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smmR-package smmR : Semi-Markov Models, Markov Models and Reliability

Description

This package performs parametric and non-parametric estimation and simulation for multi-state
discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions
are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Nega-
tive Binomial. The non-parametric estimation concerns the sojourn time distributions, where no
assumptions are done on the shape of distributions. Moreover, the estimation can be done on the
basis of one or several sample paths, with or without censoring at the beginning or/and at the end
of the sample paths. Estimation and simulation of discrete-time k-th order Markov chains are also
considered.

Semi-Markov models are specified by using the functions smmparametric() and smmnonparametric()
for parametric and non-parametric specifications respectively. These functions return objects of S3
class (smm, smmparametric) and (smm, smmnonparametric) respectively (smm class inherits from S3
classes smmparametric or smmnonparametric). Thus, smm is like a wrapper class for semi-Markov
model specifications.

Based on a model specification (an object of class smm), it is possible to:

• simulate one or several sequences with the method simulate.smm();

• plot conditional sojourn time distributions (method plot.smm());

• compute log-likelihood, AIC and BIC criteria (methods loglik(), aic(), bic());

• compute reliability, maintainability, availability, failure rates (methods reliability(),
maintainability(), availability(), failureRate()).

Estimations of parametric and non-parametric semi-Markov models can be done by using the func-
tion fitsmm(). This function returns an object of S3 class smmfit. The class smmfit inherits from
classes (smm, smmparametric) or (smm, smmnonparametric).

Based on a fitted/estimated semi-Markov model (an object of class smmfit), it is possible to:

• simulate one or several sequences with the method simulate.smmfit();

• plot estimated conditional sojourn time distributions (method plot.smmfit());

• compute log-likelihood, AIC and BIC criteria (methods loglik(), aic(), bic());

• compute estimated reliability, maintainability, availability, failure rates and their confi-
dence intervals (methods reliability(), maintainability(), availability(), failureRate()).

Author(s)

Maintainer: Nicolas Vergne <nicolas.vergne@univ-rouen.fr>

Authors:

• Vlad Stefan Barbu (ORCID)

• Caroline Berard

https://orcid.org/0000-0002-0840-016X
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• Dominique Cellier

• Florian Lecocq

• Corentin Lothode

• Mathilde Sautreuil

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

R.E. Barlow, A.W. Marshall, and F. Prochan. (1963). Properties of probability distributions with
monotone hazard rate. Ann. Math. Statist., 34, 375-389.

T. Nakagawa and S. Osaki. (1975). The discrete Weibull distribution. IEEE Trans. Reliabil., R-24,
300-301.

D. Roy and R. Gupta. (1992). Classification of discrete lives. Microelectron. Reliabil., 32 (10),
1459-1473.

I. Votsi & A. Brouste (2019) Confidence interval for the mean time to failure in semi-Markov
models: an application to wind energy production, Journal of Applied Statistics, 46:10, 1756-1773.

aic Akaike Information Criterion (AIC)

Description

Generic function computing the Akaike Information Criterion of the model x, with the list of se-
quences sequences.

Usage

aic(x, sequences = NULL)

Arguments

x An object for which there exists a loglik attribute if sequences = NULL or a
loglik method otherwise.

sequences Optional. A list of vectors representing the sequences for which the AIC will be
computed based on x using the method loglik.

Value

Value of the AIC.
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availability Availability Function

Description

The pointwise (or instantaneous) availability of a system System at time k ∈ N is the probability
that the system is operational at time k (independently of the fact that the system has failed or not
in [0, k)).

Usage

availability(x, k, upstates = x$states, level = 0.95, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.

k A positive integer giving the time at which the availability should be computed.

upstates Vector giving the subset of operational states U .

level Confidence level of the asymptotic confidence interval. Helpful for an object x
of class smmfit.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.

Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of operational states of the system (the up
states) and by D = {s1 + 1, . . . , s} the subset of failure states (the down states), with 0 < s1 < s
(obviously, E = U ∪ D and U ∩ D = ∅, U 6= ∅, D 6= ∅). One can think of the states of U as
different operating modes or performance levels of the system, whereas the states of D can be seen
as failures of the systems with different modes.

We are interested in investigating the availability of a discrete-time semi-Markov system System.
Consequently, we suppose that the evolution in time of the system is governed by an E-state space
semi-Markov chain (Zk)k∈N . The state of the system is given at each instant k ∈ N by Zk: the
event {Zk = i}, for a certain i ∈ U , means that the system System is in operating mode i at time k,
whereas {Zk = j}, for a certain j ∈ D, means that the system is not operational at time k due to
the mode of failure j or that the system is under the repairing mode j.

The pointwise (or instantaneous) availability of a system System at time k ∈ N is the probability
that the system is operational at time k (independently of the fact that the system has failed or not
in [0, k)).

Thus, the pointwise availability of a semi-Markov system at time k ∈ N is

A(k) = P (Zk ∈ U) =
∑
i∈E

αiAi(k),
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where we have denoted by Ai(k) the conditional availability of the system at time k ∈ N , given
that it starts in state i ∈ E,

Ai(k) = P (Zk ∈ U |Z0 = i).

Value

A matrix with k + 1 rows, and with columns giving values of the availability, variances, lower and
upper asymptotic confidence limits (if x is an object of class smmfit).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

bic Bayesian Information Criterion (BIC)

Description

Generic function computing the Bayesian Information Criterion of the model x, with the list of
sequences sequences.

Usage

bic(x, sequences = NULL)

Arguments

x An object for which there exists a loglik attribute if sequences = NULL or a
loglik method otherwise.

sequences Optional. A list of vectors representing the sequences for which the AIC will be
computed based on x using the method loglik.

Value

Value of the BIC.
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failureRate Failure Rate Function

Description

Function to compute the BMP-failure rate or the RG-failure rate.

Consider a system System starting to work at time k = 0. The BMP-failure rate at time k ∈ N is
the conditional probability that the failure of the system occurs at time k, given that the system has
worked until time k − 1.

The RG-failure rate is a discrete-time adapted failure rate, proposed by D. Roy and R. Gupta.
Classification of discrete lives. Microelectronics Reliability, 32(10):1459–1473, 1992. We call it
the RG-failure rate and denote it by r(k), k ∈ N .

