Package ‘spatial TIME’

June 4, 2024

Title Spatial Analysis of Vectra Immunoflourescent Data
Version 1.3.4-5

Description Visualization and analysis of Vectra Immunoflourescent
data. Options for calculating both the univariate and bivariate Ripley's K
are included. Calculations are performed using a permutation-based
approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.

License MIT + file LICENSE

Imports magrittr, dplyr, tidyr, ggplot2, scales, grDevices, purrr,
spatstat.univar, spatstat.geom, spatstat.explore, RColorBrewer,
furrr, future, tidyselect, crayon, pbmcapply, dixon, tibble,
stringr

Suggests knitr, devtools, rmarkdown, testthat (>= 3.0.0), gridExtra,
pheatmap

VignetteBuilder knitr
URL https://github.com/FridleylLab/spatial TIME

BugReports https://github.com/FridleylLab/spatialTIME/issues
NeedsCompilation no

Config/testthat/edition 3

RoxygenNote 7.2.3

Depends R (>=2.10)

LazyData true

Encoding UTF-8

Author Jordan Creed [aut],
Ram Thapa [aut],
Christopher Wilson [aut],
Alex Soupir [aut],

Oscar Ospina [aut],
Julia Wrobel [aut],
Brooke Fridley [cph],
Fridley Lab [cre]

https://doi.org/10.1101/2021.04.27.21256104
https://github.com/FridleyLab/spatialTIME
https://github.com/FridleyLab/spatialTIME/issues

2 bi_ NN_G

Maintainer Fridley Lab <fridley.lab@moffitt.org>

Repository CRAN

Date/Publication 2024-06-04 15:30:11 UTC

Contents
bI_NN_G . . . e e 2
bi_pair_correlation 4
bi_ripleys_k 5
bi_ripleys_k_WSIT e 6
COMPULE_MELIICS o v vt e et e e e e e e 8
create_ mif L L e e 10
AIXONS_S .« o o o e e e e 11
example_clinical 13
example_spatial L. e 14
eXample_SUMMATrY v v vt et e e e e e e e e e e e e e e 14
interaction_variable L L L 15
merge_mifs e 16
NN_G . . e e 17
pair_correlation L. e e e e e e e 18
plot_immunoflo e 19
ripleys_k 20
subset_mif e, 22

Index 24

bi_NN_G Bivariate Nearest Neighbor G(r)
Description

Bivariate Nearest Neighbor G(r)

Usage

bi_NN_G(
mif,
mnames,
r_range = 0:100,
num_permutations =
edge_correction =

50,

n n

rs”,

keep_perm_dis = FALSE,

workers = 1,
overwrite = FALSE,
xloc = NULL,
yloc = NULL

bi NN_G

Arguments
mif

mnames

r_range

object of class ‘mif* created by function ‘create_mif()*

character vector of column names within the spatial files, indicating whether a
cell row is positive for a phenotype

numeric vector of radii around marker positive cells which to use for G(r)

num_permutations

integer number of permutations to use for estimating core specific complete spa-
tial randomness (CSR)

edge_correction

keep_perm_dis

workers

overwrite

xloc, yloc

Value

character vector of edge correction methods to use: "rs", "km" or "han"

boolean for whether to summarise permutations to a single value or maintain
each permutations result

integer number for the number of CPU cores to use in parallel to calculate all
samples/markers

boolean whether to overwrite previous run of NN G(r) or increment "RUN" and
maintain previous measurements

the x and y location columns in the spatial files that indicate the center of the
respective cells

object of class ‘mif* containing a new slot under ‘derived‘ got nearest neighbor distances

Examples

X <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),

sample_data =

spatialTIME: :example_summary %>%

dplyr::mutate(deidentified_id = as.character(deidentified_id)),

spatial_list =

spatialTIME: :example_spatial[1:2],

patient_id = "deidentified_id",
sample_id = "deidentified_sample”)

mnames_good <- c("”CD3..0pal.57@..Positive”,"CD8..0pal.520..Positive”,
"FOXP3..0pal.620..Positive”,"PDL1..0pal.540. .Positive”,
"PD1..0pal.650..Positive”,"CD3..CD8.","CD3..FOXP3.")

