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smoothie-package Two-dimensional Field Smoothing

Description

smoothie contains code originally contained as part of the package, SpatialVx; a package for per-
forming weather forecast verification spatially. However, the code is potentially useful for much
wider purposes than spatial weather forecast verification. It contains functions to perform convolu-
tion smoothing using several different types of kernels.
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Details

The manual for this package is given by Gilleland (2013).

Primary functions include:

Fourier2d, kernel2dsmooth and kernel2dmeitsjer

As well as the following wrapper functions, which can be useful in the context of having functions
that take the same set of arguments (e.g., with the smoothing parameter as the second argument
with the name lambda) for ease of allowing a user to supply their own desired kernel to a function
as is utilized, for example, in the SpatialVx package.

hoods2dsmooth (neighborhood or boxcar kernel)

gauss2dsmooth (Gaussian kernel)

disk2dsmooth (Disk kernel)

identity2dsmooth (No smoothing, just returns the field)

See their help files for more information.

The functions utilize the convolution theorem along with the Fast Fourier Transform (FFT) to
smooth the field (Hastie and Tibshirani, 1990; Souza, 2010)

Author(s)

Eric Gilleland

References

Gilleland, E. (2013) Two-dimensional kernel smoothing: Using the R package smoothie. NCAR
Technical Note, TN-502+STR, 17pp., doi:10.5065/D61834G2.

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. Chapman and Hall/CRC
Monographs on Statistics and Applied Probability 43, 335pp.

Souza, C. R. (2010) Kernel Functions for Machine Learning Applications. 17 Mar 2010. Web.
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html.

Examples

## See help files for above named functions and datasets
## for specific examples.

Fourier2d Fast Fourier Transform (FFT) of a 2-d Gridded Field

Description

Function to compute the Fast Fourier Transform (FFT) of a gridded field. The field is first expanded,
and zero padded.

https://doi.org/10.5065/D61834G2
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
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Usage

Fourier2d(x, bigdim = NULL, kdim = NULL)

Arguments

x n by m matrix giving the gridded field to transform.

bigdim (optional) numeric vector of length 2. If NULL, it will be found from kdim. One
of this argument or kdim must be given.

kdim (optional) numeric vector of length 2 giving the dimension of the kernel to be ap-
plied. If bigdim is NULL, then the optimal dimension for the FFT is calculated
from the dimension of x and kdim.

Details

The gridded field is expanded to bigdim, which is the nearest power of 2 above N=dim( x) + kdim
- 1 if N <= 1024, or to the nearest multiple of 512 otherwise, if bigdim is not supplied. x is placed
in the upper left corner of a matrix of zeros that has dimension bigdim. Missing values are replaced
by zero. The FFT is conducted on the expanded/zero-padded gridded field. This is intended to be
used more internally for the kernel2dsmooth function in order to reduce the number of FFT’s that
need be calculated (e.g., if performed for the same threshold over several neighborhood lengths). It
is currently not used by SpatialVx function anymore, but may still be usefull.

Value

A possibly complex matrix of size bigdim of the Fourier transformed gridded field is returned.

Author(s)

Eric Gilleland

See Also

fft, kernel2dsmooth, kernel2dmeitsjer

Examples

look <- matrix( 0, 10, 12)
look[4,7] <- 1
lookFFT <- Fourier2d( look, kdim=c(3,3))
# Now, call 'kernel2dsmooth' with a neighborhood boxcar kernel that averages the
# nearest grid squares (i.e., neighborhood length of 3). That is, a square
# of 1/(3^2) = 1/9 ~ 0.111111 with length 3 surrounding the 1 in 'look'.
kernel2dsmooth( look, kernel.type="boxcar", n=3, X=lookFFT)

# Note that the above could have been done with just:
kernel2dsmooth( look, kernel.type="boxcar", n=3)
# But, in the previous one, one less FFT was calculated.
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hoods2dsmooth Wrapper Functions for kernel2dsmooth

Description

Wrapper functions for kernel2dsmooth to perform specific convolution smooths of 2-d fields.

