adjusted p-value constitutes the overall p-value for the test. If this p-value is less than
the significance level fixed for the test procedure, the null hypothesis of the sequence beingIID is
rejected. Otherwise, the null hypothesis should be accepted.

Value

A list with class "multiplehtest" containing the following components:

method the character string “Composite test for a Bernoulli process”.

statistics the values of the test statistic for all the tests.

parameters parameters for all the tests. Exactly one parameter is recorded for each test, for
example, df for lb.test. Any additional parameters are not saved, for example,
the a and b parameters of chisq.unif.test.

26 diid.test

p.values p-values of all the tests.

methods a vector of character strings indicating what type of tests were performed.

adjusted.p.values

the adjusted p-values.

data.name a character string giving the name of the data.

adjust.method indicates which correction method was used to adjust the p-values for multiple
testing.

estimate the transition matrix estimated to fit a first-order Markov chain to the data and
used to generate the infered random disturbance

.

Note

Sometimes, a warning message advising that ties should not be present for the Kolmogorov-Smirnov
test can arise when analysing long sequences. If you do receive this warning, it means that the re-
sults of the Kolmogorov-Smirnov test (ks.unif.test) should not be trusted. In this case, Pearson’s
chi-squared test (chisq.unif.test) should be used instead of the Kolmogorov-Smirnov test.

Author(s)

Andrew Hart and Servet Martínez

References

Although This test procedure is unpublished, it is derived by making appropriate modifications to
the test for first-order Markovianness described in the following two references.

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

Hart, A.G. and Martínez, S. (2014) Markovianness and Conditional Independence in Annotated
Bacterial DNA. Stat. Appl. Genet. Mol. Biol. 13(6), 693-716. arXiv:1311.4411 [q-bio.QM].

See Also

diid.disturbance, markov.test, ks.unif.test, chisq.unif.test, diffsign.test, turningpoint.test,
rank.test, lb.test

Examples

#Generate an IID uniform DNA sequence
seq <- simulateMarkovChain(5000, matrix(0.25, 4, 4), states=c("a","c","g","t"))
diid.test(seq)

disambiguate 27

disambiguate Disambiguate a Nucleic Sequence

Description

Make a DNA/RNA sequence unambiguous by stripping out all symbols that do not uniquely specify
nucleic acids. In other words, remove all symbols other than a’s, c’s, g’s, t’s or u’s from the
sequence.

Usage

Default S3 method:
disambiguate(x, case=c("lower", "upper", "as is"), ...)
S3 method for class 'SeqFastadna'
disambiguate(x, ...)
S3 method for class 'list'
disambiguate(x, ...)

Arguments

x A character vector, an object that can be coersed to a character vector or a list of
objects that canbe be converted to character vectors. this argument can also be a
SeqFastadna object provided by the seqinr package.

case Determines how symbols in x should be treated before translating them into
their complements. “lower”, the default behaviour, converts all symbols to low-
ercase while “upper” converts them to uppercase. “as is” allows the symbols
to pass unchanged so that the case of each output symbol matches that of the
corresponding input symbol.

... Arguments to be passed from or to other functions.

Details

If x is a SeqFastadna object or a character vector in which each element is a single nucleobase, then
it represents a single sequence. It will be made unambiguous and returned in the same form.

On the other hand, if x is a vector of character strings, each of which represents a nucleic sequence,
then the result will bea a character vector in which each element contains the unambiguous sequence
corresponding to the element in x as a character string.

Value

According to the input x, a character vector, SeqFastadna object or list containing the completely
unambiguous sequence(s) in x.

Author(s)

Andrew Hart and Servet Martínez

28 estimateMarkovChain

estimateMarkovChain Fit a first-Order Markov Chain to a Sequence of Finite Symbols

Description

Estimates the transition matrix and stationary distribution of a first-order Markov chain from an
observed sequence of symbols.

Usage

estimateMarkovChain(x, circular=TRUE)

Arguments

x The sequence of observed symbols as a character vector.

purposes

circular Should the sequence be treated as circular for the purpose of estimation? The
default is ‘TRUE’.

Value

A list with class ‘FiniteStateMarkovChain’ having the following components:

trans.mat The stochastic transition matrix estimated from x.

stat.dist The stationary distribution estimated from x.

states the state labels

Author(s)

Andrew Hart and Servet Martínez

See Also

markov.test, markov.disturbance, simulateMarkovChain

Examples

#Obtain a random 3 x 3 stochastic matrix with rows and columns labelled "A", "B", "C"
mat <- rstochmat(3, labels=c("A", "B", "C"))
mat

#Simulate a Markov chain of length 500 using mat as the transition matrix
seq <- simulateMarkovChain(500, mat)

#Estimate mat and the stationary distribution for the Markov chain which generated seq
estimateMarkovChain(seq)

ks.unif.test 29

ks.unif.test Using ks.test to test for Uniformity on the Unit Interval

Description

Uses ks.test to test that a data vector is uniform on the unit interval. ks.unif.test(x) is merely
convenient shorthand for ks.test(x,punif).

