Package 'sparsediscrim'

October 14, 2022

Title Sparse and Regularized Discriminant Analysis

Version 0.3.0

Description A collection of sparse and regularized discriminant analysis methods intended for small-sample, high-dimensional data sets. The package features the High-Dimensional Regularized Discriminant Analysis classifier from Ramey et al. (2017) <arXiv:1602.01182>. Other classifiers include those from Dudoit et al. (2002) <doi:10.1198/016214502753479248>, Pang et al. (2009) <doi:10.1111/j.1541-0420.2009.01200.x>, and Tong et al. (2012) <doi:10.1093/bioinformatics/btr690>.

Imports bdsmatrix, corpcor, dplyr, ggplot2, mvtnorm, rlang

Suggests testthat, MASS, covr, modeldata, spelling

License MIT + file LICENSE

URL https://github.com/topepo/sparsediscrim,

https://topepo.github.io/sparsediscrim/

RoxygenNote 7.1.1.9001

Depends R (>= 2.10)

Encoding UTF-8

Language en-US

NeedsCompilation no

Author Max Kuhn [aut, cre] (<https://orcid.org/0000-0003-2402-136X>), John Ramey [aut] (original author)

Maintainer Max Kuhn <mxkuhn@gmail.com>

Repository CRAN

Date/Publication 2021-07-01 07:50:02 UTC

R topics documented:

center_data		 •			•	 •		•			•	•		•								3
cov_autocorrelation		 •		•		 •		•			•		•	•							•	3
cov_block_autocorrelation	•	 •	•	•	•	 •	•			•	•	•	•	•	•	•	•	•	•			4

cov_eigen	5
cov_intraclass	6
cov_list	7
cov_mle	7
cov_pool	8
cov_shrink_diag	8
cv_partition	9
diag_estimates	10
dmvnorm_diag 1	11
generate_blockdiag	12
6 =	13
	14
- 6	15
- 6	17
- 1- 5	19
= 1 $=$ 5 $=$ 6	21
-1	23
lda_schafer	24
lda_shrink_cov	26
	28
—	30
8-	32
no_intercept	33
1 - 0 - 1	33
posterior_probs	34
qda_diag	34
qda_shrink_cov	36
qda_shrink_mean	38
quadform	10
quadform_inv	11
rda_cov	12
rda_high_dim	12
rda_high_dim_cv	
rda_weights	16
regdiscrim_estimates	16
risk_stein	17
solve_chol	18
tong_mean_shrinkage	19
two_class_sim_data	19
update_rda_high_dim	50
var_shrinkage	50

Index

center_data

Description

Centers the observations in a matrix by their respective class sample means

Usage

center_data(x, y)

Arguments

Х	Matrix or data frame containing the training data. The rows are the sample
	observations, and the columns are the features. Only complete data are retained.
У	vector of class labels for each training observation

Value

matrix with observations centered by its corresponding class sample mean

cov_autocorrelation Generates a $p \times p$ autocorrelated covariance matrix

Description

This function generates a $p \times p$ autocorrelated covariance matrix with autocorrelation parameter rho. The variance sigma2 is constant for each feature and defaulted to 1.

Usage

```
cov_autocorrelation(p, rho, sigma2 = 1)
```

Arguments

р	the size of the covariance matrix
rho	the autocorrelation parameter. Must be less than 1 in absolute value.
sigma2	the variance of each feature

Details

The autocorrelated covariance matrix is defined as: The (i, j)th entry of the autocorrelated covariance matrix is defined as: $\rho^{|i-j|}$.

The value of rho must be such that $|\rho| < 1$ to ensure that the covariance matrix is positive definite.

Value

autocorrelated covariance matrix

```
cov_block_autocorrelation
```

Generates a $p \times p$ block-diagonal covariance matrix with autocorrelated blocks.

Description

This function generates a $p \times p$ covariance matrix with autocorrelated blocks. The autocorrelation parameter is rho. There are num_blocks blocks each with size, block_size. The variance, sigma2, is constant for each feature and defaulted to 1.

Usage

```
cov_block_autocorrelation(num_blocks, block_size, rho, sigma2 = 1)
```

Arguments

num_blocks	the number of blocks in the covariance matrix
block_size	the size of each square block within the covariance matrix
rho	the autocorrelation parameter. Must be less than 1 in absolute value.
sigma2	the variance of each feature

Details

The autocorrelated covariance matrix is defined as:

$$\Sigma = \Sigma^{(\rho)} \oplus \Sigma^{(-\rho)} \oplus \ldots \oplus \Sigma^{(\rho)},$$

where \oplus denotes the direct sum and the (i, j)th entry of $\Sigma^{(\rho)}$ is

$$\Sigma_{ij}^{(\rho)} = \{ \rho^{|i-j|} \}.$$

The matrix $\Sigma^{(\rho)}$ is the autocorrelated block discussed above.

The value of rho must be such that $|\rho| < 1$ to ensure that the covariance matrix is positive definite.

The size of the resulting matrix is $p \times p$, where p = num_blocks * block_size.

Value

autocorrelated covariance matrix

cov_eigen

Computes the eigenvalue decomposition of the maximum likelihood estimators (MLE) of the covariance matrices for the given data matrix

Description

For the classes given in the vector y, we compute the eigenvalue (spectral) decomposition of the class sample covariance matrices (MLEs) using the data matrix x.

Usage

cov_eigen(x, y, pool = FALSE, fast = FALSE, tol = 1e-06)

Arguments

х	data matrix with n observations and p feature vectors
У	class labels for observations (rows) in x
pool	logical. Should the sample covariance matrices be pooled?
fast	logical. Should the Fast SVD be used? See details.
tol	tolerance value below which the singular values of x are considered zero.

Details

If the fast argument is selected, we utilize the so-called Fast Singular Value Decomposition (SVD) to quickly compute the eigenvalue decomposition. To compute the Fast SVD, we use the corpcor::fast.svd() function, which employs a well-known trick for tall data (large n, small p) and wide data (large p, small n) to compute the SVD corresponding to the nonzero singular values. For more information about the Fast SVD, see corpcor::fast.svd().

Value

a list containing the eigendecomposition for each class. If pool = TRUE, then a single list is returned.

Examples

```
cov_eigen(x = iris[, -5], y = iris[, 5])
cov_eigen(x = iris[, -5], y = iris[, 5], pool = TRUE)
cov_eigen(x = iris[, -5], y = iris[, 5], pool = TRUE, fast = TRUE)
# Generates a data set having fewer observations than features.
# We apply the Fast SVD to compute the eigendecomposition corresponding to the
# nonzero eigenvalues of the covariance matrices.
set.seed(42)
n <- 5
p <- 20
num_classes <- 3
x <- lapply(seq_len(num_classes), function(k) {</pre>
```

```
replicate(p, rnorm(n, mean = k))
})
x <- do.call(rbind, x)
colnames(x) <- paste0("x", 1:ncol(x))
y <- gl(num_classes, n)
cov_eigen(x = x, y = y, fast = TRUE)
cov_eigen(x = x, y = y, pool = TRUE, fast = TRUE)</pre>
```

cov_intraclass Generates a $p \times p$ intraclass covariance matrix

Description

This function generates a $p \times p$ intraclass covariance matrix with correlation rho. The variance sigma2 is constant for each feature and defaulted to 1.