Usage

hoods2dsmooth(x, lambda, W = NULL, setup = FALSE, ...)
gauss2dsmooth(x, lambda, W = NULL, setup = FALSE, ...)
disk2dsmooth(x, lambda, W = NULL, setup = FALSE, ...)
identity2dsmooth(x, lambda = 0, W = NULL, setup = FALSE, ...)

Arguments

x numeric matrix giving the field to be smoothed.

lambda single numeric giving the smoothing parameter. In the case of hoods2dsmooth,
this is the neighborhood length so that the result is that each point is an average
over the nearest lambda^2 neighbors. For gauss2dsmooth, this is the sigma
parameter, and for disk2dsmooth, this is the radius of the disk. Not used by
identity2dsmooth.

W (optional) if the FFT of the kernel weights have already been calculated for the
smooth, they can be passed here. Not used by identity2dsmooth.

setup logical, should only the FFT of the kernel weights be returned (i.e., instead of
the smoothed x field)? Should not be used if W is supplied, or you may not get
what you want (i.e., precedence is given to W’s being supplied). Not used by
identity2dsmooth.

... optional arguments to the specific kernel type in the call to kernel2dsmooth, or
really, to kernel2dmeitsjer. Not used by identity2dsmooth. Note that for
gauss2dsmooth, both nx and ny must be provided.

Details

This function is a wrapper for kernel2dsmooth. See its help file for more details. These functions
can be useful for functions that allow a user to smooth a field with a choice of smoothing functions.
Makes use of the convolution theorem with the fast Fourier transform for computational efficiency
(Ritter and Wilson, 2001; Barrett and Myers, 2004). Missing values are set to zero, and borders are
zero-padded to an optimal amount. See Hastie and Tibshirani (1990) for smoothing functions in the
context of statistical analysis.

hoods2dsmooth is a wrapper to kernel2dsmooth that employs the boxcar kernel with neighbor-
hood length as the smoothing parameter, lambda. This is the type of kernel smoothing, for example,
proposed by Roberts and Lean (2008) and used in Ebert (2008) in the context of spatial weather fore-
cast verification (and used by the SpatialVx package). The smoothing parameter lambda should be
an odd positive integer (though it need not be an actual integer recognized by R). If it is not, then
one of several things will happen depending on its value, and a warning is generated. If it is not an
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integer (i.e., if floor(lambda) != lambda), the floor of lambda is taken. If it is even (possibly after
flooring), one is subtracted from it. If it is less than one (possibly after flooring and/or subtracting
one), it is set to one (note that if lambda = 1, the field x is returned untouched).

gauss2dsmooth is a wrapper to kernel2dsmooth that employs the Gaussian kernel with smoothing
parameter, lambda, equal to the sigma parameter. This is the type of smoothing applied originally
for the practically perfect hindcast method in the context of spatial weather forecast verification (see
Ebert, 2008). If W is not specified, then one of either h or both nx and ny must be given (see the help
file for kernel2dmeitsjer).

disk2dsmooth is a wrapper to kernel2dsmooth that calls the disk kernel with smoothing parameter
r (the radius of the disk). This is the type of smoothing applied in Davis et al. (2006a, 2006b) in the
context of feature-based spatial weather forecast verification.

identity2dsmooth simply returns the field without smoothing it. Provided for convenience.

Value

If W is not supplied and setup is TRUE, then a matrix is returned with dimensions chosen to optimize
computational efficiency. Otherwise, a matrix of the same dimension as x is returned giving the
smoothed version of the field.

Author(s)

Eric Gilleland

References

Barrett, H. H. and Myers, K. J. (2004) Foundations of Image Science. Wiley Series in Pure and
Applied Optics, Editor: B. E. A. Saleh, Hoboken, New Jersey, 1540pp.

Davis, C. A., Brown, B. G. and Bullock, R. G. (2006a) Object-based verification of precipitation
forecasts, Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134,
1772–1784.

Davis, C. A., Brown, B. G. and Bullock, R. G. (2006b) Object-based verification of precipitation
forecasts, Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 1785–1795.

Ebert, E. E. (2008) Fuzzy verification of high resolution gridded forecasts: A review and proposed
framework. Meteorol. Appl., 15, 51–64. doi:10.1002/met.25.

