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Abstract

Several different hierarchical Bayesian models can be used for the estimation of spatial
risk patterns based on spatially aggregated count data. Typically, the resulting posterior
distributions of the model parameters cannot be expressed in closed forms, and MCMC
approaches are required for inference. However, implementations of hierarchical Bayesian
models for such areal data are error-prone. Also, different implementation methods exist,
and a surprisingly large variability may develop between the methods as well as between
the different MCMC runs of one method. This paper has four main goals: (1) to present a
point by point annotated code of two commonly used models for areal count data, namely
the BYM and the Leroux models (2) to discuss technical variations in the implementation
of a formula-driven sampler and to assess the variability in the posterior results from
various alternative implementations (3) to give graphical tools to compare sample(r)s
which complement existing convergence diagnostics and (4) to give various practical tips
for implementing samplers.
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The R implementations of Section 2.2 and Section 3.1 are accessible via

R> library("spam")

R> demo("jss-areal_count_data_BYM")

R> demo("jss-areal_count_data_Leroux")

The original source code and the generated data are available at http://www.math.uzh.ch/
furrer/download/v63c01-code_with_data.zip.
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1. Introduction

Maps of spatially aggregated count data are often noisy, making interpretation difficult. To
overcome this problem, Bayesian hierarchical models (BHMs) are frequently used to identify
a smooth pattern that may be explained using underlying covariates and spatial factors.

Depending on the precise problem, different types of BHMs may be adequate. A Poisson
likelihood (data layer) is commonly used for count data. The second layer, often called the
process layer, links the log risk to spatially structured and unstructured components as well
as potential covariates. The remaining layer(s) contain(s) the priors. The so-called Besag-
York-Mollié (BYM) model (Besag, York, and Mollié 1991; Mollié 1996) is extensively used in
the case of the areal count data of rare diseases. For an overview and comparison of the BYM
and other models see Waller and Carlin (2010) and Lee (2011). Yet another alternative model
is the so-called Leroux model (Leroux, Lei, and Breslow 1999). For this and more alternatives
also see LeSage and Pace (2009).

There is no such thing as a free lunch: ease of interpretation has to be paid by complexity of
implementation. Therefore, inference in such models requires carefully adapted Markov chain
Monte Carlo (MCMC) approaches or elaborated integrated nested Laplace approximation
(INLA) techniques. For MCMC simulations, the sampler can be built “by hand” or in a
software environment, e.g., BUGS and its derivatives, may be used. Tailored samplers are
often used in an academic exercise framework or for more complicated settings. In those
cases, the specifications of the “full conditional” densities, and the acceptance probabilities
need to be derived.

Due to model complexity and the multitude of tuning possibilities of the approaches, both
solutions are error-prone. Further, many models are robust in the sense that that (slightly)
incorrect implementations may still lead to reasonable estimates such that incorrect conclu-
sions are difficult to avoid. This recently happened in the BYM model example in Furrer and
Sain (2010), where the calculation of the acceptance probability of the sampler, and, thus the
results were incorrect. Similarly, the MCMC sampler of the R package INLA (Rue, Martino,
Lindgren, Simpson, and Riebler 2009b) exhibited several issues that had to be addressed by
the maintainers.

This paper has four main goals: (1) to present a point by point annotated code of the BYM
model implementation (in openBUGS, R and INLA) and the Leroux model (in R and CAR-

Bayes) (2) to discuss technical variations in the implementation of a formula-given sampler
and assess the variability in the posterior results from the various implementations, (3) to give
graphical tools to compare samplers or even to detect incorrect samplers which complement
existing convergence diagnostics and (4) to give various practical tips for implementing sam-
plers. As an aside, the paper should reassure novices that even though the implementation
of a BHM is theoretically straightforward, the road may be steep or bumpy.

This paper is not about (1) comparing or ranking individual packages or software environ-
ments, (2) or about quantitative and formal testing procedures to compare random samples.

We have opted to illustrate the approaches with a“classical” dataset to avoid any unnecessary
complications. More specifically, we choose to use the oral cavity cancer data, which is
available in the R packages spam and INLA. The dataset consists of death counts yi caused by
oral cavity cancer for a 5-year period (1986–1990) in the i = 1, . . . , 544 districts (Landkreise
und kreisfreie Städte) of Germany (Knorr-Held and Best 2001; Rue and Held 2005). The
expected number of cases ei was derived using demographical data that allows us to display
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Figure 1: Standardized mortality ratios of oral cavity cancer deaths observed between 1986–
1990 in Germany (left); the posterior means of the estimated relative log-risk of the BYM
model (middle) and the difference between the posterior means of the log-risk of the Leroux
and the BYM model (right).

the standardized mortality ratios yi/ei (Figure 1, left map). Finally, the dataset comes with
a matrix A that defines the neighborhood stucture of the districts. We use a notation similar
to Rue and Held (2005) such that, for example, bold lower and upper case letters are used
for vectors and matrices, respectively.

Sections 2 and 3 discuss the BYM and Leroux models by first introducing the model and then
discussing the different software implementations. The sections are concluded by comparing
the MCMC sample(r)s and by presenting further remarks. Finally, Section 4 points to software
options for some extensions of the models and gives some additional hints for assessing MCMC
sample(r)s. The source code to reproduce the MCMC chains, figures and tables is provided
as supplementary material. In addition, the generated MCMC chains and the source code are
available at http://www.math.uzh.ch/furrer/download/v63c01-code_with_data.zip.

2. Besag-York-Mollié model

In this section we give a short introduction to the BYM model, followed by implementations
in openBUGS, R and INLA. These sections may be read independently of each other. The
Sections 2.4 and 2.5 summarize the results and point to some extensions.

To explore the spatial distribution of the relative risk, the data yi is assumed to be condition-
ally independent Poisson counts with rate ei exp(ηi), yielding the likelihood

π(yi | ηi) ∝
n
∏

i=1

exp
(

yiηi − ei exp(ηi)
)

= exp
(

y⊤η − e⊤ exp(η)
)

. (1)

The log-relative risk is modeled by η = u + v, where v is a zero mean white noise with
precision κv, and u is a spatially structured component with precision κu. More precisely, u
is a first order intrinsic Gaussian Markov random field (GMRF, Rue and Held 2005, Chaper

http://www.math.uzh.ch/furrer/download/v63c01-code_with_data.zip
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Figure 2: The variables (nodes) and their dependency structure are shown in Graph G. The
distributions and levels of the nodes in the model hierarchy are also indicated.

3)

π(u | κu) ∝ κ
n−1

2

u exp
(

−
κu
2

∑

i∼j

(ui − uj)
2
)

= κ
n−1

2

u exp
(

−
κu
2
u⊤Ru

)

,

where i ∼ j denotes the set of all unordered pairs of neighbors, i.e., regions sharing a com-
mon border, and hence the sum over all such sets can be written using a sparse “structure”
matrix R.

The resulting model is termed the Besag-York-Mollié model, see Besag et al. (1991). For
inference on {u,v, κu, κv} we set independent gamma priors for the precision parameters κu
and κv, e.g., π(κu | αu, βu) ∝ καu−1

u exp(−κuβu). We choose αu = αv = 1, βu = 0.5 and
βv = 0.01 (and skip a carefully conducted sensitivity analysis, as this is not in the scope of
this paper). This leads to the following posterior density

π(u,v, κu, κv | y,α,β) ∝ κ
αv+

n

2
−1

v κ
αu+

n−1

2
−1

u

× exp
{

−κvβv − κuβu + y⊤η − e⊤ exp(η)−
κu
2
u⊤Ru−

κv
2
v⊤v

}

, (2)

which is not a GMRF anymore. Since integration of this density is not feasible, we use
MCMC sampling and approximation methods to estimate u,v, κu and κv. In the reminder
of this section we discuss different methods for this inference. Gibbs samplers implemented
in openBUGS, two hand coded R implementations and the MCMC method of the R package
INLA, as well as an integrated nested Laplace approximations from INLA are presented.

