This vignette explains briefly how to use the function
adam() and the related auto.adam() in
smooth package. It does not aim at covering all aspects of
the function, but focuses on the main ones.
ADAM is Augmented Dynamic Adaptive Model. It is a model that underlies ETS, ARIMA and regression, connecting them in a unified framework. The underlying model for ADAM is a Single Source of Error state space model, which is explained in detail separately in an online monograph.
The main philosophy of adam() function is to be agnostic
of the provided data. This means that it will work with ts,
msts, zoo, xts,
data.frame, numeric and other classes of data.
The specification of seasonality in the model is done using a separate
parameter lags, so you are not obliged to transform the
existing data to something specific, and can use it as is. If you
provide a matrix, or a data.frame, or a
data.table, or any other multivariate structure, then the
function will use the first column for the response variable and the
others for the explanatory ones. One thing that is currently assumed in
the function is that the data is measured at a regular frequency. If
this is not the case, you will need to introduce missing values
manually.
In order to run the experiments in this vignette, we need to load the following packages:
First and foremost, ADAM implements ETS model, although in a more
flexible way than (Hyndman et al. 2008):
it supports different distributions for the error term, which are
regulated via distribution parameter. By default, the
additive error model relies on Normal distribution, while the
multiplicative error one assumes Inverse Gaussian. If you want to
reproduce the classical ETS, you would need to specify
distribution="dnorm". Here is an example of ADAM ETS(MMM)
with Normal distribution on AirPassengers data:
testModel <- adam(AirPassengers, "MMM", lags=c(1,12), distribution="dnorm",
h=12, holdout=TRUE)
summary(testModel)
#>
#> Model estimated using adam() function: ETS(MMM)
#> Response variable: AirPassengers
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 467.4621
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.7500 0.0899 0.5721 0.9278 *
#> beta 0.0055 0.0041 0.0000 0.0136
#> gamma 0.0000 0.0145 0.0000 0.0286
#>
#> Error standard deviation: 0.0352
#> Sample size: 132
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 128
#> Information criteria:
#> AIC AICc BIC BICc
#> 942.9242 943.2392 954.4554 955.2244
plot(forecast(testModel,h=12,interval="prediction"))You might notice that the summary contains more than what is reported
by other smooth functions. This one also produces standard
errors for the estimated parameters based on Fisher Information
calculation. Note that this is computationally expensive, so if you have
a model with more than 30 variables, the calculation of standard errors
might take plenty of time. As for the default print()
method, it will produce a shorter summary from the model, without the
standard errors (similar to what es() does):
testModel
#> Time elapsed: 0.06 seconds
#> Model estimated using adam() function: ETS(MMM)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 467.4621
#> Persistence vector g:
#> alpha beta gamma
#> 0.7500 0.0055 0.0000
#>
#> Sample size: 132
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 128
#> Information criteria:
#> AIC AICc BIC BICc
#> 942.9242 943.2392 954.4554 955.2244
#>
#> Forecast errors:
#> ME: -4.77; MAE: 15.396; RMSE: 21.749
#> sCE: -21.807%; Asymmetry: -16.3%; sMAE: 5.865%; sMSE: 0.687%
#> MASE: 0.639; RMSSE: 0.694; rMAE: 0.203; rRMSE: 0.211Also, note that the prediction interval in case of multiplicative error models are approximate. It is advisable to use simulations instead (which is slower, but more accurate):
If you want to do the residuals diagnostics, then it is recommended
to use plot function, something like this (you can select,
which of the plots to produce):
By default ADAM will estimate models via maximising likelihood
function. But there is also a parameter loss, which allows
selecting from a list of already implemented loss functions (again, see
documentation for adam() for the full list) or using a
function written by a user. Here is how to do the latter on the example
of BJsales:
lossFunction <- function(actual, fitted, B){
return(sum(abs(actual-fitted)^3))
}
testModel <- adam(BJsales, "AAN", silent=FALSE, loss=lossFunction,
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: ETS(AAN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: custom; Loss function value: 599.299
#> Persistence vector g:
#> alpha beta
#> 1.000 0.227
#>
#> Sample size: 138
#> Number of estimated parameters: 2
#> Number of degrees of freedom: 136
#> Information criteria are unavailable for the chosen loss & distribution.
#>
#> Forecast errors:
#> ME: 3.015; MAE: 3.128; RMSE: 3.866
#> sCE: 15.915%; Asymmetry: 91.7%; sMAE: 1.376%; sMSE: 0.029%
#> MASE: 2.626; RMSSE: 2.52; rMAE: 1.009; rRMSE: 1.009Note that you need to have parameters actual, fitted and B in the function, which correspond to the vector of actual values, vector of fitted values on each iteration and a vector of the optimised parameters.
loss and distribution parameters are
independent, so in the example above, we have assumed that the error
term follows Normal distribution, but we have estimated its parameters
using a non-conventional loss because we can. Some of distributions
assume that there is an additional parameter, which can either be
estimated or provided by user. These include Asymmetric Laplace
(distribution="dalaplace") with alpha,
Generalised Normal and Log-Generalised normal
(distribution=c("gnorm","dlgnorm")) with shape
and Student’s T (distribution="dt") with
nu:
The model selection in ADAM ETS relies on information criteria and
works correctly only for the loss="likelihood". There are
several options, how to select the model, see them in the description of
the function: ?adam(). The default one uses
branch-and-bound algorithm, similar to the one used in
es(), but only considers additive trend models (the
multiplicative trend ones are less stable and need more attention from a
forecaster):
testModel <- adam(AirPassengers, "ZXZ", lags=c(1,12), silent=FALSE,
h=12, holdout=TRUE)
#> Forming the pool of models based on... ANN , ANA , MNM , MAM , Estimation progress: 71 %86 %100 %... Done!