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. Chapman and Hall/CRC
Monographs on Statistics and Applied Probability 43, 335pp.

Ritter, G. X. and Wilson, J. N. (2001) Handbook of Computer Vision Algorithms in Image Algebra.
2nd Edition, CRC Press, Boca Raton, Florida, U.S.A., 417pp.

Roberts, N. M. and Lean, H. W. (2008) Scale-selective verification of rainfall accumulations from
high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97. doi:10.1175/2007MWR2123.1.

See Also

kernel2dsmooth, kernel2dmeitsjer, fft

https://doi.org/10.1002/met.25
https://doi.org/10.1175/2007MWR2123.1
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Examples

x <- y <- matrix( 0, 50, 50)
x[ sample(1:50,10), sample(1:50,10)] <- rexp( 100, 0.25)
y <- disk2dsmooth( x=x, lambda=6.5)
x <- gauss2dsmooth( x=x, lambda=3, nx=25, ny=25)
## Not run:
##
## The following examples are specific to the SpatialVx package.
##
par( mfrow=c(1,2))
image.plot( x, col=tim.colors(256))
image.plot( y, col=tim.colors(256))

hold <- make.SpatialVx(x, y, thresholds=c(0.1, 0.5))
look <- hoods2d( hold, which.methods=c("fss"), levels=c(1, 3, 20),

smooth.fun="gauss2dsmooth", smooth.params=list(nx=601, ny=501))
plot( look)

data(pert000)
data(pert004)
data(ICPg240Locs)
# Do the neighborhood methods with averaging performed over
# a radius instead of the lambda^2 nearest neighbors.
# The smoothing parameters are determined by the levels argument,
# and the others are passed via smooth.params.
hold <- make.SpatialVx( pert000, pert004, thresholds=c(1,2,5,10,20,50),

loc=ICPg240Locs, projection=TRUE, map=TRUE,
field.type="Precipitation", units="mm/h",
data.name=c("ICP Fake", "pert000", "pert004"))

look <- hoods2d(hold, levels=c(1, 3, 9, 17, 33, 65, 129, 257),
smooth.fun="disk2dsmooth", verbose=TRUE)

look

## End(Not run)

kernel2dmeitsjer Create a Kernel Matrix

Description

Create a kernel matrix to be used in a 2-D convolution smooth (e.g., using kernel2dsmooth).

Usage

kernel2dmeitsjer(type = "gauss", ...)

Arguments

type character name of the kernel to be created.
... Other arguments to the specific kernel type. See Details section below.
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Details

The specific types of kernels that can be made are as follows. In each case, h=||x-x_c|| is the
distance from the center of the kernel. Every kernel that requires single numerics nx and ny be
specified returns an nx by ny metrix. Distances h are found by setting up a grid based on 1 to
nx and 1 to ny denoting the points as (xgrid, ygrid), finding the center of the grid as (x.center,
y.center)=(nx/2,ny/2), and then h = sqrt( (xgrid - x.center)^2 + (ygrid - y.center)^2). For kernels
that better reflect distance (e.g., using great-circle distance, anisotropic distances, etc.), the matrix
h can be passed instead of nx and ny, but only for those kernels that take h as an argument. In
each case with sigma as an argument, sigma is the smoothing parameter. There are many kernel
functions allowed here, and not all of them make sense for every purpose.

“average” gives a kernel that will give an average of the nearest neighbors in each direction (can
take an average grid points further in the x- direction than the y-direction, and vice versa). Requires
that nx and ny be specified, and the resulting kernel is defined by an nx by ny matrix with each
element equal to 1/(nx*ny). If nx = ny, then the result is the same as the boxcar kernel below.

“boxcar” the boxcar kernel is an n by n matrix of 1/n^2. This results in a neighborhood smoothing
when used with kernel2dsmooth giving the type of smoothed fields utilized, e.g., in Roberts and
Lean (2008) and Ebert (2008). Requires that n be specified. Note that usually the boxcar is a square
matrix of ones, which gives the sum of the nearest n^2 grid points. This gives the average.