Usage

```
cov_intraclass(p, rho, sigma2 = 1)
```

Arguments

р	the size of the covariance matrix
rho	the value of the off-diagonal elements
sigma2	the variance of each feature

Details

The intraclass covariance matrix is defined as:

$$\sigma^2 * (\rho * J_p + (1 - \rho) * I_p),$$

where J_p is the $p \times p$ matrix of ones and I_p is the $p \times p$ identity matrix.

By default, with sigma2 = 1, the diagonal elements of the intraclass covariance matrix are all 1, while the off-diagonal elements of the matrix are all rho.

The value of rho must be between 1/(1-p) and 1, exclusively, to ensure that the covariance matrix is positive definite.

Value

intraclass covariance matrix

6

cov_list

Computes the covariance-matrix maximum likelihood estimators for each class and returns a list.

Description

For a sample matrix, x, we compute the MLE for the covariance matrix for each class given in the vector, y.

Usage

cov_list(x, y)

Arguments

х	data matrix with n observations and p feature vectors
У	class labels for observations (rows) in x

Value

list of the sample covariance matrices of size $p \times p$ for each class given in y.

cov_mle	Computes the maximum likelihood estimator for the sample covari-
	ance matrix under the assumption of multivariate normality.

Description

For a sample matrix, x, we compute the sample covariance matrix of the data as the maximum likelihood estimator (MLE) of the population covariance matrix.

Usage

cov_mle(x, diag = FALSE)

Arguments

х	data matrix with n observations and p feature vectors
diag	logical value. If TRUE, assumes the population covariance matrix is diagonal. By default, we assume that diag is FALSE.

Details

If the diag option is set to TRUE, then we assume the population covariance matrix is diagonal, and the MLE is computed under this assumption. In this case, we return a vector of length p instead.

Value

sample covariance matrix of size $p \times p$. If diag is TRUE, then a vector of length p is returned instead.

cov_pool	Computes the pooled maximum	likelihood estimator (MLE) for the
	common covariance matrix	

Description

For the matrix x, we compute the MLE for the population covariance matrix under the assumption that the data are sampled from K multivariate normal populations having equal covariance matrices.

Usage

cov_pool(x, y)

Arguments

Х	data matrix with n observations and p feature vectors
У	class labels for observations (rows) in x

Value

pooled sample covariance matrix of size $p \times p$

Examples

```
cov_pool(iris[, -5], iris$Species)
```

cov_shrink_diag	Computes a shrunken version of the maximum likelihood estimator for
	the sample covariance matrix under the assumption of multivariate
	normality.

Description

For a sample matrix, x, we compute the sample covariance matrix as the maximum likelihood estimator (MLE) of the population covariance matrix and shrink it towards its diagonal.

Usage

```
cov_shrink_diag(x, gamma = 1)
```

cv_partition

Arguments

х	data matrix with n observations and p feature vectors
gamma	the shrinkage parameter. Must be between 0 and 1, inclusively. By default, the
	shrinkage parameter is 1, which simply yields the MLE.

Details

Let $\widehat{\Sigma}$ be the MLE of the covariance matrix Σ . Then, we shrink the MLE towards its diagonal by computing

$$\widehat{\Sigma}(\gamma) = \gamma \widehat{\Sigma} + (1 - \gamma) \widehat{\Sigma} \circ I_p,$$

where \circ denotes the Hadamard product and $\gamma \in [0, 1]$.

For $\gamma < 1$, the resulting shrunken covariance matrix estimator is positive definite, and for $\gamma = 1$, we simply have the MLE, which can potentially be positive semidefinite (singular).

The estimator given here is based on Section 18.3.1 of the Hastie et al. (2008) text.

Value

shrunken sample covariance matrix of size $p \times p$

References

Hastie, T., Tibshirani, R., and Friedman, J. (2008), "The Elements of Statistical Learning: Data Mining, Inference, and Prediction," 2nd edition. http://web.stanford.edu/~hastie/ElemStatLearn/

cv_partition Randomly partitions data for cross-validation.

Description

For a vector of training labels, we return a list of cross-validation folds, where each fold has the indices of the observations to leave out in the fold. In terms of classification error rate estimation, one can think of a fold as a the observations to hold out as a test sample set. Either the hold_out size or the number of folds, num_folds, can be specified. The number of folds defaults to 10, but if the hold_out size is specified, then num_folds is ignored.

Usage

```
cv_partition(y, num_folds = 10, hold_out = NULL, seed = NULL)
```

Arguments

У	a vector of class labels
num_folds	the number of cross-validation folds. Ignored if hold_out is not NULL. See Details.
hold_out	the hold-out size for cross-validation. See Details.
seed	optional random number seed for splitting the data for cross-validation

Details

We partition the vector y based on its length, which we treat as the sample size, 'n'. If an object other than a vector is used in y, its length can yield unexpected results. For example, the output of length(diag(3)) is 9.

Value

list the indices of the training and test observations for each fold.

Examples

```
# The following three calls to `cv_partition` yield the same partitions.
set.seed(42)
cv_partition(iris$Species)
cv_partition(iris$Species, num_folds = 10, seed = 42)
cv_partition(iris$Species, hold_out = 15, seed = 42)
```

diag_estimates Computes estimates and ancillary information for diagonal classifiers

Description

Computes the maximum likelihood estimators (MLEs) for each class under the assumption of multivariate normality for each class. Also, computes ancillary information necessary for classifier summary, such as sample size, the number of features, etc.

Usage

```
diag_estimates(x, y, prior = NULL, pool = FALSE, est_mean = c("mle", "tong"))
```

Arguments

х	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
pool	logical value. If TRUE, calculates the pooled sample variances for each class.
est_mean	the estimator for the class means. By default, we use the maximum likelihood estimator (MLE). To improve the estimation, we provide the option to use a shrunken mean estimator proposed by Tong et al. (2012).

10

dmvnorm_diag

Details

This function computes the common estimates and ancillary information used in all of the diagonal classifiers in the sparsediscrim package.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations. If other data have zero variances, these will be removed with a warning.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

named list with estimators for each class and necessary ancillary information

References

Tong, T., Chen, L., and Zhao, H. (2012), "Improved Mean Estimation and Its Application to Diagonal Discriminant Analysis," Bioinformatics, 28, 4, 531-537. https://academic.oup.com/ bioinformatics/article/28/4/531/211887

dmvnorm_diag	Computes multivariate normal density with a diagonal covariance ma-
	trix

Description

Alternative to mvtnorm::dmvnorm

Usage

dmvnorm_diag(x, mean, sigma)

Arguments

Х	matrix
mean	vector of means
sigma	vector containing diagonal covariance matrix

Value

multivariate normal density

generate_blockdiag

Generates data from K multivariate normal data populations, where each population (class) has a covariance matrix consisting of blockdiagonal autocorrelation matrices.

Description

This function generates K multivariate normal data sets, where each class is generated with a constant mean vector and a covariance matrix consisting of block-diagonal autocorrelation matrices. The data are returned as a single matrix x along with a vector of class labels y that indicates class membership.

