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fget_A_RothC RothC Transfer Matrix Building Function

Description

Builds a RothC transfer matrix. Parameters taken from Coleman and Jenkinson (1996).
Usage
fget_A_RothC( clay = 23.4
)
Arguments
clay double. Soil clay content in %.
Value
fget_A_RothC() returns a 5 x 5 matrix that contains RothC specific carbon transfer parameters
based on clay content.
Author(s)
Marc Scherstjanoi <marc.scherstjanoi@thuenen. de>, Rene Dechow

References
Coleman K, Jenkinson DS (1996). “RothC-26.3 - A Model for the turnover of carbon in soil.” In
Powlson DS, Smith P, Smith JU (eds.), Evaluation of Soil Organic Matter Models, 237-246. ISBN
978-3-642-61094-3.

See Also

sorcering.
Examples

fget_A_RothC(clay=30)
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meas_data_ex Measured Data Input

Description
Fictional input data. Contains a matrix of three columns. Column 1: Measuremnt time. Column 2:
SOC [t/ha]. Column 3: SON [t/ha].

Usage

meas_data_ex

Format

A matrix containing 3 columns

See Also

sorcering.

RothC_C0_ex Initial Soil Organic Carbon Data for RothC

Description

Fictional initial soil organic carbon for the RothC SOC model

Usage

RothC_C0_ex

Format

A vector containing five numeric entries

See Also

sorcering.
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RothC_Cin_ex Carbon Input Data for RothC

Description
Fictional carbon input for the RothC SOC model. Columns stand for pools and rows for simulation
time steps.

Usage

RothC_Cin_ex

Format

A matrix of 5 columns and 60 rows

See Also

sorcering.

RothC_Cin_ex_sl Carbon Input Data for RothC using multiple sites

Description
Fictional carbon input for the RothC SOC model. The input data constists of a list of 3 matrices.
Matrix columns stand for pools and matrix rows for simulation time steps.

Usage

RothC_Cin_ex_sl

Format

A list of 3 matrices with 5 columns and 60 rows each

See Also

sorcering.
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RothC_Cin_ex_sl_spin  Carbon Input Data for RothC using multiple sites with spinup run

Description
Fictional carbon input for the RothC SOC model. The input data constists of a list of 3 matrices.
Matrix columns stand for pools and matrix rows for simulation time steps.

Usage

RothC_Cin_ex_sl_spin

Format

A list of 3 matrices with 5 columns and 12 rows each

See Also

sorcering.

RothC_env_in_ex Environmental Input Data for RothC

Description

Fictional environmental input for RothC. Rows stand for simulation time steps. Column 1: atmo-
spheric temperature [Celsius degrees]. Column 2: precipitation [mm]. Column 3: evapotranspira-
tion [mm]. Column 4: zeros or ones, the latter indicate time steps with growing crops.

Usage

RothC_env_in_ex

Format

A matrix of 4 columns and 60 rows

See Also

sorcering.
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RothC_N@_ex Initial Soil Organic Nitrogen Data for RothC

Description

Fictional initial soil organic nitrogen for the RothC SOC model

Usage

RothC_No_ex

Format

A vector containing five numeric entries

See Also

sorcering.

RothC_Nin_ex Nitrogen Input Data for RothC

Description
Fictional nitrogen input for the RothC SOC model. Columns stand for pools and rows for simulation
time steps.

Usage

RothC_Nin_ex

Format

A matrix of 5 columns and 60 rows

See Also

sorcering.
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RothC_Nin_ex_sl Nitrogen Input Data for RothC using multiple sites

Description
Fictional nitrogen input for the RothC SOC model. The input data constists of a list of 3 matrices.
Matrix columns stand for pools and matrix rows for simulation time steps.

Usage

RothC_Nin_ex_sl

Format

A list of 3 matrices with 5 columns and 60 rows each

See Also

sorcering.

RothC_Nin_ex_sl_spin  Nitrogen Input Data for RothC using multiple sites with spinup run

Description
Fictional nitrogen input for the RothC SOC model. The input data constists of a list of 3 matrices.
Matrix columns stand for pools and matrix rows for simulation time steps.

Usage

RothC_Nin_ex_sl_spin

Format

A list of 3 matrices with 5 columns and 12 rows each

See Also

sorcering.
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RothC_site_ex Environmental Input Data for RothC

Description

Fictional site information for RothC. Contains information to calculate xi. Vector of length 4:
sample depth [mm], clay content [ or 1, O if unknown or if black sand method is not desired) and
CN ratio (0 if unknown, but then either CO and NO must be defined or calcCO = TRUE and calcNO
=TRUE).

Usage

RothC_site_ex

Format

A vector containing 4 numeric entries

See Also

sorcering.

RothC_xi_ex Environmental Factors Data for RothC

Description

Fictional environmental factors for the RothC SOC model. Columns stand for pools and rows for
simulation time steps.

Usage

RothC_xi_ex

Format

A matrix of 5 columns and 60 rows

See Also

sorcering.
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sorcering Soil ORganic Carbon & CN Ratio drlven Nitrogen modellinG frame-
work

Description

SORCERING can be used to model the fate of soil organic carbon (SOC) and soil organic nitrogen
(SON) and to calculate N mineralisation rates. It provides a framework that numerically solves
differential equations of SOC models based on first-order kinetics. An SOC model can be simply
defined or a predefined existing SOC model can be chosen and then run to predict the temporal
development of SOC. Beyond this, SORCERING determines the fluxes of SON and N mineralisation /
immobilisation. Basic inputs are (1) the model parameters of a given SOC model expressed as the C
transfer matrix (including information on decomposition and transfer rates between model pools),
(2) either the initial distributions of C and N among model pools as a direct input or time series of
at least three C and N measurement points with which these initial distributions can be calculated
using linear regression, and (3) time series of C and N inputs and rate modifying environmental
factors. In case a predefined SOC model is used, instead of model parameters and time series of rate
modifying factors, model-specific environmental and stand data must be passed for the calculation
of decomposition and transfer rates. The fourth-order Runge-Kutta algorithm is used to numerically
solve the system of differential equations.