“cauchy” The Cauchy kernel is given by K(sigma)=1/(1+h^2/sigma). Requires the arguments nx,
ny and sigma. See Souza (2010) for more details.

“disk” gives a circular averaging (pill-box) kernel (aka, disk kernel). Similar to “average” or “box-
car”, but this kernel accounts for a specific distance in all directions from the center (i.e., an average
of grid squares within a circular radius of the central point). This results in the convolution radius
smoothing applied in Davis et al. (2006a,2006b). Requires that r (the desired radius) be supplied,
and a square matrix of appropriate dimension is returned.

“epanechnikov” The Epanechnikov kernel is defined by max(0, 3/4*(1-h/(sigma^2))). See, e.g.,
Hastie and Tibshirani (1990). Requires arguments nx, ny, and sigma.

“exponential” The exponential kernel is given by K(sigma) = a*exp(-h/(2*sigma)). Requires the
arguments nx, ny and sigma, and optionally takes the argument a (default is a=1). An nx by ny
matrix is returned. See Souza (2010) for more details.

“gauss” The Gaussian kernel defined by K(sigma) = 1/(2*pi*sigma^2)*exp(-h/(2*sigma)). Re-
quires the arguments nx, ny and sigma be specified. The convolution with this kernel results in a
Gaussian smoothed field as used in the practically perfect hindcast method of Brooks et al. (1998)
(see also Ebert 2008) and studied by Sobash et al (2011) for spatial forecast verification purposes.
Returns an nx by ny matrix.

“laplacian” Laplacian Operator kernel, which gives the sum of second partial derivatives for each
direction. It is often used for edge detection because it identifies areas of rapid intensity change.
Typically, it is first applied to a field that has been smoothed first by a Gaussian kernel smoother
(or an approximation thereof; cf. type “LoG” below). This method optionally the parameter alpha,
which controls the shape of the Laplacian kernel, which must be between 0 and 1 (inclusive), or
else it will be set to 0 (if < 0) or 1 (if > 1). Returns a 3 by 3 kernel matrix.

“LoG” Laplacian of Gaussian kernel. This combines the Laplacian Operator kernel with that of
a Gaussian kernel. The form is given by K(sigma) = -1/(pi*sigma^4)*exp(-h/(2*sigma^2))*(1-
h/(2*sigma^2)). Requires the arguments nx, ny and sigma be specified. Returns an nx by ny matrix.
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“minvar” A minimum variance kernel, which is given by 3/8*(3 - 5*h/sigma^2) if h <= 1, and zero
otherwise (see, e.g., Hastie and Tibshirani, 1990). Requires the arguments nx, ny, and sigma be
specified. Returns an nx by ny matrix.

“multiquad” The multiquadratic kernel is similar to the rational quadratic kernel, and is given by
K(a) = sqrt(h + a^2). The inverse is given by 1/K(a). Requires the arguments nx, ny and a be
specified. Optionally takes a logical named inverse determining whether to return the inverse mul-
tiquadratic kernel or not.

“prewitt” Prewitt filter kernel, which emphasizes horizontal (vertical) edges through approximation
of a vertical (horizontal) gradient. Optionally takes a logical argument named transpose, which if
FALSE (default) emphasis is on horizontal, and if TRUE emphasis is on vertical. Returns a 3 by 3
matrix whose first row is all ones, second row is all zeros, and third row is all negative ones for the
transpose=FALSE case, and the transpose of this matrix in the transpose=TRUE case.

“power” The power kernel is defined by K(p) = -h^p. The log power kernel is similarly defined
as K(p) = -log(h^p+1). Requires specification of the arguments nx, ny and p. Alternatively takes
the logical do.log to determine whether the log power kernel should be returned (TRUE) or not
(FALSE). Default if not passed is to do the power kernel. Returns an nx by ny matrix. See Souza
(2010) for more details.

“radial” The radial kernel is returns a*|h|^(2*m-d)*log(|h|) if d is even and a*|h|^(2*m-d) otherwise.
Requires arguments a, m, d nx and ny. Replaces any missing values with zero.

“ratquad” The rational quadratic kernel is used as an alternative to the Gaussian, and is given by
K(a) = 1 - h/(h+a). Requires the arguments nx, ny and a, and returns an nx by ny matrix. See Souza
(2010) for more details.