Not run:

x2 = bi_NN_G(mif = x, mnames = mnames_good[1:2],
r_range = 0:100, num_permutations = 10,

edge_correction =

workers =

End(Not run)

n n

rs", keep_perm_dis = FALSE,
1, overwrite = TRUE)

4 bi_pair_correlation

bi_pair_correlation Bivariate Pair Correlation Function

Description

Bivariate Pair Correlation Function

Usage

bi_pair_correlation(
mif,
mnames,
r_range = NULL,
num_permutations = 100,
edge_correction = "translation”,
keep_permutation_distribution = FALSE,
workers = 1,
overwrite = FALSE,

xloc = NULL,
yloc = NULL,
)
Arguments
mif object of class ‘mif*
mnames character vector or dataframe with 2 columns containing markers/marker com-
binations to run
r_range numeric vector radii to measure

num_permutations

integer for the number of permutations to run
edge_correction

character string for which edge correction to implement for Ripley’s K
keep_permutation_distribution

boolean whether to summarise the permutations or keep all

workers integer for number of cores to use when calculating

overwrite boolean for whether to overwrite existing bivariate pair correlation results
xloc x location column in spatial files

yloc y location column in spatial files

other variables to pass to ‘[spatstat.explore::pcfcross]*

Value

‘mif* object with the bivariate_pair_correlation slot filled

bi_ripleys_k 5

bi_ripleys_k Bivariate Ripley’s K

Description

Bivariate Ripley’s K function within spatial TIME, ‘bi_ripleys_k* is a function that takes in a ‘mIF*
object, along with some parameters like marker names of interest and range of radii in which to
assess bivariate clustering or colocalization. In 1.3.3.3 we have introduced the ability to forsgo the
need for permutations with the implementation of the exact CSR estimate. This is both faster and
being the exact CSR, produces an exact degree of clustering in the spatial files.

Due to the availability of whole slide images (WSI), there’s a possibility users will be running
bivariate Ripley’s K on samples that have millions of cells. When doing this, keep in mind that a
nearest neighbor matrix with *n* cell is *n* by *n* in size and therefore easily consumers high
performance compute levels of RAM. To combat this, we have implemented a tiling method that
performs counts for small chunks of the distance matrix at a time before finally calculating the
bivariate Ripley’s K value on the total counts. When doing this there are now 2 import parameters
to keep in mind. The ‘big‘ parameter is the size of the tile to use. We have found 1000 to be a
good number that allows for high number of cores while maintaining low RAM usage. The other
important parameter when working with WSI is nlarge which is the fall over for switching to no
edge correction. The spatstat.explore::Kest univariate Ripley’s K uses a default of 3000 but we have
defaulted to 1000 to keep compute minimized as edge correction uses large amounts of RAM over

‘none’.
Usage
bi_ripleys_k(
mif,
mnames,
r_range = 0:100,
edge_correction = "translation”,

num_permutations = 50,

permute = FALSE,
keep_permutation_distribution = FALSE,
overwrite = TRUE,

workers = 6,

xloc = NULL,
yloc = NULL,
force = FALSE

)

Arguments
mif mlF object with spatial data frames, clinical, and per-sample summary informa-
tion
mnames vector of column names for phenotypes or data frame of marker combinations

r_range vector range of radii to calculate co-localization *K*

6 bi_ripleys_k_WSI

edge_correction
character edge_correction method, one of "translation", "border", "or none"
num_permutations
integer number of permutations to estimate CSR
permute whether or not to use permutations to estimate CSR (TRUE) or to calculate exact
CSR (FALSE)
keep_permutation_distribution
boolean as to whether to summarise permutations to mean

overwrite boolean as to whether to replace existing bivariate_Count if exists
workers integer number of CPU workers to use
xloc, yloc the x and y positions that correspond to cells. If left as NULL, XMin, XMax,
YMin, and YMax must be present in the spatial files
force logical whether or not to continue if sample has more than 10,000 cells
Value

mif object with bivariate Ripley’s K calculated

Examples

X <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample”)
mnames_good <- c("”CD3..0pal.57@..Positive”,"CD8..0pal.520..Positive”,
"FOXP3..0pal.620..Positive”,"PDL1..0pal.540. .Positive",
"PD1..0pal.650..Positive”,"CD3..CD8.","CD3..FOXP3.")
x2 = bi_ripleys_k(mif = x, mnames = mnames_good[1:2],
r_range = 0:100, edge_correction = "none”, permute = FALSE,
num_permutations = 50, keep_permutation_distribution = FALSE,
workers = 1)

bi_ripleys_k_WSI Bivariate Ripley’s K for Whole Slide Images

Description

Bivariate Ripley’s K function within spatial TIME, ‘bi_ripleys_k* is a function that takes in a ‘mIF*
object, along with some parameters like marker names of interest and range of radii in which to
assess bivariate clustering or colocalization. In 1.3.3.3 we have introduced the ability to forsgo the
need for permutations with the implementation of the exact CSR estimate. This is both faster and
being the exact CSR, produces an exact degree of clustering in the spatial files.