2.1. openBUGS implementation

The previously described model is a BHM with four levels. The dependency structure between
the random variables (nodes), their levels, and distributions are shown in Figure 2.

Note that the graph G is directed and acyclic. Further, each node ν ∈ G is independent of
every other node given its parent nodes pa(ν). This implies that a factorization of the full
joint distribution of all nodes in G is proportional to

∏

ν∈G π(ν | pa(ν)), which is used by the
openBUGS engine to generate samples from the posterior distribution (Lunn, Jackson, Best,
Thomas, and Spiegelhalter 2013).

The openBUGS language is used to specify such models and communicate them to the open-
BUGS engine. Similar to the graph representation, we define the distribution of each node
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given its parent nodes using an R like syntax. The model description is declarative, mean-
ing that the order of the node-definitions is irrelevant. As usual, the symbol ~ stands for
“is distributed as.” In order to specify the spatially structured term u, the car.normal()

distribution from the geoBUGS extension is used. Since the distribution of u is implemented
with a sum-to-zero constraint, we add an additional intercept with an improper flat prior.
This construct is claimed to be equivalent to a spatially structured term u without constraint
(Lunn et al. 2013, p. 264). We save the following model to a text file ‘model.txt’. Note that
the code blocks corresponds to the levels likelihood, convolution-prior, and prior in Figure 2.

model{

for(i in 1:N){

Y[i] ~ dpois(landa[i])

log(landa[i]) <- log(E[i]) + u[i] + v[i] }

for(i in 1:N){ u[i] <- uConstr[i] + intercept }

intercept ~ dflat()

uConstr[1:N] ~ car.normal(adj[], weights[], num[], kappaU)

for(k in 1:sumNumNeigh) { weights[k] <- 1 }

for(i in 1:N){ v[i] ~ dnorm(0, kappaV) }

kappaU ~ dgamma(1, 0.5)

kappaV ~ dgamma(1, 0.01)

}

The observed and expected counts Y and E, as well as the neighborhood structure adj are
saved in a separate text file ‘data.txt’ (see supplementary material). The arguments of
the car.normal() distribution are: a sparse adjacency matrix adj, the number of regions
connected in each row of the adjacency matrix num[] (also stored in ‘data.txt’), the precision
of u, i.e., kappaU, and a vector of 1’s in weight. (We do not weight the adjacency structure).
For another BUGS example of a BYM model see Bivand, Pebesma, and Gómez-Rubio (2013).

The R function bugs() from the R package R2OpenBUGS provides a convenient user in-
terface to openBUGS (Sturtz, Ligges, and Gelman 2005). 300 000 samples from the poste-
rior distribution are generated with the following call. A thinning of 20 and a burn-in of
5 000× 20 = 100 000 is specified, resulting in 10 000 actually returned samples per variable:

R> library("R2OpenBUGS")

R> b <- bugs(model.file = "model.txt", data = "data.txt",

+ inits = function() { list(kappaU = 10, kappaV = 100, intercept = 1) },

+ parameters = c("kappaU", "u", "kappaV", "v"), n.iter = 15000,

+ n.burnin = 5000, n.thin = 20, n.chains = 1, bugs.seed = 2)

We manually set initial values for kappaU and kappaV via the argument inits. Further,
the argument parameters specify variables for which samples are stored and returned to R.
We only simulate one chain and set n.chains = 1 for demonstration, but we recommend
simulating several chains with different initial values that help to assess convergence. In fact,
some comparisons in Section 2.4 are based on 200 different chains. openBUGS selects an
appropriate sampling method for each node automatically.

Figure 3 shows diagnostic plots for the first 1 000 samples of the Markov chains for κu and
κv, and Figure 1 shows the resulting posterior mean field of u. We refer to Knorr-Held and
Best (2001) for an (epidemiological) interpretation of the results.
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2.2. Two R implementations

In the following, a hand coded R implementation (R Core Team 2014) of a Gibbs sampler with
Metropolis-Hastings (MH) step is presented. To simplify notations of densities, the variables
y, α and β following the conditioning sign are omitted, e.g., we write π(u,η, κu, κv) instead
of π(u,η, κu, κv | y,α,β). We start the sampling procedure by first sampling κu and κv from

π(κu | u,η) ∝ κ
αu+

n−1

2
−1

u exp
{

−κuβu −
κu
2
u⊤Ru

}

,

π(κv | u,η) ∝ κ
αv+

n

2
−1

v exp
{

−κvβv −
κv
2
v⊤v

}

.

In a second step, the parameter u and η are updated jointly using a MH step. To do this, we
rewrite π(u,η | κu, κv), which resulted from the posterior distribution in Equation 2. Recall
that v can be expressed as η − u.

π(u,η | κu, κv) ∝ exp

{

y⊤η − e⊤ exp(η)−
1

2

(

u⊤,η⊤
)

(

κuR+ κvI −κvI
−κvI κvI

)(

u

η

)}

(3)

The idea is to construct a proposal density for u and η that is a GMRF and thus easy to
sample from. In addition, the proposal density should approximate the density in Equation 3
well to achieve a reasonable acceptance rate. We use the second-order Taylor expansion of
y⊤η − e⊤ exp(η) around η̃, which is η⊤b(η̃)− 1

2η
⊤ diag(c(η̃))η, with c(η̃) = e exp(η̃)⊤ and

b(η̃) = y + (η̃ − 1)c(η̃)⊤. This leads to the normal proposal density

q(u⋆,η⋆, η̃ | κu, κv) ∝ exp

{

−
1

2

(

u⊤,η⊤
)

(

κuR+ κvI −κvI
−κvI κvI+ diag(c(η̃))

)(

u

η

)

+ b(η̃)⊤η

}

.

The proposals u⋆ and η⋆ are then accepted with probability

α = min

{

1,
π(u⋆,η⋆ | κu, κv)

π(u,η | κu, κv)

q(u,η, η̃⋆ | κu, κv)

q(u⋆,η⋆, η̃ | κu, κv)

}

. (4)

As η̃ we could take any value, but an optimized choice improves the approximation, and, hence
increases the acceptance rate of the sampler. We set η̃ to an approximation of the posterior
mode. The latter is derived using two steps of the Newton-Raphson algorithm, which (under
regularity conditions) converges to the posterior mode. To be more specific, we first set η̃ to
the current value of the chain and derive b(η̃) and c(η̃). Next, we set η̃ = b(η̃)/c(η̃) and
repeat this procedure twice. The same procedure with η⋆ as the starting point is applied to
find b(η̃⋆) and c(η̃⋆). This leads to a suitable acceptance rate of about 48% (Roberts and
Rosenthal 2001). See Rue and Held (2005) for more details and other options to increase the
accuracy of the proposal density. Note that a third Newton-Raphson iteration for finding η̃

and η̃⋆ does not increase the acceptance rate. With a single Newton-Raphson iteration, the
chain may not converge at all.

Next, we guide the reader through the R code of the Gibbs sampler. Note the use of the
R package spam, which provides fast methods for sparse matrix algebra (Furrer 2014; Furrer
and Sain 2010). The package contains the oral cancer data and the corresponding adjacency
matrix, which we load first. n = 544 is the number of districts.