Usage

```
generate_blockdiag(n, mu, num_blocks, block_size, rho, sigma2 = rep(1, K))
```

Arguments

n	vector of the sample sizes of each class. The length of n determines the number of classes K.
mu	matrix containing the mean vectors for each class. Expected to have p rows and K columns.
num_blocks	the number of block matrices. See details.
block_size	the dimensions of the square block matrix. See details.
rho	vector of the values of the autocorrelation parameter for each class covariance matrix. Must equal the length of n (i.e., equal to K).
sigma2	vector of the variance coefficients for each class covariance matrix. Must equal the length of n (i.e., equal to K).

Details

For simplicity, we assume that a class mean vector is constant for each feature. That is, we assume that the mean vector of the kth class is $c_k * j_p$, where j_p is a $p \times 1$ vector of ones and c_k is a real scalar.

The kth class covariance matrix is defined as

$$\Sigma_k = \Sigma^{(\rho)} \oplus \Sigma^{(-\rho)} \oplus \ldots \oplus \Sigma^{(\rho)},$$

where \oplus denotes the direct sum and the (i, j)th entry of $\Sigma^{(\rho)}$ is

$$\Sigma_{ij}^{(\rho)} = \{ \rho^{|i-j|} \}.$$

The matrix $\Sigma^{(\rho)}$ is referred to as a block. Its dimensions are provided in the block_size argument, and the number of blocks are specified in the num_blocks argument.

Each matrix Σ_k is generated by the cov_block_autocorrelation() function.

The number of classes K is determined with lazy evaluation as the length of n.

The number of features p is computed as block_size * num_blocks.

Value

named list with elements:

- x: matrix of observations with n rows and p columns
- y: vector of class labels that indicates class membership for each observation (row) in x.

Examples

```
# Generates data from K = 3 classes.
means <- matrix(rep(1:3, each=9), ncol=3)
data <- generate_blockdiag(n = c(15, 15, 15), block_size = 3, num_blocks = 3,
rho = seq(.1, .9, length = 3), mu = means)
data$x
data$y
# Generates data from K = 4 classes. Notice that we use specify a variance.
means <- matrix(rep(1:4, each=9), ncol=4)
data <- generate_blockdiag(n = c(15, 15, 15, 20), block_size = 3, num_blocks = 3,
rho = seq(.1, .9, length = 4), mu = means)
data$x
data$y
```

generate_intraclass Generates data from K multivariate normal data populations, where each population (class) has an intraclass covariance matrix.

Description

This function generates K multivariate normal data sets, where each class is generated with a constant mean vector and an intraclass covariance matrix. The data are returned as a single matrix x along with a vector of class labels y that indicates class membership.

Usage

```
generate_intraclass(n, p, rho, mu, sigma2 = rep(1, K))
```

Arguments

n	vector of the sample sizes of each class. The length of n determines the number of classes K.
р	the number of features (variables) in the data
rho	vector of the values of the off-diagonal elements for each intraclass covariance matrix. Must equal the length of n.
mu	vector containing the mean for each class. Must equal the length of n (i.e., equal to K).
sigma2	vector of variances for each class. Must equal the length of n. Default is 1 for each class.

Details

For simplicity, we assume that a class mean vector is constant for each feature. That is, we assume that the mean vector of the kth class is $c_k * j_p$, where j_p is a $p \times 1$ vector of ones and c_k is a real scalar.

The intraclass covariance matrix for the kth class is defined as:

$$\sigma_k^2 * (\rho_k * J_p + (1 - \rho_k) * I_p),$$

where J_p is the $p \times p$ matrix of ones and I_p is the $p \times p$ identity matrix.

By default, with $\sigma_k^2 = 1$, the diagonal elements of the intraclass covariance matrix are all 1, while the off-diagonal elements of the matrix are all rho.

The values of rho must be between 1/(1-p) and 1, exclusively, to ensure that the covariance matrix is positive definite.

The number of classes K is determined with lazy evaluation as the length of n.

Value

named list with elements:

- x: matrix of observations with n rows and p columns
- y: vector of class labels that indicates class membership for each observation (row) in x.

Examples

h

Bias correction function from Pang et al. (2009).

Description

This function computes the function $h_{\nu,p}(t)$ on page 1023 of Pang et al. (2009).

Usage

h(nu, p, t = -1)

lda_diag

Arguments

nu	a specified constant ($nu = N - K$)
р	the feature space dimension.
t	a constant specified by the user that indicates the exponent to use with the variance estimator. By default, $t = -1$ as in Pang et al. See the paper for more details.

Value

the bias correction value

References

Pang, H., Tong, T., & Zhao, H. (2009). "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, 65, 4, 1021-1029. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01200.x

lda_diag

Diagonal Linear Discriminant Analysis (DLDA)

Description

Given a set of training data, this function builds the Diagonal Linear Discriminant Analysis (DLDA) classifier, which is often attributed to Dudoit et al. (2002). The DLDA classifier belongs to the family of Naive Bayes classifiers, where the distributions of each class are assumed to be multivariate normal and to share a common covariance matrix.

The DLDA classifier is a modification to LDA, where the off-diagonal elements of the pooled sample covariance matrix are set to zero.

Usage

```
lda_diag(x, ...)
## Default S3 method:
lda_diag(x, y, prior = NULL, ...)
## S3 method for class 'formula'
lda_diag(formula, data, prior = NULL, ...)
## S3 method for class 'lda_diag'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

х	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The DLDA classifier is a modification to the well-known LDA classifier, where the off-diagonal elements of the pooled sample covariance matrix are assumed to be zero – the features are assumed to be uncorrelated. Under multivariate normality, the assumption uncorrelated features is equivalent to the assumption of independent features. The feature-independence assumption is a notable attribute of the Naive Bayes classifier family. The benefit of these classifiers is that they are fast and have much fewer parameters to estimate, especially when the number of features is quite large.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

The model fitting function returns the fitted classifier. The predict() method returns either a vector (type = "class") or a data frame (all other type values).

References

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 457, 77-87.

lda_eigen

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
dlda_out <- lda_diag(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(dlda_out, penguins[pred_rows, -1], type = "class")
dlda_out2 <- lda_diag(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])
predicted2 <- predict(dlda_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

lda_eigen

The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifier

Description

Given a set of training data, this function builds the MDMP classifier from Srivistava and Kubokawa (2007). The MDMP classifier is an adaptation of the linear discriminant analysis (LDA) classifier that is designed for small-sample, high-dimensional data. Srivastava and Kubokawa (2007) have proposed a modification of the standard maximum likelihood estimator of the pooled covariance matrix, where only the largest 95% of the eigenvalues and their corresponding eigenvectors are kept. The value of 95% is the default and can be changed via the eigen_pct argument.

The MDMP classifier from Srivistava and Kubokawa (2007) is an adaptation of the linear discriminant analysis (LDA) classifier that is designed for small-sample, high-dimensional data. Srivastava and Kubokawa (2007) have proposed a modification of the standard maximum likelihood estimator of the pooled covariance matrix, where only the largest 95% of the eigenvalues and their corresponding eigenvectors are kept.

Usage

```
lda_eigen(x, ...)
## Default S3 method:
lda_eigen(x, y, prior = NULL, eigen_pct = 0.95, ...)
## S3 method for class 'formula'
lda_eigen(formula, data, prior = NULL, ...)
## S3 method for class 'lda_eigen'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

Х

Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.