Due to the availability of whole slide images (WSI), there’s a possibility users will be running
bivariate Ripley’s K on samples that have millions of cells. When doing this, keep in mind that a

bi_ripleys_k_WSI 7

nearest neighbor matrix with *n* cell is *n* by *n* in size and therefore easily consumers high
performance compute levels of RAM. To combat this, we have implemented a tiling method that
performs counts for small chunks of the distance matrix at a time before finally calculating the
bivariate Ripley’s K value on the total counts. When doing this there are now 2 import parameters
to keep in mind. The ‘big® parameter is the size of the tile to use. We have found 1000 to be a
good number that allows for high number of cores while maintaining low RAM usage. The other
important parameter when working with WSI is nlarge which is the fall over for switching to no
edge correction. The spatstat.explore::Kest univariate Ripley’s K uses a default of 3000 but we have
defaulted to 1000 to keep compute minimized as edge correction uses large amounts of RAM over

’none’.
Usage
bi_ripleys_k_WSI(
mif,
mnames,
r_range = 0:100,
edge_correction = "translation”,

num_permutations = 50,

permute = FALSE,
keep_permutation_distribution = FALSE,
overwrite = TRUE,

workers = 6,

big = 1000,
nlarge = 1000,
xloc = NULL,
yloc = NULL
)
Arguments
mif mlF object with spatial data frames, clinical, and per-sample summary informa-
tion
mnames vector of column names for phenotypes or data frame of marker combinations
r_range vector range of radii to calculate co-localization *K*

edge_correction
character edge_correction method, one of "translation", or none"
num_permutations
integer number of permutations to estimate CSR
permute whether or not to use permutations to estimate CSR (TRUE) or to calculate exact
CSR (FALSE)
keep_permutation_distribution
boolean as to whether to summarise permutations to mean

overwrite boolean as to whether to replace existing bivariate_Count if exists
workers integer number of CPU workers to use
big integer used as the threshold for subsetting large samples, default is 1000 either

*1% or *J>i’

8 compute_metrics

nlarge number of cells in either *i* or *j* to flip to no edge correction - at small (rela-
tive to whole spatial region) *r* values differences in results between correction
methods is negligible so running a few samples is recommended. Perhaps com-
pute outweighs small differences in correction methods.

xloc the x and y positions that correspond to cells. If left as NULL, XMin, XMax,
YMin, and YMax must be present in the spatial files

yloc the x and y positions that correspond to cells. If left as NULL, XMin, XMax,
YMin, and YMax must be present in the spatial files

Value

mif object with bivariate Ripley’s K calculated

Examples

X <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample”)
mnames_good <- c("CD3..0pal.570..Positive”,"”CD8..0pal.520..Positive”,
"FOXP3..0pal.620..Positive”,"PDL1..0pal.540. .Positive",
"PD1..0pal.650..Positive”,”CD3..CD8.","CD3..FOXP3.")
x2 = bi_ripleys_k_WSI(mif = x, mnames = mnames_good[1:2],
r_range = 0:100, edge_correction = "none”, permute = FALSE,
num_permutations = 50, keep_permutation_distribution = FALSE,
workers = 1, big = 1000)

compute_metrics Calculate Count Based Measures and NN Measures of Spatial Clus-
tering for IF data

Description

This function calculates count based Measures (Ripley’s K, Besag L, and Marcon’s M) of IF data
to characterize correlation of spatial point process. For neareast neighbor calculations of a given
cell type, this function computes proportion of cells that have nearest neighbor less than r for the
observed and permuted point processes.

Usage

compute_metrics(
mif,
mnames,
r_range = seq(@, 100, 50),
num_permutations = 50,

compute_metrics

edge_correction = c("translation”),
method = c("K"),
k_trans = "none”,

keep_perm_dis
workers = 1,

= FALSE,

overwrite = FALSE,

xloc = NULL,
yloc = NULL,
exhaustive =

Arguments
mif
mnames

r_range

T

An MIF object
Character vector of marker names to estimate degree of spatial clustering.