Usage

ks.unif.test(x)

Arguments

x a numeric vector or univariate time series.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

Andrew Hart and Servet Martínez

See Also

chisq.unif.test, markov.test, diid.test

Examples

#Generate an IID uniform(0,1) sequence
u <- runif(1000)
ks.unif.test(u)

30 lb.test

lb.test The Ljung-Box Test for Uncorrelated Data

Description

This function is a convenient wrapper for using Box.test to perform the Ljung- Box Q test of
uncorrelated data without having to specify ‘type’. In other words, lb.test(x, ...) is equivalent
to Box.test(x, type="Ljung-Box", ...).

Usage

lb.test(x, ...)

Arguments

x a numeric vector or univariate time series.

... parameters to pass to Box.test.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic (taking fitdf into account).

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

Andrew Hart and Servet Martínez

See Also

Box.test, markov.test, diid.test diffsign.test, turningpoint.test, rank.test

Examples

#Generate an IID standard normal sequence
n <- rnorm(1000)
lb.test(n)

markov.disturbance 31

markov.disturbance Construct feasible Random Noise Generating a First-Order Markov
Chain

Description

Produces a sequence of random noise which would generate an observed sequence of finite symbols
provided that the sequence of symbols results from a first-order Markov chain.

Usage

markov.disturbance(x, chain = NULL, random = TRUE, bandwidth = 1,
estimates = is.null(chain))

Arguments

x A sequence of finite symbols represented as a character vector.

chain A list containing two named components which specify a first-order Markov
chain. The ‘trans.mat’ component holds the stochastic transition matrix for the
chain while the ‘stat.dist’ component holds the stationary distribution of the
chain. If not specified, ‘chain’ is estimated from ‘x’ using estimateMarkovChain.

random This can be a logical value or a number in the range 0-1. If ‘TRUE’, random
noise will be generated. If ‘FALSE’, the constant value 0.5 will be used as the
noise source. If a value in the range 0-1 is specified, that value will be used as a
constant noise source. the default value is ‘TRUE’.

bandwidth This value, which should be in the range 0-1, specifies the maximum peak-to-
peak bandwidth of the random noise generated. The default value is 1.

estimates A logical value specifying if the Markov chain estimates should be included in
the return.

Value

If ‘estimates’ is ‘TRUE’, returns a list containing the following components:

disturbance the sequence of random noise as a numeric vector.

trans.mat The stochastic transition matrix estimated from x, if ‘chain’ is NULL; otherwise
a copy of ‘trans.mat’ component of ‘chain’.

stat.dist The stationary distribution estimated from x, if ‘chain’ is NULL; otherwise a
copy of the ‘stat.dist’ component of ‘chain’.

Otherwise, if ‘estimate’ is ‘FALSE’, returns the sequence of random noise as a numeric vector.

Author(s)

Andrew Hart and Servet Martínez

32 markov.test

See Also

markov.test, diid.test, diid.disturbance

markov.test A Test for First-Order Markovianness

Description

Performs a test for first-order Markovianness of a data series by inferring the sequence of i.i.d.
U(0,1) random noise that might have generated it.

Usage

markov.test(x, type = c("lb", "ks"), method = "holm", lag = 20, ...)

Arguments

x the data series as a vector.
type the procedures to use to test whether or not the disturbance series is indepen-

dently and identically distributed on the unit interval. See ‘Details’.
method the correction method to be used for adjusting the p-values. It is identical to

the method argument of the p.adjust function, which is called to adjust the
p-values.

lag the number of lags to use when applying the Ljung-Box (portmanteau) test
(lb.test).

... parameters to pass on to functions that can be subsequently called.

Details

This function tests a symbolic sequence for first-order Markovianness (also known as the Markov
property). It does this by reverse-engineering the sequence to obtain a sample of the kind of output
from a pseudo-random number generator that would have produced the observed sequence if it
had been generated by simulating a Markov chain .The sample output is then tested to see if it
is an independent and identically distributed siequence of uniform numbers in the range 0-1. this
involves the application of at least two tests, one for independence and another for uniformity over
the unit interval. One concludes that the sequence is Markovian if the sample output passes the tests
(that is, all null hypotheses are accepted) and non-Markovian otherwise.

The test is set up as follows:

H0: the sequence is first-order Markov
H1: the sequence is not first-order Markov

To simplify the use of the test, correction for multiple testing is carried out, which yields a single
adjusted p- value. If this p-value is less than the significance level established for the test procedure,
the null hypothesis of Markovianness is rejected. Otherwise, the null hypothesis should be accepted.