Usage

sorcering( A = NULL,
tsteps = "monthly”,

Co = NULL,
No = NULL,
Cin = NULL,
Nin = NULL,

Cin_wood = NULL,
Nin_wood = NULL,
wood_diam = NULL,
xi = NULL,

env_in = NULL,
site = NULL,
theta = NULL,
theta_unc = NULL,
theta_n_unc = 1,
meas_data = NULL,

A_sl = NULL,
Co_sl = NULL,
No_sl = NULL,
Cin_sl = NULL,
Nin_sl = NULL,

Cin_wood_sl = NULL,
Nin_wood_sl = NULL,
wood_diam_sl = NULL,
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Arguments

A

tsteps

Co

NO

sorcering

xi_sl = NULL,

env_in_sl = NULL,
site_sl = NULL,

sitelist = NULL,
meas_data_sl = NULL,
calcN = FALSE,
calcNbalance = FALSE,
calcNe = FALSE,

calcCo = FALSE,
calcCN_fast_init = FALSE,
CTool_input_raw = FALSE,
RothC_Cin4C@ = FALSE,
RothC_dpmrpm = 1.439024,
Co_fracts = NULL,

multisite = FALSE,
pooltypes = NULL,
CN_fast_init = 40,
CN_bio = 9,

CN_spin = NULL,
CN_fast_init_sl = NULL,
CN_bio_sl = NULL,
CN_spin_sl = NULL,
init_info = FALSE,

model = "",
spinup = FALSE,
t_spin = 2

t_spin_sl = 2)

square matrix. Transfer matrix typical for SOC modelling. Defines number
of pools, decomposition and transfer rates. nxn elements with n = number of
pools. Diagonal values are decomposition rates [yr~']. Off-diagonals represent
the transfer between pools . Only used when model is NULL

character string indicating the type of simulation time steps. Valid options
are "annually”, "monthly"” (recommended) or "weekly”. Ensures that the
rate modifying factors (passed through xi or used by a predefined model) are
adjusted by dividing them by 1, 12, and 52 respectively. Also ensures that
environment-specific information (passed through env_in) takes into account
the time reference of the modelling.

either vector with a length equal to the number of pools or scalar. If vector, initial
soil organic carbon per pool [tC ha~!]. If scalar, initial total soil organic carbon
[tCha~']. In the latter case, either model must be selected or CO_fracts must
be passed. If NULL, filled with zeros.

vector with a length equal to the number of pools. Contains initial soil organic
nitrogen per pool [tN ha~!]. If NULL, filled with zeros. Only used when calcN
= TRUE and calcN@ = FALSE.
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either matrix with a number of columns equal to the number of pools and a
number of rows corresponding to simulation time steps (if spinup = FALSE) or
spin-up reference period (if spinup = TRUE), or list containing such matrices. If
it is a list, each element of the list is expected to represent a stochastic repetition
that covers input uncertainties. Then, the list must contain matrices of equal
dimensions. Each matrix (or the one if modelling without uncertainties) must
contain information about carbon input per pool and time step [tCha~!]. When
CTool_input_raw = TRUE, and model = "C-Tool” or model = "C-Tool-org",
the matrix structure can have two columns (as described for CTool_input_raw).
If NULL, filled with zeros.

either matrix with a number of columns equal to the number of pools and a
number of rows corresponding to simulation time steps (if spinup = FALSE) or
spin-up reference period (if spinup = TRUE), in each case in accordance with
number of rows of Cin, or list containing such matrices. If it is a list, each ele-
ment of the list is expected to represent a stochastic repetition that covers input
uncertainties. Then, the list must contain matrices of equal dimensions. Each
matrix (or the one if modelling without uncertainties) must contain information
about nitrogen input per pool and time step [tN ha~']. When CTool_input_raw
= TRUE, and model = "C-Tool"” or model = "C-Tool-org" the matrix structure
can have 2 columns (as described for CTool_input_raw). If NULL, filled with
zeros. Must contain entries > @ where entries of Cin are > 0. Only used when
calcN = TRUE.

list of lengths of different wood diameter classes. Each list element must be
in Cin format and represent a specific wood diameter. Furthermore, the list
elements themselves can be lists and contain stochastic repetitions, as explained
for Cin. The mean diameter per class is defined in wood_diam. Only used when
model = "Yasso15" or model = "Yass020".

list of lengths of different wood diameter classes. Each list element must be
in Nin format and represent a specific wood diameter. Furthermore, the list
elements themselves can be lists and contain stochastic repetitions, as explained
for Nin. The mean diameter per class is defined in wood_diam. Must contain
entries > @ where entries of Cin_wood are > @. Only used when calcN = TRUE.
Only used when model = "Yasso15" or model = "Yass020".

vector with wood diameter [cm]. The first element corresponds to the first list
element of Cin_wood and Nin_wood. If NULL, filled with zeros. Only used
when Cin_wood is specified and when either model = "Yasso15"” or model =
"Yasso20". Must contain entries >= Q.

either matrix with a number of columns equal to the number of pools and a
number of rows corresponding to simulation time steps (if spinup = FALSE) or
spin-up reference period (if spinup = TRUE), in each case in accordance with
number of rows of Cin, or list containing such matrices. If it is a list, each ele-
ment of the list is expected to represent a stochastic repetition that covers input
uncertainties. Then, the list must contain matrices of equal dimensions. Each
matrix (or the one if modelling without uncertainties) must contain information
about time series of rate modifying factors for each model pool, built on the
basis of annual decomposition rates. If NULL, filled with ones. Only used when
model is NULL.
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env_in

site

theta

theta_unc

sorcering

matrix with a model-specific number of columns and a number of rows corre-
sponding to simulation time steps (if spinup = FALSE, and tsteps = "weekly"
or tsteps = "monthly") or corresponding to simulation time steps multiplied
by twelve (if spinup = FALSE and tsteps = "annually” or corresponding to
individually chosen spin-up reference period (if spinup = TRUE). The number
of rows must be in accordance with the number of rows of Cin, except when
tsteps = "annually”, then the number of rows must be twelve times the num-
ber of rows of Cin because monthly environmental variables still must be used
to account for the annual cycle even when simulations run in annual mode.
Contains environment-specific information to calculate rate modifying factors
(instead of passing them with xi) and initial distributions (only RothC). When
model = "RothC", it must have four columns: atmospheric temperature (T) [de-
grees C], precipitation (p) [mm], evapotranspiration [mm] and a vector of zeros,
ones (both originally RothC) or twos (not originally RothC) describing the soil
cover, where ones indicate time steps when the soil is vegetated, zeros when it
is bare and twos when it is bare, but this only influences the accumulated but
not the maximum topsoil moisture deficit. The latter will then be calculated as
if there was soil cover. The idea behind this is that the water content should
be decisive for the microorganisms as a habitat and transport medium, regard-
less of whether a plant is growing or not. When model = "Yasso@7" or model
= "Yasso15" or model = "Yass020", it must have two columns: T [degrees C]
and p [mm]. When model = "C-Tool"” or model = "C-Tool-org", it has one
column: T [degrees C]. If NULL, filled with ones. Only used when model is not
NULL.

vector of model-specific length. Contains site-specific information to calculate
rate modifying factors (instead of passing them with xi) and initial distribu-
tions (only RothC). and initial carbon and nitrogen distributions. When model =
"RothC", it must be of length four: sample depth [mm], clay content [%], black
sand status (0 or 1, 0 if unknown or if black sand method is not desired) and
CN ratio (0 if unknown, but then either C@ and N@ must be passed or calcC@ =
TRUE and calcNe = TRUE, information on CN ratio given in site always takes
precedence over internally calculated CN ratios). When model = "C-Tool” or
model = "C-Tool-org", it must be of length one: clay content [%]. Only used
when model = "RothC"” or model = "C-Tool"” or model = "C-Tool-org".