Usage

failureRate(
x,
k,
upstates = x$states,
failure.rate = c("BMP", "RG"),
level = 0.95,
epsilon = 0.001,
klim = 10000

)

Arguments

x An object of S3 class smmfit or smm.

k A positive integer giving the period [0, k] on which the BMP-failure rate should
be computed.

upstates Vector giving the subset of operational states U .

failure.rate Type of failure rate to compute. If failure.rate = "BMP" (default value), then
BMP-failure-rate is computed. If failure.rate = "RG", the RG-failure rate is
computed.

level Confidence level of the asymptotic confidence interval. Helpful for an object x
of class smmfit.

epsilon Value of the reliability above which the latter is supposed to be 0 because of
computation errors (see Details).

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.
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Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of operational states of the system (the up
states) and by D = {s1 + 1, . . . , s} the subset of failure states (the down states), with 0 < s1 < s
(obviously, E = U ∪ D and U ∩ D = ∅, U 6= ∅, D 6= ∅). One can think of the states of U as
different operating modes or performance levels of the system, whereas the states of D can be seen
as failures of the systems with different modes.

We are interested in investigating the failure rate of a discrete-time semi-Markov system System.
Consequently, we suppose that the evolution in time of the system is governed by an E-state space
semi-Markov chain (Zk)k∈N . The system starts to work at instant 0 and the state of the system
is given at each instant k ∈ N by Zk: the event {Zk = i}, for a certain i ∈ U , means that the
system System is in operating mode i at time k, whereas {Zk = j}, for a certain j ∈ D, means that
the system is not operational at time k due to the mode of failure j or that the system is under the
repairing mode j.

The BMP-failure rate at time k ∈ N is the conditional probability that the failure of the system
occurs at time k, given that the system has worked until time k − 1.

Let TD denote the first passage time in subset D, called the lifetime of the system, i.e.,

TD := inf{n ∈ N ; Zn ∈ D} and inf ∅ :=∞.

For a discrete-time semi-Markov system, the failure rate at time k ≥ 1 has the expression:

λ(k) := P (TD = k|TD ≥ k)

We can rewrite it as follows :

λ(k) = 1− R(k)

R(k − 1)
, if R(k − 1) 6= 0; λ(k) = 0, otherwise

The failure rate at time k = 0 is defined by λ(0) := 1−R(0), with R being the reliability function
(see reliability function).

The calculation of the reliability R involves the computation of many convolutions. It implies that
the computation error, may be higher (in value) than the "true" reliability itself for reliability close
to 0. In order to avoid inconsistent values of the BMP-failure rate, we use the following formula:

λ(k) = 1− R(k)

R(k − 1)
, if R(k − 1) ≥ ε; λ(k) = 0, otherwise

with ε, the threshold, the parameter epsilon in the function failureRate.

Expressing the RG-failure rate r(k) in terms of the reliability R we obtain that the RG-failure rate
function for a discrete-time system is given by:

r(k) = − ln
R(k)

R(k − 1)
, if k ≥ 1; r(k) = − lnR(0), if k = 0

for R(k) 6= 0. If R(k) = 0, we set r(k) := 0.

Note that the RG-failure rate is related to the BMP-failure rate by:

r(k) = − ln(1− λ(k)), k ∈ N
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Value

A matrix with k + 1 rows, and with columns giving values of the BMP-failure rate or RG-failure
rate, variances, lower and upper asymptotic confidence limits (if x is an object of class smmfit).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

R.E. Barlow, A.W. Marshall, and F. Prochan. (1963). Properties of probability distributions with
monotone hazard rate. Ann. Math. Statist., 34, 375-389.

D. Roy and R. Gupta. (1992). Classification of discrete lives. Microelectron. Reliabil., 32 (10),
1459-1473.

fitmm Maximum Likelihood Estimation (MLE) of a k-th order Markov chain

Description

Maximum Likelihood Estimation of the transition matrix and initial distribution of a k-th order
Markov chain starting from one or several sequences.

Usage

fitmm(sequences, states, k = 1, init.estim = "mle")

Arguments

sequences A list of vectors representing the sequences.

states Vector of state space (of length s).

k Order of the Markov chain.

init.estim Optional. init.estim gives the method used to estimate the initial distribution.
The following methods are proposed:

• init.estim = "mle": the classical Maximum Likelihood Estimator is used
to estimate the initial distribution init;

• init.estim = "stationary": the initial distribution is replaced by the sta-
tionary distribution of the Markov chain (if the order of the Markov chain is
more than one, the transition matrix is converted into a square block matrix
in order to estimate the stationary distribution);

• init.estim = "freq": the initial distribution is estimated by taking the
frequencies of the words of length k for all sequences;

• init.estim = "prod": init is estimated by using the product of the fre-
quencies of each letter (for all the sequences) in the word of length k;

• init.estim = "unif": the initial probability of each state is equal to 1/s,
with s the number of states.
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Details

Let X1, X2, ..., Xn be a trajectory of length n of the Markov chain X = (Xm)m∈N of order k = 1
with transition matrix ptrans(i, j) = P (Xm+1 = j|Xm = i). The maximum likelihood estimation
of the transition matrix is ̂ptrans(i, j) =

Nij
Ni.

, where Nij is the number of transitions from state i
to state j and Ni. is the number of transition from state i to any state. For k > 1 we have similar
expressions.

The initial distribution of a k-th order Markov chain is defined as µi = P (X1 = i). Five methods
are proposed for the estimation of the latter :

Maximum Likelihood Estimator: The Maximum Likelihood Estimator for the initial distribu-
tion. The formula is: µ̂i = Nstarti

L , where Nstarti is the number of occurences of the word
i (of length k) at the beginning of each sequence and L is the number of sequences. This
estimator is reliable when the number of sequences L is high.

Stationary distribution: The stationary distribution is used as a surrogate of the initial distribu-
tion. If the order of the Markov chain is more than one, the transition matrix is converted into
a square block matrix in order to estimate the stationary distribution. This method may take
time if the order of the Markov chain is high (more than three (3)).

Frequencies of each word: The initial distribution is estimated by taking the frequencies of the
words of length k for all sequences. The formula is µ̂i = Ni

N , where Ni is the number of
occurences of the word i (of length k) in the sequences and N is the sum of the lengths of the
sequences.

Product of the frequencies of each state: The initial distribution is estimated by using the prod-
uct of the frequencies of each state (for all the sequences) in the word of length k.

Uniform distribution: The initial probability of each state is equal to 1/s, with s, the number of
states.

Value

An object of class S3 mmfit (inheriting from the S3 class mm). The S3 class mmfit contains:

• All the attributes of the S3 class mm;

• An attribute M which is an integer giving the total length of the set of sequences sequences
(sum of all the lengths of the list sequences);

• An attribute loglik which is a numeric value giving the value of the log-likelihood of the
specified Markov model based on the sequences;

• An attribute sequences which is equal to the parameter sequences of the function fitmm (i.e.
a list of sequences used to estimate the Markov model).