Numeric vector of potential r values this range must include 0.

num_permutations

edge_correction

method

k_trans

keep_perm_dis

workers

overwrite

xloc

yloc

exhaustive

Value

Numeric value indicating the number of permutations used. Default is 50.

Character vector indicating the type of edge correction to use. Options for count
based include "translation" or "isotropic" and for nearest neighboroOptions in-
clude "rs" or "hans".

Character vector indicating which count based measure (K, BiK, G, BiG) used
to estimate the degree of spatial clustering. Description of the methods can be
found in Details section.

Character value of the transformation to apply to count based metrics (none, M,
orL)

Logical value determining whether or not to keep the full distribution of per-
muted K or G values

Integer value for the number of workers to spawn

Logical value determining if you want the results to replace the current output
(TRUE) or be to be appended (FALSE).

a string corresponding to the x coordinates. If null the average of XMin and
XMax will be used

a string corresponding to the y coordinates. If null the average of YMin and
YMax will be used

whether or not to compute all combinations of markers

Returns a data.frame

Theoretical CSR

Permuted CSR

Observed

Expected value assuming complete spatial randomnessn
Average observed K, L, or M for the permuted point process

Observed valuefor the observed point process

10 create_mif

Degree of Clustering Permuted

Degree of spatial clustering where the reference is the permutated estimate of
CSR

Degree of Clustering Theoretical

Degree of spatial clustering where the reference is the theoretical estimate of
CSR

Examples

#Create mif object

library(dplyr)

X <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample")

Define the set of markers to study
mnames <- c("CD3..0pal.57@..Positive"”,"”CD8..0pal.520..Positive”,
"FOXP3..0pal.620..Positive”,"CD3..CD8.","CD3..FOXP3.")

Ripley's K and nearest neighbor G for all markers with a neighborhood size

of 10,20,...,100 (zero must be included in the input).
create_mif Create Multiplex Immunoflourescent object
Description

Creates an MIF object for use in spatiallF functions

Usage

create_mif/(
clinical_data,
sample_data,
spatial_list = NULL,
patient_id = "patient_id",
sample_id = "image_tag"

dixons_s 11

Arguments

clinical_data A data frame containing patient level data with one row per participant.

sample_data A data frame containing sample level data with one row per sample. Should at
a minimum contain a 2 columns: one for sample names and one for the corre-
sponding patient name.

spatial_list A named list of data frames with the spatial data from each sample making up
each individual data frame

patient_id A character string indicating the column name for patient id in sample and clin-
ical data frames.
sample_id A character string indicating the column name for sample id in the sample data
frame
Value

Returns a custom MIF

clinical Data frame of clinical data

sample Data frame of sample data

spatial Named list of spatial data

derived List of data derived using the MIF object

patient_id The column name for sample id in the sample data frame with the clinical data
sample_id The column name for sample id in the sample data frame to merge with the

spatial data

Examples

#Create mif object

library(dplyr)

X <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample")
dixons_s Dixon’s S Segregation Statistic
Description

This function processes the spatial files in the mif object, requiring a column that distinguishes
between different groups i.e. tumor and stroma

12 dixons_s

Usage

dixons_s(
mif,
mnames,
num_permutations = 1000,
type = c("zZ", "C"),
workers = 1,
overwrite = FALSE,

xloc = NULL,
yloc = NULL
)
Arguments
mif An MIF object
mnames vector of markers corresponding to spatial columns to check Dixon’s S between

num_permutations
Numeric value indicating the number of permutations used. Default is 1000.

type a character string for the type that is wanted in the output which can be "Z" for
z-statistic results or "C" for Chi-squared statistic results

workers Integer value for the number of workers to spawn

overwrite Logical value determining if you want the results to replace the current output
(TRUE) or be to be appended (FALSE).

xloc a string corresponding to the x coordinates. If null the average of XMin and
XMax will be used

yloc a string corresponding to the y coordinates. If null the average of YMin and
YMax will be used

Value

Returns a data frame for Z-statistic

From

To
Obs.Count
Exp. Count
S

z

p-val.Z
p-val.Nobs

Marker
Classifier Labeled Column Counts

Image.Tag

example_clinical

Returns a data frame for C-statistic

Segregation
df

Chi-sq
P.asymp
P.rand

Marker
Classifier Labeled Column Counts

Image.Tag

Examples

#' #Create mif object

library(dplyr)

x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample")
example_clinical Clinical variables of 229 patients
Description