testModel
#> Time elapsed: 0.2 seconds
#> Model estimated using adam() function: ETS(MAM)
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 468.1117
#> Persistence vector g:
#> alpha beta gamma
#> 0.7976 0.0030 0.0090
#>
#> Sample size: 132
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 128
#> Information criteria:
#> AIC AICc BIC BICc
#> 944.2235 944.5384 955.7547 956.5236
#>
#> Forecast errors:
#> ME: 10.11; MAE: 20.814; RMSE: 26.223
#> sCE: 46.217%; Asymmetry: 66%; sMAE: 7.929%; sMSE: 0.998%
#> MASE: 0.864; RMSSE: 0.837; rMAE: 0.274; rRMSE: 0.255Note that the function produces point forecasts if
h>0, but it won’t generate prediction interval. This is
why you need to use forecast() method (as shown in the
first example in this vignette).
Similarly to es(), function supports combination of
models, but it saves all the tested models in the output for a potential
reuse. Here how it works:
testModel <- adam(AirPassengers, "CXC", lags=c(1,12),
h=12, holdout=TRUE)
testForecast <- forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95))
testForecast
#> Point forecast Lower bound (5%) Lower bound (2.5%) Upper bound (95%)
#> Jan 1960 413.0680 390.0118 385.7252 436.6783
#> Feb 1960 405.8957 377.3811 372.1223 435.2783
#> Mar 1960 468.3322 428.6131 421.3483 509.5205
#> Apr 1960 451.1823 409.8723 402.3457 494.1471
#> May 1960 453.9584 411.3825 403.6353 498.2832
#> Jun 1960 516.5757 466.0950 456.9305 569.2208
#> Jul 1960 570.8187 513.0840 502.6233 631.1197
#> Aug 1960 568.8944 510.2984 499.6933 630.1450
#> Sep 1960 498.8337 447.6481 438.3821 552.3291
#> Oct 1960 435.8123 390.7898 382.6427 482.8809
#> Nov 1960 380.1682 340.7948 333.6711 421.3356
#> Dec 1960 429.1452 383.8254 375.6356 476.5726
#> Jan 1961 437.0926 388.6635 379.9386 487.8906
#> Feb 1961 429.3893 379.3480 370.3634 482.0120
#> Mar 1961 495.3095 433.2238 422.1353 560.8545
#> Apr 1961 477.0476 414.3553 403.1995 543.4127
#> May 1961 479.8591 416.1189 404.7864 547.3763
#> Jun 1961 545.9096 473.0691 460.1234 623.0870
#> Upper bound (97.5%)
#> Jan 1960 441.3339
#> Feb 1960 441.1152
#> Mar 1960 517.7637
#> Apr 1960 502.7756
#> May 1960 507.1950
#> Jun 1960 579.8267
#> Jul 1960 643.2891
#> Aug 1960 642.5178
#> Sep 1960 563.1332
#> Oct 1960 492.3904
#> Nov 1960 429.6540
#> Dec 1960 486.1658
#> Jan 1961 498.1928
#> Feb 1961 492.7156
#> Mar 1961 574.2462
#> Apr 1961 557.0139
#> May 1961 561.2236
#> Jun 1961 638.9203
plot(testForecast)Yes, now we support vectors for the levels in case you want to produce several. In fact, we also support side for prediction interval, so you can extract specific quantiles without a hustle:
forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95,0.99), side="upper")
#> Point forecast Upper bound (90%) Upper bound (95%) Upper bound (99%)
#> Jan 1960 413.0680 431.3514 436.6783 446.7882
#> Feb 1960 405.8957 428.6126 435.2783 447.9667
#> Mar 1960 468.3322 500.1249 509.5205 527.4586
#> Apr 1960 451.1823 484.3213 494.1471 512.9326
#> May 1960 453.9584 488.1378 498.2832 517.6884
#> Jun 1960 516.5757 557.1531 569.2208 592.3215
#> Jul 1960 570.8187 617.2791 631.1197 657.6323
#> Aug 1960 568.8944 616.0766 630.1450 657.1042
#> Sep 1960 498.8337 540.0438 552.3291 575.8695
#> Oct 1960 435.8123 472.0687 482.8809 503.6017
#> Nov 1960 380.1682 411.8780 421.3356 439.4613
#> Dec 1960 429.1452 465.6685 476.5726 497.4792
#> Jan 1961 437.0926 476.1887 487.8906 510.3505
#> Feb 1961 429.3893 469.8635 482.0120 505.3562
#> Mar 1961 495.3095 545.6723 560.8545 590.0797
#> Apr 1961 477.0476 528.0054 543.4127 573.1076
#> May 1961 479.8591 531.6932 547.3763 577.6114
#> Jun 1961 545.9096 605.1560 623.0870 657.6600A brand new thing in the function is the possibility to use several
frequencies (double / triple / quadruple / … seasonal models). In order
to show how it works, we will generate an artificial time series,
inspired by half-hourly electricity demand using sim.gum()
function:
set.seed(41)
ordersGUM <- c(1,1,1)
lagsGUM <- c(1,48,336)
initialGUM1 <- -25381.7
initialGUM2 <- c(23955.09, 24248.75, 24848.54, 25012.63, 24634.14, 24548.22, 24544.63, 24572.77,
24498.33, 24250.94, 24545.44, 25005.92, 26164.65, 27038.55, 28262.16, 28619.83,
28892.19, 28575.07, 28837.87, 28695.12, 28623.02, 28679.42, 28682.16, 28683.40,
28647.97, 28374.42, 28261.56, 28199.69, 28341.69, 28314.12, 28252.46, 28491.20,