either vector with model parameters for predefined models or matrix with rows
of such parameters. If it is a matrix, each row is expected to represent a stochas-
tic repetition that covers input uncertainties. If uncertainties are defined by
another argument, e.g. Cin or Nin, these determine the number of stochastic
repetitions and not theta. Then, if theta is a matrix, a parameter vector is
randomly drawn for each uncertainty loop. Each vector (or row of matrix) must
be of length 7 when model = "RothC”, of length 10 when model = "C-Tool" or
model = "C-Tool-org", of length 21 when model = "Yasso@7" and of length
30 when model = "Yasso15"” or model = "Yass020". If NULL, model-specific
standard parameters are used instead. Only used when model is not NULL. See
model parameters table in section 'Details’ for standard parameters used.

either number or vector of percentage values. If it is a vector, the same model-
specific lengths as described for theta must be used. When used, model param-
eters modified by taking from the normal distribution around given values (either
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from theta or predefined values) with a standard deviation of theta_unc. This
will be repeated as many times as defined in theta_n_unc or as defined by un-
certainty dimensions of a carbon or nitrogen input argument (e.g. Cin) and lead
to unique model results and output list elements. Only used when model is not
NULL and theta is not a matrix.

number of stochastic repetitions when model parameters for predefined models
should be determined from a random distribution. Only used when the number
of stochastic repetitions is not defined by another argument (e.g. Cin ). Only
used when model is not NULL, theta_unc is not NULL and theta is not a ma-
trix.

matrix with a number of rows equal to the number of measurement points. The
first column defines the time of measurement, the metric of which is based on
simulation time steps. The second row must contain values of measured soil or-
ganic carbon stock. The third row must contain values of measured soil organic
nitrogen and is only used when calcN@ = TRUE. Only used when calcC@ = TRUE.

list with a length of number of sites to simulate. Each list element represents
a site and must be in A format. Only used when multisite = TRUE and model
is NULL. When multisite = TRUE, A can be passed instead of A_s1 to have the
same argument for all sites.

list with a length of number of sites to simulate. Each list element represents a
site and must be in C@ format. Only used when multisite = TRUE.

list with a length of number of sites to simulate. Each list element represents
a site and must be in N format. Only used when multisite = TRUE, calcN =
TRUE and calcN@ = FALSE.

list with a length of number of sites to simulate. Each list element represents
a site and must be in Cin format, which can also contain uncertainties. Thus,
Cin_sl can either be a list of different sites each containing lists of different
uncertainty representations each with matrices of carbon input as described for
Cin, or it can simply be a list of different sites each containing such matrices.
Only used when multisite = TRUE.

list with a length of number of sites to simulate. Each list element represents
a site and must be in Nin format, which can also contain uncertainties. Thus,
Nin_sl can either be a list of different sites each containing lists of different
uncertainty representations each with matrices of carbon input as described for
Nin, or it can simply be a list of different sites each containing such matrices.
Only used when multisite = TRUE. Must contain entries > @ where entries of
Cin_sl are > @.

list with a length of number of sites to simulate. Each list element represents
a site and must be in Cin_wood format, which can also contain uncertainties.
Thus, Cin_wood_sl can either be a list of different sites each containing lists
of different wood diameter representations, which in turn each contain lists
of different uncertainty representations, each with matrices of carbon input as
described for Cin, or it can simply be a list of different sites each containing
lists of different wood diameter representations each containing such matrices.
Only used when multisite = TRUE and either model = "Yasso15" or model =
"Yass020".
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Nin_wood_sl list with a length of number of sites to simulate. Each list element represents
a site and must be in Nin_wood format, which can also contain uncertainties.
Thus, Nin_wood_s1 can either be a list of different sites each containing lists
of different wood diameter representations, which in turn each contain lists
of different uncertainty representations, each with matrices of carbon input as
described for Nin, or it can simply be a list of different sites each containing
lists of different wood diameter representations each containing such matrices.
Only used when multisite = TRUE and either model = "Yasso15" or model =
"Yass020". Must contain entries > @ where entries of Cin_wood_s1 are > 0.

wood_diam_sl  list with a length of number of sites to simulate. Each list element represents a
site and must be in wood_diam format. Only used when multisite = TRUE and
either model = "Yasso15" or model = "Yasso20".

xi_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in xi format, which can also contain uncertainties. In the latter
case, the site list must include uncertainty lists. Only used when multisite =
TRUE.

env_in_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in env_in format. Only used when multisite = TRUE.

site_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in site format. Only used when multisite = TRUE.

sitelist list with names of sites to simulate. Only used when multisite = TRUE.

meas_data_sl list with a length of number of sites to simulate. Each list element represents
a site and must be in meas_data format. Consequently, it is only used when
calcCe = TRUE and the third row of each list element is only used when calcN@
= TRUE. Only used when multisite = TRUE.

calcN logical indicating whether soil organic nitrogen should be modeled.
calcNbalance  logical indicating whether the balance of nitrogen cycling should be calculated.

calcNo logical indicating whether N@ should be calculated. Then, the information in
meas_data is used to determine initial states using linear regression.

calcCo logical indicating whether C@ should be calculated. Then, the information in
meas_data is used to determine initial states using linear regression.

calcCN_fast_init
logical indicating whether to calculate the initial CN ratio for fast pools (using
Cin and Nin) or whether CN_fast_init should be used.

CTool_input_raw
logical defining of which type Cin and Nin are when modelling with C-Tool.
If TRUE, Cin and Nin can only have two columns, one for the topsoil and one
for the subsoil, and SORCERING is applying the C-Tool-specific distribution to
model pools. If FALSE (default) Cin and Nin must have six columns, one per
model pool. Only used when model = "C-Tool" or model = "C-Tool-org".

RothC_Cin4C@  logical defining whether the SOC input should be used for the calculation of
initial SOC. If FALSE the standard RothC ratio for agricultural soils of DPM to
RPM of 0.59 to 0.41 or the ratio defined in RothC_dpmrpm is used. Only used
when model = "RothC".
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RothC_dpmrpm  positive decimal number defining the initital ratio between DPM and RPM pool
or vector containing such numbers. If vector, each element represents a site
when multisite = TRUE. The predefined value of 1.439024 equals 0.59/0.41,
the standard RothC ratio for agricultural soils. Only used when model = "RothC".