R> library("spam")

R> data("Oral")
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R> attach(Oral)

R> path <- system.file("demodata/germany.adjacency", package = "spam")

R> A <- adjacency.landkreis(path)

R> n <- dim(A)[1]

We set a seed value to initialize the random number generator and the number of desired
samples (300 000). Further, we define the same hyper-parameters as in the openBUGS im-
plementation.

R> set.seed(2)

R> hyperA <- c(1, 1)

R> hyperB <- c(0.5, 0.01)

R> totalg <- 300000

We build some variables to store the samples and set initial values

R> upost <- vpost <- array(0, c(totalg, n))

R> kpost <- array(NA, c(totalg, 2))

R> accept <- rep(NA, totalg)

R> upost[1, ] <- vpost[1, ] <- rep(0.001, 544)

R> kpost[1, ] <- c(10, 100)

Now we construct some quantities, which are (repetitively) used during the sampling.

R> eta <- upost[1, ] + vpost[1, ]

R> C <- exp(eta) * E

R> diagC <- diag.spam(c(rep(0, n), C))

R> b <- c(rep(0, n), Y + (eta - 1) * C)

R> Qu <- R <- precmat.IGMRFirreglat(A)

R> pad(Qu) <- c(2 * n, 2 * n)

R> Qv <- as.spam(rbind(cbind(diag(n), -diag(n)), cbind(-diag(n), diag(n))))

R> Q <- kpost[1, 1] * Qu + kpost[1, 2] * Qv + diagC

R> struct <- chol(Q, memory = list(nnzcolindices = 6467))

R> uRuHalf <- t(upost[1, ]) %*% (R %*% upost[1, ]) / 2

R> vvHalf <- t(vpost[1, ]) %*% vpost[1, ] / 2

R> postshape <- hyperA + c(n - 1, n) / 2

We start the loop of the Gibbs sampler and repeat the following steps: sample κu and κv
(1st block), find an optimized η̃ using two Newton-Raphson iterations (2nd block), draw
u and η from the Taylor expansion around η̃ (3rd block), find η⋆ and calculate the log-
acceptance probability log(α) (4th block), accept or reject the draw and accordingly update
the parameters (5th block). Note that ‘⋆’ in the equations corresponds to ‘_’ in the R code.

R> for (i in 2:totalg) {

+ kpost[i, ] <- rgamma(2, postshape, hyperB + c(uRuHalf, vvHalf))

+ etaTilde <- eta

+ for(index in 1:2) {

+ C <- E * exp(etaTilde)
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+ diagC <- diag.spam(c(rep(0, n), C))

+ b <- c(rep(0, 544), Y + (etaTilde - 1) * C)

+ Q <- kpost[i, 1] * Qu + kpost[i, 2] * Qv + diagC

+ etaTilde <- c(solve.spam(Q, b, Rstruct = struct))[1:n + n]

+ }

+ C <- exp(etaTilde) * E; diagC <- diag.spam(c(rep(0, n), C))

+ b <- c(rep(0, n), Y + (etaTilde - 1) * C)

+ Q <- kpost[i, 1] * Qu + kpost[i, 2] * Qv + diagC

+ x_ <- c(rmvnorm.canonical(1, b, Q, Rstruct = struct))

+ upost[i, ] <- x_[1:n]

+ eta_ <- x_[1:n + n]

+ vpost[i, ] <- eta_ - upost[i, ]

+ uRuHalf_ <- t(upost[i, ]) %*% (R %*% upost[i, ]) / 2

+ vvHalf_ <- t(vpost[i, ]) %*% vpost[i, ] / 2

+ etaTilde_ <- eta_

+ for(index in 1:2) {

+ C_ <- E * exp(etaTilde_)

+ diagC_ <- diag.spam(c(rep(0, n), C_))

+ b_ <- c(rep(0, 544), Y + (etaTilde_ - 1) * C_)

+ Q_ <- kpost[i, 1] * Qu + kpost[i, 2] * Qv + diagC_

+ etaTilde_ <- c(solve.spam(Q_, b_, Rstruct = struct))[1:n + n]

+ }

+ C_ <- exp(etaTilde_) * E

+ diagC_ <- diag.spam(c(rep(0, n), C_))

+ b_ <- c(rep(0, n), Y + (etaTilde_ - 1) * C_)

+ Q_ <- kpost[i, 1] * Qu + kpost[i, 2] * Qv + diagC_

+ logPost_ <- sum(Y * eta_ - E * exp(eta_)) -

+ kpost[i, 1] * uRuHalf_ - kpost[i, 2] * vvHalf_

+ logPost <- sum(Y * eta - E * exp(eta)) - kpost[i, 1] * uRuHalf -

+ kpost[i, 2] * vvHalf

+ logApproxX_ <- - kpost[i, 1] * uRuHalf_ - kpost[i, 2] * vvHalf_ -

+ sum(.5 * eta_^2 * C) + sum(b * eta_)

+ logApproxX <- - kpost[i, 1] * uRuHalf - kpost[i, 2] * vvHalf -

+ sum(.5 * eta^2 * C_) + sum(b_ * eta)

+ logAlpha <- min(0, logPost_ - logPost + logApproxX - logApproxX_)

+ if (log(runif(1)) < logAlpha) {

+ uRuHalf <- uRuHalf_

+ vvHalf <- vvHalf_

+ eta <- eta_

+ b <- b_

+ C <- C_

+ accept[i] <- 1

+ } else {

+ accept[i] <- 0

+ upost[i, ] <- upost[i - 1, ]

+ vpost[i, ] <- vpost[i - 1, ]}

+ }
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Finally, we eliminate a burn-in of 100 000 samples and keep the posterior values of every
20th loop to obtain chains of a length of 10 000 (not shown). Diagnostic plots are shown in
Figure 3.

Incorrect R implementation

Furrer and Sain (2010) give an implementation of the BYM model that incorrectly calculates
the acceptance probability. More specifically, on page 19, the line

R> factmp <- (postshape - 1) * (log(kstar) - log(kpost[ig - 1, 1]))

should read

R> factmp <- (postshape - 1) * (log(kstar) - log(kpost[ig - 1, ]))

Because only one element of kpost[ig - 1, ] is used (i.e., κv is set to κu), the acceptance
probability is incorrect and overly high. Retrospectively, an acceptance rate of about 97%
could have been an indication of an incorrectly calculated acceptance probability. The sampler
uses the proposal density q(κ⋆u, κ

⋆
v,u

⋆,η⋆, κu, κv,u,η) (jointly updating κu, κv,u,η), which is
constructed on the previous value of η without using Newton-Raphson iterations. That leads
to a very low acceptance rate, if the correct acceptance probability is used.

The sampler is available in its original version using demo("article-jss-example2") from
spam. For this paper we have adjusted the burn-in, thinning, and sampling size parameters.

2.3. INLA implementation

As opposed to simulation based inference methods, the R package INLA uses nested Laplace
approximations to estimate model parameters (Rue, Martino, and Chopin 2009a).

In order to fit the model, we first load the R package INLA and the oral cancer data. path

contains the path to the corresponding adjacency matrix. The package, documentation and
examples are available on http://www.r-inla.org/.

R> library("INLA")

R> data("Oral")

R> path <- system.file("demodata/germany.graph", package = "INLA")

Since INLA requires an index variable for each of the modeled components u and v, we have
to duplicate the index column in the data frame.