28647.98, 28761.28, 28560.11, 28059.95, 27719.22, 27530.23, 27315.47, 27028.83,
26933.75, 26961.91, 27372.44, 27362.18, 27271.31, 26365.97, 25570.88, 25058.01)
initialGUM3 <- c(23920.16, 23026.43, 22812.23, 23169.52, 23332.56, 23129.27, 22941.20, 22692.40,
22607.53, 22427.79, 22227.64, 22580.72, 23871.99, 25758.34, 28092.21, 30220.46,
31786.51, 32699.80, 33225.72, 33788.82, 33892.25, 34112.97, 34231.06, 34449.53,
34423.61, 34333.93, 34085.28, 33948.46, 33791.81, 33736.17, 33536.61, 33633.48,
33798.09, 33918.13, 33871.41, 33403.75, 32706.46, 31929.96, 31400.48, 30798.24,
29958.04, 30020.36, 29822.62, 30414.88, 30100.74, 29833.49, 28302.29, 26906.72,
26378.64, 25382.11, 25108.30, 25407.07, 25469.06, 25291.89, 25054.11, 24802.21,
24681.89, 24366.97, 24134.74, 24304.08, 25253.99, 26950.23, 29080.48, 31076.33,
32453.20, 33232.81, 33661.61, 33991.21, 34017.02, 34164.47, 34398.01, 34655.21,
34746.83, 34596.60, 34396.54, 34236.31, 34153.32, 34102.62, 33970.92, 34016.13,
34237.27, 34430.08, 34379.39, 33944.06, 33154.67, 32418.62, 31781.90, 31208.69,
30662.59, 30230.67, 30062.80, 30421.11, 30710.54, 30239.27, 28949.56, 27506.96,
26891.75, 25946.24, 25599.88, 25921.47, 26023.51, 25826.29, 25548.72, 25405.78,
25210.45, 25046.38, 24759.76, 24957.54, 25815.10, 27568.98, 29765.24, 31728.25,
32987.51, 33633.74, 34021.09, 34407.19, 34464.65, 34540.67, 34644.56, 34756.59,
34743.81, 34630.05, 34506.39, 34319.61, 34110.96, 33961.19, 33876.04, 33969.95,
34220.96, 34444.66, 34474.57, 34018.83, 33307.40, 32718.90, 32115.27, 31663.53,
30903.82, 31013.83, 31025.04, 31106.81, 30681.74, 30245.70, 29055.49, 27582.68,
26974.67, 25993.83, 25701.93, 25940.87, 26098.63, 25771.85, 25468.41, 25315.74,
25131.87, 24913.15, 24641.53, 24807.15, 25760.85, 27386.39, 29570.03, 31634.00,
32911.26, 33603.94, 34020.90, 34297.65, 34308.37, 34504.71, 34586.78, 34725.81,
34765.47, 34619.92, 34478.54, 34285.00, 34071.90, 33986.48, 33756.85, 33799.37,
33987.95, 34047.32, 33924.48, 33580.82, 32905.87, 32293.86, 31670.02, 31092.57,
30639.73, 30245.42, 30281.61, 30484.33, 30349.51, 29889.23, 28570.31, 27185.55,
26521.85, 25543.84, 25187.82, 25371.59, 25410.07, 25077.67, 24741.93, 24554.62,
24427.19, 24127.21, 23887.55, 24028.40, 24981.34, 26652.32, 28808.00, 30847.09,
32304.13, 33059.02, 33562.51, 33878.96, 33976.68, 34172.61, 34274.50, 34328.71,
34370.12, 34095.69, 33797.46, 33522.96, 33169.94, 32883.32, 32586.24, 32380.84,
32425.30, 32532.69, 32444.24, 32132.49, 31582.39, 30926.58, 30347.73, 29518.04,
29070.95, 28586.20, 28416.94, 28598.76, 28529.75, 28424.68, 27588.76, 26604.13,
26101.63, 25003.82, 24576.66, 24634.66, 24586.21, 24224.92, 23858.42, 23577.32,
23272.28, 22772.00, 22215.13, 21987.29, 21948.95, 22310.79, 22853.79, 24226.06,
25772.55, 27266.27, 28045.65, 28606.14, 28793.51, 28755.83, 28613.74, 28376.47,
27900.76, 27682.75, 27089.10, 26481.80, 26062.94, 25717.46, 25500.27, 25171.05,
25223.12, 25634.63, 26306.31, 26822.46, 26787.57, 26571.18, 26405.21, 26148.41,
25704.47, 25473.10, 25265.97, 26006.94, 26408.68, 26592.04, 26224.64, 25407.27,
25090.35, 23930.21, 23534.13, 23585.75, 23556.93, 23230.25, 22880.24, 22525.52,
22236.71, 21715.08, 21051.17, 20689.40, 20099.18, 19939.71, 19722.69, 20421.58,
21542.03, 22962.69, 23848.69, 24958.84, 25938.72, 26316.56, 26742.61, 26990.79,
27116.94, 27168.78, 26464.41, 25703.23, 25103.56, 24891.27, 24715.27, 24436.51,
24327.31, 24473.02, 24893.89, 25304.13, 25591.77, 25653.00, 25897.55, 25859.32,
25918.32, 25984.63, 26232.01, 26810.86, 27209.70, 26863.50, 25734.54, 24456.96)
y <- sim.gum(orders=ordersGUM, lags=lagsGUM, nsim=1, frequency=336, obs=3360,
measurement=rep(1,3), transition=diag(3), persistence=c(0.045,0.162,0.375),
initial=cbind(initialGUM1,initialGUM2,initialGUM3))$dataWe can then apply ADAM to this data:
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=FALSE, h=336, holdout=TRUE)
testModel
#> Time elapsed: 1.21 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19552.64
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0276 0.0000 0.1859 0.2400
#> Damping parameter: 0.4816
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39117.28 39117.31 39153.37 39153.48
#>
#> Forecast errors:
#> ME: 80.315; MAE: 145.549; RMSE: 186.929
#> sCE: 89.037%; Asymmetry: 57.1%; sMAE: 0.48%; sMSE: 0.004%
#> MASE: 0.196; RMSSE: 0.182; rMAE: 0.023; rRMSE: 0.024Note that the more lags you have, the more initial seasonal