Co_fracts numerical vector of a length equal to the number of pools. Contains initial frac-
tions of SOC in pools, the sum of which must be 1. Only used when calcCo =
TRUE or C@ is a scalar.

multisite logical indicating whether multiple sites should be calculated with one pro-
gram call. Then, t_spin, C@, N@, Cin, Nin, Cin_wood, Nin_wood, wood_diam,
env_in, site_in, xi and meas_data must be of list type and replaced with
t_spin_sl, C0_s1,N@_sl1,Cin_s1,Nin_sl, Cin_wood_s1,Nin_wood_sl, wood_diam_sI,
env_in_sl, site_in_sl, xi_sl and meas_data_sl, respectively. A, CN_bio
and CN_fast_init can be given as single variables or in list form of A_sl,
CN_bio_sl and CN_fast_init_sl, respectively.

pooltypes integer vector with a length equal to the number of pools. Contains information
necessary for the calculation of N@. Allowed values are 1-6. 1: topsoil fast pool,
2: topsoil bio or humus pool, 3: topsoil chemically stable or inert pool, 4: sub-
soil fast pool, 5: subsoil bio or humus pool, 6: subsoil chemically stable or in-
ert pool. Predefined values are (1,1,2,2,3) when model = "RothC”, (1,2,3,4,5,6)
when model = "C-Tool"” or model = "C-Tool-org”, (1,1,1,2,3) when model =
"Yasso@7" or model = "Yasso15"” or model = "Yass020"”. Only used when
calcN = TRUE and calcNe = TRUE.

CN_fast_init number that defines the initial CN ratio for fast pools (pooltypes =1 or 4).
Only used when Nin (or Nin_sl) and Cin (or Cin_s1) do not provide enough
information for the estimation of initial nitrogen. The user will be informed
about it when init_info = TRUE. Only used when calcN = TRUE and calcNe =

TRUE.

CN_bio number that defines the initial CN ratio for slow pools (pooltypes =2 or 5).
Only used when calcN = TRUE and calcN@ = TRUE.

CN_spin vector with a length equal to the number of pools. Defines the initial CN ratios

for spin-up runs. For the case where the spinup starts from bare ground without
soil organic components, the CN ratios of the pools must be defined. Since the
CN ratios would then only be influenced by external inputs, the CN ratios for
slow target pools without input would exceptionally be defined by the CN ratios
of fast source pools due to a lack of alternatives. To prevent this, it is necessary
to define initial CN ratios for spin-up runs in that case. Only used when calcN =
TRUE and spinup = TRUE and for elements of which that of C@ (and N@) are zero.
CN_fast_init_sl

list with a length of number of sites to simulate. Each list element represents
a site and must be in CN_fast_init format. Only used when calcN = TRUE,
multisite = TRUE and calcN@ = TRUE. Whenmultisite = TRUE, CN_fast_init
can be passed instead of CN_fast_init_sl to have the same argument for all
sites.

CN_bio_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in CN_bio format. Only used when calcN = TRUE, multisite
= TRUE and calcN@ = TRUE. When multisite = TRUE, CN_bio can be passed in-
stead of CN_bio_sl to have the same argument for all sites.
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CN_spin_sl list of vectors that defines the initial CN ratios for spin-up runs. Each list element
represents a site and must be in CN_spin format. Only used when multisite
=TRUE, calcN =TRUE and spinup = TRUE and for elements of which that of
NO_sl are zero. When multisite = TRUE, CN_spin can be passed instead of
CN_spin_sl to have the same argument for all sites.

init_info logical indicating whether additional information about the calculation of initial
carbon, initial nitrogen, and CN ratio should be printed out during the simula-
tions. Only used when calcC@ = TRUE or calcN@ = TRUE.

model character string specifying a predefined soil organic carbon model to use. Valid
options are "Yasso@7", "Yasso15", "Yasso020", "RothC”, "C-Tool" or "C-Tool-org".
When not NULL, xi and A are calculated by SORCERING, and env_in must be
specified. Additionally, theta can be specified to not use standard model param-
eters. See model parameters table in section ’Details’ for standard parameters
used. If calcN@ = TRUE and pooltypes = NULL model-specific standard values
for pooltypes are used.

spinup logical indicating whether the simulations should run in spin-up mode. Then,
from all time-depending input (Cin, Nin, xi, env_in and site list derivates) ran-
dom years (consisting of one time step when tsteps = "annually”, of twelfth
time step when tsteps = "monthly” and of fifty-second time step when tsteps
= "weekly") are taken and t_spin defines the length of the spin-up. If mod-
elling multiple sites, t_spin_sl allows for varying spin-up times. The length of
the time-depending input is independent of the spin-up length, but all input data
must refer to a specific reference period.

t_spin integer number of spin-up time steps.

t_spin_sl list with a length of number of sites to simulate or integer number of spin-up
time steps. If list, each list element represents a site and must be in t_spin
format. If integer number, applied to all sites. Only used when multisite =
TRUE.

Details

SORCERING is a general model framework to describe soil organic carbon (SOC) dynamics and
soil organic nitrogen (SON) dynamics based on models of first-order kinetics. It can be applied
to any given SOC first-order kinetics model. The approach has already been successfully tested to
describe SOC dynamics of Yasso (Tuomi et al. 2009; Viskari et al. 2020; Viskari et al. 2022),
RothC (Coleman and Jenkinson 1996) and C-Tool (Taghizadeh-Toosi et al. 2014). Moreover, it
additionally offers the possibility of modelling N immobilisation and mineralisation by enhancing
given SOC models by an additional N module. SORCERING was created using the C++ interface Rcpp
(Eddelbuettel et al. 2021) and can handle multiple sites and multiple stochastic representations with
just one function call. This makes SORCERING a computationally efficient SOC and SON modelling
tool.

In the following a description of each output value (see section *Value’) is given. Detailed math-
ematical descriptions of the SOC and SON calculation, the optional extensions of the SORCERING
function and the predefined models used can be found in the extended R documentation at browseVignettes("sorcering").

Value C
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SORCERING calculates SOC applying a given SOC model for every simulation time step defined by
passing tsteps and the number of rows of Cin (or number of rows of matrix elements in Cin_s1).
SOC models applied here are defined by a number of pools, each characterised by specific decom-
position and turnover rates. The model-specific decomposition kinetics and SOC fluxes among
pools are described by a set of partial differential equations represented by the transfer matrix A
(as passed with A or provided by model). Each row and column of A represent SOC pools. Off-
diagonal elements of A describe SOC fluxes and diagonal elements describe SOC decomposition.
The differential equations furthermore contain the boundary condition C'in(t) (as passed with Cin)
and the model-specific generated rate modifying factor series xi(t) (as passed with xi or calculated
for a predefined model). The change of SOC concentration in time is then defined as:

ac(t) .
7 = Cm(t) + Ae(t) . C(t)
with
A.(t) = A-diag(xi(t))

Initial conditions must be defined for every SOC pool by passing C0 or by using the capabilities of
SORCERING to calculate it. A description of the numerical solution can be found in the extended pdf
documentation at browseVignettes(”sorcering”). For more information on the functioning and
possibilities of solving first-order kinetics SOC models see Sierra et al. (2012).