	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
eigen_pct	the percentage of eigenvalues kept
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_eigen object that contains the trained MDMP classifier

References

Srivastava, M. and Kubokawa, T. (2007). "Comparison of Discrimination Methods for High Dimensional Data," Journal of the Japanese Statistical Association, 37, 1, 123-134.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
mdmp_out <- lda_eigen(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(mdmp_out, penguins[pred_rows, -1], type = "class")
mdmp_out2 <- lda_eigen(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])</pre>
```

```
predicted2 <- predict(mdmp_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

lda_emp_bayes

The Minimum Distance Empirical Bayesian Estimator (MDEB) classifier

Description

Given a set of training data, this function builds the MDEB classifier from Srivistava and Kubokawa (2007). The MDEB classifier is an adaptation of the linear discriminant analysis (LDA) classifier that is designed for small-sample, high-dimensional data. Rather than using the standard maximum likelihood estimator of the pooled covariance matrix, Srivastava and Kubokawa (2007) have proposed an Empirical Bayes estimator where the eigenvalues of the pooled sample covariance matrix are shrunken towards the identity matrix: the shrinkage constant has a closed form and is quick to calculate.

The MDEB classifier from Srivistava and Kubokawa (2007) is an adaptation of the linear discriminant analysis (LDA) classifier that is designed for small-sample, high-dimensional data. Rather than using the standard maximum likelihood estimator of the pooled covariance matrix, Srivastava and Kubokawa (2007) have proposed an Empirical Bayes estimator where the eigenvalues of the pooled sample covariance matrix are shrunken towards the identity matrix: the shrinkage constant has a closed form and is quick to calculate

Usage

```
lda_emp_bayes(x, ...)
## Default S3 method:
lda_emp_bayes(x, y, prior = NULL, ...)
## S3 method for class 'formula'
lda_emp_bayes(formula, data, prior = NULL, ...)
## S3 method for class 'lda_emp_bayes'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

х	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.

formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_emp_bayes object that contains the trained MDEB classifier

References

Srivastava, M. and Kubokawa, T. (2007). "Comparison of Discrimination Methods for High Dimensional Data," Journal of the Japanese Statistical Association, 37, 1, 123-134.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
mdeb_out <- lda_emp_bayes(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(mdeb_out, penguins[pred_rows, -1], type = "class")
mdeb_out2 (...) data = manufactore interference interfe
```

```
mdeb_out2 <- lda_emp_bayes(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])
predicted2 <- predict(mdeb_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

 Ida_emp_bayes_eigen
 The Minimum Distance Rule using Modified Empirical Bayes (MD-MEB) classifier

Description

Given a set of training data, this function builds the MDMEB classifier from Srivistava and Kubokawa (2007). The MDMEB classifier is an adaptation of the linear discriminant analysis (LDA) classifier that is designed for small-sample, high-dimensional data. Srivastava and Kubokawa (2007) have proposed a modification of the standard maximum likelihood estimator of the pooled covariance matrix, where only the largest 95% of the eigenvalues and their corresponding eigenvectors are kept. The resulting covariance matrix is then shrunken towards a scaled identity matrix. The value of 95% is the default and can be changed via the eigen_pct argument.

The MDMEB classifier is an adaptation of the linear discriminant analysis (LDA) classifier that is designed for small-sample, high-dimensional data. Srivastava and Kubokawa (2007) have proposed a modification of the standard maximum likelihood estimator of the pooled covariance matrix, where only the largest 95% of the eigenvalues and their corresponding eigenvectors are kept. The resulting covariance matrix is then shrunken towards a scaled identity matrix.

Usage

```
lda_emp_bayes_eigen(x, ...)
## Default S3 method:
lda_emp_bayes_eigen(x, y, prior = NULL, eigen_pct = 0.95, ...)
## S3 method for class 'formula'
lda_emp_bayes_eigen(formula, data, prior = NULL, ...)
## S3 method for class 'lda_emp_bayes_eigen'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
eigen_pct	the percentage of eigenvalues kept
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.

data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_emp_bayes_eigen object that contains the trained MDMEB classifier

References

Srivastava, M. and Kubokawa, T. (2007). "Comparison of Discrimination Methods for High Dimensional Data," Journal of the Japanese Statistical Association, 37, 1, 123-134.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]</pre>
mdmeb_out <- lda_emp_bayes_eigen(species ~ ., data = penguins[-pred_rows, ])</pre>
predicted <- predict(mdmeb_out, penguins[pred_rows, -1], type = "class")</pre>
```

```
mdmeb_out2 <- lda_emp_bayes_eigen(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])</pre>
predicted2 <- predict(mdmeb_out2, penguins[pred_rows, -1], type = "class")</pre>
all.equal(predicted, predicted2)
```

lda_pseudo

Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverse

Description

Given a set of training data, this function builds the Linear Discriminant Analysis (LDA) classifier, where the distributions of each class are assumed to be multivariate normal and share a common covariance matrix. When the pooled sample covariance matrix is singular, the linear discriminant function is incalculable. A common method to overcome this issue is to replace the inverse of the pooled sample covariance matrix with the Moore-Penrose pseudo-inverse, which is unique and always exists. Note that when the pooled sample covariance matrix is nonsingular, it is equal to the pseudo-inverse.

The Linear Discriminant Analysis (LDA) classifier involves the assumption that the distributions of each class are assumed to be multivariate normal and share a common covariance matrix. When the pooled sample covariance matrix is singular, the linear discriminant function is incalculable. A common method to overcome this issue is to replace the inverse of the pooled sample covariance matrix with the Moore-Penrose pseudo-inverse, which is unique and always exists. Note that when the pooled sample covariance matrix is nonsingular, it is equal to the pseudo-inverse.

Usage

```
lda_pseudo(x, ...)
## Default S3 method:
lda_pseudo(x, y, prior = NULL, tol = 1e-08, ...)
## S3 method for class 'formula'
lda_pseudo(formula, data, prior = NULL, tol = 1e-08, ...)
## S3 method for class 'lda_pseudo'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
tol	tolerance value below which eigenvalues are considered numerically equal to 0
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.

data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_pseudo object that contains the trained lda_pseudo classifier

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]</pre>
lda_pseudo_out <- lda_pseudo(species ~ ., data = penguins[-pred_rows, ])</pre>
predicted <- predict(lda_pseudo_out, penguins[pred_rows, -1], type = "class")</pre>
```

```
lda_pseudo_out2 <- lda_pseudo(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])</pre>
predicted2 <- predict(lda_pseudo_out2, penguins[pred_rows, -1], type = "class")</pre>
all.equal(predicted, predicted2)
```

lda_schafer

Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimator

lda_schafer

Description

Given a set of training data, this function builds the Linear Discriminant Analysis (LDA) classifier, where the distributions of each class are assumed to be multivariate normal and share a common covariance matrix. When the pooled sample covariance matrix is singular, the linear discriminant function is incalculable. This function replaces the inverse of pooled sample covariance matrix with an estimator proposed by Schafer and Strimmer (2005). The estimator is calculated via corpcor::invcov.shrink().

The Linear Discriminant Analysis (LDA) classifier involves the assumption that the distributions of each class are assumed to be multivariate normal and share a common covariance matrix. When the pooled sample covariance matrix is singular, the linear discriminant function is incalculable. Here, the inverse of the pooled sample covariance matrix is replaced with an estimator from Schafer and Strimmer (2005).

Usage

lda_schafer(x, ...)
Default S3 method:
lda_schafer(x, y, prior = NULL, ...)
S3 method for class 'formula'
lda_schafer(formula, data, prior = NULL, ...)
S3 method for class 'lda_schafer'
predict(object, newdata, type = c("class", "prob", "score"), ...)

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	Options passed to corpcor::invcov.shrink()
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_schafer object that contains the trained classifier

References

Schafer, J., and Strimmer, K. (2005). "A shrinkage approach to large-scale covariance estimation and implications for functional genomics," Statist. Appl. Genet. Mol. Biol. 4, 32.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
lda_schafer_out <- lda_schafer(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(lda_schafer_out, penguins[pred_rows, -1], type = "class")</pre>
```

lda_schafer_out2 <- lda_schafer(x = penguins[-pred_rows, -1], y = penguins\$species[-pred_rows])
predicted2 <- predict(lda_schafer_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>