components the function will need to estimate, which is a difficult
task. This is why we used initial="backcasting" in the
example above - this speeds up the estimation by reducing the number of
parameters to estimate. Still, the optimiser might not get close to the
optimal value, so we can help it. First, we can give more time for the
calculation, increasing the number of iterations via
maxeval (the default value is 40 iterations for each
estimated parameter, e.g. \(40 \times 5 =
200\) in our case):
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=FALSE, h=336, holdout=TRUE, maxeval=10000)
testModel
#> Time elapsed: 1.32 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19552.64
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0275 0.0000 0.1860 0.2397
#> Damping parameter: 0.4814
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39117.28 39117.31 39153.37 39153.48
#>
#> Forecast errors:
#> ME: 80.314; MAE: 145.555; RMSE: 186.937
#> sCE: 89.036%; Asymmetry: 57.1%; sMAE: 0.48%; sMSE: 0.004%
#> MASE: 0.196; RMSSE: 0.182; rMAE: 0.023; rRMSE: 0.024This will take more time, but will typically lead to more refined
parameters. You can control other parameters of the optimiser as well,
such as algorithm, xtol_rel,
print_level and others, which are explained in the
documentation for nloptr function from nloptr package (run
nloptr.print.options() for details). Second, we can give a
different set of initial parameters for the optimiser, have a look at
what the function saves:
and use this as a starting point for the reestimation (e.g. with a different algorithm):
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=FALSE, h=336, holdout=TRUE, B=testModel$B)
testModel
#> Time elapsed: 0.43 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19552.64
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0275 0.0000 0.1860 0.2397
#> Damping parameter: 0.7314
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39117.28 39117.31 39153.37 39153.48
#>
#> Forecast errors:
#> ME: 80.314; MAE: 145.555; RMSE: 186.937
#> sCE: 89.036%; Asymmetry: 57.1%; sMAE: 0.48%; sMSE: 0.004%
#> MASE: 0.196; RMSSE: 0.182; rMAE: 0.023; rRMSE: 0.024If you are ready to wait, you can change the initialisation to the
initial="optimal", which in our case will take much more
time because of the number of estimated parameters - 389 for the chosen
model. The estimation process in this case might take 20 - 30 times more
than in the example above.
In addition, you can specify some parts of the initial state vector or some parts of the persistence vector, here is an example:
testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
silent=TRUE, h=336, holdout=TRUE, persistence=list(beta=0.1))
testModel
#> Time elapsed: 1.01 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 56395.13
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.1003 0.1000 0.3081 0.3022
#> Damping parameter: 0.9503
#> Sample size: 3024
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 3019
#> Information criteria:
#> AIC AICc BIC BICc
#> 112800.3 112800.3 112830.3 112830.4
#>
#> Forecast errors:
#> ME: -801836.573; MAE: 861868.38; RMSE: 11443964.786
#> sCE: -888922.037%; Asymmetry: 47.6%; sMAE: 2843.672%; sMSE: 14257063.817%
#> MASE: 1160.625; RMSSE: 11129.534; rMAE: 134.71; rRMSE: 1451.758The function also handles intermittent data (the data with zeroes) and the data with missing values. This is partially covered in the vignette on the oes() function. Here is a simple example:
testModel <- adam(rpois(120,0.5), "MNN", silent=FALSE, h=12, holdout=TRUE,
occurrence="odds-ratio")
testModel
#> Time elapsed: 0.03 seconds
#> Model estimated using adam() function: iETS(MNN)[O]
#> With backcasting initialisation
#> Occurrence model type: Odds ratio
#> Distribution assumed in the model: Mixture of Bernoulli and Gamma
#> Loss function type: likelihood; Loss function value: 23.4357
#> Persistence vector g:
#> alpha
#> 0.0306
#>
#> Sample size: 108
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 104
#> Information criteria:
#> AIC AICc BIC BICc
#> 192.3585 192.4728 203.0870 193.9903
#>
#> Forecast errors:
#> Asymmetry: -0.889%; sMSE: 28.566%; rRMSE: 0.8; sPIS: -67.368%; sCE: 98.476%Finally, adam() is faster than es()
function, because its code is more efficient and it uses a different
optimisation algorithm with more finely tuned parameters by default.