R> Oral.inla <- cbind(Oral, region.struct = Oral$region)

Next, we define the model though a formula. The functions f() specify the priors for u and
v, respectively. For u a regional structured prior is selected by setting model = "besag" and
supplying a graph and a hyper-prior. We choose an unconstrained model (constr = FALSE),
which implies that the intercept is absorbed by this random effect. Hence, the intercept is
not identifiable, and we remove it from the formula through -1 in the first line. The iid
random effect v is specified in the second f() function. Note that theta corresponds to
(log(κu), log(κv))

⊤ and, therefore, ‘loggamma’ priors are specified as having the same param-
eters as in the previous implementations.

http://www.r-inla.org/
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Figure 3: Diagnostic plots for the first 1 000 post burn-in samples from the openBUGS, R,
INLA MCMC and R buggy BYM implementations are shown. Each panel consists of trace
plots for log κu (upper) and log κv (lower), respectively. The mixing of log κu and log κv is
shown in a scatter plot (right). The chains were already thinned with a factor of 20.
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R> formula <- Y ~ - 1 +

+ f(region.struct, model = "besag", graph = path,

+ hyper = list(theta = list(prior = "loggamma", param = c(1, 0.5))),

+ constr = FALSE) +

+ f(region, model = "iid",

+ hyper = list(theta = list(prior = "loggamma", param = c(1, 0.01))))

Internally, INLA reparametrizes by setting x⊤ = (u⊤,η⊤), as is commonly done (Gelfand,
Sahu, and Carlin 1995). Finally, we fit the model.

R> i.out <- inla(formula, family = "poisson", data = Oral.inla, E = E,

+ verbose = TRUE)

An alternative is to use the MCMC method of INLA, called by

R> wd.mcmc <- tempfile()

R> try(inla(formula, family = "poisson", data = Oral.inla, E = E,

+ working.directory = wd.mcmc, keep = TRUE,

+ inla.arg = "-m mcmc -N 300000 -T 20 -S .01", verbose = TRUE))

Currently, this MCMC method only works with the testing version of INLA. Additionally,
the computations are carried out, but an error is returned to R. The results are nevertheless
accessible in the temporary directory (path in wd.mcmc). We removed a burn-in of 100 000
samples and applied a thinning of 20. The results in this paper are based using the following
INLA version:

R> inla.version()

INLA build date ...: Wed Feb 13 09:38:42 CET 2013

INLA hgid .........: hgid: 6d1015c52579 date: Wed Feb 13 09:28:06 2013 +0100

(output truncated)

R> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i686-pc-linux-gnu (32-bit)

(output truncated)

The sampler of this particular implementation seems to work well. Diagnostic plots are shown
in Figure 3. The acceptance rate was about 12%. However, the sampler in the current INLA

testing version has a very low acceptance rate of about 3%. We hope that the issues will be
addressed soon.

2.4. Comparison of the implementations

In order to keep the article at a reasonable length, we will not report convergence diagnostics
of the individual samplers. Rather, we will focus on the comparison of the implementations.
The assessment of “equality” of two samples is essentially the assessment, if two multivariate
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Figure 4: Comparison of the R, buggy R and INLA MCMC chains of κu against ten different
κu chains from openBUGS using functions from R package coda. Upper panels: Gelman plots
with the median shrink factor for 10 comparisons (sold lines) and the 95% quantile for the
first comparison (dashed line). Lower panels: Geweke plots with one color per comparison.
Here two chains were compared by appending them to one single chain and setting frac1 and
frac2 in the geweke.diag() function to 0.5.

samples are drawn from the same distribution. Given the dimensionality of {u,v, κu, κv},
there is little hope that the formal tests presented in Rosenbaum (2005); Dhar, Chakraborty,
and Chaudhuri (2011) can be used. Alternatively, one can investigate individual posteriors
(here κu, κv) and summary statistics of u and v (Wigley and Santer 1990; Li and Smerdon
2012).

We now illustrate a series of tools to compare two sample(r)s. Some of these are commonly
used and reported here for completeness; others are new and complement the existing ones.

Figure 3 shows trace plots for log κu and log κv for the four different MCMC implementations.
The trace plots of log κv for the R-implementations exhibit particularly high auto-correlations
compared to those from openBUGS. This auto-correlation can be reduced by increasing the
thinning value. An alternative is to jointly update all parameters of the models (κu, κv, u,
η). See Knorr-Held and Rue (2002) for a discussion of different (block-) update procedures in
a similar setting. The scatter plots of log κu and log κv in the same Figure show no suspicious
pattern.

A numerical summary of the posterior distribution of κu and κv is given in Table 1, showing
little evidence of issues with the incorrect R sampler. For the posterior mean, the naive
standard error (SE) and the time-series standard error (TS SE) derived with the R package
coda are given. With respect to the TS SE the variation in the mean estimates seems to be
large.
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Implementation Mean SE TS SE SD 2.5% 50% 97.5%

openBUGS 13.58 0.022 0.022 2.22 9.83 13.38 18.52
R 13.62 0.022 0.035 2.22 9.91 13.37 18.57

κu R buggy 13.93 0.023 0.029 2.29 10.13 13.72 19.01
INLA 13.62 – – 2.20 9.77 13.46 18.38
INLA MCMC 13.62 0.022 0.025 2.21 9.91 13.41 18.52

openBUGS 227.1 1.05 1.05 104.8 94.05 204.55 492.80
R 231.5 1.10 3.51 110.0 93.47 207.57 513.59

κv R buggy 231.6 1.11 2.60 111.0 94.27 204.91 516.22
INLA 234.6 – – 115.6 93.51 207.39 532.33
INLA MCMC 231.3 1.10 1.44 109.9 94.06 206.53 516.35

Table 1: Summary table for the estimates of κu and κv generated with openBUGS, two
hand coded R implementations, INLA and the MCMC-method of the INLA package. The
estimates are calculated based on 10 000 samples of one chain (generated with 300 000 MCMC
iterations in total). In addition to the standard error (SE), the time-series standard error (TS
SE), derived with the R package coda, are given.

In Figure 4, ten different chains for κu from openBUGS are compared against κu chains
from the other sampler implementations. The diagnostic functions gelman.plot() and
geweke.diag() from the R package coda are used (Plummer, Best, Cowles, and Vines 2006).
In the Gelman plots (Brooks and Gelman 1998; Gelman and Rubin 1992), each line represents
the median shrink factor of a comparison of two chains. For the first comparison (black line),
the 95% quantile is drawn as dashed line. In the Geweke plot (Geweke 1992) 10 pairs of two
chains were compared by appending them to one single chain and setting frac1 and frac2 in
the corresponding R function to 0.5. Only the chains from the Rbuggy implementation seem
to be different from the openBUGS ones. When we reduced the burn-in period from 100 000
to 5 000 samples, this effect was much less prominent.

A difficulty is often that the variability between individual chains is larger than between
chains from different implementation methods. When using shorter chains this variability is
even larger, and interpretation is more difficult. We recommend using empirical cumulative
distribution functions (ECDFs) to compare realizations from different samplers (Figure 5,
upper panels), although density estimates with the default choice of the kernel estimator and
bandwidth selection of density() lead to an acceptable result too (Figure 5, lower left panel).
When making these comparisons, we must keep in mind that the INLA approximations are
tuned to be most accurate around the median. Hence, comparing ECDFs and tails of densities
might lead to unfair comparisons. A functional boxplot approach (Sun, Genton, and Nychka
2012) may help to identify outlying densities. It calculates for each curve a (modified) band
depth and orders the curves from the center outwards. The introduced measure defines
functional quantiles and the outlyingness of a curve. The lower right panel of Figure 5
indicates that for κv all non-openBUGS runs are declared as outliers.