1da_shrink_cov Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA)

Description

Given a set of training data, this function builds the Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) classifier, which is based on the DLDA classifier, often attributed to Dudoit et al. (2002). The DLDA classifier belongs to the family of Naive Bayes classifiers, where the distributions of each class are assumed to be multivariate normal and to share a common covariance matrix. To improve the estimation of the pooled variances, Pang et al. (2009) proposed the SDLDA classifier which uses a shrinkage-based estimators of the pooled covariance matrix.

The SDLDA classifier is a modification to LDA, where the off-diagonal elements of the pooled sample covariance matrix are set to zero. To improve the estimation of the pooled variances, we use a shrinkage method from Pang et al. (2009).

26

lda_shrink_cov

Usage

```
lda_shrink_cov(x, ...)
## Default S3 method:
lda_shrink_cov(x, y, prior = NULL, num_alphas = 101, ...)
## S3 method for class 'formula'
lda_shrink_cov(formula, data, prior = NULL, num_alphas = 101, ...)
## S3 method for class 'lda_shrink_cov'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
num_alphas	the number of values used to find the optimal amount of shrinkage
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The DLDA classifier is a modification to the well-known LDA classifier, where the off-diagonal elements of the pooled covariance matrix are assumed to be zero – the features are assumed to be uncorrelated. Under multivariate normality, the assumption uncorrelated features is equivalent to the assumption of independent features. The feature-independence assumption is a notable attribute of the Naive Bayes classifier family. The benefit of these classifiers is that they are fast and have much fewer parameters to estimate, especially when the number of features is quite large.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_shrink_cov object that contains the trained SDLDA classifier

References

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 457, 77-87.

Pang, H., Tong, T., & Zhao, H. (2009). "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, 65, 4, 1021-1029.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
sdlda_out <- lda_shrink_cov(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(sdlda_out, penguins[pred_rows, -1], type = "class")
sdlda_out2 <- lda_shrink_cov(x = penguins[-pred_rows, -1], y = penguins$species[</pre>
```

sdlda_out2 <- lda_shrink_cov(x = penguins[-pred_rows, -1], y = penguins\$species[-pred_rows])
predicted2 <- predict(sdlda_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>

lda_shrink_mean

Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012)

Description

Given a set of training data, this function builds the Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) classifier from Tong, Chen, and Zhao (2012). The SmDLDA classifier incorporates a Lindley-type shrunken mean estimator into the DLDA classifier from Dudoit et al. (2002). For more about the DLDA classifier, see lda_diag().

The SmDLDA classifier is a modification to LDA, where the off-diagonal elements of the pooled sample covariance matrix are set to zero.

lda_shrink_mean

Usage

```
lda_shrink_mean(x, ...)
## Default S3 method:
lda_shrink_mean(x, y, prior = NULL, ...)
## S3 method for class 'formula'
lda_shrink_mean(formula, data, prior = NULL, ...)
## S3 method for class 'lda_shrink_mean'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The DLDA classifier belongs to the family of Naive Bayes classifiers, where the distributions of each class are assumed to be multivariate normal and to share a common covariance matrix.

The DLDA classifier is a modification to the well-known LDA classifier, where the off-diagonal elements of the pooled sample covariance matrix are assumed to be zero – the features are assumed to be uncorrelated. Under multivariate normality, the assumption uncorrelated features is equivalent to the assumption of independent features. The feature-independence assumption is a notable attribute of the Naive Bayes classifier family. The benefit of these classifiers is that they are fast and have much fewer parameters to estimate, especially when the number of features is quite large.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_shrink_mean object that contains the trained SmDLDA classifier

References

Tong, T., Chen, L., and Zhao, H. (2012), "Improved Mean Estimation and Its Application to Diagonal Discriminant Analysis," Bioinformatics, 28, 4, 531-537. https://academic.oup.com/ bioinformatics/article/28/4/531/211887

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 457, 77-87.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
smdlda_out <- lda_shrink_mean(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(smdlda_out, penguins[pred_rows, -1], type = "class")</pre>
```

```
smdlda_out2 <- lda_shrink_mean(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])
predicted2 <- predict(smdlda_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

lda_thomaz

Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimator

Description

Given a set of training data, this function builds the Linear Discriminant Analysis (LDA) classifier, where the distributions of each class are assumed to be multivariate normal and share a common covariance matrix. When the pooled sample covariance matrix is singular, the linear discriminant function is incalculable. This function replaces the pooled sample covariance matrix with a regularized estimator from Thomaz et al. (2006), where the smallest eigenvalues are replaced with the average eigenvalue. Specifically, small eigenvalues here means that the eigenvalues are less than the average eigenvalue.

Given a set of training data, this function builds the Linear Discriminant Analysis (LDA) classifier, where the distributions of each class are assumed to be multivariate normal and share a common

30

covariance matrix. When the pooled sample covariance matrix is singular, the linear discriminant function is incalculable. This function replaces the pooled sample covariance matrix with a regularized estimator from Thomaz et al. (2006), where the smallest eigenvalues are replaced with the average eigenvalue. Specifically, small eigenvalues here means that the eigenvalues are less than the average eigenvalue.

Usage

```
lda_thomaz(x, ...)
## Default S3 method:
lda_thomaz(x, y, prior = NULL, ...)
## S3 method for class 'formula'
lda_thomaz(formula, data, prior = NULL, ...)
## S3 method for class 'lda_thomaz'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

lda_thomaz object that contains the trained classifier

References

Thomaz, C. E., Kitani, E. C., and Gillies, D. F. (2006). "A maximum uncertainty LDA-based approach for limited sample size problems with application to face recognition," J. Braz. Comp. Soc., 12, 2, 7-18.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
lda_thomaz_out <- lda_thomaz(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(lda_thomaz_out, penguins[pred_rows, -1], type = "class")</pre>
```

```
lda_thomaz_out2 <- lda_thomaz(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])
predicted2 <- predict(lda_thomaz_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

log_determinant Computes the log determinant of a matrix.

Description

Computes the log determinant of a matrix.

Usage

log_determinant(x)

Arguments

Х

matrix

Value

log determinant of x

no_intercept

Description

Often, we prefer not to have an intercept term in a model, but user-specified formulas might have included the intercept term. In this case, we wish to update the formula but without the intercept term. This is especially true in numerous classification models, where errors and doom can occur if an intercept is included in the model.