Let’s compare:
adamModel <- adam(AirPassengers, "CCC",
h=12, holdout=TRUE)
esModel <- es(AirPassengers, "CCC",
h=12, holdout=TRUE)
"adam:"
#> [1] "adam:"
adamModel
#> Time elapsed: 0.83 seconds
#> Model estimated: ETS(CCC)
#> Loss function type: likelihood
#>
#> Number of models combined: 30
#> Sample size: 132
#> Average number of estimated parameters: 5.7052
#> Average number of degrees of freedom: 126.2948
#>
#> Forecast errors:
#> ME: 0.554; MAE: 16.037; RMSE: 22.028
#> sCE: 2.533%; sMAE: 6.109%; sMSE: 0.704%
#> MASE: 0.666; RMSSE: 0.703; rMAE: 0.211; rRMSE: 0.214
"es():"
#> [1] "es():"
esModel
#> Time elapsed: 0.78 seconds
#> Model estimated: ETS(CCC)
#> Loss function type: likelihood
#>
#> Number of models combined: 30
#> Sample size: 132
#> Average number of estimated parameters: 5.4538
#> Average number of degrees of freedom: 126.5462
#>
#> Forecast errors:
#> ME: 3.407; MAE: 16.501; RMSE: 22.884
#> sCE: 15.575%; sMAE: 6.286%; sMSE: 0.76%
#> MASE: 0.685; RMSSE: 0.73; rMAE: 0.217; rRMSE: 0.222As mentioned above, ADAM does not only contain ETS, it also contains
ARIMA model, which is regulated via orders parameter. If
you want to have a pure ARIMA, you need to switch off ETS, which is done
via model="NNN":
testModel <- adam(BJsales, "NNN", silent=FALSE, orders=c(0,2,2),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: ARIMA(0,2,2)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 240.7062
#> ARMA parameters of the model:
#> Lag 1
#> MA(1) -0.7498
#> MA(2) -0.0158
#>
#> Sample size: 138
#> Number of estimated parameters: 3
#> Number of degrees of freedom: 135
#> Information criteria:
#> AIC AICc BIC BICc
#> 487.4124 487.5915 496.1941 496.6354
#>
#> Forecast errors:
#> ME: 2.964; MAE: 3.089; RMSE: 3.816
#> sCE: 15.648%; Asymmetry: 90.3%; sMAE: 1.359%; sMSE: 0.028%
#> MASE: 2.593; RMSSE: 2.487; rMAE: 0.997; rRMSE: 0.996Given that both models are implemented in the same framework, they can be compared using information criteria.
The functionality of ADAM ARIMA is similar to the one of
msarima function in smooth package, although
there are several differences.
First, changing the distribution parameter will allow
switching between additive / multiplicative models. For example,
distribution="dlnorm" will create an ARIMA, equivalent to
the one on logarithms of the data:
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12),
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dlnorm",
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.13 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Log-Normal
#> Loss function type: likelihood; Loss function value: 509.5257
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) -0.7865 0.1993
#> Lag 1 Lag 12
#> MA(1) 0.5463 -0.5171
#> MA(2) -0.0648 -0.0085
#>
#> Sample size: 132
#> Number of estimated parameters: 7
#> Number of degrees of freedom: 125
#> Information criteria:
#> AIC AICc BIC BICc
#> 1033.052 1033.955 1053.231 1055.436
#>
#> Forecast errors:
#> ME: -24.111; MAE: 24.111; RMSE: 28.425
#> sCE: -110.226%; Asymmetry: -100%; sMAE: 9.186%; sMSE: 1.173%
#> MASE: 1.001; RMSSE: 0.907; rMAE: 0.317; rRMSE: 0.276Second, if you want the model with intercept / drift, you can do it
using constant parameter:
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12), constant=TRUE,
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm",
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.09 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12] with drift
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 497.3372
#> Intercept/Drift value: 0.7081
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) -0.3052 0.3242
#> Lag 1 Lag 12
#> MA(1) 0.062 -0.3871
#> MA(2) -0.038 0.1189
#>
#> Sample size: 132
#> Number of estimated parameters: 8
#> Number of degrees of freedom: 124
#> Information criteria:
#> AIC AICc BIC BICc
#> 1010.674 1011.845 1033.737 1036.595
#>
#> Forecast errors:
#> ME: -17.465; MAE: 19.153; RMSE: 24.308
#> sCE: -79.84%; Asymmetry: -87.3%; sMAE: 7.297%; sMSE: 0.858%
#> MASE: 0.795; RMSSE: 0.776; rMAE: 0.252; rRMSE: 0.236If the model contains non-zero differences, then the constant acts as
a drift. Third, you can specify parameters of ARIMA via the
arma parameter in the following manner:
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12),
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm",
arma=list(ar=c(0.1,0.1), ma=c(-0.96, 0.03, -0.12, 0.03)),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 555.6035
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) 0.1 0.1
