Package ‘soundClass’

October 14, 2022

Title Sound Classification Using Convolutional Neural Networks
Version 0.0.9.2

Author Bruno Silva [aut, cre]

Maintainer Bruno Silva <bmsasilva@gmail.com>

Description Provides an all-in-one solution for automatic classification of
sound events using convolutional neural networks (CNN). The main purpose
is to provide a sound classification workflow, from annotating sound events
in recordings to training and automating model usage in real-life
situations. Using the package requires a pre-compiled collection of
recordings with sound events of interest and it can be employed for:
1) Annotation: create a database of annotated recordings,
2) Training: prepare train data from annotated recordings and fit CNN models,
3) Classification: automate the use of the fitted model for classifying
new recordings. By using automatic feature selection and a user-friendly GUI
for managing data and training/deploying models, this package is intended
to be used by a broad audience as it does not require specific expertise in
statistics, programming or sound analysis. Please refer to the vignette for
further information.
Gibb, R., et al. (2019) <doi:10.1111/2041-210X.13101>
Mac Aodha, O., et al. (2018) <doi:10.1371/journal.pcbi.1005995>
Stowell, D., et al. (2019) <doi:10.1111/2041-210X.13103>
LeCun, Y., et al. (2012) <doi:10.1007/978-3-642-35289-8_3>.

License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2

BugReports https://github.com/bmsasilva/soundClass/issues

Imports seewave, DBI, dplyr, dbplyr, RSQLite, signal, tuneR, zoo,
magrittr, shinyFiles, shiny, utils, graphics, generics, keras,
shinyjs

Depends shinyBS, htmltools

Suggests knitr, rmarkdown

VignetteBuilder knitr

https://doi.org/10.1111/2041-210X.13101
https://doi.org/10.1371/journal.pcbi.1005995
https://doi.org/10.1111/2041-210X.13103
https://doi.org/10.1007/978-3-642-35289-8_3
https://github.com/bmsasilva/soundClass/issues

2 app_label

NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-29 22:40:02 UTC

R topics documented:

app_label e 2
app_model e e 3
auto_1d . . L L e e 5
create_db . . . L L L e 6
ind_NOISE e 7
import_audio L. e e e e e 8
mS2samples e e e e e e e e e 9
spectro_calls e e e 10
train_metadata L L e e 11
Go>% . . . e e e e 12

Index 13

app_label Shiny app to label recordings
Description

Shiny app to label recordings. Use this app to visualize your training recordings, create annotations
and store them in a sqlite database. The app has a sidebar panel with the following buttons/boxes to
input required user data:
1. Create database — if no database exists to store the annotations, use this button to create one
2. Choose database — choose the database to store the annotations

3. Butterworth filter — check box to apply filter and indicate low and high frequencies in kHz to
filter the recordings

4. Time expanded — only used in recorders specifically intended for bat recordings. Can take any
numeric value. If the recording is not time expanded the value must be set to 1. If it is time
expanded the numeric value corresponding to the time expansion should be indicated

5. Choose folder — choose the folder containing the training recordings
After the spectrogram is ploted:
1. Select events by clicking in the spectrogram on the middle of the event of interest (bat call,

bird song, etc)

2. Insert the correct label in the "Label" box and add any additional notes in the "Observations"
box

3. Press ’Set labels’ button to add labels to database

4. Repeat above steps if more than one set of events is present in the recording

app_model 3

5. Press *Next’ button to advance to next recording or pick another recording from the dropdown
list

The spectrogram can be zoomed by pressing mouse button and dragging to select an area and then
double click on it. To unzoom simply double clicking on the spectrogram without an area selected.
To adjust visualization settings, in the top right, the tab "Spectrogram options" can be used to:

* Threshold — minimum intensity values to show in the spectrogram. A value of 100 will typi-
cally be adequate for the majority of the recorders

* Window length — moving window length in ms. Smaller windows best suited for short calls

* Overlap — overlap between consecutive windows, higher values give best visualization but
lower performance

* Resolution — frequency resolution of the spectrogram

Usage
app_label ()

Value

Starts the shiny app, no return value.