Usage

no_intercept(formula, data)

Arguments

formula	a model formula to remove its intercept term
data	data frame

Value

formula with no intercept term

Examples

iris_formula <- formula(Species ~ .)
no_intercept(iris_formula, data = iris)</pre>

plot.rda_high_dim_cv Plots a heatmap of cross-validation error grid for a HDRDA classifier object.

Description

Uses ggplot2::ggplot2() to plot a heatmap of the training error grid.

Usage

S3 method for class 'rda_high_dim_cv'
plot(x, ...)

Arguments

х	object to plot
	unused

Value

A ggplot object.

posterior_probs Computes posterior probabilities via Bayes Theorem under normality

Description

Computes posterior probabilities via Bayes Theorem under normality

Usage

```
posterior_probs(x, means, covs, priors)
```

Arguments

Х	matrix of observations
means	list of means for each class
covs	list of covariance matrices for each class
priors	list of prior probabilities for each class

Value

matrix of posterior probabilities for each observation

qda_diag

Diagonal Quadratic Discriminant Analysis (DQDA)

Description

Given a set of training data, this function builds the Diagonal Quadratic Discriminant Analysis (DQDA) classifier, which is often attributed to Dudoit et al. (2002). The DQDA classifier belongs to the family of Naive Bayes classifiers, where the distributions of each class are assumed to be multivariate normal. Note that the DLDA classifier is a special case of the DQDA classifier.

The DQDA classifier is a modification to QDA, where the off-diagonal elements of the pooled sample covariance matrix are set to zero.

qda_diag

Usage

```
qda_diag(x, ...)
## Default S3 method:
qda_diag(x, y, prior = NULL, ...)
## S3 method for class 'formula'
qda_diag(formula, data, prior = NULL, ...)
## S3 method for class 'qda_diag'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

х	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The DQDA classifier is a modification to the well-known QDA classifier, where the off-diagonal elements of each class covariance matrix are assumed to be zero – the features are assumed to be uncorrelated. Under multivariate normality, the assumption uncorrelated features is equivalent to the assumption of independent features. The feature-independence assumption is a notable attribute of the Naive Bayes classifier family. The benefit of these classifiers is that they are fast and have much fewer parameters to estimate, especially when the number of features is quite large.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

qda_diag object that contains the trained DQDA classifier

References

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 457, 77-87.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
dqda_out <- qda_diag(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(dqda_out, penguins[pred_rows, -1], type = "class")
dqda_out2 <- qda_diag(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])
predicted2 <- predict(dqda_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

qda_shrink_cov Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA)

Description

Given a set of training data, this function builds the Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA) classifier, which is based on the DQDA classifier, often attributed to Dudoit et al. (2002). The DQDA classifier belongs to the family of Naive Bayes classifiers, where the distributions of each class are assumed to be multivariate normal. To improve the estimation of the class variances, Pang et al. (2009) proposed the SDQDA classifier which uses a shrinkage-based estimators of each class covariance matrix.

The SDQDA classifier is a modification to QDA, where the off-diagonal elements of the pooled sample covariance matrix are set to zero. To improve the estimation of the pooled variances, we use a shrinkage method from Pang et al. (2009).

36
qda_shrink_cov

Usage

```
qda_shrink_cov(x, ...)
## Default S3 method:
qda_shrink_cov(x, y, prior = NULL, num_alphas = 101, ...)
## S3 method for class 'formula'
qda_shrink_cov(formula, data, prior = NULL, num_alphas = 101, ...)
## S3 method for class 'qda_shrink_cov'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
num_alphas	the number of values used to find the optimal amount of shrinkage
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The DQDA classifier is a modification to the well-known QDA classifier, where the off-diagonal elements of the pooled covariance matrix are assumed to be zero – the features are assumed to be uncorrelated. Under multivariate normality, the assumption uncorrelated features is equivalent to the assumption of independent features. The feature-independence assumption is a notable attribute of the Naive Bayes classifier family. The benefit of these classifiers is that they are fast and have much fewer parameters to estimate, especially when the number of features is quite large.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

qda_shrink_cov object that contains the trained SDQDA classifier

References

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 457, 77-87.

Pang, H., Tong, T., & Zhao, H. (2009). "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, 65, 4, 1021-1029.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]#' set.seed(42)
sdqda_out <- qda_shrink_cov(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(sdqda_out, penguins[pred_rows, -1], type = "class")
sdqda_out2 <- qda_shrink_cov(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])</pre>
```

predicted2 <- qua_shrink_cov(x = penguins[pred_rows, -1], y = penguins:species[-pred_rows predicted2 <- predict(sdqda_out2, penguins[pred_rows, -1], type = "class") all.equal(predicted, predicted2)

qda_shrink_mean

Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012)

Description

Given a set of training data, this function builds the Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) classifier from Tong, Chen, and Zhao (2012). The SmDQDA classifier incorporates a Lindley-type shrunken mean estimator into the DQDA classifier from Dudoit et al. (2002). For more about the DQDA classifier, see qda_diag().

The SmDQDA classifier is a modification to QDA, where the off-diagonal elements of the pooled sample covariance matrix are set to zero.

qda_shrink_mean

Usage

```
qda_shrink_mean(x, ...)
## Default S3 method:
qda_shrink_mean(x, y, prior = NULL, ...)
## S3 method for class 'formula'
qda_shrink_mean(formula, data, prior = NULL, ...)
## S3 method for class 'qda_shrink_mean'
predict(object, newdata, type = c("class", "prob", "score"), ...)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	Vector of class labels for each training observation. Only complete data are retained.
prior	Vector with prior probabilities for each class. If NULL (default), then equal probabilities are used. See details.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the group- ing factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.
object	Fitted model object
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
type	Prediction type: either "class", "prob", or "score".

Details

The DQDA classifier is a modification to the well-known QDA classifier, where the off-diagonal elements of each class covariance matrix are assumed to be zero – the features are assumed to be uncorrelated. Under multivariate normality, the assumption uncorrelated features is equivalent to the assumption of independent features. The feature-independence assumption is a notable attribute of the Naive Bayes classifier family. The benefit of these classifiers is that they are fast and have much fewer parameters to estimate, especially when the number of features is quite large.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

qda_shrink_mean object that contains the trained SmDQDA classifier

References

Tong, T., Chen, L., and Zhao, H. (2012), "Improved Mean Estimation and Its Application to Diagonal Discriminant Analysis," Bioinformatics, 28, 4, 531-537. https://academic.oup.com/ bioinformatics/article/28/4/531/211887

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 457, 77-87.

Examples

```
library(modeldata)
data(penguins)
pred_rows <- seq(1, 344, by = 20)
penguins <- penguins[, c("species", "body_mass_g", "flipper_length_mm")]
smdqda_out <- qda_shrink_mean(species ~ ., data = penguins[-pred_rows, ])
predicted <- predict(smdqda_out, penguins[pred_rows, -1], type = "class")
smdqda_out2 <- qda_shrink_mean(x = penguins[-pred_rows, -1], y = penguins$species[-pred_rows])
predicted2 <- predict(smdqda_out2, penguins[pred_rows, -1], type = "class")
all.equal(predicted, predicted2)</pre>
```

quadform

Quadratic form of a matrix and a vector

Description

We compute the quadratic form of a vector and a matrix in an efficient manner. Let x be a real vector of length p, and let A be a p x p real matrix. Then, we compute the quadratic form q = x'Ax.