#> Lag 1 Lag 12
#> MA(1) -0.96 -0.12
#> MA(2) 0.03 0.03
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Information criteria:
#> AIC AICc BIC BICc
#> 1113.207 1113.238 1116.090 1116.165
#>
#> Forecast errors:
#> ME: 9.576; MAE: 17.083; RMSE: 19.149
#> sCE: 43.779%; Asymmetry: 61.9%; sMAE: 6.508%; sMSE: 0.532%
#> MASE: 0.709; RMSSE: 0.611; rMAE: 0.225; rRMSE: 0.186Finally, the initials for the states can also be provided, although
getting the correct ones might be a challenging task (you also need to
know how many of them to provide; checking
testModel$initial might help):
testModel <- adam(AirPassengers, "NNN", silent=FALSE, lags=c(1,12),
orders=list(ar=c(1,1),i=c(1,1),ma=c(2,0)), distribution="dnorm",
initial=list(arima=AirPassengers[1:24]),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.05 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,0)[12]
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 498.3066
#> ARMA parameters of the model:
#> Lag 1 Lag 12
#> AR(1) -0.4241 -0.0135
#> Lag 1
#> MA(1) 0.2573
#> MA(2) 0.0368
#>
#> Sample size: 132
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 127
#> Information criteria:
#> AIC AICc BIC BICc
#> 1006.613 1007.090 1021.027 1022.190
#>
#> Forecast errors:
#> ME: -18.392; MAE: 19.7; RMSE: 24.912
#> sCE: -84.081%; Asymmetry: -92.3%; sMAE: 7.505%; sMSE: 0.901%
#> MASE: 0.818; RMSSE: 0.795; rMAE: 0.259; rRMSE: 0.242If you work with ADAM ARIMA model, then there is no such thing as
“usual” bounds for the parameters, so the function will use the
bounds="admissible", checking the AR / MA polynomials in
order to make sure that the model is stationary and invertible (aka
stable).
Similarly to ETS, you can use different distributions and losses for
the estimation. Note that the order selection for ARIMA is done
in auto.adam() function, not in the
adam()! However, if you do
orders=list(..., select=TRUE) in adam(), it
will call auto.adam() and do the selection.
Finally, ARIMA is typically slower than ETS, mainly because its
initial states are more difficult to estimate due to an increased
complexity of the model. If you want to speed things up, use
initial="backcasting" and reduce the number of iterations
via maxeval parameter.
Another important feature of ADAM is introduction of explanatory
variables. Unlike in es(), adam() expects a
matrix for data and can work with a formula. If the latter
is not provided, then it will use all explanatory variables. Here is a
brief example:
If you work with data.frame or similar structures, then you can use
them directly, ADAM will extract the response variable either assuming
that it is in the first column or from the provided formula (if you
specify one via formula parameter). Here is an example,
where we create a matrix with lags and leads of an explanatory
variable:
BJData <- cbind(as.data.frame(BJsales),as.data.frame(xregExpander(BJsales.lead,c(-7:7))))
colnames(BJData)[1] <- "y"
testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, formula=y~xLag1+xLag2+xLag3)
testModel
#> Time elapsed: 0.06 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 197.1842
#> Persistence vector g (excluding xreg):
#> alpha
#> 1
#>
#> Sample size: 132
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 127
#> Information criteria:
#> AIC AICc BIC BICc
#> 404.3684 404.8445 418.7824 419.9449
#>
#> Forecast errors:
#> ME: 1.166; MAE: 1.613; RMSE: 2.236
#> sCE: 9.287%; Asymmetry: 49.8%; sMAE: 0.714%; sMSE: 0.01%
#> MASE: 1.322; RMSSE: 1.431; rMAE: 0.72; rRMSE: 0.891Similarly to es(), there is a support for variables
selection, but via the regressors parameter instead of
xregDo, which will then use stepwise()
function from greybox package on the residuals of the
model:
The same functionality is supported with ARIMA, so you can have, for example, ARIMAX(0,1,1), which is equivalent to ETSX(A,N,N):
testModel <- adam(BJData, "NNN", h=18, silent=FALSE, holdout=TRUE, regressors="select", orders=c(0,1,1))The two models might differ because they have different initialisation in the optimiser and different bounds for parameters (ARIMA relies on invertibility condition, while ETS does the usual (0,1) bounds by default). It is possible to make them identical if the number of iterations is increased and the initial parameters are the same. Here is an example of what happens, when the two models have exactly the same parameters:
BJData <- BJData[,c("y",names(testModel$initial$xreg))];
testModel <- adam(BJData, "NNN", h=18, silent=TRUE, holdout=TRUE, orders=c(0,1,1),