A tibble wuith clinical characteristics for 229 patients

Usage

example_clinical

Format
A tibble with 229 rows and 6 variables

age age at diagnosis

race self-idenitifed race

sex patient biological sex

status disease status
deidenitifed_sample sample identifier
deidentified_id patient identifier

14

example_summary

example_spatial Example list of 5 spatial TMA data

Description

A list containing 5 spatial data frames

Usage

example_spatial

Format
A list of 5 data frames:
e TMA_\[3,B\].tiff

[
TMA_\[6,F\].tiff
* TMA_\[7,B\].tiff
[
[

TMA_\[9,K\].tiff
« TMA_\[8,U\].tiff

example_summary Marker summaries of 229 samples

Description

A dataset containing summaries of 25 markers and 229 samples

Usage

example_summa ry

Format

A tibble with 229 rows and 29 variables:

deidentified_id patient-level id

deidentified_sample sample-level id ...

interaction_variable 15

interaction_variable Bivariate Interaction Variable

Description

Single-cell spatial-protein metric introduce by Steinhart et al in https://doi.org/10.1158/1541-7786.mcr-
21-0411

Usage

interaction_variable(
mif,
mnames,
r_range = NULL,
num_permutations = 100,
keep_permutation_distribution = FALSE,
workers = 1,
overwrite = FALSE,

xloc = NULL,
yloc = NULL
)
Arguments
mif object of class ‘mif*
mnames a character vector or table with 2 columns indicating the from-to markers to
assess
r_range numeric vector of radii for which to calculate the interaction variable at

num_permutations

integer for how many permutations to use to derive the interaction estimate under
CSR

keep_permutation_distribution
boolean for whether or not to keep all permutation results or average them

workers integer for the number of CPU cores to use for permutations, markers, and spa-
tial samples

overwrite boolean for whether to overwrite existing interaction variable results

xloc column name in spatial files containing the x location - if left NULL will average
columns XMin and XMax

yloc column name in spatial files containing the y location - if left NULL will average
columns YMin and YMax

Value

object of class mif with the interaction variable derive slot filled

16 merge_mits

merge_mifs Merge several MIF objects together

Description

This function merges MIF objects that were run separately so they can be used as a single MIF. MIF
objects don’t *need* but *should* have the same column names in the summary file and clinical
data file. The MIF objects **DO** need to have the same patient_id and sample_id.

Usage

merge_mifs(mifs = NULL, check.names = T)

Arguments

mifs A list of MIF objects to merge together

check.names whether to check names of spatial files and summary enttries
Value

Returns a new MIF object list

clinical_data clinical information from all

sample cell level summary data from all

spatial contains all spatial files from all MIFs

derived appended derived variables

patient_id patient_id from the first MIF - this is why it is important to have the same pa-
tient_id for all MIFs

sample_id sample_id from the first MIF - also important for all MIFs to have the same
sample_id

Examples

#merge several MIF objects

library(dplyr)

x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample")

x <- merge_mifs(mifs = list(x, x), check.names = FALSE)

NN_G

17

NN_G

Univariate Nearest Neighbor G(r)

Description

Univariate Nearest Neighbor G(r)

Usage

NN_G(
mif,
mnames,
r_range = 0:

100,

num_permutations = 50,

edge_correction = "rs",

n

keep_perm_dis = FALSE,

workers = 1,
overwrite =
xloc = NULL,
yloc = NULL

Arguments
mif

mnames

r_range

FALSE,

object of class ‘mif* created by function ‘create_mif()*

character vector of column names within the spatial files, indicating whether a
cell row is positive for a phenotype

numeric vector of radii around marker positive cells which to use for G(r)

num_permutations

integer number of permutations to use for estimating core specific complete spa-
tial randomness (CSR)

edge_correction

keep_perm_dis

workers

overwrite

xloc, yloc

Value

character vector of edge correction methods to use: "rs", "km" or "han"

boolean for whether to summarise permutations to a single value or maintain
each permutations result

integer number for the number of CPU cores to use in parallel to calculate all
samples/markers

boolean whether to overwrite previous run of NN G(r) or increment "RUN" and
maintain previous measurements

the x and y location columns in the spatial files that indicate the center of the
respective cells

object of class ‘mif* containing a new slot under ‘derived‘ got nearest neighbor distances