Value N

As an extension to SOC modelling, SORCERING allows the modelling of SON coupled to the mod-
elling of SOC. Its implementation is based on the following simplifying assumptions: (1) Nitrogen
transfer and turnover rates are equal to carbon rates. (2) There is no N limitation in the soil, i.e.
mineral N is always available for N immobilisation processes. (3) CN ratios of single pools are
only affected by external inputs of N and C. The transfer of organic matter among pools does not
affect CN ratios. As for SOC, the development of SON depends on initial and boundary conditions.
As N decomposition is proportional to C decomposition, SON is calculated based on the results
of the SOC calculations and input conditions (for details see the extended pdf documentation at
browseVignettes("sorcering")).

Values Nloss, Nmin, Nmin.sink<1>, ..., Nmin.sink<n>

Along with modelling SON, further quantities are determined. Nitrogen losses are calculated as:

Nloss(t) = N(t —1) + Nin(t — 1) — N(t)

In contrast, mineralisation rates contain information about sources and sinks of SON. They are
calculated based on the CN ratios in the pools and the turnover rates (for details see the ex-
tended pdf documentation at browseVignettes(”sorcering”)). Pool-specific N mineralisation
Nmin.sink (1), ..., Nmin.sink (n) and N mineralisation Nmin are related as follows:

Nmin;(t) = Z Nmin.sink (j),, (t)

p=1
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for each simulation time point ¢, each pool 5 = 1,...,n and each pool p = 1,...,n and n total
pools. Or in other words, the row sum of Nmin.sink (j) at one simulation time point equals the
j*" column of N'min at that time point.

As changes in SON must match the sums of all mineralisation paths, the sums over soil pools of
Nloss and Nmin, respectively, must be approximately equal for all simulation time points:

Z Nloss,(t) = Z Nminy(t)
p=1 p=1

A verification of this relation is given by "Nbalance” (see below).

Value Nbalance

The overall N change between two time steps is calculated as:

n

AN(t) =Y  Np(t—1) i:N,,
p=1 p=1

The total system N balance serves as a verification output. Both of the following equations should
always give results close to zero:

Npain (¢ Z Nin,(t —1)+ AN(t Z Nloss,(t)
p=1

Npar2(t ZNmp t—1)+ AN(t ZNmmp ~0
p=1

AN (t) is saved in the first column, Npy1(¢) in the second and Npg2(t) in the third column of
"Nbalance”.
Model parameters

If a predefined model has been specified (model is not NULL) the following standard parameters
are used. They can be changed using theta within the program call.

RothC

k_dpm 10 Decomposition rate for DPM pool [yr—!]

k_rpm 0.3 Decomposition rate for RPM pool [yr—!]

k_bio 0.66 Decomposition rate for BIO pool [yr—!]

k_hum 0.02 Decomposition rate for HUM pool [yr—!]

k_iom 0 Decomposition rate for IOM pool [yr~1]
R_W_max 1 Maximum rate modifying factor for soil moisture

R_W_min 0.2 Minimum rate modifying factor for soil moisture
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C-Tool

Yasso

k_fom_t
k_hum_t
k_rom_t
k_fom_s
k_hum_s
k rom_s
tf

f co2
f_rom
f_hum

kA

kW

kE

kN

kH

pl

p2

p3

p4

pS

p6

p7

p8

po

pl0

pll

pl2

pH
beta_1
beta_2
beta_N1
beta_ N2
beta_H1
beta_ H2
gamma
gamma_N
gamma_H
theta_1
theta_2
r

C-Tool
1.44
0.0336

0.000463

1.44
0.0336

0.000463

0.03
0.628
0.012

0

0.02
0.04
0.076
-0.00089

C-Tool-org
1.44
0.0336
0
1.44
0.0336
0
0
0.628
0
0.358

Yassol5
0.49
49
0.25
0.095
0.0013
0.44
0.25
0.92
0.99
0.084
0.011
0.00061
0.00048
0.066
0.00077
0.1
0.65
0.0046
0.091
-0.00021
0.049
-0.000079
0.035
-0.00021
-1.8
-1.2
-13
-0.44
1.3
0.26
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Decomposition rate for FOM pool (topsoil) [yr—!]
Decomposition rate for HUM pool (topsoil) [yr—!]
Decomposition rate for ROM pool (topsoil) [yr—!]
Decomposition rate for FOM pool (subsoil) [yr—!]
Decomposition rate for HUM pool (subsoil) [yr—!]
Decomposition rate for ROM pool (subsoil) [yr—!]
Fraction going to downward transport

Fraction of CO; released

Fraction of fresh organic matter going to ROM pool
Fraction of input going to HUM pool

Base decomposition rate for pool A [yr—!]

Base decomposition rate for pool W [yr—!]

Base decomposition rate for pool E [yr—!]

Base decomposition rate for pool N [yr—!]

Base decomposition rate for pool H [yr—!]

Transference fraction from pool A to pool W

Transference fraction from pool A to pool E

Transference fraction from pool A to pool N

Transference fraction from pool W to pool A

Transference fraction from pool W to pool E

Transference fraction from pool W to pool N

Transference fraction from pool E to pool A

Transference fraction from pool E to pool W

Transference fraction from pool E to pool N

Transference fraction from pool N to pool A

Transference fraction from pool N to pool W

Transference fraction from pool N to pool E

Transference fraction from AWEN pools to pool H
1%t-order temperature parameter for AWE pools [degrees C~1]
2°d_order temperature parameter for AWE pools [degrees C 2]
1%t-order temperature parameter for N pool [degrees C 1]
2°d_order temperature parameter for N pool [degrees C~2]
1%t-order temperature parameter for H pool [degrees C~1]
27d_order temperature parameter for H pool [degrees C~2]
Precipitation impact parameter for AWE pools [yr mm™!]
Precipitation impact parameter for N pool [yr mm™!]
Precipitation impact parameter for H pool [yr mm™!]
15*-order impact parameter for wood size [cm™!]
27d_order impact parameter for wood size [cm™?]
Exponent parameter for wood size
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SORCERING returns either a list of carbon and nitrogen output values or, when multisite = TRUE,
a list broken down by site with result lists for each site. When modelling uncertainties (as can be
defined by passing e.g. Cin, Nin, xi or theta), the output is even extended to include another
list dimension that covers these uncertainties. The lowest output list-level contains the following

components:

C

Nloss

Nmin

Nmin.sink.1, ..

Nbalance

matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_s1, when spinup =
FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number of
columns equal to the number of pools. Contains soil organic carbon [tC ha~!].

matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_s1, when spinup =
FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number of
columns equal to the number of pools. Contains soil organic nitrogen [tN ha~!].
Only generated when calcN = TRUE.

matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_s1, when spinup
=FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number
of columns equal to the number of pools. Contains nitrogen losses [tN ha=!].
Positive values indicate that nitrogen was lost in the pools between this and
the previous time steps (taking nitrogen decomposition and input into account).
Only generated when calcN = TRUE.

matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_s1, when spinup
=FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a num-
ber of columns equal to the number of pools. Contains nitrogen mineralisation
[tN ha~!]. If values are negative, nitrogen immobilisation exceeds mineralisa-
tion. Only generated when calcN = TRUE.