initial=testModel$initial, arma=testModel$arma)
testModel
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: ARIMAX(0,1,1)
#> With provided initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 422.7293
#> ARMA parameters of the model:
#> Lag 1
#> MA(1) 0.2448
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Information criteria:
#> AIC AICc BIC BICc
#> 847.4586 847.4893 850.3414 850.4165
#>
#> Forecast errors:
#> ME: 0.637; MAE: 0.637; RMSE: 0.874
#> sCE: 5.073%; Asymmetry: 100%; sMAE: 0.282%; sMSE: 0.001%
#> MASE: 0.522; RMSSE: 0.559; rMAE: 0.284; rRMSE: 0.348
names(testModel$initial)[1] <- names(testModel$initial)[[1]] <- "level"
testModel2 <- adam(BJData, "ANN", h=18, silent=TRUE, holdout=TRUE,
initial=testModel$initial, persistence=testModel$arma$ma+1)
testModel2
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> With provided initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 1e+300
#> Persistence vector g (excluding xreg):
#> alpha
#> 1.2448
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Information criteria:
#> AIC AICc BIC BICc
#> 847.4586 847.4893 850.3414 850.4165
#>
#> Forecast errors:
#> ME: 0.637; MAE: 0.637; RMSE: 0.874
#> sCE: 5.073%; Asymmetry: 100%; sMAE: 0.282%; sMSE: 0.001%
#> MASE: 0.522; RMSSE: 0.559; rMAE: 0.284; rRMSE: 0.348Another feature of ADAM is the time varying parameters in the SSOE
framework, which can be switched on via
regressors="adapt":
testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, regressors="adapt")
testModel$persistence
#> alpha delta1 delta2 delta3 delta4 delta5
#> 0.34907112 0.11445426 0.31780106 0.32048158 0.14210453 0.02803211Note that the default number of iterations might not be sufficient in
order to get close to the optimum of the function, so setting
maxeval to something bigger might help. If you want to
explore, why the optimisation stopped, you can provide
print_level=41 parameter to the function, and it will print
out the report from the optimiser. In the end, the default parameters
are tuned in order to give a reasonable solution, but given the
complexity of the model, they might not guarantee to give the best one
all the time.
Finally, you can produce a mixture of ETS, ARIMA and regression, by using the respective parameters, like this:
testModel <- adam(BJData, "AAN", h=18, silent=FALSE, holdout=TRUE, orders=c(1,0,0))
summary(testModel)
#>
#> Model estimated using adam() function: ETSX(AAN)+ARIMA(1,0,0)
#> Response variable: y
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 58.4656
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.2167 0.1522 0.0000 0.5176
#> beta 0.0963 0.3530 0.0000 0.2167
#> phi1[1] 1.0000 0.0496 0.9018 1.0981 *
#> xLag3 4.7393 3.0845 -1.3663 10.8371
#> xLag7 0.5279 3.0914 -5.5913 6.6393
#> xLag4 3.4773 2.9085 -2.2798 9.2272
#> xLag6 1.4517 2.9108 -4.3100 7.2062
#> xLag5 2.2460 2.5730 -2.8470 7.3325
#>
#> Error standard deviation: 0.3904
#> Sample size: 132
#> Number of estimated parameters: 9
#> Number of degrees of freedom: 123
#> Information criteria:
#> AIC AICc BIC BICc
#> 134.9312 136.4066 160.8764 164.4785This might be handy, when you explore a high frequency data, want to add calendar events, apply ETS and add AR/MA errors to it.
Finally, if you estimate ETSX or ARIMAX model and want to speed
things up, it is recommended to use initial="backcasting",
which will then initialise dynamic part of the model via backcasting and
use optimisation for the parameters of the explanatory variables:
testModel <- adam(BJData, "AAN", h=18, silent=TRUE, holdout=TRUE, initial="backcasting")
summary(testModel)
#>
#> Model estimated using adam() function: ETSX(AAN)
#> Response variable: y
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 47.6686
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.7756 0.0945 0.5886 0.9624 *
#> beta 0.4778 0.2938 0.0000 0.7756
#> xLag3 4.5772 2.6271 -0.6225 9.7711
#> xLag7 0.4174 2.6368 -4.8015 5.6305
#> xLag4 3.1570 2.3355 -1.4656 7.7745
#> xLag6 1.0819 2.3361 -3.5418 5.7005
#> xLag5 1.8378 2.2178 -2.5517 6.2225
#>
#> Error standard deviation: 0.3582
#> Sample size: 132
#> Number of estimated parameters: 8
#> Number of degrees of freedom: 124
#> Information criteria:
#> AIC AICc BIC BICc
#> 111.3371 112.5079 134.3995 137.2578While the original adam() function allows selecting ETS
components and explanatory variables, it does not allow selecting the
most suitable distribution and / or ARIMA components. This is what
auto.adam() function is for.