To correctly apply the test, use the type argument to specify at least one test of independence and
one test of uniformity from the options displayed in the following table.

markov.test 33

Category Function Test
Uniformity ks.unif.test Kolmogorov-Smirnov test for uniform$(0,1)$ data

chisq.unif.test Pearson’s chi-squared test for discrete uniform data,
Independence lb.test Ljung-Box Q test for uncorrelated data

diffsign.test signed difference test of independence
turningpoint.test turning point test of independence
rank.test rank test of independence

If type is not specified, lb.test and ks.unif.test are used by default.

As this procedure performs multiple tests in order to assess if the sequence has a Markovian de-
pendence structure, it is necessary to adjust the p-values for multiple testing. By default, the Holm-
Bonferroni method (holm) is used to correct for multiple testing, but this can be overridden via the
method argument. The adjusted p-values are displayed when the result of the test is printed.

The smallest adjusted p-value constitutes the overall p-value for the test. If this p-value is less than
the significance level fixed for the test procedure, the null hypothesis of first-order Markovianness
is rejected. Otherwise, the null hypothesis should be accepted.

Value

A list with class "multiplehtest" containing the following components:

method the character string “Composite test for a first-order (finite state) Markov chain”.

statistics the values of the test statistic for all the tests.

parameters parameters for all the tests. Exactly one parameter is recorded for each test, for
example, df for lb.test. Any additional parameters are not saved, for example,
the a and b parameters of chisq.unif.test.

p.values p-values of all the tests.

methods a vector of character strings indicating what type of tests were performed.
adjusted.p.values

the adjusted p-values.

data.name a character string giving the name of the data.

adjust.method indicates which correction method was used to adjust the p-values for multiple
testing.

estimate the transition matrix estimated to fit a first-order Markov chain to the data and
used to generate the infered random disturbance.

Note

Sometimes, a warning message advising that ties should not be present for the Kolmogorov-Smirnov
test can arise when analysing long sequences. If you do receive this warning, it means that the re-
sults of the Kolmogorov-Smirnov test (ks.unif.test) should not be trusted. In this case, Pearson’s
chi-squared test (chisq.unif.test) should be used instead of the Kolmogorov-Smirnov test.

Author(s)

Andrew Hart and Servet Martínez

34 Nanoarchaeum equitans Kin4-M Chromosome

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

Hart, A.G. and Martínez, S. (2014) Markovianness and Conditional Independence in Annotated
Bacterial DNA. Stat. Appl. Genet. Mol. Biol. 13(6), 693-716. arXiv:1311.4411 [q-bio.QM].

See Also

markov.disturbance, diid.test, ks.unif.test, chisq.unif.test, diffsign.test, turningpoint.test,
rank.test, lb.test

Examples

#Generate an IID uniform DNA sequence
seq <- simulateMarkovChain(5000, matrix(0.25, 4, 4), states=c("a","c","g","t"))
markov.test(seq)

Nanoarchaeum equitans Kin4-M Chromosome

DNA sequence for the Nanoarchaeum equitans Kin4-M Chromosome

Description

This data set contains the DNA sequence for the chromosome of the Nanoarchaeum equitans Kin4-
M bacteria. The Accession number for this sequence is NC_005213.1.

Format

a SeqFastadna object.

Source

The NCBI ftp server at ftp://ftp.ncbi.nlm.nih.gov in the /genomes/bacteria directory.

See Also

pieris

Examples

data(nanoarchaeum)
pair.counts(nanoarchaeum)

oligoProfile 35

oligoProfile Oligo Profiles and Oligo Profile Correlation Plots of Nucleotide Se-
quences

Description

Construct a k-mer oligo profile of a nucleotide sequence and print such a profile or its reverse com-
plement. There is also a plot function for producing plots of the profile or its reverse complement
and for comparing primary and complementary strand profiles.

Usage

oligoProfile(x, k, content=c("dna", "rna"),
case=c("lower", "upper", "as is"), circular=TRUE, disambiguate=TRUE,
plot=TRUE, ...)
S3 method for class 'OligoProfile'
plot(x, which=1L, units=c("percentage", "count", "proportion"),
main=NULL, xlab=NULL, ylab=NULL, ...)

S3 method for class 'OligoProfile'
print(x, which=1L, units=c("percentage", "count", "proportion"),
digits=switch(units, percentage=3L, count=NULL, proportion=3L), ...)

Arguments

x a character vector or an object that can be coersed to a character vector.

k the k-mer profile to produce.

content The content type (“dna” or “rna”) of the input sequence. oligoProfile can
often detect this automatically based on the presence/absence of t’s or u’s, but
if neither is present, the content argument is consulted. The default value is
“dna”.

case determines how labels for the array should be generated: in lowercase, in up-
percase or left as is, in which case labels such as “b” and “B” will be seen as
distinct symbols and counted separately.

circular Determines if the vector should be treated as circular or not. The default is
TRUE, meaning that the start and end of the sequence will be joined together for
the purpose of counting.

disambiguate if set to the default of true, makes the input sequence unambiguous before
generating the profile. Otherwise, ambiguous symbols are treated like any other
symbols and k-mer counts including them will be computed.

plot should a plot of the profile be produced? The default is TRUE.

which For print, specifies whether to display the profile for the sequence used to
generate the OligoProfile object (1) or the profile of its reverse complement (2).