.,Nmin.sink.n

matrices with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_s1, when spinup
=FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number
of columns equal to the number of pools n. Contain pool-specific nitrogen min-
eralisation sinks [tN ha—!] (from the pool according to variable index [1, ..., n]
to the pool according to column number). If the sink is the pool itself (index
equals column number) the amount of decomposition is recorded. Only gener-
ated when calcN = TRUE.

matrix with a number of rows corresponding to simulation time steps (num-
ber of rows of Cin or number of rows of matrix elements in Cin_sl, when
spinup = FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and
three columns. Contains information on overall N changes in the soil between
two time steps (first column) and information on total system N balance cal-
culated based on total Nloss (second column) and based on total Nmin (third
column) [tNha~!]. Only generated when calcN = TRUE and calcNbalance =
TRUE.
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Package Building Information

The SORCERING code was written in C++ using the R packages Rcpp (Eddelbuettel et al. 2021) and
RcppArmadillo (Eddelbuettel et al. 2021). This documentation was built with the help of the R
packages mathjaxr (Viechtbauer 2021) and Rdpack (Boshnakov 2021).

Author(s)

Marc Scherstjanoi <marc.scherstjanoi@thuenen.de>, Rene Dechow
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Examples

#1 RothC application with fictional input for a single site
#1.1 Input

data(RothC_Cin_ex, RothC_Nin_ex, RothC_N@_ex, RothC_C0_ex, RothC_xi_ex,
RothC_site_ex, RothC_env_in_ex) #fictional data

#1.2 Simulations

#In the following two methods are presented, one with a RothC as a predefined
#model (1.2.1), one where the RothC rate modifying factors must be calculated
#beforehand (1.2.2). Both methods lead to the same results.

#1.2.1 Simulation with predefined model

out_rothC <- sorcering( model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex,
Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, N@=RothC_N0@_ex, C@=RothC_C0_ex,
calcN=TRUE, tsteps="monthly")

#1.2.2 Simulation with own model definition and rate modifying factor definition

A_RothC <- fget_A_RothC(clay=30) #create transfer matrix for RothC

out_rothC_own <- sorcering(A=A_RothC , xi=RothC_xi_ex, Cin=RothC_Cin_ex,
Nin=RothC_Nin_ex, N@=RothC_N0@_ex, C@=RothC_C0@_ex, calcN=TRUE, tsteps="monthly")

#Note that RothC_xi_ex contains site and model specific rate modifying factors that

#are only valid in this specific example. Generally, xi must be calculated by the

#user for different environmental conditions and SOC models used.

#1.3 Results

#output structure summary
summary (out_rothC)

#show that results of 1.2.1 and 1.2.2 differ negligibly
all( abs(out_rothC$C-out_rothC_own$C) < 1e-14)
all( abs(out_rothC$N-out_rothC_own$N) < 1e-14)

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
plot(rowSums(out_rothC$N),axes=FALSE, col=1, cex.lab=2,6xlab="" ylab="" ylim=c(0,9),
pch=20)
par (new=TRUE)
plot(rowSums(RothC_Cin_ex)/rowSums(RothC_Nin_ex),
axes=FALSE,col=2, cex.lab=2,xlab="" ylab="",ylim=c(0,60),pch=20)
axis(side=2, pos=0,
labels=(0:6)*1.5, at=(0:6)*10, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1)
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axis(side=4, pos=60,

labels=(0:6)*10, at=(0:6)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)
axis(side=1, pos=0,

labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2)
title(ylab=expression("total N [t ha"*-1x"]1"), line=2, cex.lab=2)
mtext("C input / N input”, side=4, line=2, cex=2,col=2)
title(xlab="time", line=2, cex.lab=2)
par(oldpar) #back to old par

#2 RothC application with fictional input for a multiple site application
#2.1 Input

data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_N@_ex, RothC_C@_ex, RothC_site_ex,
RothC_env_in_ex) #fictional data

#2.2. Simulation

out_multi_rothC <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl,

Nin_sl=RothC_Nin_ex_sl, NO_sl=rep(list(RothC_N@_ex),3),C0_sl=rep(list(RothC_C0_ex),3),
calcN=TRUE, tsteps="monthly", multisite=TRUE,
sitelist=list("normal”,"half_input"”,"double_Cin"))

#2.3 Results

#output structure summary

summary (out_multi_rothC$normal)
summary (out_multi_rothC$half_input)
summary (out_multi_rothC$double_Cin)

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
for (listelement in c(1:3))
{
lwidth<-1
if (listelement==2)1lwidth<-3
plot(rowSums(out_multi_rothC[[listelement]]$N),axes=FALSE, col=1,type="1", lwd=1lwidth,
lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,18))
par (new=TRUE)
plot(rowSums(RothC_Cin_ex_sl[[listelement]])/rowSums(RothC_Nin_ex_sl[[listelement]]),
type="1", lwd=lwidth, lty=listelement+2,axes=FALSE,col=2, cex.lab=2,xlab="",
ylab="",ylim=c(0,120))
par (new=TRUE)
}
axis(side=2, pos=0,
labels=(0:6)*3, at=(0:6)*20, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1)
axis(side=4, pos=60,
labels=(0:6)*20, at=(0:6)*20, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)
axis(side=1, pos=0,
labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2)
title(ylab=expression("total N [t ha"*-1x"]"), line=2, cex.lab=2)
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mtext("C input / N input”, side=4, line=2, cex=2,col=2)

title(xlab="time", line=2, cex.lab=2)

legend(x=40,y=100,legend=c("normal”, "half_input”, "double_Cin"),1ty=c(3,4,5),
lwd=c(1,3,1))

par(oldpar) #back to old par

#3 RothC application with fictional input
#and fictional measurement data to calculate C@ and N@

#3.1 Input

#fictional data
data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_site_ex, RothC_env_in_ex, meas_data_ex)

#3.2. Simulation

out_rothC_Co<-sorcering( model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex,
Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, calcCO=TRUE, calcN=TRUE, calcN@=TRUE,
tsteps="monthly"”, meas_data=meas_data_ex)

#3.3 Results

#output structure summary
summary (out_rothC_C0o)