See Also

mm, simulate.mm

Examples

states <- c("a", "c", "g", "t")
s <- length(states)
k <- 2
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init <- rep.int(1 / s ^ k, s ^ k)
p <- matrix(0.25, nrow = s ^ k, ncol = s)

# Specify a Markov model of order 2
markov <- mm(states = states, init = init, ptrans = p, k = k)

seqs <- simulate(object = markov, nsim = c(1000, 10000, 2000), seed = 150)

est <- fitmm(sequences = seqs, states = states, k = 2)

fitsmm Maximum Likelihood Estimation (MLE) of a semi-Markov chain

Description

Maximum Likelihood Estimation of a semi-Markov chain starting from one or several sequences.
This estimation can be parametric or non-parametric, non-censored, censored at the beginning
and/or at the end of the sequence, with one or several trajectories. Several parametric distributions
are considered (Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial).

Usage

fitsmm(
sequences,
states,
type.sojourn = c("fij", "fi", "fj", "f"),
distr = "nonparametric",
init.estim = "mle",
cens.beg = FALSE,
cens.end = FALSE

)

Arguments

sequences A list of vectors representing the sequences.

states Vector of state space (of length s).

type.sojourn Type of sojourn time (for more explanations, see Details).

distr By default "nonparametric" for the non-parametric estimation case.
If the parametric estimation case is desired, distr should be:

• A matrix of distributions of dimension (s, s) if type.sojourn = "fij";
• A vector of distributions of length s if type.sojourn = "fi" or "fj";
• A distribution if type.sojourn = "f".

The distributions to be used in distr must be one of "unif", "geom", "pois",
"dweibull", "nbinom".
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init.estim Optional. init.estim gives the method used to estimate the initial distribution.
The following methods are proposed:

• init.estim = "mle": the classical Maximum Likelihood Estimator is used
to estimate the initial distribution init;

• init.estim = "limit": the initial distribution is replaced by the limit (sta-
tionary) distribution of the semi-Markov chain;

• init.estim = "freq": the initial distribution is replaced by the frequencies
of each state in the sequences;

• init.estim = "unif": the initial probability of each state is equal to 1/s,
with s the number of states.

cens.beg Optional. A logical value indicating whether or not sequences are censored at
the beginning.

cens.end Optional. A logical value indicating whether or not sequences are censored at
the end.

Details

This function estimates a semi-Markov model in parametric or non-parametric case, taking into
account the type of sojourn time and the censoring described in references. The non-parametric
estimation concerns sojourn time distributions defined by the user. For the parametric estimation,
several discrete distributions are considered (see below).

The difference between the Markov model and the semi-Markov model concerns the modeling of
the sojourn time. With a Markov chain, the sojourn time distribution is modeled by a Geometric
distribution (in discrete time). With a semi-Markov chain, the sojourn time can be any arbitrary
distribution. In this package, the available distribution for a semi-Markov model are :

• Uniform: f(x) = 1
n for 1 ≤ x ≤ n. n is the parameter;

• Geometric: f(x) = θ(1 − θ)x−1 for x = 1, 2, . . . , n, 0 < θ < 1, θ is the probability of
success. θ is the parameter;

• Poisson: f(x) = λxexp(−λ)
x! for x = 0, 1, 2, . . . , n, with λ > 0. λ is the parameter;

• Discrete Weibull of type 1: f(x) = q(x−1)β − qxβ , x = 1, 2, . . . , n, with 0 < q < 1, the first
parameter and β > 0 the second parameter. (q, β) are the parameters;

• Negative binomial: f(x) = Γ(x+α)
Γ(α)x! p

α(1 − p)x, for x = 0, 1, 2, . . . , n, Γ is the Gamma
function, α is the parameter of overdispersion and p is the probability of success, 0 < p < 1.
(α, p) are the parameters;

• Non-parametric.

We define :

• the semi-Markov kernel qij(k) = P (Jm+1 = j, Tm+1 − Tm = k|Jm = i);

• the transition matrix (ptrans(i, j))i,j ∈ states of the embedded Markov chain J = (Jm)m,
ptrans(i, j) = P (Jm+1 = j|Jm = i);

• the initial distribution µi = P (J1 = i) = P (Z1 = i), i ∈ 1, 2, . . . , s;

• the conditional sojourn time distributions (fij(k))i,j ∈ states, k ∈ N, fij(k) = P (Tm+1 −
Tm = k|Jm = i, Jm+1 = j), f is specified by the argument param in the parametric case and
by distr in the non-parametric case.
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The maximum likelihood estimation of the transition matrix of the embedded Markov chain iŝptrans(i, j) =
Nij
Ni.

.

Five methods are proposed for the estimation of the initial distribution :

Maximum Likelihood Estimator: The Maximum Likelihood Estimator for the initial distribu-
tion. The formula is: µ̂i = Nstarti

L , where Nstarti is the number of occurences of the word
i (of length k) at the beginning of each sequence and L is the number of sequences. This
estimator is reliable when the number of sequences L is high.

Limit (stationary) distribution: The limit (stationary) distribution of the semi-Markov chain is
used as a surrogate of the initial distribution.

Frequencies of each state: The initial distribution is replaced by taking the frequencies of each
state in the sequences.

Uniform distribution: The initial probability of each state is equal to 1/s, with s, the number of
states.

Note that qij(k) = ptrans(i, j) fij(k) in the general case (depending on the present state and on
the next state). For particular cases, we replace fij(k) by fi.(k) (depending on the present state i),
f.j(k) (depending on the next state j) and f..(k) (depending neither on the present state nor on the
next state).

In this package we can choose different types of sojourn time. Four options are available for the
sojourn times:

• depending on the present state and on the next state (fij);

• depending only on the present state (fi);

• depending only on the next state (fj);

• depending neither on the current, nor on the next state (f).

If type.sojourn = "fij", distr is a matrix of dimension (s, s) (e.g., if the 1st element of the 2nd
column is "pois", that is to say we go from the first state to the second state following a Poisson
distribution). If type.sojourn = "fi" or "fj", distr must be a vector (e.g., if the first element of
vector is "geom", that is to say we go from (or to) the first state to (or from) any state according to a
Geometric distribution). If type.sojourn = "f", distr must be one of "unif", "geom", "pois",
"dweibull", "nbinom" (e.g., if distr is equal to "nbinom", that is to say that the sojourn time
when going from one state to another state follows a Negative Binomial distribution). For the non-
parametric case, distr is equal to "nonparametric" whatever type of sojourn time given.