36 oligoProfile

For the plot method, which determines what should be plotted. Values 1 and 2
cause the profile for the original sequence (primary strand) or its reverse com-
plement (complementary strand) to be plotted, respectively. Specifying which=3
will plot a comparison of the two profiles which can be used to assess compli-
ance with Chargaff’s second parity rule.
the which argument may also be specified when calling oligoProfile, in which
case it will be passed on to the plot method if the plot argument is set to TRUE.

units The oligo profiles can be scaled according to three different units for presenta-
tion on plots: “percentage”, “count” or “proportion”. The default is “percentage”.

main The title of the plot. See plot.default. If not specified, an appropriate title is
automatically generated.

xlab a label for the x-axis of the plot. See plot.default. If not specified, an appro-
priate label is automatically generated.

ylab a label for the y-axis of the plot. See plot.default. If not specified, an appro-
priate label is automatically generated.

digits The number of significant digits to print. The default is 0L when units is set to
“count” and 3L otherwise.

... arguments to be passed from or to other functions

Details

This function returns the oligo profile for a sequence in an OligoProfile object, which is printed
on screen if the plot parameter is FALSE. An oligo profile is simply the counts of all k-mers in a
sequence for some specified value of k.

By default, oligoProfile produces a plot of the oligo profile expressed in terms of percentages.
The plot argument determines if the plot should be generated or not and plotting parameters such
as main, sub, etc., may be passed as arguments to the function when plot is TRUE.

The plot method, either called directly or indirectly via the oligoProfile function, can produce
either the oligo profile of x (which = 1), the oligo profile of its reverse complement (which = 2),
or an interstrand k-mer correlation plot comparing the k-oligo profile ofx with that of its reverse
complement (which = 3). Such

Correlation plots effectively show the relationship between k-mers on the primary and complemen-
tary strands in a DNA duplex and can be used to assess compliance with CSPR. More precisely,
one would conclude that a genomic sequence complies with CSPR if all the plotted points lie on a
diagonal line running from the bottom-left corner to the top-right corner of the graph.

Value

A list with class “OligoProfile” containing the following components:

name a name to identify the source of the profile.

wordLength the value of k used to derive the k-mer profile.

content indicates if the profile pertains to a DNA or RNA sequence.

case indicates how the case of letters was processed before producing the profile.

pair.counts 37

circular indicates whether or not the sequence was considered circular for the purpose of
producing the profile.

disambiguate indicates if the sequence was made unambiguous before producing the profile.

profile a vector containing the raw counts (frequencies) of all k-mers.

Author(s)

Andrew Hart and Servet Martínez

References

Albrecht-Buehler, G. (2006) Asymptotically increasing compliance of genomes with Chargaff’s
second parity rules through inversions and inverted transpositions. PNAS 103(47), 17828–17833.

See Also

pair.counts, triple.counts, quadruple.counts, cylinder.counts, array2vector, table2vector,
disambiguate

Examples

data(nanoarchaeum)
#Get the 3-oligo profile of Nanoarchaeum without plotting it
nano.prof <- oligoProfile(nanoarchaeum, 3, plot=FALSE)
nano.prof #print oligo profile as percentages
print(nano.prof, units="count") #print oligo profile as counts
plot(nano.prof) #oligo profile plotted as percentages
plot(nano.prof, units="count") #plot it as counts

#plot the 2-oligo profile of Nanoarchaeum as proportions
oligoProfile(nanoarchaeum, k=3, units="proportion")

pair.counts Count Pairs in Character Vectors

Description

Count pairs of adjacent symbols/elements in a character vector.

Usage

pair.counts(x, case=c("lower", "upper", "as is"), circular=TRUE)

38 Pieris Rapae Granulovirus Genome

Arguments

x a character vector or an object that can be coersed to a character vector.

case determines how labels for the array should be generated: in ’lower’ case, in ’
upper’ case or ’as is’, in which case labels such as ’b’ and ’B’ will be considered
as distinct elements and counted separately.

circular Determines if the vector should be treated as circular or not. The default is
TRUE, meaning that the start and end of the sequence will be joined together for
the purpose of counting.

Details

When circular is TRUE, the vector is treated as circular so that the some of all the counts in the
resulting matrix is equal to the length of the vector and the row and column sums are equivalent.
When circular is FALSE, the sum of all the entries in the counts matrix will be one less than the
length of the vector and there will be a discrepancy between the row and column sums.

Value

A matrix of counts. The row and column labels correspond to the first and second element of each
pair, respectively.