Usage

quadform(A, x)

Arguments

A	matrix of dimension p x p
х	vector of length p

quadform_inv

Details

A naive way to compute the quadratic form is to explicitly write $t(x) \ x \ x$, but for large p, this operation is inefficient. We provide a more efficient method below.

Note that we have adapted the code from: https://stat.ethz.ch/pipermail/r-help/2005-November/081940.html

Value

scalar value

quadform_inv

Quadratic Form of the inverse of a matrix and a vector

Description

We compute the quadratic form of a vector and the inverse of a matrix in an efficient manner. Let x be a real vector of length p, and let A be a p x p nonsingular matrix. Then, we compute the quadratic form $q = x'A^{-1}x$.

Usage

quadform_inv(A, x)

Arguments

A	matrix that is p x p and nonsingular
x	vector of length p

Details

A naive way to compute the quadratic form is to explicitly write $t(x) \$ solve(A) $\$, but for large p, this operation is inefficient. We provide a more efficient method below.

Note that we have adapted the code from: https://stat.ethz.ch/pipermail/r-help/2005-November/081940.html

Value

scalar value

rda_cov

Description

For the classes given in the vector y, this function calculates the class covariance-matrix estimators employed in the HDRDA classifier, implemented in rda_high_dim().

Usage

 $rda_cov(x, y, lambda = 1)$

Arguments

х	Matrix or data frame containing the training data. The rows are the sample
	observations, and the columns are the features. Only complete data are retained.
У	vector of class labels for each training observation
lambda	the RDA pooling parameter. Must be between 0 and 1, inclusively.

Value

list containing the RDA covariance-matrix estimators for each class given in y

References

Ramey, J. A., Stein, C. K., and Young, D. M. (2013), "High-Dimensional Regularized Discriminant Analysis."

rda_high_dim

High-Dimensional Regularized Discriminant Analysis (HDRDA)

Description

Given a set of training data, this function builds the HDRDA classifier from Ramey, Stein, and Young (2017). Specially designed for small-sample, high-dimensional data, the HDRDA classifier incorporates dimension reduction and covariance-matrix shrinkage to enable a computationally efficient classifier.

For a given rda_high_dim object, we predict the class of each observation (row) of the the matrix given in newdata.

rda_high_dim

Usage

```
rda_high_dim(x, ...)
## Default S3 method:
rda_high_dim(
 х,
 у,
 lambda = 1,
 gamma = 0,
 shrinkage_type = c("ridge", "convex"),
 prior = NULL,
  tol = 1e-06,
  . . .
)
## S3 method for class 'formula'
rda_high_dim(formula, data, ...)
## S3 method for class 'rda_high_dim'
predict(
 object,
 newdata,
 projected = FALSE,
 type = c("class", "prob", "score"),
  . . .
)
```

Arguments

X	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
	additional arguments (not currently used).
У	vector of class labels for each training observation
lambda	the HDRDA pooling parameter. Must be between 0 and 1, inclusively.
gamma	a numeric values used for the shrinkage parameter.
shrinkage_type	the type of covariance-matrix shrinkage to apply. By default, a ridge-like shrink- age is applied. If convex is given, then shrinkage similar to Friedman (1989) is applied. See Ramey et al. (2017) for details.
prior	vector with prior probabilities for each class. If NULL (default), then the sample proportion of observations belonging to each class equal probabilities are used. See details.
tol	a threshold for determining nonzero eigenvalues.
formula	A formula of the form groups $\sim x1 + x2 +$ That is, the response is the grouping factor and the right hand side specifies the (non-factor) discriminators.
data	data frame from which variables specified in formula are preferentially to be taken.

object	Object of type rda_high_dim that contains the trained HDRDA classifier
newdata	Matrix or data frame of observations to predict. Each row corresponds to a new observation.
projected	logical indicating whether newdata have already been projected to a q-dimensional subspace. This argument can yield large gains in speed when the linear transformation has already been performed.
type	Prediction type: either "class", "prob", or "score".

Details

The HDRDA classifier utilizes a covariance-matrix estimator that is a convex combination of the covariance-matrix estimators used in the Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) classifiers. For each of the K classes given in y, (k = 1, ..., K), we first define this convex combination as

$$\hat{\Sigma}_k(\lambda) = (1 - \lambda)\hat{\Sigma}_k + \lambda\hat{\Sigma},$$

where $\lambda \in [0, 1]$ is the *pooling* parameter. We then calculate the covariance-matrix estimator

$$\tilde{\Sigma}_k = \alpha_k \tilde{\Sigma}_k(\lambda) + \gamma I_p,$$

where I_p is the $p \times p$ identity matrix. The matrix $\tilde{\Sigma}_k$ is substituted into the HDRDA classifier. See Ramey et al. (2017) for more details.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation. The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

The vector prior contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one. The order of the prior probabilities is assumed to match the levels of factor(y).

Value

rda_high_dim object that contains the trained HDRDA classifier

list with predicted class and discriminant scores for each of the K classes

References

Ramey, J. A., Stein, C. K., and Young, D. M. (2017), "High-Dimensional Regularized Discriminant Analysis." https://arxiv.org/abs/1602.01182.

Friedman, J. H. (1989), "Regularized Discriminant Analysis," Journal of American Statistical Association, 84, 405, 165-175. http://www.jstor.org/stable/2289860 (Requires full-text access).

rda_high_dim_cv

Description

For a given data set, we apply cross-validation (cv) to select the optimal HDRDA tuning parameters.

Usage

```
rda_high_dim_cv(
    x,
    y,
    num_folds = 10,
    num_lambda = 21,
    num_gamma = 8,
    shrinkage_type = c("ridge", "convex"),
    verbose = FALSE,
    ...
)
```

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
У	vector of class labels for each training observation
num_folds	the number of cross-validation folds.
num_lambda	The number of values of lambda to consider
num_gamma	The number of values of gamma to consider
shrinkage_type	the type of covariance-matrix shrinkage to apply. By default, a ridge-like shrink- age is applied. If convex is given, then shrinkage similar to Friedman (1989) is applied. See Ramey et al. (2017) for details.
verbose	If set to TRUE, summary information will be outputted as the optimal model is being determined.
	Options passed to rda_high_dim().

Details

The number of cross-validation folds is given in num_folds.

Value

list containing the HDRDA model that minimizes cross-validation as well as a data.frame that summarizes the cross-validation results.

rda_weights

Description

This function calculates the weight for each observation in the data matrix x in order to calculate the covariance matrices employed in the HDRDA classifier, implemented in rda_high_dim().

Usage

rda_weights(x, y, lambda = 1)

Arguments

х	Matrix or data frame containing the training data. The rows are the sample
	observations, and the columns are the features. Only complete data are retained.
У	vector of class labels for each training observation
lambda	the RDA pooling parameter. Must be between 0 and 1, inclusively.

Value

list containing the observations for each class given in y

References

Ramey, J. A., Stein, C. K., and Young, D. M. (2013), "High-Dimensional Regularized Discriminant Analysis."

regdiscrim_estimates Computes estimates and ancillary information for regularized discriminant classifiers

Description

Computes the maximum likelihood estimators (MLEs) for each class under the assumption of multivariate normality for each class. Also, computes ancillary information necessary for classifier summary, such as sample size, the number of features, etc.