“sobel” Same as prewitt, except that the elements 1,2 and 3,2 are replaced by two and neative two,
resp.

“student” The generalized Student’s t kernel is defined by K(p)=1/(1+h^p). Requires the arguments
nx, ny and p be specified. Returns an nx by ny matrix. See Souza (2010) for more details.

“unsharp” Unsharp contrast enhancement filter. This is simply given by a 3 by 3 matrix of al zeros,
except for a one in the center subtracted by a laplacian operator kernel matrix. Requires the same
arguments as for “laplacian”. Returns a 3 by 3 matrix.

“wave” The wave kernel is defined by K(phi) = phi/h * sin( h/phi). Requires arguments nx, ny and
phi be specified. Returns an nx by ny matrix.

“oval” The oval kernel is like it sounds, it yields an oval-shaped kernel. Allows arguments a (scale
in x-direction), b (scale in y-direction), n (size of kernel in x-direction) and m (size of kernel in
y-direction). Default for a and b is 1, and default for n is the maximum of a and b plus two. The
default for m is to be identical to n.

Value

matrix of dimension determined by the specific type of kernel, and possibly user passed arguments
giving the kernel to be used by kernel2dsmooth.

Author(s)

Eric Gilleland
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References

Brooks, H. E., Kay, M., and Hart, J. A. (1998) Objective limits on forecasting skill of rare events.
19th Conf. Severe Local Storms. Amer. Met. Soc., 552–555.

Davis, C. A., Brown, B. G. and Bullock, R. G. (2006a) Object-based verification of precipitation
forecasts, Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134,
1772–1784.

Davis, C. A., Brown, B. G. and Bullock, R. G. (2006b) Object-based verification of precipitation
forecasts, Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 1785–1795.

Ebert, E. E. (2008) Fuzzy verification of high resolution gridded forecasts: A review and proposed
framework. Meteorol. Appl., 15, 51-64. doi:10.1002/met.25.

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. Chapman and Hall/CRC
Monographs on Statistics and Applied Probability 43, 335pp.

Roberts, N. M. and Lean, H. W. (2008) Scale-selective verification of rainfall accumulations from
high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97. doi:10.1175/2007MWR2123.1.

Sobash, R. A., Kain, J. S. Bright, D. R. Dean, A. R. Coniglio, M. C. and Weiss, S. J. (2011)
Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phe-
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Souza, C. R. (2010) Kernel Functions for Machine Learning Applications. 17 Mar 2010. Web.
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html.

See Also

fft, kernel2dsmooth

Examples

x <- matrix( 0, 10, 12)
x[4,5] <- 1
kmat <- kernel2dmeitsjer( "average", nx=7, ny=5)
kernel2dsmooth( x, K=kmat)

##
## Can also call 'kernel2dsmooth' directly.
##
kernel2dsmooth( x, kernel.type="boxcar", n=5)
kernel2dsmooth( x, kernel.type="cauchy", sigma=20, nx=10, ny=12)
kernel2dsmooth( x, kernel.type="disk", r=3)
kernel2dsmooth( x, kernel.type="epanechnikov", nx=10, ny=12, sigma=4)
kernel2dsmooth( x, kernel.type="exponential", a=0.1, sigma=4, nx=10, ny=12)
kernel2dsmooth( x, kernel.type="gauss", nx=10, ny=12, sigma=4)
kernel2dsmooth( x, kernel.type="laplacian", alpha=0)
kernel2dsmooth( x, kernel.type="LoG", nx=10, ny=12, sigma=1)
kernel2dsmooth( x, kernel.type="minvar", nx=10, ny=12, sigma=4)
kernel2dsmooth( x, kernel.type="multiquad", a=0.1, nx=10, ny=12)
kernel2dsmooth( x, kernel.type="power", p=0.5, nx=10, ny=12)
kernel2dsmooth( x, kernel.type="prewitt")
kernel2dsmooth( x, kernel.type="prewitt", transpose=TRUE)
kernel2dsmooth( x, kernel.type="radial", a=1, m=2, d=1, nx=10, ny=12)

https://doi.org/10.1002/met.25
https://doi.org/10.1175/2007MWR2123.1
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html