If the sequence is censored at the beginning and/or at the end, cens.beg must be equal to TRUE
and/or cens.end must be equal to TRUE. All the sequences must be censored in the same way.

Value

Returns an object of S3 class smmfit (inheriting from the S3 class smm and smmnonparametric class
if distr = "nonparametric" or smmparametric otherwise). The S3 class smmfit contains:

• All the attributes of the S3 class smmnonparametric or smmparametric depending on the type
of estimation;

• An attribute M which is an integer giving the total length of the set of sequences sequences
(sum of all the lengths of the list sequences);



14 fitsmm

• An attribute loglik which is a numeric value giving the value of the log-likelihood of the
specified semi-Markov model based on the sequences;

• An attribute sequences which is equal to the parameter sequences of the function fitsmm
(i.e. a list of sequences used to estimate the Markov model).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

See Also

smmnonparametric, smmparametric, simulate.smm, simulate.smmfit, plot.smm, plot.smmfit

Examples

states <- c("a", "c", "g", "t")
s <- length(states)

# Creation of the initial distribution
vect.init <- c(1 / 4, 1 / 4, 1 / 4, 1 / 4)

# Creation of the transition matrix
pij <- matrix(c(0, 0.2, 0.5, 0.3,

0.2, 0, 0.3, 0.5,
0.3, 0.5, 0, 0.2,
0.4, 0.2, 0.4, 0),

ncol = s, byrow = TRUE)

# Creation of the distribution matrix

distr.matrix <- matrix(c(NA, "pois", "geom", "nbinom",
"geom", NA, "pois", "dweibull",
"pois", "pois", NA, "geom",
"pois", "geom", "geom", NA),

nrow = s, ncol = s, byrow = TRUE)

# Creation of an array containing the parameters
param1.matrix <- matrix(c(NA, 2, 0.4, 4,

0.7, NA, 5, 0.6,
2, 3, NA, 0.6,
4, 0.3, 0.4, NA),

nrow = s, ncol = s, byrow = TRUE)

param2.matrix <- matrix(c(NA, NA, NA, 0.6,
NA, NA, NA, 0.8,
NA, NA, NA, NA,
NA, NA, NA, NA),

nrow = s, ncol = s, byrow = TRUE)

param.array <- array(c(param1.matrix, param2.matrix), c(s, s, 2))
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# Specify the semi-Markov model
semimarkov <- smmparametric(states = states, init = vect.init, ptrans = pij,

type.sojourn = "fij", distr = distr.matrix,
param = param.array)

seqs <- simulate(object = semimarkov, nsim = c(1000, 10000, 2000), seed = 100)

# Estimation of simulated sequences
est <- fitsmm(sequences = seqs, states = states, type.sojourn = "fij",

distr = distr.matrix)

getKernel Method to get the semi-Markov kernel q

Description

Computes the semi-Markov kernel qij(k).

Usage

getKernel(x, k, var = FALSE, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.

k A positive integer giving the time horizon.

var Logical. If TRUE the asymptotic variance is computed.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.

Value

An array giving the value of qij(k) at each time between 0 and k if var = FALSE. If var = TRUE, a
list containing the following components:

• x: an array giving the value of qij(k) at each time between 0 and k;

• sigma2: an array giving the asymptotic variance of the estimator σ2
q (i, j, k).
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is.mm Function to check if an object is of class mm

Description

is.mm returns TRUE if x is an object of class mm.

Usage

is.mm(x)

Arguments

x An arbitrary R object.

Value

is.mm returns TRUE or FALSE depending on whether x is an object of class mm or not.

is.mmfit Function to check if an object is of class mmfit

Description

is.mmfit returns TRUE if x is an object of class mmfit.

Usage

is.mmfit(x)

Arguments

x An arbitrary R object.

Value

is.mmfit returns TRUE or FALSE depending on whether x is an object of class mmfit or not.
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is.smm Function to check if an object is of class smm

Description

is.smm returns TRUE if x is an object of class smm.

Usage

is.smm(x)

Arguments

x An arbitrary R object.

Value

is.smm returns TRUE or FALSE depending on whether x is an object of class smm or not.

is.smmfit Function to check if an object is of class smmfit

Description

is.smmfit returns TRUE if x is an object of class smmfit.

Usage

is.smmfit(x)

Arguments

x An arbitrary R object.

Value

is.smmfit returns TRUE or FALSE depending on whether x is an object of class smmfit or not.
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is.smmnonparametric Function to check if an object is of class smmnonparametric

Description

is.smmnonparametric returns TRUE if x is an object of class smmnonparametric.

Usage

is.smmnonparametric(x)

Arguments

x An arbitrary R object.

Value

is.smmnonparametric returns TRUE or FALSE depending on whether x is an object of class smmnonparametric
or not.

is.smmparametric Function to check if an object is of class smmparametric

Description

is.smmparametric returns TRUE if x is an object of class smmparametric.

Usage

is.smmparametric(x)

Arguments

x An arbitrary R object.

Value

is.smmparametric returns TRUE or FALSE depending on whether x is an object of class smmparametric
or not.
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loglik Log-likelihood Function

Description

Generic function computing the log-likelihood of the model x, with the list of sequences sequences.

Usage

loglik(x, sequences = NULL)

Arguments

x An object for which there exists a loglik attribute if sequences = NULL. Other-
wise, the log-likelihood will be computed using the model x and the sequences
sequences.

sequences Optional. A list of vectors representing the sequences for which the log-likelihood
will be computed based on x.

Value

Value of the log-likelihood.

maintainability Maintainability Function

Description

For a reparable system System for which the failure occurs at time k = 0, its maintainability at time
k ∈ N is the probability that the system is repaired up to time k, given that it has failed at time
k = 0.

Usage

maintainability(x, k, upstates = x$states, level = 0.95, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.
k A positive integer giving the period [0, k] on which the maintainability should

be computed.
upstates Vector giving the subset of operational states U .
level Confidence level of the asymptotic confidence interval. Helpful for an object x

of class smmfit.
klim Optional. The time horizon used to approximate the series in the computation

of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.
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Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of operational states of the system (the up
states) and by D = {s1 + 1, . . . , s} the subset of failure states (the down states), with 0 < s1 < s
(obviously, E = U ∪ D and U ∩ D = ∅, U 6= ∅, D 6= ∅). One can think of the states of U as
different operating modes or performance levels of the system, whereas the states of D can be seen
as failures of the systems with different modes.