#example plot

oldpar <- par(no.readonly=TRUE) #save old par

par(mfrow=c(1,1),mar=c(4,4,1,4))

plot(rowSums(out_rothC_CO$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(9,9),
type="1",1wd=1)

par (new=TRUE)

plot(rowSums(out_rothC_C0$C),axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(@,90),
type="1",1lwd=1)

par (new=TRUE)

plot(x=meas_data_ex[,1],y=meas_data_ex[,3],axes=FALSE, col=1, cex.lab=2,xlab="",6ylab="",
x1im=c(@,length(rowSums(out_rothC_C@3$N))),ylim=c(0,9),pch=4,cex=3)

par (new=TRUE)

plot(x=meas_data_ex[,1],y=meas_data_ex[,2],axes=FALSE, col=2, cex.lab=2,xlab="",6ylab="",
x1im=c(@,length(rowSums(out_rothC_C@3$N))),ylim=c(0,90),pch=4,cex=3)

par (new=TRUE)

axis(side=2, pos=0,
labels=(0:8)*1, at=(0:8)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1)

axis(side=4, pos=60,
labels=(0:8)*10, at=(0:8)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)

axis(side=1, pos=0,
labels= (0:8)*10 , at=(0:8)*10, hadj=0.5, padj=0, cex.axis=2)

title(ylab=expression("SON [t ha"*-1x"]"), line=2, cex.lab=2)

mtext (expression(”SOC [t ha"*-1%x"]"), side=4, line=3, cex=2,col=2)

title(xlab="time", line=2, cex.lab=2)

legend(x=30,y=30, legend=c("model result”,"measurement”),lwd=c(1,0))

legend(x=31,y=30, legend=c("",""),pch=4,pt.cex=c(0,3),bty="n")

par(oldpar) #back to old par
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#4 Yassol5 application using multiple sites and
#input values of different wood diameters which take uncertainties into account

#4.1 Input

data(Yasso_Cin_ex_wood_u_sl, Yasso_Nin_ex_wood_u_sl, Yasso_C0@_ex_sl, Yasso_N0@_ex_sl,
RothC_env_in_ex) #fictional data

#show last entries of C input for 3rd site, 2nd wood layer, 4th uncertainty layer
tail(Yasso_Cin_ex_wood_u_s1[[3]1][[2]1[[4]1]1)

#diameter of wood input: 2 classes of @ cm and 10 cm for each of the 3 sites
wood_diam_ex_sl<-1list(c(@,10),c(0,10),c(0,10))

#environmental variables
Yasso_env_in_ex<-RothC_env_in_ex[,1:2]

#4.2 Simulation

out_multi_yasso_wood_unc <- sorcering( model="Yasso15", C0@_sl=Yasso_C0_ex_sl,
env_in_sl=rep(list(Yasso_env_in_ex),3), wood_diam_sl=wood_diam_ex_sl,
Cin_wood_sl=Yasso_Cin_ex_wood_u_sl,Nin_wood_sl=Yasso_Nin_ex_wood_u_sl,
NO_sl=Yasso_N@_ex_sl, calcN=TRUE, tsteps="monthly"”, multisite=TRUE,
sitelist=list("a","b","c"))

#4.3 Results

#show the last C results for 3rd site, 4th uncertainty layer
tail(out_multi_yasso_wood_unc[[3]11[[4]1]1$C)

#5 RothC application using stochastically varying parameters
#and multiple sites

#5.1 fictional data
data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_C@_ex, RothC_No_ex,
RothC_site_ex, RothC_env_in_ex)

#standard deviations [%] used for each of the 7 RothC theta parameters
RothC_theta_unc <- ¢(0,0,1,1,1,1,2)

#5.2 Simulation

out_sl <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl,
Nin_sl=RothC_Nin_ex_sl, C0@_sl=rep(list(RothC_C0_ex),3),
NO_sl=rep(list(RothC_N@_ex),3),calcN=TRUE, theta_n_unc=10,
theta_unc=RothC_theta_unc, multisite=TRUE,
sitelist=list("normal”,"half_input”,"double_Cin"))

#5.3 Means and standard deviation

#60 time steps, 5 pools, 9 output types, 10 theta_n_unc, 3 sites
out_sl_arr <- array(unlist(out_sl),c(60,5,9,10,3))
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out_sl_arr_N <- out_sl_arr[,,2,,] #only output type 2: N
#mean over all uncerts
out_sl_arr_N_mean <- apply( out_sl_arr_N , c(1,2,4), na.rm=TRUE, FUN=mean )

#standard deviation

out_sl_arr_N_sd<-

array (@, dim=c(dim(out_sl_arr_N)[1],dim(out_sl_arr_N)[2],dim(out_sl_arr_N)[41))

for (dim3 in c(1:dim(out_sl_arr_N)[41))
out_sl_arr_N_sd[,,dim3]<-apply(out_sl_arr_N[,,,dim3],c(1:2),sd)

#5.4 Results

#show the last N means for stand 1
tail(out_sl_arr_N_mean[,,1])

#show the last N standard deviations for stand 1
tail(out_sl_arr_N_sd[,,11)

#6 How to create input lists for a RothC application using stochastically
#varying inputs and input scenarios

#6.1 Input

#fictional data
data(RothC_Cin_ex_sl, RothC_C@_ex, RothC_site_ex, RothC_env_in_ex)

#create input list of 3 scenarios, 100 uncertainties each
set.seed(17) #to make 'random' results reproducible
f1<-1
for (no in c(1:3)) #loop over 3 input scenarios
{
#normal, half and double input
Cin <- switch (no, RothC_Cin_ex, RothC_Cin_ex/2, RothC_Cin_ex*2)
f2 <=1
#create fictional uncertainties
for (unc in c(1:100)) #loop over 100 uncertainties

{
randnum<-max(@,rnorm(1,1,0.5)) #out of normal dist. with 50% sd.
if (f2==1) Cin_u <- list(Cin*randnum) else
Cin_u[[length(Cin_u)+1]1] <- Cin*randnum
f2 <-0

3

if (f1==1) Cin_u_sl <- list(Cin_u) else
Cin_u_sl[[length(Cin_u_s1)+1]] <- Cin_u
f1 <-0

}

#show input of scenario 3, uncertainty 51
head(Cin_u_s1[[3]]C[511D)

#6.2 Simulation
out_sl <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex),3),Cin_s1=Cin_u_sl,
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Co_sl=1list(RothC_C@_ex,RothC_C0@_ex,RothC_C0_ex), tsteps="monthly",
multisite=TRUE, sitelist=list("normal”,"half_input”,"double_Cin"))

#6.3 Means and standard deviation

#60 time steps, 5 pools, 1000 uncertainties, 3 sites
out_sl_arr <- array(unlist(out_sl),c(60,5,100,3))

#means
out_sl_arr_mean <- apply( out_sl_arr , c(1,2,4), na.rm=TRUE, FUN=mean )

#standard deviation
out_sl_arr_sd<-
array(@, dim=c(dim(out_sl_arr)[1],dim(out_sl_arr)[2],dim(out_sl_arr)[4]))
for (dim3 in c(1:dim(out_sl_arr)[4]))
out_sl_arr_sd[,,dim3]<-apply(out_sl_arr[,,,dim3],c(1:2),sd)

#6.4 Results

#C-pool sums of means for the 3 scenarios
totalC_mi1<-rowSums(out_sl_arr_mean[,,1])
totalC_m2<-rowSums(out_sl_arr_mean[,,2])
totalC_m3<-rowSums(out_sl_arr_mean[,,3])