Author(s)

Andrew Hart and Servet Martínez

See Also

triple.counts, quadruple.counts, cylinder.counts, array2vector, table2vector

Pieris Rapae Granulovirus Genome

DNA sequence for the Pieris Rapae Granulovirus Genome

Description

This data set contains the DNA sequence for the Pieris rapae granulovirus genome. The Accession
number for this sequence is NC_013797.1.

Format

a SeqFastadna object.

Source

The NCBI ftp server at ftp://ftp.ncbi.nlm.nih.gov in the /genomes/viruses directory.

quadruple.counts 39

See Also

nanoarchaeum

Examples

data(pieris)
pair.counts(pieris)

quadruple.counts Count Quadruplets in Character Vectors

Description

Count 4-tuples of adjacent symbols/elements in a character vector.

Usage

quadruple.counts(x, case=c("lower", "upper", "as is"), circular=TRUE)

Arguments

x a character vector or an object that can be coersed to a character vector.

case determines how labels for the array should be generated: in ’lower’ case, in ’
upper’ case or ’as is’, in which case labels such as ’b’ and ’B’ will be counted
as distinct elements and counted separately.

circular Determines if the vector should be treated as circular or not. The default is
TRUE, meaning that the start and end of the sequence will be joined together for
the purpose of counting.

Details

If circular is TRUE, the vector is treated as circular so that the some of all the counts in the
resulting array is equal to the length of the vector and the sums across all dimentions of the array
are equivalent, that is: if we write
q <- quadruple.counts(x)
for some character sequence x, then
apply(q,1,sum), apply(q,2,sum), apply(q,3,sum) and apply(q,4,sum)
are all identical.

On the other hand, if circular is FALSE, the sum of all the entries in the counts array will be two
less than the length of the vector and there will be a discrepancy between the sums over the various
dimensions.

Value

A 4-dimensional array of counts. The labels of the i-th dimension correspond to the i-th item in
each tuple, where i is either 1, 2, 3 or 4.

40 rank.test

Author(s)

Andrew Hart and Servet Martínez

See Also

pair.counts, triple.counts, cylinder.counts, array2vector, table2vector

rank.test The Rank Test of Statistical Independence

Description

Test for a trend in a data series by comparing the number of increasing pairs in the series with the
number expected in an i.i.d. series.

Usage

rank.test(x)

Arguments

x a numeric vector or univariate time series.

Details

Perform a test for trend based on the number of increasing ordered pairs in a data series. Consider
pairs of the form (x(i), x(j)), where i<j. An increasing pair is any such pair for which x_i<x_j.
This function counts the number of increasing pairs in the data, standardises it to have mean 0 and
variance 1 and asymptotically tests it against a standard normal distribution. the test statistic is:

R = (pairs-mu)/sigma, where
pairs is the number of increasing pairs in the data,
mu = n*(n-1)/4,
sigma = sqrt(n*(n-1)*(2*n+5)/72) and
n is the number of data points in the series.

The test is set up as follows:

H0: the data series is i.i.d. (not trending)
H1: the data series is not i.i.d. (trending)

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

rank.test 41

pairs the number of increasing pairs counted in the data series.

n the number of points in the data series.

mu The expected number of increasing pairs that would be seen in an i.i.d. series.

sigma The standard deviation of the number of increasing pairs that would be seen in
an i.i.d. series.

Warning

If the spgs shared object was successfully compiled with support for a 64-bit unsigned integer type,
then the following line should yield the value 0:

rank.test(1:92683)$pairs-2^32-55607

if not, then the package is only using 32-bit integer arithmetic for computing the rank test statistic
and this will restrict rank.test to analysing series whose length is at most 92682. In this case,
attempting to apply rank.test to a series longer than 92682 will result in a warning about an
integer overflow having occurred and the results of the test should not be trusted.

Note

Missing values are not handled.

Points followed by a point having the exact same value are removed from the data series before
computing the test statistic.

This test is useful for detecting linear trends in data series.

Author(s)

Andrew Hart and Servet Martínez

References

Brockwell, Peter J., Davis, Richard A. (2002) Introduction to Time Series and Forecasting. Springer
Texts in Statistics, Springer-Verlag, New York.

See Also

diffsign.test, turningpoint.test, lb.test, markov.test, diid.test

Examples

#Generate an IID standard normal sequence
n <- rnorm(1000)
rank.test(n)

42 rcspr2mat

rcspr2mat Random Stochastic Matrices Complying with Chargaff’s Second Par-
ity Rule for Dinucleotides

Description

Randomly generate a 4 X 4 stochastic matrix that satisfies Chargaff’s second parity rule for dinu-
cleotides.

Usage

rcspr2mat(labels=c("a", "c", "g", "t"))

Arguments

labels a vector of labels for the rows and columns of the matrix. By default, this is set
to the set of four nucleotides a, c, g and t.