We are interested in investigating the maintainability of a discrete-time semi-Markov system System.
Consequently, we suppose that the evolution in time of the system is governed by an E-state space
semi-Markov chain (Zk)k∈N . The system starts to fail at instant 0 and the state of the system is
given at each instant k ∈ N by Zk: the event {Zk = i}, for a certain i ∈ U , means that the system
System is in operating mode i at time k, whereas {Zk = j}, for a certain j ∈ D, means that the
system is not operational at time k due to the mode of failure j or that the system is under the
repairing mode j.

Thus, we take (αi := P (Z0 = i))i∈U = 0 and we denote by TU the first hitting time of subset U ,
called the duration of repair or repair time, that is,

TU := inf{n ∈ N ; Zn ∈ U} and inf ∅ :=∞.

The maintainability at time k ∈ N of a discrete-time semi-Markov system is

M(k) = P (TU ≤ k) = 1− P (TU > k) = 1− P (Zn ∈ D, n = 0, . . . , k).

Value

A matrix with k + 1 rows, and with columns giving values of the maintainability, variances, lower
and upper asymptotic confidence limits (if x is an object of class smmfit).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

meanRecurrenceTimes Method to get the mean recurrence times µ

Description

Method to get the mean recurrence times µ.

Usage

meanRecurrenceTimes(x, klim = 10000)
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Arguments

x An object of S3 class smmfit or smm.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function).

Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}.
We are interested in investigating the mean recurrence times of a discrete-time semi-Markov system
System. Consequently, we suppose that the evolution in time of the system is governed by an E-state
space semi-Markov chain (Zk)k∈N . The state of the system is given at each instant k ∈ N by Zk:
the event {Zk = i}.
Let T = (Tn)n∈N denote the successive time points when state changes in (Zn)n∈N occur and let
also J = (Jn)n∈N denote the successively visited states at these time points.

The mean recurrence of an arbitrary state j ∈ E is given by:

µjj =

∑
i∈E ν(i)mi

ν(j)

where (ν(1), . . . , ν(s)) is the stationary distribution of the embedded Markov chain (Jn)n∈N and
mi is the mean sojourn time in state i ∈ E (see meanSojournTimes function for the computation).

Value

A vector giving the mean recurrence time (µi)i∈[1,...,s].

meanSojournTimes Mean Sojourn Times Function

Description

The mean sojourn time is the mean time spent in each state.

Usage

meanSojournTimes(x, states = x$states, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.

states Vector giving the states for which the mean sojourn time should be computed.
states is a subset of E.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function).
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Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}.
We are interested in investigating the mean sojourn times of a discrete-time semi-Markov system
System. Consequently, we suppose that the evolution in time of the system is governed by an E-state
space semi-Markov chain (Zk)k∈N . The state of the system is given at each instant k ∈ N by Zk:
the event {Zk = i}.
Let T = (Tn)n∈N denote the successive time points when state changes in (Zn)n∈N occur and let
also J = (Jn)n∈N denote the successively visited states at these time points.

The mean sojourn times vector is defined as follows:

mi = E[T1|Z0 = j] =
∑
k≥0

(1− P (Tn+1 − Tn ≤ k|Jn = j)) =
∑
k≥0

(1−Hj(k)), i ∈ E

Value

A vector of length card(E) giving the values of the mean sojourn times for each state i ∈ E.

mm Markov model specification

Description

Creates a model specification of a Markov model.

Usage

mm(states, init, ptrans, k = 1)

Arguments

states Vector of state space of length s.

init Vector of initial distribution of length s ^ k.

ptrans Matrix of transition probabilities of dimension (s, s).

k Order of the Markov chain.

Value

An object of class mm.

See Also

simulate.mm, fitmm
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Examples

states <- c("a", "c", "g", "t")
s <- length(states)
k <- 1
init <- rep.int(1 / s, s)
p <- matrix(c(0, 0, 0.3, 0.4, 0, 0, 0.5, 0.2, 0.7, 0.5,

0, 0.4, 0.3, 0.5, 0.2, 0), ncol = s)

# Specify a Markov model of order 1
markov <- mm(states = states, init = init, ptrans = p, k = k)

mttf Mean Time To Failure (MTTF) Function

Description

Consider a system System starting to work at time k = 0. The mean time to failure (MTTF) is
defined as the mean lifetime.

Usage

mttf(x, upstates = x$states, level = 0.95, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.

upstates Vector giving the subset of operational states U .

level Confidence level of the asymptotic confidence interval. Helpful for an object x
of class smmfit.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.

Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of operational states of the system (the up
states) and by D = {s1 + 1, . . . , s} the subset of failure states (the down states), with 0 < s1 < s
(obviously, E = U ∪ D and U ∩ D = ∅, U 6= ∅, D 6= ∅). One can think of the states of U as
different operating modes or performance levels of the system, whereas the states of D can be seen
as failures of the systems with different modes.

We are interested in investigating the mean time to failure of a discrete-time semi-Markov system
System. Consequently, we suppose that the evolution in time of the system is governed by an E-
state space semi-Markov chain (Zk)k∈N . The system starts to work at instant 0 and the state of the
system is given at each instant k ∈ N by Zk: the event {Zk = i}, for a certain i ∈ U , means that
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the system System is in operating mode i at time k, whereas {Zk = j}, for a certain j ∈ D, means
that the system is not operational at time k due to the mode of failure j or that the system is under
the repairing mode j.

Let TD denote the first passage time in subset D, called the lifetime of the system, i.e.,

TD := inf{n ∈ N ; Zn ∈ D} and inf ∅ :=∞.

The mean time to failure (MTTF) is defined as the mean lifetime, i.e., the expectation of the hitting
time to down set D,

MTTF = E[TD]

Value

A matrix with card(U) = s1 rows, and with columns giving values of the mean time to failure for
each state i ∈ U , variances, lower and upper asymptotic confidence limits (if x is an object of class
smmfit).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

I. Votsi & A. Brouste (2019) Confidence interval for the mean time to failure in semi-Markov
models: an application to wind energy production, Journal of Applied Statistics, 46:10, 1756-1773

mttr Mean Time To Repair (MTTR) Function

Description

Consider a system System that has just failed at time k = 0. The mean time to repair (MTTR) is
defined as the mean of the repair duration.