In order to do the selection of the most appropriate distribution, you need to provide a vector of those that you want to check:
testModel <- auto.adam(BJsales, "XXX", silent=FALSE,
distribution=c("dnorm","dlaplace","ds"),
h=12, holdout=TRUE)
#> Evaluating models with different distributions... dnorm , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |
#> The best ARIMA is selected. dlaplace , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |
#> The best ARIMA is selected. ds , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |-
#> The best ARIMA is selected. Done!
testModel
#> Time elapsed: 0.41 seconds
#> Model estimated using auto.adam() function: ETS(AAdN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 237.6265
#> Persistence vector g:
#> alpha beta
#> 0.9456 0.2965
#> Damping parameter: 0.8795
#> Sample size: 138
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 134
#> Information criteria:
#> AIC AICc BIC BICc
#> 483.2529 483.5537 494.9619 495.7029
#>
#> Forecast errors:
#> ME: 2.818; MAE: 2.968; RMSE: 3.655
#> sCE: 14.877%; Asymmetry: 88%; sMAE: 1.306%; sMSE: 0.026%
#> MASE: 2.492; RMSSE: 2.383; rMAE: 0.958; rRMSE: 0.954This process can also be done in parallel on either the automatically
selected number of cores (e.g. parallel=TRUE) or on the
specified by user (e.g. parallel=4):
If you want to add ARIMA or regression components, you can do it in
the exactly the same way as for the adam() function. Here
is an example of ETS+ARIMA:
testModel <- auto.adam(BJsales, "AAN", orders=list(ar=2,i=0,ma=0), silent=TRUE,
distribution=c("dnorm","dlaplace","ds","dgnorm"),
h=12, holdout=TRUE)
testModel
#> Time elapsed: 0.16 seconds
#> Model estimated using auto.adam() function: ETS(AAN)+ARIMA(2,0,0)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 240.8863
#> Persistence vector g:
#> alpha beta
#> 0.3162 0.1484
#>
#> ARMA parameters of the model:
#> Lag 1
#> AR(1) 0.7714
#> AR(2) 0.2286
#>
#> Sample size: 138
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 133
#> Information criteria:
#> AIC AICc BIC BICc
#> 491.7726 492.2272 506.4089 507.5287
#>
#> Forecast errors:
#> ME: 2.872; MAE: 3.027; RMSE: 3.732
#> sCE: 15.16%; Asymmetry: 87.9%; sMAE: 1.332%; sMSE: 0.027%
#> MASE: 2.541; RMSSE: 2.432; rMAE: 0.976; rRMSE: 0.974However, this way the function will just use ARIMA(2,0,0) and fit it
together with ETS(A,A,N). If you want it to select the most appropriate
ARIMA orders from the provided (e.g. up to AR(2), I(1) and MA(2)), you
need to add parameter select=TRUE to the list in
orders:
testModel <- auto.adam(BJsales, "XXN", orders=list(ar=2,i=2,ma=2,select=TRUE),
distribution="default", silent=FALSE,
h=12, holdout=TRUE)
#> Evaluating models with different distributions... default , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |
#> The best ARIMA is selected. Done!
testModel
#> Time elapsed: 0.1 seconds
#> Model estimated using auto.adam() function: ETS(AAdN)
#> With backcasting initialisation
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 237.6265
#> Persistence vector g:
#> alpha beta
#> 0.9456 0.2965
#> Damping parameter: 0.8795
#> Sample size: 138
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 134
#> Information criteria:
#> AIC AICc BIC BICc
#> 483.2529 483.5537 494.9619 495.7029
#>
#> Forecast errors:
#> ME: 2.818; MAE: 2.968; RMSE: 3.655
#> sCE: 14.877%; Asymmetry: 88%; sMAE: 1.306%; sMSE: 0.026%
#> MASE: 2.492; RMSSE: 2.383; rMAE: 0.958; rRMSE: 0.954Knowing how to work with adam(), you can use similar
principles, when dealing with auto.adam(). Just keep in
mind that the provided persistence, phi,
initial, arma and B won’t work,
because this contradicts the idea of the model selection.
Finally, there is also the mechanism of automatic outliers detection,
which extracts residuals from the best model, flags observations that
lie outside the prediction interval of the width level in
sample and then refits auto.adam() with the dummy variables
for the outliers. Here how it works:
testModel <- auto.adam(AirPassengers, "PPP", silent=FALSE, outliers="use",
distribution="default",
h=12, holdout=TRUE)
#> Evaluating models with different distributions... default , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |-\|-\
#> The best ARIMA is selected.
#> Dealing with outliers...
testModel
#> Time elapsed: 2.4 seconds
#> Model estimated using auto.adam() function: ETSX(MMM)+ARIMA(3,0,0)
#> With backcasting initialisation
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 458.3194
#> Persistence vector g (excluding xreg):
#> alpha beta gamma
#> 0.0898 0.0107 0.0089
#>
#> ARMA parameters of the model:
#> Lag 1
#> AR(1) 0.6094
#> AR(2) 0.2614
#> AR(3) -0.1026
#>
#> Sample size: 132
#> Number of estimated parameters: 8
#> Number of degrees of freedom: 124
#> Information criteria:
#> AIC AICc BIC BICc
#> 932.6389 933.8096 955.7013 958.5595
#>
#> Forecast errors:
#> ME: -2.976; MAE: 15.069; RMSE: 21.595
#> sCE: -13.606%; Asymmetry: -7.3%; sMAE: 5.741%; sMSE: 0.677%
#> MASE: 0.626; RMSSE: 0.689; rMAE: 0.198; rRMSE: 0.21If you specify outliers="select", the function will
create leads and lags 1 of the outliers and then select the most
appropriate ones via the regressors parameter of adam.
If you want to know more about ADAM, you are welcome to visit the online monograph.