Figure 6 shows Q-Q-plots for the precision parameter κu. Empirical quantiles (from an
arbitrary ordered sample) from the openBUGS sampler (x-axis) and the empirical quantiles
from all others (y-axis) are drawn. For a better display, we have jittered the x-axis values
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Figure 5: Comparison of the samples for κu (left) and κv (right) resulting from 200 openBUGS

runs, the two R runs, and the INLA runs. Upper panels: empirical cumulative distribution
functions (ECDFs). Bottom left panel: kernel density estimates with automatically chosen
parameters (not recommended). Bottom right panel: functional boxplot where three open-

BUGS, the INLA, and the R buggy runs are marked as outliers (green lines).

while preserving the order. The quantiles of the incorrect sampler are shown as a red dashed
line and are clearly set off from all the other lines.

Another alternative to compare sample(r)s is to use a simple clustering algorithm of the re-
sulting empirical densities or distributions (Figure 7). Again, the dissimilarity (here measured
by the classical Euclidean distance) is much larger between the incorrect sample and all the
others. However, the INLA approximation stands out as well. Reducing the chain length
and reducing the number of chains (or similarly increasing them) has little influence on the
detection capability of the clustering approach.

Plots of posterior mean of the spatial fields u and v (like those shown in Figure 1) are very
difficult to compare, as the differences are small and are masked by the spatial patterns. Other
such “simple” diagnostic plots (e.g., median, standard deviation, IQR fields or differences of
such) were not helpful to us either.

A more promising tool to compare spatial fields is the scatter plot, shown in Figure 8. There
the spatial components averaged over all methods, except the buggy R, (x-axis) are plotted
against those from the specific method on the y-axis. The mean absolute deviation D (also
shown in the figure) is smaller then 1.61× 10−3 for the openBUGS, R, and INLA implemen-
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openBUGS
R
R buggy
INLA MCMC

Figure 6: Q-Q-plots based on κu samples. The x-axis contains empirical quantiles (from an
arbitrary ordered sample) from the openBUGS sampler, and the y-axis contains the empirical
quantiles from all other openBUGS runs (blue lines), the R run (solid line), the incorrect
(buggy) R run (red dashed line), and the INLA MCMC run (dotted line).
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Figure 7: Dendrogram from a hierarchical clustering of the posterior ECDFs of κu of the
200 openBUGS runs (no symbol), the R (R), the buggy R (–> R), INLA (I) and the INLA

MCMC (IM) runs.

tations and 1.76 × 10−2 for the incorrect R-implementation. The corresponding values for v
are 4.24× 10−1 and 1.42× 10−1, respectively. Overall, the estimated u and v components of
all implementations seem to agree well.

A successful approach to discriminate sample(r)s and hence to identify an incorrect sampler
is to take one method as a reference and plot the difference between the empirical densities
or empirical distributions of reference and all the others (Figure 9). This is fast, and minor
shifts or differences in scale are emphasized. A drawback is that the dependency structure of
the samples and multiple testing issues are not taken into account. This makes the extension
to a formal two-sample Kolmogorov-Smirnov test difficult.
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Figure 8: Comparison of the estimates for u of the different methods. x-axis: average mean
estimates of the openBUGS, R and INLA implementations, y-axis: mean estimates of the
specific method. D indicates the mean absolute deviation and Dmax the maximum deviation.

Figure 9: Comparison of posterior ECDFs for all 544 districts of the u component. One
openBUGS run is used as a reference, and the differences to the R (blue), the incorrect R

(red), and the INLA methods (green, black) are plotted.
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Figure 10: Dendrogram from a hierarchical clustering of the posterior ECDFs of the district
Sigmaringen. Each chain was split into ten subchains. Chains from the openBUGS, the R,
the incorrect R, and the INLA MCMC methods are denoted with ‘B’, ‘R’, ‘- -> R’ and ‘IM’,
respectively.

Finally, a clustering algorithm detects again the wrong sampler by looking at (arbitrary)
individual districts only. Here one chain is divided into ten subchains of a length of 1 000,
and the empirical densities or distributions are calculated. For the district Sigmaringen, the
result of the clustering based on these 10×4 distributions is given in Figure 10. All subchains
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of the incorrect sampler are nicely grouped. An advantage of this clustering approach is that
(dis)similarities of several chains of possibly different implementations are summarized in one
step.

2.5. Discussion, extensions, pitfalls

The R implementation in Section 2.2 is the most flexible, but it is also the most demanding
to code and is obviously the most error-prone. Because of the package spam, sparse matrix
algebra can be done via a Fortran back-end, which leads to a reasonably fast Gibbs sampler
featuring 30 iterations per second on an Intel 2GHz dual-core processor (approximately an
hour of computation for a chain of a length of 300 000). Thus, R implementations are reason-
ably fast, as long as sparse matrices are used. Personal experience shows that, in all practical
cases, the time spent to speed up the calculations does not offset the time gain (see Table 1
in Furrer and Sain 2010). Even more efficient ways may involve the concept of a just-in-time
compiler for R code implemented in the R package compiler, which is part of the R base
packages (R Core Team 2014). Another option is to run several chains in parallel using the
R package snowfall (Knaus 2013). Finally, implementing (parts of) the model in C++ would
reduce calculation time; for an example see Gerber (2013). The openBUGS implementation
is flexible too, and if the required distributions are available, as in our case, it is much sim-
pler to use. The sampler achieved 84 iterations per second (approximately half an hour of
computation for a chain of length 300 000). In the R package INLA the specification of the
model is very user-friendly, but a potential extension to a not-included setting is difficult.
However, many cases are included and we foresee further extensions in the near future. The
INLA method is very fast (less than 4 seconds) and thus is useful where estimation has to be
fast. The MCMC method of the R package INLA achieved 34 iterations per second, and we
have no doubt that a stable MCMC implementation will be available soon.

An unconstrained random field should be identical to a constrained random field with an
intercept with uniform prior. In INLA a simple flag switches between both cases. In open-

BUGS a constrained version is implemented, and one has to add an intercept manually for
the unconstrained case. While we did not observe issues with either implementation here,
they are not always exactly identical, as is also discussed in the next section.

More complex equality constraints are easily implemented in INLA by specifying the option
extraconstr in f and in R via spam::rmvnorm.const(), for example. Some of the sampling
engines use a so-called centering-on-the-fly approach, and the implications on the equilibrium
distribution are not clear to us (see also Schrödle, Held, Riebler, and Danuser 2011).

While generating many (200) long chains with 300 000 iterations each, openBUGS was not
able to provide so many non-identical chains. Among the 200 chains, 7 were identical in our
case. It seems that we have hit some sort of periodicity of the seed in openBUGS.

In the following, we point to possible extensions of the BYM model. Covariates that are
observed for each region can be included, for example. For the oral cavity data, we could
examine the effect of smoking and estimate an adjusted spatially structured component by
setting η = u + v + αs, where s contains observed smoking covariates of each region. This
model is termed “ecological regression” and can be fitted in openBUGS; see (Lunn et al.
2013, p. 267) and (Bivand, Pebesma, and Gómez-Rubio 2008, p. 327) and in INLA (Schrödle
and Held 2010). The latter paper also discusses the extension to spatio-temporal disease
mapping. Further, it is possible to model two or more diseases jointly using a so-called shared
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component model (Held, Natário, Fenton, Rue, and Becker 2005; Rue and Held 2005), which is
provided in INLA through the function besag2 and can be implemented in openBUGS as well.
openBUGS also provides a slightly different approach via the mv.car() distribution, which
extends car.normal() in a natural way. MacNab (2010) discusses the similarities between
ecological regression and shared component modeling and proposes an ecological regression
model that allows the researcher to account for measurement errors in the observed covariates.