Usage

mttr(x, upstates = x$states, level = 0.95, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.

upstates Vector giving the subset of operational states U .

level Confidence level of the asymptotic confidence interval. Helpful for an object x
of class smmfit.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.
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Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of operational states of the system (the up
states) and by D = {s1 + 1, . . . , s} the subset of failure states (the down states), with 0 < s1 < s
(obviously, E = U ∪ D and U ∩ D = ∅, U 6= ∅, D 6= ∅). One can think of the states of U as
different operating modes or performance levels of the system, whereas the states of D can be seen
as failures of the systems with different modes.

We are interested in investigating the mean time to repair of a discrete-time semi-Markov system
System. Consequently, we suppose that the evolution in time of the system is governed by an E-
state space semi-Markov chain (Zk)k∈N . The system has just failed at instant 0 and the state of the
system is given at each instant k ∈ N by Zk: the event {Zk = i}, for a certain i ∈ U , means that
the system System is in operating mode i at time k, whereas {Zk = j}, for a certain j ∈ D, means
that the system is not operational at time k due to the mode of failure j or that the system is under
the repairing mode j.

Let TU denote the first passage time in subset U , called the duration of repair or repair time, i.e.,

TU := inf{n ∈ N ; Zn ∈ U} and inf ∅ :=∞.

The mean time to repair (MTTR) is defined as the mean of the repair duration, i.e., the expectation
of the hitting time to up set U ,

MTTR = E[TU ]

Value

A matrix with card(U) = s1 rows, and with columns giving values of the mean time to repair for
each state i ∈ U , variances, lower and upper asymptotic confidence limits (if x is an object of class
smmfit).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

I. Votsi & A. Brouste (2019) Confidence interval for the mean time to failure in semi-Markov
models: an application to wind energy production, Journal of Applied Statistics, 46:10, 1756-1773

plot.smm Plot function for an object of class smm

Description

Displays the densities for the conditional sojourn time distributions depending on the current state
i and on the next state j.
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Usage

## S3 method for class 'smm'
plot(x, i, j, klim = NULL, ...)

Arguments

x An object of S3 class smm (inheriting from the S3 class smmnonparametric or
smmparametric).

i An element of the state space vector x$states giving the current state in the
following cases: type.sojourn = "fij" or type.sojourn = "fi", otherwise,
i is ignored.

j An element of the state space vector x$states giving the next state in the fol-
lowing cases: type.sojourn = "fij" or type.sojourn = "fj", otherwise, j is
ignored.

klim An integer giving the limit value for which the density will be plotted. If klim
is NULL, then quantile or order 0.95 is used.

... Arguments passed to plot.

Value

None.

plot.smmfit Plot function for an object of class smmfit

Description

Displays the densities for the conditional sojourn time distributions depending on the current state
i and on the next state j.

Usage

## S3 method for class 'smmfit'
plot(x, i, j, klim = NULL, ...)

Arguments

x An object of class smmfit (inheriting from the S3 classes smm, smmnonparamet-
ric or smmparametric).

i An element of the state space vector x$states giving the current state in the
following cases: type.sojourn = "fij" or type.sojourn = "fi", otherwise,
i is ignored.

j An element of the state space vector x$states giving the next state in the fol-
lowing cases: type.sojourn = "fij" or type.sojourn = "fj", otherwise, j is
ignored.
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klim An integer giving the limit value for which the density will be plotted. If klim
is NULL, then quantile or order 0.95 is used.

... Arguments passed to plot.

Value

None.

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

Examples

states <- c("a", "c", "g", "t")

reliability Reliability Function

Description

Consider a system System starting to function at time k = 0. The reliability or the survival function
of System at time k ∈ N is the probability that the system has functioned without failure in the
period [0, k].

Usage

reliability(x, k, upstates = x$states, level = 0.95, klim = 10000)

Arguments

x An object of S3 class smmfit or smm.

k A positive integer giving the period [0, k] on which the reliability should be
computed.

upstates Vector giving the subset of operational states U .

level Confidence level of the asymptotic confidence interval. Helpful for an object x
of class smmfit.

klim Optional. The time horizon used to approximate the series in the computation
of the mean sojourn times vector m (cf. meanSojournTimes function) for the
asymptotic variance.
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Details

Consider a system (or a component) System whose possible states during its evolution in time are
E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of operational states of the system (the up
states) and by D = {s1 + 1, . . . , s} the subset of failure states (the down states), with 0 < s1 < s
(obviously, E = U ∪ D and U ∩ D = ∅, U 6= ∅, D 6= ∅). One can think of the states of U as
different operating modes or performance levels of the system, whereas the states of D can be seen
as failures of the systems with different modes.

We are interested in investigating the reliability of a discrete-time semi-Markov system System.
Consequently, we suppose that the evolution in time of the system is governed by an E-state space
semi-Markov chain (Zk)k∈N . The system starts to work at instant 0 and the state of the system
is given at each instant k ∈ N by Zk: the event {Zk = i}, for a certain i ∈ U , means that the
system System is in operating mode i at time k, whereas {Zk = j}, for a certain j ∈ D, means that
the system is not operational at time k due to the mode of failure j or that the system is under the
repairing mode j.

Let TD denote the first passage time in subset D, called the lifetime of the system, i.e.,

TD := inf{n ∈ N ; Zn ∈ D} and inf ∅ :=∞.

The reliability or the survival function at time k ∈ N of a discrete-time semi-Markov system is:

R(k) := P (TD > k) = P (Zn ∈ U, n = 0, . . . , k)

which can be rewritten as follows:

R(k) =
∑
i∈U

P (Z0 = i)P (TD > k|Z0 = i) =
∑
i∈U

αiP (TD > k|Z0 = i)

Value

A matrix with k + 1 rows, and with columns giving values of the reliability, variances, lower and
upper asymptotic confidence limits (if x is an object of class smmfit).

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

setSeed Set the RNG Seed from within Rcpp

Description

Set the RNG Seed from within Rcpp
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Usage

setSeed(seed)

Arguments

seed An unsigned int that is the seed one wishes to use.

Value

A set RNG scope.

Examples

set.seed(10)
x <- rnorm(5, 0, 1)
setSeed(10)
y <- rnorm(5, 0, 1)
all.equal(x, y, check.attributes = FALSE)

simulate.mm Simulates k-th order Markov chains

Description

Simulates k-th order Markov chains.

Usage

## S3 method for class 'mm'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object An object of class mm.

nsim An integer or vector of integers (for multiple sequences) specifying the length
of the sequence(s).

seed Optional. seed for the random number generator. If no seed is given, then seed
is set by using the command set.seed(round(as.numeric(Sys.time())).

... further arguments passed to or from other methods.