Author(s)

Bruno Silva

app_model Shiny app to fit a model or run a fitted model

Description

Shiny app to fit a model from training recordings or to run a fitted model to classify new recordings.
This app consists of three GUISs, i.e. three main panels, accessible by the tabs at the top:

1. Create train data — create train data from recordings and their respective annotations database
2. Fit model — fit a model from training data
3. Run model — run a fitted model to classify new recordings

1. Create train data:
This panel is used to create train data from recordings and their respective annotations database.
The sidebar panel has the following buttons/boxes to input required user data:

* Choose folder — choose the folder containing the training recordings

* Choose database — choose the database with the annotations for the training recordings

» Time expanded — choose the correct time expansion factor, normally only used in recorders
specifically intended for bat recordings. Can take the values "auto", 1 or 10. If the recording
is in real time the value must be 1. If it’s time expanded, the value 10 or "auto" can be
selected. If "auto" is selected it is assumed that sampling rates < 50kHz corresponds to a
value of 10 and sampling rates > 50kHz to corresponds to a value of 1

app_model

» Spectrogram parameters — different typologies of sound events require different parameters
for computing the spectrograms. The more relevant are: size (in ms), which should be large
enough to encompass the duration of the largest sound event in analysis (not only in the
training data but also in novel recordings where the classifiers are to be applied) and moving
window (in ms), that should be smaller for shorter sound events (to capture the quick changes
in time) and larger for longer sound events (to avoid redundant information). The other
parameters are more generalist and the same values can be used for different sound events,
as they only change the definition of the images created. Please refer to spectro_calls
documentation for further details

After entering the required information press the button "Create training data from labels" to
generate the training data that will be used for fitting a model. This object is saved in the folder
containing the training recordings with the name "train_data. RDATA".

2. Fit model:

This panel is used to fit a model from training data. The sidebar panel has the following but-
tons/boxes to input required user data:

¢ Choose train data — the file "train_data.RDATA" created in the previous panel

* Choose model — a blank model to be fitted. A custom model is provided but must be copied
to an external folder if it is to be used. The model path can be obtained by running the fol-

lowing line at the R console: system.file("model_architectures”, "model_vgg_sequential.R",
package="soundClass") and should be manually copied to a an external folder

* Model parameters — the train percentage indicates the percentage of data that is used to fit the
model while the remaining are used for validation, batch size indicates the number of samples
per gradient update, the learning rate indicates the degree of the gradient update, early stop
indicates the maximum number of epochs without improvement allowed before training stops
and epochs indicate the maximum number of epochs to train. Further information can be
found in keras documentation https://keras.io/api/

The model is evaluated during fitting using the validation data. After completion, by reaching the
maximum epochs or the early stopping parameters, the fitted model, the fitting log and the model
metadata are saved to the folder containing the train data with file names: "fitted_model.hdf5",
"fitted_model_log.csv" and "fitted_model_metadata. RDATA" respectively.

3. Run model:
This panel is used to run a fitted model to classify new recordings. The sidebar panel has the
following buttons/boxes to input required user data:

¢ Choose folder — choose the folder containing the recordings to be classified

* Choose model — a fitted model to be used for classification

¢ Choose metadata — the file containing the fitted model metadata

* Time expanded — choose the correct time expansion factor, normally only used in recorders
specifically intended for bat recordings. Can take the values "auto", 1 or 10. If the recording
is not time expanded the value must be 1. If it’s time expanded, the value 10 or "auto" can
be selected. If "auto" is selected it is assumed that sampling rates < S0kHz corresponds to a
value of 10 and sampling rates > 5S0kHz to corresponds to a value of 1

 Output file — the name of the files to store the results of the classification

* Irrelevant — does the fitted model includes an irrelevant class?

» Export plots — should a spectrogram of the classified recordings be saved to disk?

https://keras.io/api/

auto_id 5

The classification results are stored in a folder called "output", created inside the folder containing

the recordings. They are stored in a database in sqlite3 format with all the relevant events detected

and the respective probability of belonging to a given class. Additionally a file in the csv format is

saved to disk, containing summary statistics per recording, i.e. the class with most events detected

in each particular recording and the average frequency of maximum energy of the events detected.
Usage

app_model ()

Value

Starts the shiny app, no return value.

Author(s)

Bruno Silva

auto_id Automatic classification of sound events in recordings

Description

Run automatic classification of sound events on a set of recordings using a fitted model.