#C-pool sums of standard deviations for the 3 scenarios
totalC_s1<-rowSums(out_sl_arr_sd[,,1])
totalC_s2<-rowSums(out_sl_arr_sd[,,2])
totalC_s3<-rowSums(out_sl_arr_sd[,,3])

#example plot

oldpar <- par(no.readonly=TRUE) #save old par

par(mfrow=c(1,1),mar=c(4,4,1,4))

plot(totalC_m1,axes=FALSE, col=2, cex.lab=2,xlab="",6ylab="" ylim=c(0,100),
type="1",1wd=1)

par (new=TRUE)

plot(totalC_m2,axes=FALSE, col=3, cex.lab=2,xlab="",6ylab="" ylim=c(0,100),
type="1",1lwd=1)

par (new=TRUE)

plot(totalC_m3,axes=FALSE, col=4, cex.lab=2,xlab="",6ylab="" ylim=c(0,100),
type="1",1wd=1)

par (new=TRUE)

polygon(c(1:60,60:1),c(totalC_ml+totalC_s1, rev(totalC_mi-totalC_s1)),
border=NA, col=rgh(1,0,0,0.27),density=40,angle=180,xlab="" ylab="")

par (new=TRUE)

polygon(c(1:60,60:1),c(totalC_m2+totalC_s2, rev(totalC_m2-totalC_s2)),
border=NA, col=rgb(0,1,0,0.27),density=30,xlab="",ylab="")

par (new=TRUE)

polygon(c(1:60,60:1),c(totalC_m3+totalC_s3, rev(totalC_m3-totalC_s3)),
border=NA, col=rgbh(0,0,1,0.27),density=25,angle=90,x1lab="",ylab="")

par (new=TRUE)

axis(side=2, pos=0,

labels=(0:10)*1, at=(0:10)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1)
axis(side=1, pos=0,
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labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2)
title(ylab=expression("SOC [t ha"*-1x"]1"), line=2, cex.lab=2)
title(xlab="time"”, line=2, cex.lab=2)
legend(x=20,y=30,fill=c(0,0,0,4,2,3),density=c(0,0,0,25,40,30),angle=c(0,0,0,90,0,45),
border=c(0,0,0,1,1,1),legend=c("mean double input scenario”,
"mean regular input scenario”, "mean half input scneario”,
"uncertainty range double input scenario”, "uncertainty range regular input scenario”,
"uncertainty range half input scenario”))
legend(x=20,y=30,1ty=c(1,1,1,0,0,0),seg.len=c(1,1,1,0,0,0), col=c(4,2,3,0,0,0),
legend=c("","","", """, """, ""),bty="n")
par(oldpar) #back to old par

#7 RothC application with fictional input for a spin-up application
#7.1 Input

#fictional data
data(RothC_Cin_ex_sl_spin, RothC_Nin_ex_sl_spin, RothC_site_ex, RothC_env_in_ex)

#7.2. Simulation

out_multi_rothC <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex[1:12,1),3), Cin_sl=RothC_Cin_ex_sl_spin,
Nin_sl=RothC_Nin_ex_sl_spin, calcN=TRUE, tsteps="monthly"”, multisite=TRUE,
sitelist=list("normal”,"half_input”,"double_Cin"), spinup=TRUE, t_spin_s1=36000,
C0=c(0,9,0,0,20), No=c(0,0,0,0,2), CN_spin=c(100,100,50,50,10))

#7.3 Results

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
for (listelement in c(1:3))
{
lwidth<-1
if (listelement==2)1lwidth<-3
printN<-rowSums(out_multi_rothC[[listelement]]$N)
printseg<-seq.int(1L,length(printN),100L)
printC<-rowSums(out_multi_rothC[[listelement]]1$C)
plot(printN[printseq], axes=FALSE, col=1,type="1", lwd=lwidth,
lty=listelement+2,cex.lab=2,xlab="",6ylab="",6ylim=c (@, 30))
par (new=TRUE)
plot(printCLprintseq], axes=FALSE, col=2,type="1", lwd=lwidth,
lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,180))
par (new=TRUE)
}
axis(side=2, pos=0,
labels=(0:6)*5, at=(0:6)*30, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1)
axis(side=4, pos=360,
labels=(0:6)*30, at=(0:6)*30, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)
axis(side=1, pos=0,
labels= (0:6)*6000 , at=(0:6)*60, hadj=0.5, padj=0, cex.axis=2)
title(ylab=expression("total N [t ha"*-1x"]"), line=2, cex.lab=2)
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mtext (expression(”"total C [t ha"*-1%x"]"), side=4, line=2, cex=2,col=2)

title(xlab="time", line=2, cex.lab=2)

legend(x=120,y=140,1legend=c("normal”, "half_input”, "double_Cin"),1lty=c(3,4,5),
lwd=c(1,3,1))

par(oldpar) #back to old par

Yasso_CO_ex_sl Initial Soil Organic Carbon Data for Yasso using Multiple Sites

Description

Fictional initial soil organic carbon for the Yasso SOC model (any Yasso version). The initial data
constists of a list of 3 vectors, each containing five numeric entries, one for each model pool.

Usage

Yasso_C0_ex_sl

Format

A list of 3 vectors, each containing five numeric entries

See Also

sorcering.

Yasso_Cin_ex_wood_u_sl
Carbon Input Data for Yasso using Multiple Sites

Description

Fictional carbon input for the Yasso SOC model (Yassol5 or Yasso20). The input data constists of a
list of 3 lists, each representing a site and containing 2 sublists. Each sublist represents a wood input
layer and contains 4 matrices. Each matrix represents an uncertainty repetition and has 5 columns
and 60 rows. Columns stand for pools and rows for simulation time steps.

Usage

Yasso_Cin_ex_wood_u_sl

Format

A list of 3 lists with 2 sublists each, each sublist containing 4 matrices with 5 columns and 60 rows

See Also

sorcering.
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Yasso_N0o_ex_sl Initial Soil Organic Nitrogen Data for Yasso using Multiple Sites

Description
Fictional initial soil organic nitrogen for the Yasso SOC model (any Yasso version). The initial data
constists of a list of 3 vectors, each containing five numeric entries, one for each model pool.
Usage

Yasso_N@_ex_sl

Format

A list of 3 vectors, each containing five numeric entries

See Also

sorcering.

Yasso_Nin_ex_wood_u_sl
Nitrogen Input Data for Yasso using Multiple Sites

Description

Fictional nitrogen input for the Yasso SOC model (Yassol5 or Yasso20). The input data constists
of a list of 3 lists, each representing a site and containing 2 sublists. Each sublist represents a wood
input layer and contains 4 matrices. Each matrix represents an uncertainty repetition and has 5
columns and 60 rows. Columns stand for pools and rows for simulation time steps.

Usage

Yasso_Nin_ex_wood_u_sl

Format

A list of 3 lists with 2 sublists each, each sublist containing 4 matrices with 5 columns and 60 rows

See Also

sorcering.
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