18 pair_correlation

Examples

library(dplyr)
X <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample”)

mnames_good <- c("CD3..0pal.570..Positive”,"”CD8..0pal.520..Positive”,
"FOXP3..0pal.620..Positive”,"PDL1..0pal.540. .Positive”,
"PD1..0pal.650..Positive”,"CD3..CD8.","CD3..FOXP3.")

x2 = NN_G(mif = x, mnames = mnames_good[1:2],
r_range = 0:100, num_permutations = 10,
edge_correction = "rs", keep_perm_dis = FALSE,
workers = 1, overwrite = TRUE)

pair_correlation Univariate Pair Correlation Function

Description

Implementation of the univariate pair correlation function from spatstat

Usage

pair_correlation(
mif,
mnames,
r_range = NULL,
num_permutations = 100,
edge_correction = "translation”,
keep_permutation_distribution = FALSE,
workers = 1,
overwrite = FALSE,

xloc = NULL,
yloc = NULL,
)
Arguments
mif object of class ‘mif*
mnames character vector of marker names

r_range numeric vector including 0. If ignored, ‘spatstat® will decide range

plot_immunofio 19

num_permutations

integer indicating how many permutations to run to determine CSR estimate
edge_correction

character string of edge correction to apply to Ripley’s K estimation
keep_permutation_distribution

boolean for whether to keep the permutations or not

workers integer for number of threads to use when calculating metrics

overwrite boolean whether to overwrite existing results in the univariate_pair_correlation
slot

xloc column name of single x value

yloc column name of single y value

other parameters to provide ‘spatstat::pcf*

The Pair Correlation Function uses the derivative of Ripley’s K so it does take
slightly longer to calculate

‘xloc‘ and ‘yloc‘, if NULL, will be calculated from columns ‘XMax*, ‘XMin*,
‘YMax‘, and ‘YMin°.

Value

mif object with with the univariate_pair_correlation derived slot filled or appended to

plot_immunoflo Generate plot of TMA point process

Description

This function generates plot of point process in rectangular or circular window.

Usage

plot_immunoflo(
mif,
plot_title,
mnames,
mcolors = NULL,
cell_type = NULL,
filename = NULL,

path = NULL,
xloc = NULL,
yloc = NULL

20 ripleys_k

Arguments
mif MIF object created using create_ MIF().
plot_title Character string or vector of character strings of variable name(s) to serve as
plot title(s).
mnames Character vector containing marker names.
mcolors Character vector of color names to display markers in the plot.
cell_type Character vector of cell type
filename Character string of file name to store plots. Plots are generated as single .pdf
file.
path Different path than file name or to use in conjunction with filename ???
xloc, yloc columns in the spatial files containing the x and y locations of cells. Default is
‘NULL* which will result in ‘xloc* and ‘yloc® being calculated from ‘XMin‘/*YMin*
and ‘XMax‘/‘YMax*
Value

mif object and the ggplot objects can be viewed form the derived slot of the mif object

Examples

#Create mif object

library(dplyr)

X <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample")

mnames_good <- c¢("CD3..0pal.570..Positive”,"”CD8..0pal.520..Positive”,
"FOXP3..0pal.620..Positive”,"PDL1..0pal.540. .Positive”,
"PD1..0pal.65@..Positive”,"CD3..CD8.","CD3..FOXP3.")

x <- plot_immunoflo(x, plot_title = "deidentified_sample”, mnames = mnames_good,
cell_type = "Classifier.Label”)

x[["derived"]]1[["spatial_plots"11[[4]1]

ripleys_k Calculate Ripley’s K

ripleys_k 21

Description

ripleys_k() calculates the emperical Ripley’s K measurement for the cell types specified by mnames
in the mIF object. This is very useful when exploring the spatial clustering of single cell types on
TMA cores or ROI spots following proccessing with a program such as HALO for cell phenotyping.

In the ‘ripleys_k* function, there is the ability to perform permutations in order to assess whether
the clustering of a cell type is significant, or the ability to derive the exact CSR and forgo per-
mutations for much faster sample processing. Permutations can be helpful if the significance of
clustering wasnts to be identified - run 1000 permutations and if observed is outside 95-percentile
then significant clustering. We, however, recommend using the exact CSR estimate due to speed.

Some things to be aware of when computing the exact Ripley’s K estimate, if your spatial file
is greater than the ‘big‘ size, the edge correction will be converted to none’ in order to save on
resources and compute time. Due to the introduction of Whole Slide Imaging (WSI), this can easily
be well over 1,000,000 cells, and calculating edge correction for these spatial files will not succeed
when attempting to force an edge correction on it.