Details

This function randomly generates Stochastic matrices of the form


b1 b2 b3 1− (b1 + b2 + b3)
zb6 b4 1− (zb6 + b4 + zb3) zb3
zb5 1− (zb5 + b4 + zb2) b4 zb2

1− (b5 + b6 + b1) b5 b6 b1


where b1, . . . , b6 are values in the interval (0,1) and z is a positive number.

Such matrices characterize sequences of DNA that comply with Chargaff’s second parity rule for
dinucleotides. See the reference for further information.

Value

A 4 X 4 stochastic matrix satisfying Chargaff’s second parity rule. The rows and columns are
labelled according to labels.

Note

This function is only intended for obtaining samples of matrices complying with CSPR. It doe snot
sample uniformly from the set of all such matrices and hence is not appropriate for simulation
experiments requiring uniformly drawn samples.

Author(s)

Andrew Hart and Servet Martínez

reverseComplement 43

References

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff’s second parity rule in bacterial
genome sequences. Stoch. Models 27(2), 1–46.

See Also

rstochmat

reverseComplement Reverse Complement of a DNA/RNA Sequence

Description

Compute the reverse complement of a DNA or RNA sequence.

Usage

Default S3 method:
reverseComplement(x, content=c("dna", "rna"), case=c("lower", "upper", "as is"), ...)
S3 method for class 'SeqFastadna'
reverseComplement(x, ...)
S3 method for class 'list'
reverseComplement(x, ...)

Arguments

x A character vector, an object that can be coersed to a character vector or a list of
objects that canbe be converted to character vectors. this argument can also be a
SeqFastadna object provided by the seqinr package.

content The content type of sequence(s). At present, supported types include “dna” and
“rna”. the default type is “dna”.

case Determines how symbols in x should be treated before translating them into
their complements. “lower”, the default behaviour, converts all symbols to low-
ercase while “upper” converts them to uppercase. “as is” allows the symbols
to pass unchanged so that the case of each output symbol matches that of the
corresponding input symbol.

... Arguments to be passed from or to other functions.

Details

If x is a SeqFastadna object or a character vector in which each element is a single nucleobase,
then it represents a single sequence and its reverse- complementary sequence will be returned in the
same form.

On the other hand, if x is a vector of character strings, each of which represents a nucleic sequence,
then the result will bea a character vector in which each element contains the reverse complement
of the corresponding element in x as a character string.

44 rstochmat

Value

According to the input x, a character vector, SeqFastadna object or list containing the reverse com-
plement(s) of the sequence(s) in x.

Author(s)

Andrew Hart and Servet Martínez

See Also

complement

Examples

reverseComplement("actg")
reverseComplement(c("t", "g", "a"))

#List of sequences
some.dna <- list("atgcgtcgttaa", c("g", "t", "g", "a", "a", "a"))
reverseComplement(some.dna)

#RNA sequence example
reverseComplement(c("a", "u", "g"), content="rna")

#Examples of lowercase, uppercase and as-is conversion
mixed.case <- c("t", "G", "g", "C", "a")
reverseComplement(mixed.case)
reverseComplement(mixed.case, case="upper")
reverseComplement(mixed.case, case="as is")

rstochmat Random Generation of Stochastic Matrices

Description

Randomly generates stochastic matrices.

Usage

rstochmat(n, labels)

Arguments

n the dimension of the matrix. If n is not specified, it is inferred from the lenth of
‘labels’.

labels a vector of labels for the rows and columns of the matrix. If ‘labels’ is not
specified, ‘n’ must be specified and the value as.character(1:n) is assumed.

rstochvec 45

Details

Stochastic matrices are non-negative matrices whose rows all sum to unity. This function uniformly
generates samples from the set of n× n stochastic matrices.

At least one of the arguments must be specified. The missing argument is infered from the other.

Value

An n× n stochastic matrix with rows and columns labelled according to ‘labels’.

Author(s)

Andrew Hart and Servet Martínez

See Also

rcspr2mat, estimateMarkovChain, simulateMarkovChain

Examples

rstochmat(4)
rstochmat(3, c("a", "b", "c"))
rstochmat(labels=c("r", "R"))

rstochvec Random Generation of Stochastic (Probability) Vectors

Description

Randomly generate probability vectors, that is, non-negative vectors whose elements sum to unity.

Usage

rstochvec(n, labels)

Arguments

n the length of the vector. If n is not specified, it is inferred from the lenth of
‘labels’.

labels a vector of labels for the elements of the vector. If ‘labels’ is not specified, n
must be specified and the value as.character(1:n) is assumed.

Details

Stochastic (or probability) vectors are non-negative vectors that sum to unity. This function uni-
formly generates samples from the set of probability vector sof length n.

At least one of the arguments must be specified. The missing argument is infered from the other.

46 simulateMarkovChain

Value

A probability vector of length n with elements named according to ‘labels’.

Author(s)

Andrew Hart and Servet Martínez

Examples

rstochvec(4)
rstochvec(3, c("a", "b", "c"))
rstochvec(labels=c("r", "R"))

simulateMarkovChain Simulate a first-Order Markov Chain

Description

Simulates a first-order Markov chain.