10 kernel2dmeitsjer

kernel2dsmooth( x, kernel.type="ratquad", a=0.1, nx=10, ny=12)
kernel2dsmooth( x, kernel.type="sobel")
kernel2dsmooth( x, kernel.type="sobel", transpose=TRUE)
kernel2dsmooth( x, kernel.type="student", p=1.5, nx=10, ny=12)
kernel2dsmooth( x, kernel.type="unsharp", alpha=0)
kernel2dsmooth( x, kernel.type="wave", phi=45, nx=10, ny=12)

## Not run:
## the lennon image is in package 'fields'.
data(lennon)
kmat <- kernel2dmeitsjer( "average", nx=7, ny=5)
lennon.smAvg <- kernel2dsmooth( lennon, K=kmat)
## Can also just make a call to kernel2dsmooth, which
## will call this function.
lennon.smBox <- kernel2dsmooth( lennon, kernel.type="boxcar", n=7)
lennon.smDsk <- kernel2dsmooth( lennon, kernel.type="disk", r=5)
par( mfrow=c(2,2), mar=rep(0.1,4))
image.plot( lennon, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smAvg, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smBox, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smDsk, col=tim.colors(256), axes=FALSE)

lennon.smEpa <- kernel2dsmooth( lennon, kernel.type="epanechnikov", nx=10, ny=10, sigma=20)
lennon.smGau <- kernel2dsmooth( lennon, kernel.type="gauss", nx=10, ny=10, sigma=20)
lennon.smMvr <- kernel2dsmooth( lennon, kernel.type="minvar", nx=10, ny=10, sigma=20)
par( mfrow=c(2,2), mar=rep(0.1,4))
image.plot( lennon, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smEpa, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smGau, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smMvr, col=tim.colors(256), axes=FALSE)

lennon.smLa0 <- kernel2dsmooth( lennon, kernel.type="laplacian", alpha=0)
lennon.smLap <- kernel2dsmooth( lennon, kernel.type="laplacian", alpha=0.999)
lennon.smLoG <- kernel2dsmooth( lennon, kernel.type="LoG", nx=10, ny=10, sigma=20)
par( mfrow=c(2,2), mar=rep(0.1,4))
image.plot( lennon, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smLa0, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smLap, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smLoG, col=tim.colors(256), axes=FALSE)

lennon.smPrH <- kernel2dsmooth( lennon, kernel.type="prewitt")
lennon.smPrV <- kernel2dsmooth( lennon, kernel.type="prewitt", transpose=TRUE)
lennon.smSoH <- kernel2dsmooth( lennon, kernel.type="sobel")
lennon.smSoV <- kernel2dsmooth( lennon, kernel.type="sobel", transpose=TRUE)
par( mfrow=c(2,2), mar=rep(0.1,4))
image.plot( lennon.smPrH, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smPrV, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smSoH, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smSoV, col=tim.colors(256), axes=FALSE)

lennon.smUsh <- kernel2dsmooth( lennon, kernel.type="unsharp", alpha=0.999)
par( mfrow=c(2,1), mar=rep(0.1,4))
image.plot( lennon, col=tim.colors(256), axes=FALSE)
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image.plot( lennon.smUsh, col=tim.colors(256), axes=FALSE)

lennon.smRad1 <- kernel2dsmooth( lennon, kernel.type="radial", a=2, m=2, d=1, nx=10, ny=10)
lennon.smRad2 <- kernel2dsmooth( lennon, kernel.type="radial", a=2, m=2, d=2, nx=10, ny=10)
par( mfrow=c(2,1), mar=rep(0.1,4))
image.plot( lennon.smRad1, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smRad2, col=tim.colors(256), axes=FALSE)

lennon.smRQd <- kernel2dsmooth( lennon, kernel.type="ratquad", a=0.5, nx=10, ny=10)
lennon.smExp <- kernel2dsmooth( lennon, kernel.type="exponential", a=0.5, sigma=20, nx=10, ny=10)
lennon.smMQd <- kernel2dsmooth( lennon, kernel.type="multiquad", a=0.5, nx=10, ny=10)
par( mfrow=c(2,2), mar=rep(0.1,4))
image.plot( lennon.smGau, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smRQd, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smExp, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smMQd, col=tim.colors(256), axes=FALSE)

