
Package ‘smlmkalman’
November 15, 2022

Type Package

Title Generation and Tracking of Super-Resolution Filamentous Datasets

Version 0.1.1

Author Andrew Buist [aut, cre]

Maintainer Andrew Buist <andrew.buist99@outlook.com>

Depends R (>= 4.1.0), stats, spdep, pracma, scales, truncnorm

Description A pair of functions that allow for the generation and tracking of coordi-
nate data clouds without a time dimension,
primarily for use in super-resolution plant micro-tubule image segmentation.

License GPL-2

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2022-11-15 21:10:02 UTC

R topics documented:
crescent_kf . 1
generate_filaments . 4

Index 6

crescent_kf crescent_kf

Description

A two-dimensional Kalman Filter for use in image segmentation of filamentous structures. Uses
a novel "crescent sampling" method to generate the mean z value from local conditions, so time
domain can be inferred from local point distribution.

1

2 crescent_kf

Usage

crescent_kf(x, p_length,
x_hat_s, sigma_s,
B_s, d,
Q, R,
alpha, beta, gamma,
overwrite, verbose)

Arguments

x The dataset to be tracked - a two-column matrix or dataframe of x and y values.

p_length The maximum number of predictions to be made.

x_hat_s A vector containing two elements: the initial x- and y-values of the tracking
agent.

sigma_s A vector containing four elements: the initial error covariance matrix of the
tracking agent (typically in the format c(x, 0, 0, y), where x and y are the error
in x and y, and the non-diagonal elements are assumed to be 0)

B_s A value from 0 to 360 indicating the initial angle of trajectory of the tracking
agent in degrees (0 = east, 90 = north, 180 = west, 270 = south)

d A value indicating the "step-length" of the Kalman Filter in the B direction at
each timestep.

Q A vector containing four elements: the process noise covariance matrix (typi-
cally in the format c(x, 0, 0, y), where x and y are the noise in x and y, and the
non-diagonal elements are assumed to be 0)

R A vector containing four elements: the measurement noise covariance matrix
(typically in the format c(x, 0, 0, y), where x and y are the noise in x and y, and
the non-diagonal elements are assumed to be 0)

alpha A value indicating the multiplier for the expansion of the error covariance matrix
during z sampling.

beta A value indicating the minimum number of datapoints in the z sampling cres-
cents which validates the timestep.

gamma A value indicating the maximum number of rounds of alpha expansion of the
error covariance matrix during z sampling (if gamma is reached before the cres-
cent contains datapoints >= beta, the function exits prematurely)

overwrite A TRUE/FALSE statement which dictates whether or not, after z sampling, the
error covariance matrix should be overwritten by the z sampling matrix (FALSE
by default, when TRUE may cause unexpected errors/tracking paths!)

verbose A TRUE/FALSE statement that dictates whether the current place in the function
loop should be printed to the terminal.

Value

A list containing four elements:

x_hat A two-column dataframe of x- and y-values predicted by the Kalman Filter.

crescent_kf 3

sigma A two-column dataframe of covariance error in x and y.

search A two-column dataframe of z search radius in x and y.

allocated A three-column dataframe, with the first two columns being equal to the input
data (x), and the third column being a numeric ID of unobserved (allocated[,3]
= 0) and observed (allocated[,3] >= 1) value, where the value of the ID indicates
at which timestep they were observed.

Author(s)

Andrew Buist

Examples

#Generate loop-de-loop spline
data = as.data.frame(matrix(nrow = 1000, ncol = 3))
data[1:150,3] = 0
data[151:420,3] = c(1:270)
data[421:580,3] = 270
data[581:850,3] = c(270:1)
data[851:1000,3] = 0

data[1,1:2] = c(1,0)

library(spdep)
for(i in 2:1000){

data[i,1:2] = c(data[(i-1),1] + 1, data[(i-1),2])
angle = (data[i,3]*(pi/180))
data[i,1:2] = (Rotation(as.matrix(data[i,1:2] - data[(i-1),1:2], nrow = 1, ncol = 2), angle)
+ data[(i-1),1:2])

}

#Randomly generate data around spline
data_loopy = as.data.frame(matrix(nrow = 10000, ncol = 2))
for(i in 1:1000){

data_loopy[((i-1)*10 + 1):(i*10),1] = rnorm(10, data[i,1],5)
data_loopy[((i-1)*10 + 1):(i*10),2] = rnorm(10, data[i,2],5)