Usage

```
regdiscrim_estimates(x, y, cov = TRUE, prior = NULL)
```

risk_stein

Arguments

x	Matrix or data frame containing the training data. The rows are the sample observations, and the columns are the features. Only complete data are retained.
У	vector of class labels for each training observation
соч	logical. Should the sample covariance matrices be computed? (Default: yes)
prior	vector with prior probabilities for each class. If NULL (default), then the sample proportions are used. See details.

Details

This function computes the common estimates and ancillary information used in all of the regularized discriminant classifiers in the sparsediscrim package.

The matrix of training observations are given in x. The rows of x contain the sample observations, and the columns contain the features for each training observation.

The vector of class labels given in y are coerced to a factor. The length of y should match the number of rows in x.

An error is thrown if a given class has less than 2 observations because the variance for each feature within a class cannot be estimated with less than 2 observations.

The vector, prior, contains the *a priori* class membership for each class. If prior is NULL (default), the class membership probabilities are estimated as the sample proportion of observations belonging to each class. Otherwise, prior should be a vector with the same length as the number of classes in y. The prior probabilities should be nonnegative and sum to one.

Value

named list with estimators for each class and necessary ancillary information

risk_stein

Stein Risk function from Pang et al. (2009).

Description

This function finds the value for $\alpha \in [0, 1]$ that empirically minimizes the average risk under a Stein loss function, which is given on page 1023 of Pang et al. (2009).

Usage

```
risk_stein(N, K, var_feature, num_alphas = 101, t = -1)
```

Arguments

Ν	the sample size.
К	the number of classes.
var_feature	a vector of the sample variances for each dimension.
num_alphas	The number of values used to find the optimal amount of shrinkage.
t	a constant specified by the user that indicates the exponent to use with the variance estimator. By default, $t = -1$ as in Pang et al. See the paper for more details.

Value

list with

- alpha: the alpha that minimizes the average risk under a Stein loss function. If the minimum is not unique, we randomly select an alpha from the minimizers.
- risk: the minimum average risk attained.

References

Pang, H., Tong, T., & Zhao, H. (2009). "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, 65, 4, 1021-1029. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01200.x

solve_chol	Computes the inverse of a symmetric, positive-definite matrix using the
	Cholesky decomposition

Description

This often faster than solve() for larger matrices. See, for example: http://blog.phytools. org/2012/12/faster-inversion-of-square-symmetric.html and https://stats.stackexchange. com/questions/14951/efficient-calculation-of-matrix-inverse-in-r.

Usage

```
solve_chol(x)
```

Arguments

x symmetric, positive-definite matrix

Value

the inverse of x

tong_mean_shrinkage Tong et al. (2012)'s Lindley-type Shrunken Mean Estimator

Description

An implementation of the Lindley-type shrunken mean estimator utilized in shrinkage-mean-based diagonal linear discriminant analysis (SmDLDA).

Usage

tong_mean_shrinkage(x, r_opt = NULL)

Arguments

х	a matrix with n rows and p columns.
r_opt	the shrinkage coefficient. If NULL (default), we calculate the shrinkage coefficient with the formula given just above Equation 5 on page 533 and denoted by \hat{r}_{opt} . We allow the user to specify an alternative value to investigate better approximations.

Value

vector of length p with the shrunken mean estimator

References

Tong, T., Chen, L., and Zhao, H. (2012), "Improved Mean Estimation and Its Application to Diagonal Discriminant Analysis," Bioinformatics, 28, 4, 531-537. https://academic.oup.com/ bioinformatics/article/28/4/531/211887

two_class_sim_data Example bivariate classification data from caret

Description

Example bivariate classification data from caret

Details

These data were generated using by invoking the twoClassSim() function in the caret package.

Value

Examples

```
data(two_class_sim_data)
```

update_rda_high_dim Helper function to update tuning parameters for the HDRDA classifier

Description

This function updates some of the quantities in the HDRDA classifier based on updated values of lambda and gamma. The update can greatly expedite cross-validation to examine a large grid of values for lambda and gamma.

Usage

```
update_rda_high_dim(obj, lambda = 1, gamma = 0)
```

Arguments

obj	a rda_high_dim object
lambda	a numeric value between 0 and 1, inclusively
gamma	a numeric value (nonnegative)

Value

a rda_high_dim object with updated estimates

var_shrinkage	Shrinkage-based estimator of variances for each feature from Pang et
	al. (2009).

Description

This function computes the shrinkage-based estimator of variance of each feature (variable) from Pang et al. (2009) for the SDLDA classifier.

Usage

```
var_shrinkage(N, K, var_feature, num_alphas = 101, t = -1)
```

Arguments

Ν	the sample size.
К	the number of classes.
var_feature	a vector of the sample variances for each feature.
num_alphas	The number of values used to find the optimal amount of shrinkage.
t	a constant specified by the user that indicates the exponent to use with the vari-
	ance estimator. By default, $t = -1$ as in Pang et al. See the paper for more details.

var_shrinkage

Value

a vector of the shrunken variances for each feature.

References

Pang, H., Tong, T., & Zhao, H. (2009). "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, 65, 4, 1021-1029. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01200.x

Index

* datasets two_class_sim_data, 49 center_data, 3 corpcor::fast.svd(), 5 corpcor::invcov.shrink(), 25 cov_autocorrelation, 3 cov_block_autocorrelation, 4 cov_block_autocorrelation(), 12 cov_eigen, 5 cov_intraclass, 6 cov_list,7 cov_mle,7 cov_pool, 8 cov_shrink_diag, 8 cv_partition, 9 diag_estimates, 10 dmvnorm_diag, 11 generate_blockdiag, 12 generate_intraclass, 13 ggplot2::ggplot2(), 33 h, 14 lda_diag, 15 $lda_diag(), 28$ lda_eigen, 17 lda_emp_bayes, 19 lda_emp_bayes_eigen, 21 lda_pseudo, 23 lda_schafer, 24 lda_shrink_cov, 26 lda_shrink_mean, 28 lda_thomaz, 30 log_determinant, 32 no_intercept, 33

plot.rda_high_dim_cv, 33

posterior_probs, 34 predict.lda_diag(lda_diag), 15 predict.lda_eigen(lda_eigen), 17 predict.lda_emp_bayes(lda_emp_bayes), 19 predict.lda_emp_bayes_eigen (lda_emp_bayes_eigen), 21 predict.lda_pseudo(lda_pseudo), 23 predict.lda_schafer(lda_schafer), 24 predict.lda_shrink_cov (lda_shrink_cov), 26 predict.lda_shrink_mean (lda_shrink_mean), 28 predict.lda_thomaz(lda_thomaz), 30 predict.qda_diag(qda_diag), 34 predict.qda_shrink_cov (qda_shrink_cov), 36 predict.qda_shrink_mean (qda_shrink_mean), 38 predict.rda_high_dim(rda_high_dim), 42

qda_diag, 34 qda_diag(), 38 qda_shrink_cov, 36 qda_shrink_mean, 38 quadform, 40 quadform_inv, 41

rda_cov, 42 rda_high_dim, 42 rda_high_dim(), 42, 45, 46 rda_high_dim_cv, 45 rda_weights, 46 regdiscrim_estimates, 46 risk_stein, 47

solve(), 48
solve_chol, 48

tong_mean_shrinkage, 49

INDEX

two_class_sim_data, 49
update_rda_high_dim, 50
var_shrinkage, 50