Usage

auto_id(model_path, update_progress = NA, metadata,
file_path, out_file, out_dir, save_png = TRUE, win_size = 50,
plot2console = FALSE, remove_noise = TRUE, recursive = FALSE, tx = 1)

Arguments

model_path Character. Path to the fitted model.
update_progress
Progress bar only to be used inside shiny.

metadata The object created with the function train_metadata() containing the parameters
used to fit the model, or the path to the saved RDATA file.

file_path Character. Path to the folder containing recordings to be classified by the fitted
model.

out_file Character. Name of the output file to save the results. Will be used to name the

csv file and the sqlite database.

out_dir Character. Path to the folder where the output results will be stored. Will be
created if it doesn’t exist already.

save_png Logical. Should a spectrogram of the classified recordings with the identified
event(s) and respective classification(s) be saved as png file?

win_size

plot2console

remove_noise

recursive

tx

Details

create_db

Integer. Window size in ms to split recordings in chunks for classification. One
peak per chunk is obtained and classified.

Logical. Should a spectrogram of the classified recordings with the identified
event(s) and respective classification(s) be plotted in the console while the anal-
ysis is running?

Logical. TRUE indicates that the model was fitted with a non-relevant class
which will be deleted from the final output.

Logical. FALSE indicates that the recordings are in a single folder and TRUE
indicates that there are recordings inside subfolders.

Only used in recorders specifically intended for bat recordings. Can take the
values "auto" or any numeric value. If the recording is not time expanded tx must
be set to 1 (the default). If it’s time expanded the numeric value corresponding
to the time expansion should be indicated or "auto" should be selected. If tx =
"auto" the function assumes that sampling rates < 50kHz corresponds to tx = 10
and > 50kHz to tx = 1.

Runs a classification task on the recordings of a specified folder and saves the results of the analysis.

Value

Nothing.

Author(s)

Bruno Silva

create_db

Create a sqlite3 database

Description

Create a sqlite3 database (if a database with the specified name doesn’t exist already) with prede-
fined tables. Two types of databases are possible, one to store recordings annotations and another
to store the output of the classification.

Usage

create_db(path, db_name = NA, table_name = "labels"”,
type = "reference")

find_noise 7

Arguments
path Character. Path to the folder where the database will be created.
db_name Character. Name of the database to be created.
table_name Character. Name of the table to be created in the database. It is mandatory
to use the default table name "labels" if the database is intended to be used in
conjunction with other functions of this package.
type Character indicating the type of database to create. Possible options are: "ref-
erence” which creates a database to be used to store recordings annotations for
training purposes, and "id" which creates a database to output the results of the
automatic classification.
Value
Nothing
Author(s)
Bruno Silva
Examples
Not run:

dir_path <- tempdir()

create_db(dir_path,

db_name = "test",

table_name = "labels”,

type = "reference")
file.remove(file.path(dir_path, "test.sqlite3"))

End(Not run)

find_noise Detect energy peaks in recordings with non-relevant events

Description

Detects the temporal position of the desired number of energy peaks in a recording exclusively with
non-relevant events.

Usage

find_noise(recording, nmax = 1, plot = FALSE)

Arguments
recording Object of class "rc".
nmax Integer indicating the maximum number of peaks to detect in the recording.

plot Logical. If TRUE a plot showing the peak(s) is returned.

8 import_audio

Value

A vector with the temporal position of the identified peak(s), in samples.

Author(s)

Bruno Silva

Examples

Create a sample wav file in a temporary directory
recording <- tuneR::noise(duration = 44100)

temp_dir <- tempdir()

rec_path <- file.path(temp_dir, "recording.wav")

tuneR: :writeWave(recording, filename = rec_path)

Import the sample wav file

new_rec <- import_audio(rec_path, butt = FALSE, tx = 1)
find_noise(new_rec, nmax = 1, plot = FALSE)
file.remove(rec_path)

import_audio Import a recording

Description

Import a "wav" recording. If the recording is stereo it is converted to mono by keeping the channel
with overall higher amplitude

Usage

import_audio(path, butt = TRUE, low, high, tx = 1)

Arguments
path Character. Full path to the recording
butt Logical. If TRUE filters the recording with a 12th order filter. The filter is
applied twice to better cleaning of the recording
low Minimum frequency in kHz for the butterworth filter
high Maximum frequency in kHz for the butterworth filter
tx Time expanded. Only used in recorders specifically intended for bat recordings.