3. Leroux model

An alternative model for areal count data was introduced by Leroux et al. (1999). In contrast
to the BYM model, it has only one random effect component. Without including an intercept
or additional covariates, this random effect simply models the log-relative risk η. To be
consistent with the implementations from Section 3.2, we set u = η. The separation of
spatially structured and iid variance is controlled by an additional parameter λ. To be more
specific, the same likelihood function as in Equation 1 is used, and u is modeled by the
intrinsic GMRF

π(u | κ, λ) ∝ detG(Q(λ))
1

2 exp
(

−
κ

2
u⊤Q(λ)u

)

.

Where κ > 0 is a precision parameter, and detG denotes the generalized determinant (i.e.,
the product of all non-zero eigenvalues). The parameter λ ∈ (0, 1) defines the degree of the
spatial dependency through Q(λ) = (1− λ)I+ λR. With appropriate (uninformative) priors
for κ and λ, we get the posterior distribution

π(u, κ, λ) ∝ κ
n

2
−1 detG(Q(λ))

1

2 exp
(

y⊤u− e⊤ exp(u)−
κ

2
u⊤Q(λ)u

)

. (5)

In the next section, an R implementation of a Gibbs sampler for the Leroux model is presented.
Further, three variations of this Gibbs sampler are discussed in Section 3.2, and a comparison
and discussion of these variations follow in Sections 3.4 and 3.5.

3.1. R implementation

To estimate the parameters of the Leroux model, we implement a Gibbs sampler in R and
sample from the posterior distribution. First, we sample u⋆ from a normal proposal. To this

Graph G Level Distribution

y | u likelihood Poisson

u | κ, λ

OO

process model IGMRF

κ | ακ, βκ

66

λ | αλ, βλ

hh

prior Gamma, Uniform

ακ

==

βκ

aa

αλ

==

βλ

aa

hyper-prior fixed

Figure 11: The variables (nodes) and their dependency structure are shown in Graph G. The
distributions and levels of the nodes in the model hierarchy are also indicated.
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end we use a second-order Taylor expansion around ũ of the term y⊤u − e⊤ exp(u) from
the joint density (Equation 5), yielding the approximation u⊤b(ũ) − 1

2u
⊤ diag(c(ũ))u with

c(ũ) = e exp(ũ)⊤ and b(ũ) = y + (ũ− 1)c(ũ)⊤. This leads to the normal proposal density

q(u, ũ | κ, λ) ∝ exp
(

u⊤b(ũ)−
1

2
u⊤

(

diag(c(ũ)) + κQ(λ)
)

u
)

.

The proposal u⋆ is accepted with probability min(1, αu), where

logαu = log

(

π(u⋆ | κ, λ)

π(ũ | κ, λ)

q(ũ,u⋆ | κ, λ)

q(u⋆, ũ | κ, λ)

)

.

One Newton-Raphson iteration is applied to achieve an acceptance rate of ≈ 50% (compare
to Section 2.2). In a second step, κ is sampled from the full conditional

π(κ | u, λ) = κ
n

2
−1 exp

(

−
κ

2
u⊤Q(λ)u

)

.

Finally, λ is updated using a MH step again. This time we sample the proposal λ⋆ from a
normal density truncated to (0, 1), with the mean equal to the previous value of λ

q(λ⋆, λ | u, κ) ∝ 1(0,1)(λ
⋆) exp

(

−
τ

2
(λ⋆ − λ)2

)

.

The proposed λ⋆ is then accepted with probability min(1, π(λ⋆ | u, κ)/π(λ | u, κ)). The
proposal density q(λ⋆, λ | u, κ) does not appear in the calculation of the acceptance rate,
since it is symmetric in λ and λ⋆. τ > 0 is a tuning parameter for the acceptance rate of λ.

Next, we show the R code for this version of the Gibbs sampler in more detail. First, the
R packages truncdist (Novomestky and Nadarajah 2012), spam (Furrer 2014) and the Ger-
many cancer data are loaded. The number of desired samples (300 000) and arrays for the
posterior values are built. Note that we also initialize a bpost parameter, which we set to zero
in each iteration. This is an artifact from other implementations mentioned in Section 3.2
and can be ignored.

R> library("spam")

R> library("truncdist")

R> data("Oral")

R> E <- Oral$E

R> Y <- Oral$Y

R> n <- 544

R> A <- as.matrix(adjacency.landkreis(

+ system.file("demodata/germany.adjacency", package = "spam")))

R> totaln <- 300000

R> upost <- array(NA, c(totaln, n))

R> bpost <- kpost <- lpost <- rep(NA, totaln)

R> accept <- array(0, c(totaln, 3), list(NULL, c("beta", "u", "lambda")))

Inital values are set in the first position of the corresponding posterior arrays.

R> bpost[1] <- 0

R> kpost[1] <- 15

R> lpost[1] <- 0.9

R> upost[1, ] <- rep(c(.1, -0.1), 544 / 2)

R> accept[1, ] <- 1
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Next, a tuning parameter for the acceptance probability is set, and repeatedly used values
are calculated.

R> lambda.proposal.sd <- 0.0408 * 1.74

R> R <- precmat.IGMRFirreglat(A)

R> eigenR <- eigen(R)

R> eigenR.value <- eigenR$values

R> Q <- (1 - lpost[1]) * diag.spam(544) + lpost[1] * R

R> Q.det <- sum(log(lpost[1] * eigenR.value + 1 - lpost[1]))

R> Q.struct <- chol.spam(Q)

R> postshape <- 0.5 * n - 1

We loop over the following steps of the Gibbs sampler: update β, which corresponds to
setting it to zero (1st block), find an optimized ũ and update u with a MH step (2nd block),
update κ (3rd block), and update λ with a MH step (4th block). Note that ‘⋆’ in the equations
corresponds to ‘_’ in the R code.

R> for (i in 2:totaln) {

+ bpost[i] <- 0

+ u.tilde <- upost[i - 1, ]

+ C <- E * exp(u.tilde)

+ B <- Y + (u.tilde - 1) * C

+ Q.tmp <- diag.spam(C) + kpost[i - 1] * Q

+ u.tilde <- c(solve.spam(Q.tmp, B))

+ C.tilde <- E * exp(u.tilde)

+ B.tilde <- Y + (u.tilde - 1) * C.tilde

+ Q.tilde <- diag.spam(C.tilde) + kpost[i - 1] * Q

+ u_ <- c(rmvnorm.canonical(1, B.tilde, Q.tilde, Rstruct = Q.struct))

+ u.tilde_ <- u_

+ C_ <- E * exp(u.tilde_)

+ B_ <- Y + (u.tilde_ - 1) * C_

+ Q.tmp_ <- diag.spam(C_) + kpost[i - 1] * Q

+ u.tilde_ <- c(solve.spam(Q.tmp_, B_))

+ C.tilde_ <- E * exp(u.tilde_)

+ B.tilde_ <- Y + (u.tilde_ - 1) * C.tilde_

+ log.alpha.u <- sum(Y * u_) - sum(E * exp(u_)) -

+ sum(Y * upost[i - 1, ]) + sum(E * exp(upost[i - 1, ])) +

+ sum(upost[i - 1, ] * B.tilde_) -

+ 0.5 * t(upost[i - 1, ]) %*% (diag(C.tilde_) %*% upost[i - 1, ]) -

+ sum(u_* B.tilde) + 0.5 * t(u_) %*% (diag(C.tilde) %*% u_)

+ if(exp(log.alpha.u) > runif(1)) { upost[i, ] <- u_; accept[i, 2] <- 1 }

+ else { upost[i, ] <- upost[i - 1, ] }

+ kpost[i] <- rgamma(1, shape = postshape,

+ rate = 0.5 * upost[i, ] %*% (Q %*% upost[i, ]))