Usage

simulateMarkovChain(n, trans.mat, init.dist=NULL, states=colnames(trans.mat))

Arguments

n the length of the sample path to simulate.

trans.mat The transition matrix of the Markov chain to simulate.

init.dist The initial distribution to use for starting the simulation. If it is not specified,
the stationary distribution of the Markov chain will be computed from trans.mat
and used to start the simulation in the steady state.

states This argument can be used to override the labels on the transition matrix (if any)
and name the states output on the sample path.

Details

‘trans.mat’ must be a stochastic matrix. It must either have both row and column names, in
which case they must agree, or no row and column names at all. The row/column names will be
used to label the states visited by the Markov chain in the sample path simulated. If ‘states’ is
specified, it will be used to label the states of the Markov chain instead of the row/column names
of ‘trans.mat’, in which the length of ‘states’ must agree with the dimension of ‘trans.mat’. If
‘trans.mat’ has no row/column names and ‘states’ is not specified, then the states of the Markov
chain will be labelled 1, . . . , n, where n is the dimension of ‘trans.mat’.

Value

A vector of length n containing a realisation of the specified Markov chain.

triple.counts 47

Author(s)

Andrew Hart and Servet Martínez

See Also

estimateMarkovChain, rstochmat, rcspr2mat

Examples

simulateMarkovChain(50, matrix(c(.8, .2, .2, .8), ncol=2))
simulateMarkovChain(50, rstochmat(3), states=c("yes", "no", "maybe"))

triple.counts Count Triplets in Character Vectors

Description

Count triples of adjacent symbols/elements in a character vector.

Usage

triple.counts(x, case=c("lower", "upper", "as is"), circular=TRUE)

Arguments

x a character vector or an object that can be coersed to a character vector.

case determines how labels for the array should be generated: in ’lower’ case, in ’
upper’ case or ’as is’, in which case labels such as ’b’ and ’B’ will be counted
as distinct elements and counted separately.

circular Determines if the vector should be treated as circular or not. The default is
TRUE, meaning that the start and end of the sequence will be joined together for
the purpose of counting.

Details

If circular is TRUE, the vector is treated as circular so that the some of all the counts in the
resulting array is equal to the length of the vector and the sums across all dimentions of the array
are equivalent, that is: if we write
t <- triple.counts(x)
for some character sequence x, then
apply(t,1,sum), apply(t,2,sum) and apply(t,3,sum)
are all identical.

On the other hand, if circular is FALSE, the sum of all the entries in the counts array will be two
less than the length of the vector and there will be a discrepancy between the sums over the various
dimensions.

48 turningpoint.test

Value

A 3-dimensional array of counts. The labels of the i-th dimension correspond to the i-th element of
each triple, where i is either 1, 2 or 3.

Author(s)

Andrew Hart and Servet Martínez

See Also

pair.counts, quadruple.counts, cylinder.counts, array2vector, table2vector

turningpoint.test The Turning Point Test of Statistical Independence

Description

Perform a test of statistical independence of a data series by comparing the number of turning points
present in the series with the number of turning points expected to be present in an i.i.d. series.

Usage

turningpoint.test(x)

Arguments

x a numeric vector or univariate time series.

Details

If the data is x[1], x[2], . . . , x[n], then there is a turning point at the point i if either x[i-1]<x[i] and
x[i]>x[i+1], or x[i-1]>x[i] and x[i]<x[i+1]. this function counts the number of turning points in the
data, standardises it to have mean 0 and variance 1 and asymptotically tests it against a standard
normal distribution. The test statistic is

T = (tp-mu)/sigma, where
tp is the number of turning points present in the series,
mu = 2*(n-2)/3,
sigma = sqrt((16*n-29)/90) and
n is the number of data points in the series.

The test is set up as follows:

H0: the data series is i.i.d. (not trending)
H1: the data series is not i.i.d. (trending)

turningpoint.test 49

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

n the number of points in the data series.

mu The expected number of turning points that would be seen in an i.i.d. series.

sigma The standard deviation of the number of turning points that would be seen in an
i.i.d. series.

Note

Missing values are not handled.

Points followed by a point having the exact same value are removed from the data series before
computing the test statistic.

This test is useful for detecting cyclic/periodic trends in data series.

Author(s)

Andrew Hart and Servet Martínez

References

Brockwell, Peter J., Davis, Richard A. (2002) Introduction to Time Series and Forecasting. Springer
Texts in Statistics, Springer-Verlag, New York.

Bienaymé, Irénée-Jules (1874). Sur une question de probabilités. Bull. Math. Soc. Fr. 2, 153-154.