Usage

ripleys_k(
mif,
mnames,
r_range = seq(@, 100, 1),
num_permutations = 50,
edge_correction = "translation”,
method = "K",
permute = FALSE,
keep_permutation_distribution = FALSE,
workers = 1,
overwrite = FALSE,
xloc = NULL,
yloc = NULL,
big = 10000

Arguments

mif object of class ‘mif* created with ‘create_mif*
mnames cell phenotype markers to calculate Ripley’s K for

r_range radius range (including 0)
num_permutations

number of permutations to use to estimate CSR. If ‘keep_perm_dis‘ is set to
FALSE, this will be ignored

edge_correction
"n.n

edge correction method to pass to ‘Kest*. can take one of "translation", "isotropic",
"none", or ’border’

method not used currently

permute whether to use CSR estimate or use permutations to determine CSR

22

subset_mif

keep_permutation_distribution

whether to find mean of permutation distribution or each permutation calculation

workers number of cores to use for calculations
overwrite whether to overwrite the ‘univariate_Count‘ slot within ‘mif$derived*
xloc the location of the center of cells. If left ‘NULL‘, ‘XMin‘, ‘XMax°‘, ‘YMin°,

and ‘YMax‘ must be present.

yloc the location of the center of cells. If left ‘NULL*, ‘XMin°‘, ‘XMax‘, ‘YMin*,

and “YMax‘ must be present.

big the number of cells at which to flip from an edge correction method other than

‘none’ to ‘none’ due to size

Value

object of class ‘mif*

Examples

X <- spatialTIME::create_mif(clinical_data =spatialTIME::example_clinical %>%

dplyr::mutate(deidentified_id = as.character(deidentified_id)),
sample_data = spatialTIME::example_summary %>%
dplyr::mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = spatialTIME::example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample”)

mnames = x$spatial[[1]1] %>%

colnames() %>%
grep("Pos|CD", ., value =TRUE) %>%
grep("Cyto|Nucle”, ., value =TRUE, invert =TRUE)

x2 = ripleys_k(mif = x,

mnames = mnames[1],

r_range = seq(@, 100, 1),
num_permutations = 100,
edge_correction = "translation”,
method = "K",

permute = FALSE,
keep_permutation_distribution =FALSE,
workers = 1,

overwrite =TRUE)

subset_mif Subset mif object on cellular level

Description

This function allows to subset the mif object into compartments. For instance a mif object includes
all cells and the desired analysis is based on only the tumor or stroma compartment then this function
will subset the spatial list to just the cells in the desired compartment

subset_mif

Usage

subset_mif(mif, classifier, level, markers)

Arguments
mif An MIF object
classifier Column name for spatial dataframe to subset
level Determines which level of the classifier to keep.
markers vector of

Value

mif object where the spatial list only as the cell that are the specified level.

Examples

#' #Create mif object

library(dplyr)

x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,

patient_id = "deidentified_id",

sample_id = "deidentified_sample")

markers = c("CD3..0pal.570. .Positive"”,"CD8..0pal.520. .Positive”,
"FOXP3..0pal.620..Positive”,"PDL1..0pal.540. .Positive”,
"PD1..0pal.650..Positive”,"”CD3..CD8.","CD3..FOXP3.")

mif_tumor = subset_mif(mif = x, classifier = 'Classifier.Label’,
level = 'Tumor', markers = markers)

Index

* datasets
example_clinical, 13
example_spatial, 14
example_summary, 14

bi_NN_G, 2
bi_pair_correlation, 4
bi_ripleys_k, 5
bi_ripleys_k_WSI, 6

compute_metrics, 8
create_mif, 10

dixons_s, 11

example_clinical, 13
example_spatial, 14
example_summary, 14

interaction_variable, 15
merge_mifs, 16
NN_G, 17

pair_correlation, 18
plot_immunoflo, 19

ripleys_k, 20

subset_mif, 22

24

	bi_NN_G
	bi_pair_correlation
	bi_ripleys_k
	bi_ripleys_k_WSI
	compute_metrics
	create_mif
	dixons_s
	example_clinical
	example_spatial
	example_summary
	interaction_variable
	merge_mifs
	NN_G
	pair_correlation
	plot_immunoflo
	ripleys_k
	subset_mif
	Index