+ lambda_ <- rtrunc(n = 1, spec = "norm", a = 0, b = 1,

+ mean = lpost[i - 1], sd = lambda.proposal.sd)

+ Q_ <- (1 - lambda_) * diag.spam(544) + lambda_ * R
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+ Q.det_ <- sum(log(lambda_ * eigenR.value + 1 - lambda_))

+ alpha.lambda <- exp(0.5 * (Q.det_ -

+ kpost[i] * upost[i, ] %*% (Q_ %*% upost[i, ]) - Q.det +

+ kpost[i] * upost[i, ] %*% (Q %*% upost[i, ])))

+ if(alpha.lambda > runif(1)) {

+ lpost[i] <- lambda_

+ Q <- Q_

+ Q.det <- Q.det_

+ accept[i, 3] <- 1

+ }

+ else {

+ lpost[i] <- lpost[i - 1]

+ }

+ }

Finally, we eliminate a burn-in of 100 000 samples and keep the posterior values of every
20th loop to obtain chains of a length of 10 000 (not shown). Diagnostic plots are shown in
Figure 12. The acceptance probability is tuned to ≈ 49% for the spatial parameter u and is
≈ 40% for λ.

3.2. Three variations

As mentioned earlier, we implemented three additional variations of the Gibbs sampler. The
variations differ in the way the random field is updated (1 block versus 55 updated blocks)
and whether there is an intercept (with almost uninformative prior). The R code for the
update of u in 55 blocks and for the update of the intercept was taken from CARBayes (Lee
2013). When possible, we just exchanged blocks of code to prevent errors. The corresponding
R code is provided in the supplementary material of this paper. For obvious reasons, we call
the sampler introduced in the last section ‘1 block, no intercept.’

1 block, intercept

Here η is modeled as β + u (i.e., an intercept β is added). For β an almost uninformative
normally distributed prior with mean zero and variance 1010 is set. To guaranty identifiability
of β and u, a so-called centering-on-the-fly approach is implemented. It simply replaces u by
u− 1⊤u/n after each draw of u and might lead to some artifacts that are not entirely clear
to us. Other options that simulate directly constrained u’s are implemented, e.g., in spam.
However, we decided to not use this in order to be consistent with the package CARBayes.
The acceptance probability was tuned to ≈ 40% for all parameters.

55 blocks, no intercept

Here the update of the spatial component u is separated into 55 blocks. This means that
a proposal for the first block of size 10 is generated and accepted or rejected, then the sec-
ond block is updated, and so forth. This version has no intercept and thus no sum-to-zero
constraint. The acceptance probability was tuned to ≈ 40% for all parameters.
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Figure 12: Diagnostic plots for the first 1 000 post burn-in samples from the four different
Leroux implementations are shown. Each panel consists of trace plots for log κ (upper) and λ
(lower), respectively. The mixing of log κ and λ is shown in a scatter plot (right). The chains
were already thinned with a factor of 20.
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Implementation Mean SE TS SE MC SE 2.5% 50% 97.5%

1 block, no intercept 12.13 0.0182 0.0229 0.0256 9.00 11.99 16.16
1 block, intercept 12.47 0.0186 0.0243 0.0204 9.32 12.30 16.57

κ
55 blocks, no intercept 12.41 0.0184 0.0570 0.0643 9.22 12.26 16.46
55 blocks, intercept 12.25 0.0179 0.0585 0.0636 9.18 12.12 16.08

1 block, no intercept 0.972 0.00021 0.00022 0.00022 0.918 0.977 0.998
1 block, intercept 0.969 0.00024 0.00025 0.00026 0.908 0.974 0.997

λ
55 blocks, no intercept 0.972 0.00021 0.00031 0.00030 0.921 0.977 0.998
55 blocks, intercept 0.968 0.00024 0.00034 0.00034 0.909 0.973 0.997

Table 2: Summary table for the estimates of κ and λ generated with the four different im-
plementations. The estimates are calculated based on 10 000 samples of one chain (generated
with 300 000 MCMC iterations in total). Besides the standard error (SE), the time-series
standard error (TS SE) derived with the R package coda and a Monte Carlo standard error
(MC SE) based on 100 replications of the simulation are given.

55 blocks, intercept

In this variation the spatial component is updated in 55 blocks and an intercept β is added
with an almost uninformative normally distributed prior (mean zero and variance 1010). A
sum-to-zero constraint on the spatial component is set. This variation corresponds almost
to the one implemented R package CARBayes. The only difference is that the CARBayes

implementation tunes the acceptance probabilities of the MH steps automatically. We run
this sampler with 3 different configurations of the tuning parameters, yielding the acceptance
probabilities ≈ 40% for all parameters, ≈ 70% for all parameters, and ≈ 35% for the spatial,
and ≈ 60% for the other parameters, respectively. The latter is similar to the one resulting
from the automatic tuning in the CARBayes implementation.

3.3. R package CARBayes

The R package CARBayes (Lee 2013) provides the function poisson.leroux(), which imple-
ments a Gibbs sampler similar to the version ‘55 blocks, intercept’. Additionally, this version
allows us to specify explanatory variables using a formula interface. The function comes with
a mechanism that tunes the acceptance probability automatically. We run the function with
the same settings as our implementations.

R> library("CARBayes")

R> out <- poisson.lerouxCAR(formula = Y ~ offset(log(E)), data = Oral,

+ W = A, beta = 0, phi = rep(c(-0.1, -1), 544/2), tau2 = 1/15, rho = 0.9,

+ n.sample = 300000, prior.var.beta = 1e10, prior.max.tau2 = 1e10)

We eliminate a burn-in of 100 000 samples and keep the posterior values of every 20th loop
to obtain chains of a length of 10 000 (not shown).

3.4. Comparison of the implementations
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Figure 13: Comparison of 10 different κ chains from the variation ‘55 blocks, intercept’
are compared against 10 κ chains from the other variations. The diagnostic functions are
implemented in the R package coda. Upper panels: Gelman plots with the median shrink
factor for 10 comparisons (solid lines) and the 95% quantile for the first comparison (dashed
line). Lower panels: Geweke plots with one color for each comparison. The two chains
were compared by appending them to one single chain and setting frac1 and frac2 in the
geweke.diag() function to 0.5.

To compare the four different versions of the MCMC samplers from Section 3.1 and 3.2, we
repeated the MCMC runs 100 times for all model implementations. Each chain had a length of
300 000 from which a burn-in of 100 000 was removed and a thinning of 20 was applied. Thus,
we end up analyzing 100 chains of a length of 10 000 for λ, κ and u per implementation. The
three additional versions (two with varying acceptance probability and one from the R package
CARBayes) are only shown in Figure 14 and are mentioned in the discussion thereof.

Again, many of the tools that we present are commonly used but are reported here for com-
pleteness. Figure 12 shows trace plots of log κ and λ for the four different MCMC variations.
The trace plots of log κ of the implementations, with an update of the spatial component in
55 blocks, show higher auto correlations. This is consistent with the findings of Knorr-Held
and Rue (2002) for the BYM model. The scatter plots of log κ and λ in the same figure show
no suspicious patterns.

