Package 'sodavis'

October 14, 2022

Type Package

Title SODA: Main and Interaction Effects Selection for Logistic Regression, Quadratic Discriminant and General Index Models

Version 1.2

Depends R (>= 3.0.0), nnet, MASS, mvtnorm

Date 2018-05-12

Author Yang Li, Jun S. Liu

Maintainer Yang Li <yangli.stat@gmail.com>

Description Variable and interaction selection are essential to classification in high-dimensional setting. In this package, we provide the implementation of SODA procedure, which is a forwardbackward algorithm that selects both main and interaction effects under logistic regression and quadratic discriminant analysis. We also provide an extension, S-SODA, for dealing with the variable selection problem for semi-parametric models with continuous responses.

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2018-05-13 21:24:03 UTC

R topics documented:

mich_lung	2
pumadyn	
soda	3
soda_trace_CV	
s_soda	5
s_soda_model	6
s_soda_pred	7
s_soda_pred_grid	8
	- 9

Index

mich_lung

Description

Gene expression data of 5217 genes for n = 86 subjects, with 62 subjects in "good outcomes" (class 1) and 24 subjects in "poor outcomes" (class 2), from the microarray study of Beer et al. (2002).

Usage

data(mich_lung)

Format

Response variable vector and design matrix on 86 observations for expression of 5217 genes.

References

Beer et al. (1999) Gene-expression profiles predict survival of patients with lung adenocarcinoma. *Nature medicine*, 286(8): 816-824.

pumadyn

Pumadyn dataset

Description

This is a dataset synthetically generated from a realistic simulation of the dynamics of a Unimation Puma 560 robot arm.

Usage

data(pumadyn)

Format

Response variable vector and design matrix on 4499 in-sample and 3693 out-sample observations for 32 predictor variables.

References

Corke, P. I. (1996). A Robotics Toolbox for MATLAB. *IEEE Robotics and Automation Magazine*, 3 (1): 24-32.

soda

Description

SODA is a forward-backward variable and interaction selection algorithm under logistic regression model with second-order terms. In the forward stage, a stepwise procedure is conducted to screen for important predictors with both main and interaction effects, and in the backward stage SODA remove insignificant terms so as to optimize the extended BIC (EBIC) criterion. SODA is applicable for variable selection for logistic regression, linear/quadratic discriminant analysis and other discriminant analysis with generative model being in exponential family.

Usage

soda(xx, yy, norm = F, debug = F, gam = 0, minF = 3)

Arguments

xx	The design matrix, of dimensions $n * p$, without an intercept. Each row is an observation vector.
уу	The response vector of dimension n * 1.
norm	Logical flag for xx variable quantile normalization to standard normal, prior to performing SODA algorithm. Default is norm=FALSE. Quantile-normalization is suggested if the data contains obvious outliers.
debug	Logical flag for printing debug information.
gam	Tuning paramter gamma in extended BIC criterion. EBIC for selected set S: EBIC = -2 * log-likelihood + S * log(n) + 2 * S * gamma * log(p)
minF	Minimum number of steps in forward interaction screening. Default is minF=3.

Value

EBIC	Trace of extended Bayesian information criterion (EBIC) score.
Туре	Trace of step type ("Forward (Main)", "Forward (Int)", "Backward").
Var	Trace of selected variables.
Term	Trace of selected main and interaction terms.
final_EBIC	Final selected term set EBIC score.
final_Var	Final selected variables.
final_Term	Final selected main and interaction terms.

Author(s)

Yang Li, Jun S. Liu

References

Li Y, Liu JS. (2017). Robust Variable and Interaction Selection for Logistic Regression and Multiple Index Models. *Technical Report*.

Examples

```
# # (uncomment the code to run)
# # simulation study with 1 main effect and 2 interactions
\# N = 250;
\# p = 1000;
\# r = 0.5;
# s = 1;
# H = abs(outer(1:p, 1:p, "-"))
# S = s * r^{H};
# S[cbind(1:p, 1:p)] = S[cbind(1:p, 1:p)] * s
# xx = as.matrix(data.frame(mvrnorm(N, rep(0,p), S)));
\# zz = 1 + xx[,1] - xx[,10]^{2} + xx[,10]*xx[,20];
# yy = as.numeric(runif(N) < exp(zz) / (1+exp(zz)))</pre>
# res_SODA = soda(xx, yy, gam=0.5);
# cv_SODA = soda_trace_CV(xx, yy, res_SODA)
# cv_SODA
# # Michigan lung cancer dataset
# data(mich_lung);
# res_SODA = soda(mich_lung_xx, mich_lung_yy, gam=0.5);
# cv_SODA = soda_trace_CV(mich_lung_xx, mich_lung_yy, res_SODA)
# cv_SODA
```

soda_trace_CV

Calculate a trace of cross-validation error rate for SODA forwardbackward procedure

Description

This function takes a SODA result variable as input, and calculates the cross-validation error for each step of the SODA procedure.

Usage

soda_trace_CV(xx, yy, res_SODA)

Arguments

хх	The design matrix, of dimensions n * p, without an intercept. Each row is an observation vector.
уу	The response vector of dimension n * 1.
res_SODA	SODA result varaible. See example below.

s_soda

Author(s)

Yang Li, Jun S. Liu

Examples

```
# Michigan lung cancer dataset (uncomment the code to run)
#data(mich_lung);
#res_SODA = soda(mich_lung_xx, mich_lung_yy, gam=0.5);
#cv_SODA = soda_trace_CV(mich_lung_xx, mich_lung_yy, res_SODA)
#cv_SODA
```

s_soda

S-SODA algorithm for general index model variable selection

Description

S-SODA is an extension of SODA to conduct variable selection for general index models with continuous response. S-SODA first evenly discretizes the continuous response into H slices, and then apply SODA on the discretized response. Compared with existing variable selection methods based on the Sliced Inverse Regression (SIR), SODA requires neither the linearity nor the constant variance condition and is much more robust.