}

#Plot randomly generated data
plot(data_loopy, cex = 0.1)
#Add spline line in red
lines(data[,1:2], col = "red", lwd = 2)

#Peform Kalman Filtering
test = crescent_kf(x = data_loopy, p_length = 1000, x_hat_s = c(data_loopy[1,1],data_loopy[1,2]),

sigma_s = c(10,0,0,10), B_s = 0, d = 0.75,
alpha = 1.1, beta = 20, gamma = 15)

#Add prediction line in green
lines(test$x_hat, lwd = 2, col = "green")

#Add legend
legend('topleft', col = c("red", "green"),

4 generate_filaments

legend = c("Actual", "Predicted"), pch = 16)

generate_filaments generate_filaments

Description

A function which generates simulated SMLM datasets of filamentous objects capable of bundling.
Modelled from the dynamics of plant microtubules imaged using DNA-PAINT techniques, but may
be applicable to other scenarios.

Usage

generate_filaments(loop_number, field_settings, filament_settings,
single_bundling, bundling_dist, smoothing_settings,
cylinder_settings, optics_settings, visualise_code,
export_data, verbose)

Arguments

loop_number Number of times the code should be repeated (to be used in conjunction with
export_data to generate multiple .csv datasets)

field_settings A vector containing three elements: the plot minimum, the plot maximum, and
the number of divisions between field values.

filament_settings

A vector containing four elements: the number of filaments, the ratio of hor-
izontal (0) to vertical (1) filaments, the standard deviation from beginning x/y
location to endpoint x/y location, and the angle below which crossing filaments
will bundle.

single_bundling

A TRUE/FALSE statement that prevents bundled filaments from going through
further rounds of bundling (if FALSE, might cause unexpected results!)

bundling_dist A vector containing two elements: the distance between which two bundled fil-
aments will be separated, and the number of points before crossover that should
be made to be similarly parallel.

smoothing_settings

A vector containing three elements: the probability of a point in a filament being
randomised away from initial position, the radius about the initial position that
randomised points may move within, and the number of rounds of Laplacian
smoothing.

cylinder_settings

A vector containing three elements: the number of points to be distributed in
a cylinder about the generated splines (per filament), the width of the cylinder,
and the "falloff" value (if 1 or greater, then the n-photon value is higher at the
edges of the cylinder).

generate_filaments 5

optics_settings

A vector containing three elements: a multiplier for whole-field n-photon (gain),
the randomisation of the n-photon value of each point in the field, and the optical
resampling radius of each point in the field (optical error).

visualise_code A vector containing three elements: a TRUE/FALSE statement that dictates
whether the simulation process should be plotted in real-time, a TRUE/FALSE
statement that dictates whether a set of debug graphs should be exported to the
active working directory, and the number of seconds that should be waited be-
tween blocks of code to allow the user to view the real-time graphs (set to 0 if
visualise_code[1] is FALSE to avoid unnecessarily long wait times)

export_data A vector containing two elements: a TRUE/FALSE statement that dictates whether,
on each iteration of loop_number, the dataset should be saved to the working di-
rectory as a .csv file, and the file prefix if export_data[1] is TRUE.

verbose A TRUE/FALSE statement that dictates whether the current place in the function
loop should be printed to the terminal.

Value

A dataframe with 4 columns: the ID of each datapoint (which filament it belongs to), the x-position,
the y-position, and the n-photon (simulated photonic emission), which is dependent upon the loca-
tion, being boosted at the edges of the filament.

Author(s)

Andrew Buist

Examples

#Generate dataset
data = generate_filaments(loop_number = 1,

field_settings = c(0, 100, 1),
filament_settings = c(5, 0.3, 85, 17),
single_bundling = TRUE,
bundling_dist = c(3,10),
smoothing_settings = c(0.3, 5, 25),
cylinder_settings = c(500, 2, 1),
optics_settings = c(1, 0.3, 0.5),
visualise_code = c(FALSE, FALSE, 0),
export_data = c(FALSE, "data_"),
verbose = TRUE)

#Plot dataset coloured by ID, and opacity = n-photon
library(scales)
plot(data[,2:3], col = alpha(data[,1], alpha = data[,4]), pch = 16, cex = 0.3)

Index

crescent_kf, 1

generate_filaments, 4

6

	crescent_kf
	generate_filaments
	Index