Details

If nsim is a single integer then a chain of that length is produced. If nsim is a vector of integers,
then length(nsim) sequences are generated with respective lengths.
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Value

A list of vectors representing the sequences.

See Also

mm, fitmm

Examples

states <- c("a", "c", "g", "t")
s <- length(states)
k <- 2
init <- rep.int(1 / s ^ k, s ^ k)
p <- matrix(0.25, nrow = s ^ k, ncol = s)

# Specify a Markov model of order 1
markov <- mm(states = states, init = init, ptrans = p, k = k)

seqs <- simulate(object = markov, nsim = c(1000, 10000, 2000), seed = 150)

simulate.mmfit Simulates Markov chains

Description

Simulates sequences from a fitted Markov model.

Usage

## S3 method for class 'mmfit'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object An object of class mmfit.

nsim An integer or vector of integers (for multiple sequences) specifying the length
of the sequence(s).

seed Optional. seed for the random number generator. If no seed is given, then seed
is set by using the command set.seed(round(as.numeric(Sys.time())).

... further arguments passed to or from other methods.

Details

If nsim is a single integer then a chain of that length is produced. If nsim is a vector of integers,
then length(nsim) sequences are generated with respective lengths.
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Value

A list of vectors representing the sequences.

See Also

mm, fitmm

simulate.smm Simulates semi-Markov chains

Description

Simulates sequences from a semi-Markov model.

Usage

## S3 method for class 'smm'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object An object of S3 class smm (inheriting from the S3 class smmnonparametric or
smmparametric).

nsim An integer or vector of integers (for multiple sequences) specifying the length
of the sequence(s).

seed Optional. seed for the random number generator. If no seed is given, then seed
is set by using the command set.seed(round(as.numeric(Sys.time())).

... further arguments passed to or from other methods.

Details

If nsim is a single integer then a chain of that length is produced. If nsim is a vector of integers,
then length(nsim) sequences are generated with respective lengths.

Value

A list of vectors representing the sequences.

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

See Also

smmparametric, smmnonparametric, fitsmm



32 simulate.smmfit

simulate.smmfit Simulates semi-Markov chains

Description

Simulates sequences from a fitted semi-Markov model.

Usage

## S3 method for class 'smmfit'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object An object of class smmfit (inheriting from the S3 classes smm, smmnonparamet-
ric or smmparametric).

nsim An integer or vector of integers (for multiple sequences) specifying the length
of the sequence(s).

seed seed for the random number generator.

... further arguments passed to or from other methods.

Details

If nsim is a single integer then a chain of that length is produced. If nsim is a vector of integers,
then length(nsim) sequences are generated with respective lengths.

Value

A list of vectors representing the sequences.

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

See Also

smmnonparametric, smmparametric, fitsmm
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smmnonparametric Non-parametric semi-Markov model specification

Description

Creates a non-parametric model specification for a semi-Markov model.

Usage

smmnonparametric(
states,
init,
ptrans,
type.sojourn = c("fij", "fi", "fj", "f"),
distr,
cens.beg = FALSE,
cens.end = FALSE

)

Arguments

states Vector of state space of length s.

init Vector of initial distribution of length s.

ptrans Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
dimension (s, s).

type.sojourn Type of sojourn time (for more explanations, see Details).

distr • Array of dimension (s, s, kmax) if type.sojourn = "fij";
• Matrix of dimension (s, kmax) if type.sojourn = "fi" or "fj";
• Vector of length kmax if the type.sojourn = "f".

kmax is the maximum length of the sojourn times.

cens.beg Optional. A logical value indicating whether or not sequences are censored at
the beginning.

cens.end Optional. A logical value indicating whether or not sequences are censored at
the end.

Details

This function creates a semi-Markov model object in the non-parametric case, taking into account
the type of sojourn time and the censoring described in references. The non-parametric specification
concerns sojourn time distributions defined by the user.

The difference between the Markov model and the semi-Markov model concerns the modeling of
the sojourn time. With a Markov chain, the sojourn time distribution is modeled by a Geometric
distribution (in discrete time). With a semi-Markov chain, the sojourn time can be any arbitrary
distribution.

We define :
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• the semi-Markov kernel qij(k) = P (Jm+1 = j, Tm+1 − Tm = k|Jm = i);

• the transition matrix (ptrans(i, j))i,j ∈ states of the embedded Markov chain J = (Jm)m,
ptrans(i, j) = P (Jm+1 = j|Jm = i);

• the initial distribution µi = P (J1 = i) = P (Z1 = i), i ∈ 1, 2, . . . , s;

• the conditional sojourn time distributions (fij(k))i,j ∈ states, k ∈ N, fij(k) = P (Tm+1 −
Tm = k|Jm = i, Jm+1 = j), f is specified by the argument distr in the non-parametric case.

In this package we can choose different types of sojourn time. Four options are available for the
sojourn times:

• depending on the present state and on the next state (fij);

• depending only on the present state (fi);

• depending only on the next state (fj);

• depending neither on the current, nor on the next state (f ).

Let define kmax the maximum length of the sojourn times. If type.sojourn = "fij", distr is
an array of dimension (s, s, kmax). If type.sojourn = "fi" or "fj", distr must be a matrix of
dimension (s, kmax). If type.sojourn = "f", distr must be a vector of length kmax.

If the sequence is censored at the beginning and/or at the end, cens.beg must be equal to TRUE
and/or cens.end must be equal to TRUE. All the sequences must be censored in the same way.

Value

Returns an object of class smm, smmnonparametric.

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

See Also

simulate, fitsmm, smmparametric

Examples

states <- c("a", "c", "g", "t")
s <- length(states)

# Creation of the initial distribution
vect.init <- c(1 / 4, 1 / 4, 1 / 4, 1 / 4)

# Creation of the transition matrix
pij <- matrix(c(0, 0.2, 0.5, 0.3,

0.2, 0, 0.3, 0.5,
0.3, 0.5, 0, 0.2,
0.4, 0.2, 0.4, 0),

ncol = s, byrow = TRUE)
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# Creation of a matrix corresponding to the
# conditional sojourn time distributions
kmax <- 6
nparam.matrix <- matrix(c(0.2, 0.1, 0.3, 0.2,

0.2, 0, 0.4, 0.2,
0.1, 0, 0.2, 0.1,
0.5, 0.3, 0.15, 0.05,
0, 0, 0.3, 0.2,
0.1, 0.2, 0.2, 0),

nrow = s, ncol = kmax, byrow = TRUE)

semimarkov <- smmnonparametric(states = states, init = vect.init, ptrans = pij,
type.sojourn = "fj", distr = nparam.matrix)

semimarkov

smmparametric Parametric semi-Markov model specification

Description

Creates a parametric model specification for a semi-Markov model.