lennon.smIMQ <- kernel2dsmooth( lennon, kernel.type="multiquad", a=0.5, nx=10, ny=10, inverse=TRUE)
par( mfrow=c(2,1), mar=rep(0.1,4))
image.plot( lennon.smMQd, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smIMQ, col=tim.colors(256), axes=FALSE)

lennon.smWav <- kernel2dsmooth( lennon, kernel.type="wave", phi=45, nx=10, ny=10)
par( mfrow=c(1,1), mar=rep(0.1,4))
image.plot( lennon.smWav, col=tim.colors(256), axes=FALSE)

lennon.smPow <- kernel2dsmooth( lennon, kernel.type="power", p=0.5, nx=10, ny=10)
lennon.smLpw <- kernel2dsmooth( lennon, kernel.type="power", p=0.5, nx=10, ny=10, do.log=TRUE)
par( mfrow=c(2,1), mar=rep(0.1,4))
image.plot( lennon.smPow, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smLpw, col=tim.colors(256), axes=FALSE)

lennon.smCau <- kernel2dsmooth( lennon, kernel.type="cauchy", sigma=20, nx=10, ny=10)
lennon.smStd <- kernel2dsmooth( lennon, kernel.type="student", p=1.5, nx=10, ny=10)
par( mfrow=c(2,1), mar=rep(0.1,4))
image.plot( lennon.smCau, col=tim.colors(256), axes=FALSE)
image.plot( lennon.smStd, col=tim.colors(256), axes=FALSE)

image.plot( lennon, kernel.type = "oval", n = 10, m = 15, a = 6, b = 3 )

## End(Not run)

kernel2dsmooth Convolution Smooth on a 2-d Field.

Description

Perform a convolution smooth on a 2-d field. Default is to take an average over all neighbors within
(n-1)/2 grid points from each grid point. Uses FFT with the convolution theorem for computational
efficiency.
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Usage

kernel2dsmooth(x, kernel.type=NULL,
K = NULL, W = NULL, X = NULL, xdim = NULL, Nxy = NULL,
setup = FALSE, verbose = FALSE, ...)

Arguments

x matrix to be smoothed.

kernel.type (optional) character naming the kernel type accepted by kernel2dmeitsjer.
One and only one of this argument, K or W must be supplied.

K (optional) matrix defining a kernel to be applied. this function will expand, and
flip the kernel about its center, so ideally it will have odd dimensions.

W (optional) possibly complex matrix of scaled Fourier transformed kernel weights.
If NULL, these will be computed, but if passed, it will save one FFT in com-
putation time. This should not be given if setup is TRUE, or you will not get
what you expect. The dimensions are determined by this function, so it is prob-
ably best to supply this matrix only from a previous call with setup=TRUE. The
dimensions are chosen to optimize the FFT calculations (see Details section).

X (optional) matrix giving the Fourier transformed x. Can be used to save an FFT
in computation, if this has already been calculated.

xdim (optional) numeric vector of length 2 giving the dimensions of x. Not really
necessary, but as it will have already been calculated, seems silly to have to
keep re-calculating it. If NULL, it will be calculated here.

Nxy (optional) total number of grid points of x. Similar to xdim argument, not really
necessary, and will be calculated if not passed.

setup logical, should just the Fourier transformed kernel weights, W, be returned for
subsequent calls to this function?

verbose logical, should progress information be printed to the screen?

... optional arguments to kernel2dmeitsjer as required by the specific kernel
given to kernel.type

Details

This 2-d spatial kernel smoother applies a kernel smoother to a spatial field (see Hastie and Tibshi-
rani, 1990 sec. 2.6; Ritter and Wilson, 2001, chapter 8; Barrett and Myers, 2004 for details about
this type of convolution smoothing). Specifically, if X is a matrix of grid points, then the returned
field, denoted by Ebert (2008) as <X>s, is a smoothed field such that the value at each grid point
<X>s[i,j] is given by: <X>s[i,j] = sum_k sum_l X[i + k - 1, j + l - 1]*K[i, j], where k,l = 1, ..., n, and
K[i, j] is the kernel matrix. In order to be fast, loops are avoided. Instead, the convolution theorem
is applied with a Fast Fourier Transform (FFT). If the weights ’W’ are supplied, then you will save
one FFT in computation time.