Usage

 $s_soda(x, y, H = 5, gam = 0, minF = 3, norm = F, debug = F)$

Arguments

x	The design matrix, of dimensions n * p, without an intercept. Each row is an observation vector.
У	The response vector of dimension n * 1.
Н	The number of slices.
gam	EBIC penalization coefficient parameter for SODA.
minF	Minimum number of steps in forward interaction screening. Default is minF=3.
norm	If set as True, S-SODA first marginally quantile-normalize each predictor to the standard normal distribution.
debug	If print debug information.

Value

BIC	Trace of extended Bayesian information criterion (EBIC) score.
Var	Trace of selected variables.
Term	Trace of selected main and interaction terms.
best_BIC	Final selected term set EBIC score.
best_Var	Final selected variables.
best_Term	Final selected main and interaction terms.

Examples

```
# # (uncomment the code to run)
# # Simulation: x1 / (1 + x2^2) example
\# N = 500
# x1 = runif(N, -3, +3)
# x2 = runif(N, -3, +3)
\# x3 = x1 / exp(x2^2) + rnorm(N, 0, 0.2)
# ss = s_soda_model(cbind(x1,x2), x3, H=25)
#
# # true surface in grid
\# MM = 50
# xx1 = seq(-3, +3, length.out = MM)
# xx2 = seq(-3, +3, length.out = MM)
# yyy = matrix(0, MM, MM)
# for(i in 1:MM)
    for(j in 1:MM)
#
#
      yyy[i,j] = xx1[i] / exp(xx2[j]^2)
#
# # predicted surface
# ppp = s_soda_pred_grid(xx1, xx2, ss, po=1)
# par(mfrow=c(1, 2), mar=c(1.75, 3, 1.25, 1.5))
# persp(xx1, xx2, yyy, theta=-45, xlab="X1", ylab="X2", zlab="Y")
# persp(xx1, xx2, ppp, theta=-45, xlab="X1", ylab="X2", zlab="Pred")
#
# # Pumadyn dataset
# #data(pumadyn);
# #s_soda(pumadyn_isample_x, pumadyn_isample_y, H=25, gam=0)
```

s_soda_model S-SODA model estimation.

Description

S-SODA assumes within each slice the X vector follow multivariate normal distribution. This function estimates the mean vector and covariance matrix of X for each slice.

Usage

 $s_soda_model(x, y, H = 10)$

Arguments

x	The design matrix, of dimensions n $*$ p, without an intercept. Each row is an observation vector.
У	The response vector of dimension n * 1.
Н	The number of slices.

6

s_soda_pred

Value

int_h	Slice index.
int_p	Proportion of samples in each slice.
int_l	Length of each slice (max - min response).
int_m	Mean vector of covariates in each slice.
int_v	Covariance matrix of covariates in each slice.

s_soda_pred

Predict the response y using S-SODA model.

Description

S-SODA assumes within each slice the X vector follow multivariate normal distribution. This function predicts the response y by reverting the P(X | slice(y)) to P(slice(y) | X), and estimates the E(y|X) as sum_h E(y | slice(y)=h, X) P(slice(y)=h | X)

Usage

s_soda_pred(x, model, po = 1)

Arguments

x	The design matrix, of dimensions n $*$ p, without an intercept. Each row is an observation vector.
model	S-SODA model estimated from s_soda_model function.
ро	Order of terms in X to approximate $E(y slice(y)=h, X)$. If po=0, $E(y slice(y)=h, X)$ is the mean of y in slice h. If po=1, $E(y slice(y)=h, X)$ is the linear regression of X to predict y in slice h. If po=2, the linear regression also include 2nd order terms of X.

Value

Predicted response.

s_soda_pred_grid

Description

Calls function s_soda_pred in a 2-dimensional grid defined by x1 and x2.

Usage

```
s_soda_pred_grid(xx1, xx2, model, po = 1)
```

Arguments

xx1	Grid breakpoints for predictor 1.
xx2	Grid breakpoints for predictor 2.
model	S-SODA model estimated from s_soda_model.
ро	Order of terms in X to approximate E(y slice(y)=h, X).

Value

Predicted response.

Index

* Prediction s_soda_pred, 7 s_soda_pred_grid, 8 * S-SODA s_soda, 5 s_soda_model, 6 s_soda_pred, 7 s_soda_pred_grid, 8 * SODA soda, 3 soda_trace_CV, 4 * cross-validation soda_trace_CV, 4 * datasets mich_lung, 2 pumadyn, 2 * general index model s_soda, 5 * interaction_selection s_soda, 5 soda, 3 * logistic_regression soda, 3 * quadratic_discriminant_analysis soda, 3 mich_lung, 2 mich_lung_xx (mich_lung), 2 mich_lung_yy (mich_lung), 2 pumadyn, 2 pumadyn_isample_x (pumadyn), 2 pumadyn_isample_y (pumadyn), 2 pumadyn_osample_x (pumadyn), 2 pumadyn_osample_y (pumadyn), 2 s_soda, 5 s_soda_model, 6 s_soda_pred, 7 s_soda_pred_grid, 8

soda, 3
soda_trace_CV, 4