Usage

smmparametric(
states,
init,
ptrans,
type.sojourn = c("fij", "fi", "fj", "f"),
distr,
param,
cens.beg = FALSE,
cens.end = FALSE

)

Arguments

states Vector of state space of length s.

init Vector of initial distribution of length s.

ptrans Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
dimension (s, s).

type.sojourn Type of sojourn time (for more explanations, see Details).

distr • Matrix of distributions of dimension (s, s) if type.sojourn = "fij";
• Vector of distributions of length s if type.sojourn = "fi" or "fj;
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• A distribution if type.sojourn = "f".
where the distributions to be used can be one of unif, geom, pois, dweibull or
nbinom.

param Parameters of sojourn time distributions:

• Array of distribution parameters of dimension (s, s, 2) (2 corresponds to
the maximal number of distribution parameters) if type.sojourn = "fij";

• Matrix of distribution parameters of dimension (s, 2) if type.sojourn =
"fi" or "fj";

• Vector of distribution parameters of length 2 if type.sojourn = "f".

When parameters/values are not necessary (e.g. the Poisson distribution has
only one parameter that is λ, leave the value NA for the second parameter in the
argument param).

cens.beg Optional. A logical value indicating whether or not sequences are censored at
the beginning.

cens.end Optional. A logical value indicating whether or not sequences are censored at
the end.

Details

This function creates a semi-Markov model object in the parametric case, taking into account the
type of sojourn time and the censoring described in references. For the parametric specification,
several discrete distributions are considered (see below).

The difference between the Markov model and the semi-Markov model concerns the modeling of
the sojourn time. With a Markov chain, the sojourn time distribution is modeled by a Geometric
distribution (in discrete time). With a semi-Markov chain, the sojourn time can be any arbitrary
distribution. In this package, the available distribution for a semi-Markov model are :

• Uniform: f(x) = 1/n for a ≤ x ≤ b, with n = b− a+ 1;

• Geometric: f(x) = θ(1 − θ)x for x = 0, 1, 2, . . . , n, 0 < θ < 1, with n > 0 and θ is the
probability of success;

• Poisson: f(x) = (λxexp(−λ))/x! for x = 0, 1, 2, . . . , n, with n > 0 and λ > 0;

• Discrete Weibull of type 1: f(x) = q(x−1)β − qxβ , x = 1, 2, 3, . . . , n, with n > 0, q is the
first parameter and β is the second parameter;

• Negative binomial: f(x) = Γ(x+α)
Γ(α)x! p

α(1 − p)x, for x = 0, 1, 2, . . . , n, Γ is the Gamma
function, α is the parameter of overdispersion and p is the probability of success, 0 < p < 1;

• Non-parametric.

We define :

• the semi-Markov kernel qij(k) = P (Jm+1 = j, Tm+1 − Tm = k|Jm = i);

• the transition matrix (ptrans(i, j))i,j ∈ states of the embedded Markov chain J = (Jm)m,
ptrans(i, j) = P (Jm+1 = j|Jm = i);

• the initial distribution µi = P (J1 = i) = P (Z1 = i), i ∈ 1, 2, . . . , s;

• the conditional sojourn time distributions (fij(k))i,j ∈ states, k ∈ N, fij(k) = P (Tm+1 −
Tm = k|Jm = i, Jm+1 = j), f is specified by the argument param in the parametric case.
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In this package we can choose different types of sojourn time. Four options are available for the
sojourn times:

• depending on the present state and on the next state (fij);

• depending only on the present state (fi);

• depending only on the next state (fj);

• depending neither on the current, nor on the next state (f ).

If type.sojourn = "fij", distr is a matrix of dimension (s, s) (e.g., if the row 1 of the 2nd
column is "pois", that is to say we go from the first state to the second state following a Poisson
distribution). If type.sojourn = "fi" or "fj", distr must be a vector (e.g., if the first element
of vector is "geom", that is to say we go from the first state to any state according to a Geometric
distribution). If type.sojourn = "f", distr must be one of "unif", "geom", "pois", "dweibull",
"nbinom" (e.g., if distr is equal to "nbinom", that is to say that the sojourn times when going from
any state to any state follows a Negative Binomial distribution). For the non-parametric case, distr
is equal to "nonparametric" whatever type of sojourn time given.

If the sequence is censored at the beginning and/or at the end, cens.beg must be equal to TRUE
and/or cens.end must be equal to TRUE. All the sequences must be censored in the same way.

Value

Returns an object of class smmparametric.

References

V. S. Barbu, N. Limnios. (2008). Semi-Markov Chains and Hidden Semi-Markov Models Toward
Applications - Their Use in Reliability and DNA Analysis. New York: Lecture Notes in Statistics,
vol. 191, Springer.

See Also

simulate, fitsmm, smmnonparametric

Examples

states <- c("a", "c", "g", "t")
s <- length(states)

# Creation of the initial distribution
vect.init <- c(1 / 4, 1 / 4, 1 / 4, 1 / 4)

# Creation of the transition matrix
pij <- matrix(c(0, 0.2, 0.5, 0.3,

0.2, 0, 0.3, 0.5,
0.3, 0.5, 0, 0.2,
0.4, 0.2, 0.4, 0),

ncol = s, byrow = TRUE)

# Creation of the distribution matrix
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distr.matrix <- matrix(c(NA, "pois", "geom", "nbinom",
"geom", NA, "pois", "dweibull",
"pois", "pois", NA, "geom",
"pois", "geom", "geom", NA),

nrow = s, ncol = s, byrow = TRUE)

# Creation of an array containing the parameters
param1.matrix <- matrix(c(NA, 2, 0.4, 4,

0.7, NA, 5, 0.6,
2, 3, NA, 0.6,
4, 0.3, 0.4, NA),

nrow = s, ncol = s, byrow = TRUE)

param2.matrix <- matrix(c(NA, NA, NA, 0.6,
NA, NA, NA, 0.8,
NA, NA, NA, NA,
NA, NA, NA, NA),

nrow = s, ncol = s, byrow = TRUE)

param.array <- array(c(param1.matrix, param2.matrix), c(s, s, 2))

# Specify the semi-Markov model
semimarkov <- smmparametric(states = states, init = vect.init, ptrans = pij,

type.sojourn = "fij", distr = distr.matrix,
param = param.array)

semimarkov
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