Can take the values "auto" or any numeric value. If the recording is not time
expanded tx must be set to 1 (the default). If it’s time expanded the numeric
value corresponding to the time expansion should be indicated or "auto" should
be selected. If tx = "auto" the function assumes that sampling rates < 50kHz
corresponds to tx = 10 and > 50kHz to tx = 1.

ms2samples 9

Value

An object of class "rc". This object is a list with the following components:

* sound_samples — sound samples of the recording
* file_name — name of the recording

e file_time — time of modification of the file (indicated for Pettersson Elektronic detectors, for
other manufactures creation time should be preferable but it’s not implemented yet)

 fs —sample frequency

* tx — expanded time factor

Author(s)

Bruno Silva

Examples

Create a sample wav file in a temporary directory

recording <- tuneR::sine(440)

temp_dir <- tempdir()

rec_path <- file.path(temp_dir, "recording.wav")

tuneR: :writeWave(recording, filename = rec_path)

Import the sample wav file

new_rec <- import_audio(rec_path, low = 1, high = 20, tx = 1)
new_rec

file.remove(rec_path)

ms2samples Convert between time and number of samples in sound files

Description

Convert time to number of samples or vice versa in sound files.

Usage
ms2samples(value, fs = 300000, tx = 1, inv = FALSE)

Arguments
value Integer. Number of samples or time in ms.
fs Integer. The sampling frequency in samples per second.
tx Integer. Indicating the time expansion factor. If the recording is not time ex-
panded tx must be set to 1 (the default).
inv Logical. If TRUE converts time to number of samples, if FALSE number of

samples to time.

10

Value

spectro_calls

Integer. If inv = TRUE returns number of samples, if inv = FALSE returns time in ms.

Author(s)

Bruno Silva

Examples

ms2samples (150000, fs = 300000, tx = 1, inv = FALSE)
ms2samples(100, fs = 300000, tx = 1, inv = TRUE)

spectro_calls

Generate spectrograms from labels

Description

Generate spectrograms from recording labels for classification purposes. The spectrogram parame-
ters are user defined and should be selected depending on the type of sound event to classify.

Usage

spectro_calls(files_path, update_progress = NA,
db_path, spec_size = NA, window_length = NA,
frequency_resolution = 1, overlap = NA,

dynamic_range =

Arguments

files_path

update_progress

db_path

spec_size

window_length

NA, freg_range = NA, tx = 1, seed = 1002)

Character. Path for the folder containing sound recordings.

Progress bar only to be used inside shiny.

Character. Path for the database of recording labels created with the shinny app
provided in the package.

Integer. Spectrogram size in ms.

Numeric. Moving window length in ms.

frequency_resolution

overlap

dynamic_range

Integer. Spectrogram frequency resolution with higher values meaning better
resolution. Specifically, for any integer X provided, 1/X the analysis bandwidth
(as determined by the number of samples in the analysis window) will be used.
Not implemented yet, always uses 1 as input value.

Percentage of overlap between moving windows. Accepts values between 0.5
and 0.75.

Threshold of minimum intensity values to show in the spectrogram. A value of
100 will typically be adequate for the majority of the recorders. If this is set to
NULL, no threshold is applied.

train_metadata

freg_range

tx

seed

Value

11

Frequency range of the spectrogram. Vector with two values, referring to the
minimum and maximum frequency to show in the spectrogram.

Time expanded. Only used in recorders specifically intended for bat recordings.
Can take the values "auto" or any numeric value. If the recording is not time
expanded tx must be set to 1 (the default). If it’s time expanded the numeric
value corresponding to the time expansion should be indicated or "auto" should
be selected. If tx = "auto" the function assumes that sampling rates < S0kHz
corresponds to tx = 10 and > S0kHz to tx = 1.

Integer. Define a custom seed for randomizing data.

A list with the following components:

* data_x — an array with the spectrogram matrices

 data_y — the labels for each matrix in one-hot-encoded format

* parameters — the parameters used to create the matrices

* labels_df — the labels with their respective numeric index

Author(s)

Bruno Silva

train_metadata

Obtain train metadata to run a fitted model

Description

Obtain train metadata from the output of function spectro_calls. Needed to run a fitted model

Usage

train_metadata(train_data)

Arguments

train_data

Value

Output of function spectro_calls.

A list with the following components:

* parameters — parameters of the spectrograms

* classes — class names and respective codes

Author(s)

Bruno Silva

12 %>%

%>% Pipe operator

Description

See documentation of package magrittr for details.

Usage
lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics

Index

%>%, 12

app_label, 2
app_model, 3
auto_id, 5

create_db, 6
find_noise, 7
import_audio, 8
ms2samples, 9
spectro_calls, 4,10, 11

train_metadata, 11

13

	app_label
	app_model
	auto_id
	create_db
	find_noise
	import_audio
	ms2samples
	spectro_calls
	train_metadata
	%>%
	Index