The convolution theorem says that the Fourier transform of a convolution between two functions f
and g is equal to the product of the Fourier transformed functions. That is, if F denotes the Fourier
transform, and * the convolution operator, F( f*g ) = k F(f)F(g), where ’k’ is a scaling factor. The
neighborhood smooth is given by a convolution between the field and a boxcar kernel (i.e., a square
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around a point with constant value 1/n^2). Because of the FFT, this enables a fast way to compute
this convolution.

In order to zero-pad the field, and perform a cyclic convolution, it is necessary to expand the field,
’x’, and re-arrange the kernel (or else it will not be centered on the points). If zero padding is not
desired, then a field that has been extrapolated to an appropriate size in another way should be used,
and a subset going back to the original size could be used. Alternatively, a subset of an appropriate
size could be taken from the resulting smoothed field in order to avoid edge effects. The latter is
probably a wise move. The image is expanded to the nearest power of two above the dimension
of N=x + dimension of K - 1 in each direction, if N <= 1024, and N is rounded up to the nearest
multiple of 512 otherwise. This is to ensure that the FFT is fast.

In order to get the neighborhood type of smoothing of Roberts and Lean (2008) and Ebert (2008),
use the boxcar kernel with the argument n giving the neighborhood length. The resulting kernel is
n by n with elements 1/n^2 at each point. The result is that each grid point of the returned field is
an average of the n^2 nearest neighbors. Alternatively, one might prefer to use a disk kernel, which
takes the radius, r, as an argument. This gives a similar type of kernel, but ensures an average over a
uniform distance from the center point. The disk kernel is also that which is used in the smoothing
step of Davis et al (2006a,2006b). See the help file for kernel2dmeitsjer for other smoothing
options.

Value

If setup is FALSE, then a k by m matrix giving the neighborhood smoothed field is returned. Oth-
erwise, a 2k by 2m possibly complex matrix giving the Fourier transformed kernel weights are
returned, which can be used to save an FFT in computation time for subsequent calls to this func-
tion by supplying the W argument with this result.

Note

If n is 1, then the field is returned without applying any smoothing.

Author(s)

Eric Gilleland
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See Also

fft, Fourier2d, kernel2dmeitsjer

Examples

look <- matrix( 0, 10, 12)
look[4,7] <- 1
kernel2dsmooth( look, kernel.type="boxcar", n=3)
# The above returns the shape of the kernel applied, which
# is a square of length 3 centered on the grid point in look
# that has a value of 1.

# What happens if the 1 is on the edge? the effect is zero padding:
look <- look*0
look[1,1] <- 1
kernel2dsmooth( look, kernel.type="boxcar", n=3)

# Suppose we want to do the above for several, say l, neighborhood lengths.
# We can save an FFT for l-1 of the convolutions.
look <- look*0
look[4,7] <- 1
lookFFT <- Fourier2d( look, kdim=c(3,3))
dim( lookFFT) # Note the dimension is twice that of look.
kernel2dsmooth( look, kernel.type="boxcar", n=3, X=lookFFT)

# Now, suppose we want to apply the same kernel smooth to different fields.
# We can save an FFT for each subsequent calculation as follows.
wg <- kernel2dsmooth( look, kernel.type="boxcar", n=3, setup=TRUE)
dim( wg) # Note the dimension is twice that of look.
kernel2dsmooth( look, kernel.type="boxcar", n=3, W=wg)
look <- look*0
look[8,5] <- 1
kernel2dsmooth( look, kernel.type="boxcar", n=3, W=wg)
look[5, 10] <- 1
kernel2dsmooth( look, kernel.type="boxcar", n=3, W=wg)

https://doi.org/10.1175/2007MWR2123.1
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