A numerical summary of the posterior distribution of κ and λ for the first of the 100 runs
is given in Table 2. For the posterior mean the naive standard error (SE), the time-series
standard error (TS SE) derived with the R package coda and a Monte Carlo standard error
(MC SE) based on 100 replications of each simulation are given. With respect to the TE SE,
the variation in the mean estimates seems to be large. Thus, for example, the posterior mean
of λ for the implementation with an intercept are lower than those for the implementations
without intercept.
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In Figure 13, ten different κ chains from the variation ‘55 blocks, intercept’ are compared
against ten κ chains from the other sampler versions. The diagnostic functions gelman.plot()
and geweke.diag() from R package coda were used. In the Gelman plots, each line represents
the median shrink factor of a comparison of two chains. For the black line the 95% quantile
is also drawn as dashed line. In the Geweke plot, ten pairs of two chains were compared
by appending them to one single chain and setting frac1 and frac2 in the corresponding
R function to 0.5. Although, we analyze long chains, the variability within and between each
implementation is striking.

An overview of the 100 mean estimates for κ and λ for all variations (including those with
varying acceptance probability and CARBayes) is given in the upper panels of Figure 14.
It is reassuring that the CARBayes version has a large overlap with the corresponding ‘55
blocks, intercept’ version. The varying acceptance probability seems to have little effect. The
estimates for κ from the variations ‘1 block, intercept’ and ‘1 block, no intercept’ have little
overlap with the other versions and none with each other. For the λ estimates, again, the
pattern of higher values for implementations without intercept are visible. A reason for this
feature is that some variance of η is absorbed by the intercept and thus lacks the precision κ
of the corresponding random effect u. The same patterns are visible in Figure 14 (bottom),
where the ECDF’s of κ and λ for 400 chains are drawn. A separation of the versions with
and without the intercept is clearly visible. Again the variation within each of the four
implementations is considerable.

Finally, we applied a hierarchical clustering to the 100 ECDFs of the four variations. The
results for the parameters κ, λ, and four randomly selected regions η1, . . . , η4 are shown in
Figure 15. For κ and λ, the same patterns (already mentioned above) are confirmed. For the
η parameters no clear patterns resulted. This indicates that the spatial fields of all versions
are similar, or more precisely, that the within implementation variance is larger than the
between implementation variance. An exception is η3 from the ‘1 block, intercept’ version,
which seems rather separated from the other versions.

3.5. Discussion, extensions, pitfalls

Naturally, many of the comments in Section 2.5 apply here as well, and we only mention a
few relevant or new points. The simulation of 100 chains per version with a length of 300 000
each was only feasible within a reasonable amount of time due to a parallel implementation on
a computer with several nodes. The R package snowfall (Knaus 2013) greatly simplified the
simultaneous generation of several chains with different seed values for the random number
generator. One chain took about one hour on a single processor for the ‘1 block’ versions
and about three hours for the versions with a ‘55 block’ update of u. This corresponds to
83 and 28 iterations per second, respectively. The difference in speed results mainly from
the faster sparse matrix algebra Fortran back-end, which was accessed through the R package
spam for the ‘1 block’ versions. Some optimization of the R code with respect to speed would
be possible. However, this would reduce the readability of the code. Implementing parts of
the code in C++ would reduce calculation time and is planed for the CARBayes package (Lee
2013).

As was pointed out in the previous Section, the chains for the versions with intercept are
different from the chains without (especially the λ chains). One possible explanation is that
the normal prior of the intercept with variance 1010 was informative enough to lead to the
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Figure 14: Upper panels: Densities of the mean estimates for κ and λ of 100 repeated simu-
lations. The lines are either solid for an acceptance rate of ≈ 40%, dotted for an acceptance
rate of ≈ 70%, or dashed for an acceptance rate similar to the CARBayes implementation.
Lower panels: 100 ECDFs for κ and λ are drawn for the 4 different implementations with an
acceptance rate of ≈ 40%. Each simulation considers 10 000 samples, which are taken from a
MCMC run with 300 000 iterations.

higher λ values for versions without intercept. Another reason for this feature might be
that some variance of η is absorbed by the intercept and thus reduces the strength of the
unstructured component of the corresponding random effect u. Finally, it could also be
an artifact of the mean centering-on-the-fly approach, which possibly has an effect on the
equilibrium distribution of u. A way to overcome this issue is to use rmvnorm.const() from
the R package spam.

To our knowledge there are no further implementations of the Leroux model readily available.
Also, an extension of the model to the multivariate case with more than one diseases or a
spatio-temporal model with a Leroux type of random effect would be interesting.

One possible extension of the model is “ecological regression”, where additional covariates
are taken into account. The R package CARBayes is capable of fitting such models, and a
corresponding model description can be specified though the formula interface.
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Figure 15: For the parameters κ, λ, and four randomly chosen elements of η dendrograms
from a hierarchical clustering of the posterior ECDFs are shown. The clustering was applied
to chains from the four implementation (indicated with colors) with 100 replications each.
The figure is based on the same samples as Figure 14.



28 Pitfalls in the Implementation of BHMs of Areal Count Data

4. Final thoughts and remarks

Comparing several, long MCMC chains leads to the analysis of a huge number of data points.
To summarize the information, several traditional methods, such as summary tables, Gelman
plots, and Geweke plots, are useful (Tables 1, 2, Figures 4 and 13). In addition, we proposed a
hierarchical clustering of ECDFs (Figure 7, 10 and 15). Our impression is that this approach
is useful to visualize the (dis)similarity of several implementations, especially if there are
many replicates of chains available. Other approaches like principal component and canonical
correlation analysis (Mardia, Kent, and Bibby 1979) did not lead to additional insights and
are not shown in the paper. It would be interesting to compare the chains in a more formal
ANOVA-like framework, which would lead to quantitative statements.

Our simulations suggest that the variability of the estimates derived from MCMC chains is
considerable. One reason may be that the chains are too short (the analyzed chains had
a length of 10 000 and were a sub-sample from an MCMC run with 300 000 iterations). It
is the authors’ impression that a decade ago it was “common” to run many chains of huge
lengths (> 106) for relatively simple models (of few parameters). With rising computing
power Bayesian models have become more and more complex, but the number of chains and
chain lengths have not been increased; rather they have been severely decreased. It would be
a very interesting bibliographic review to study the evolution of the number of parameters,
the number of chains, and the chain lengths in articles published in statistical journals or in
general scientific journals. This should be contrasted with the number of parameters of the
BHMs and the available computing power.

Moreover, the variability between different implementations of the same model seems to be
larger than the variability within one implementation and could even be systematic (compare
to the λ parameter of the Leroux model for implementations with and without intercept,
for instance). It would be interesting to find a formal explanation of these features in order
to better understand the models and implementations. Further, an incorrectly calculated
acceptance probability may lead to stable and unsuspicious chains, and it can be very difficult
to detect such errors. But do such small differences matter in practice? We think that the
following recommendations help identify differences that do matter: (1) many and long chains
should be simulated, (2) if possible, different implementations should be used, (3) formal and
graphical comparisons should be made.

Finally, the choice of the software environments used in this article was driven by our ex-
periences. However, there exist more sampling engines, e.g., BayesX (Brezger, Kneib, and
Lang 2005) or ADMB (Fournier, Skaug, Ancheta, Ianelli, Magnusson, Maunder, Nielsen, and
Sibert 2012), with R interfaces BayesX (Kneib, Heinzl, Brezger, and Bové 2011) and R2admb

(Bolker and Skaug 2012), or the package geoRglm (Christensen and Ribeiro 2002), that can
handle BHMs with spatially correlated random effects. Different flavors of spatial models can
also be handled with the JAGS engine (Plummer 2012) or with spBayes (Finley, Banerjee,
and Carlin 2007; Finley, Banerjee, and Gelfand 2015). The community is extremely active,
as indicated by the CRAN task view Bayesian Inference (Park 2014).
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