See Also

diffsign.test, rank.test, lb.test, markov.test, diid.test

Examples

#Generate an IID standard normal sequence
n <- rnorm(1000)
turningpoint.test(n)

Index

∗ array
array2vector, 8
cylinder.counts, 20
oligoProfile, 35
pair.counts, 37
quadruple.counts, 39
rcspr2mat, 42
rstochmat, 44
triple.counts, 47

∗ datagen
complement, 18
diid.disturbance, 23
disambiguate, 27
markov.disturbance, 31
rcspr2mat, 42
reverseComplement, 43
rstochmat, 44
rstochvec, 45
simulateMarkovChain, 46

∗ datasets
Nanoarchaeum equitans Kin4-M

Chromosome, 34
Pieris Rapae Granulovirus Genome,

38
∗ distribution

rstochmat, 44
rstochvec, 45
simulateMarkovChain, 46

∗ htest
ag.test, 4
agct.test, 6
chargaff.gibbs.test, 9
chargaff0.test, 11
chargaff1.test, 13
chargaff2.test, 15
chisq.unif.test, 17
diffsign.test, 22
diid.disturbance, 23
diid.test, 24

ks.unif.test, 29
lb.test, 30
markov.disturbance, 31
markov.test, 32
rank.test, 40
turningpoint.test, 48

∗ models
diid.disturbance, 23
estimateMarkovChain, 28
markov.disturbance, 31
simulateMarkovChain, 46

∗ package
spgs-package, 2

∗ ts
simulateMarkovChain, 46

ag.test, 3, 4, 7, 10, 12, 14, 16
agct.test, 3, 5, 6, 10, 12, 14, 16
array2vector, 8, 21, 37, 38, 40, 48
as.vector, 8

Box.test, 30

chargaff.gibbs.test, 3, 5, 7, 9, 12, 14, 16
chargaff0.test, 3, 5, 7, 10, 11, 14, 16
chargaff1.test, 3, 5, 7, 10, 12, 13, 16
chargaff2.test, 3, 5, 7, 10, 12, 14, 15
chisq.test, 17, 18
chisq.unif.test, 3, 17, 25, 26, 29, 33, 34
complement, 3, 18, 44
cylinder.counts, 3, 9, 20, 37, 38, 40, 48

diffsign.test, 3, 22, 25, 26, 30, 33, 34, 41,
49

diid.disturbance, 23, 26, 32
diid.test, 3, 23, 24, 24, 29, 30, 32, 34, 41, 49
disambiguate, 27, 37

estimateMarkovChain, 3, 28, 31, 45, 47

findInterval, 18

50

INDEX 51

ks.unif.test, 3, 18, 25, 26, 29, 33, 34

lb.test, 3, 23, 25, 26, 30, 33, 34, 41, 49

markov.disturbance, 24, 28, 31, 34
markov.test, 3, 23, 24, 26, 28–30, 32, 32, 41,

49

nanoarchaeum, 39
nanoarchaeum (Nanoarchaeum equitans

Kin4-M Chromosome), 34
Nanoarchaeum equitans Kin4-M

Chromosome, 34

oligoCorr (oligoProfile), 35
oligoProfile, 3, 35

p.adjust, 24, 32
pair.counts, 3, 9, 21, 37, 37, 40, 48
pieris, 34
pieris (Pieris Rapae Granulovirus

Genome), 38
Pieris Rapae Granulovirus Genome, 38
plot.default, 36
plot.OligoProfile (oligoProfile), 35
print.OligoProfile (oligoProfile), 35

quadruple.counts, 3, 9, 21, 37, 38, 39, 48

rank.test, 3, 23, 25, 26, 30, 33, 34, 40, 49
rcspr2mat, 3, 42, 45, 47
reverseComplement, 3, 19, 43
rstochmat, 3, 43, 44, 47
rstochvec, 3, 45

SeqFastadna, 34, 38
seqinr, 3, 4, 6, 9, 11, 13, 15
simulateMarkovChain, 3, 28, 45, 46
spgs (spgs-package), 2
spgs-package, 2

table, 21
table2vector, 21, 37, 38, 40, 48
table2vector (array2vector), 8
triple.counts, 3, 9, 21, 37, 38, 40, 47
turningpoint.test, 3, 23, 25, 26, 30, 33, 34,

41, 48

	spgs-package
	ag.test
	agct.test
	array2vector
	chargaff.gibbs.test
	chargaff0.test
	chargaff1.test
	chargaff2.test
	chisq.unif.test
	complement
	cylinder.counts
	diffsign.test
	diid.disturbance
	diid.test
	disambiguate
	estimateMarkovChain
	ks.unif.test
	lb.test
	markov.disturbance
	markov.test
	Nanoarchaeum equitans Kin4-M Chromosome
	oligoProfile
	pair.counts
	Pieris Rapae Granulovirus Genome
	quadruple.counts
	rank.test
	rcspr2mat
	reverseComplement
	rstochmat
	rstochvec
	simulateMarkovChain
	triple.counts
	turningpoint.test
	Index

