Package 'skyscapeR'

October 14, 2022

TypePackageTitleData Analysis and Visualization for Skyscape Archaeology

Version 1.0.0

Date 2021-10-29

Description Data reduction, visualization and statistical analysis of measurements of orientation of archaeological structures, following Silva (2020) <doi:10.1016/j.jas.2020.105138>.

Depends R (\geq 4.1), swephR

Imports png, oce, utils, stats, graphics, grDevices, MESS, RColorBrewer, numDeriv, parallel, foreach, doParallel, rootSolve, httr, plotrix, zoo

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Silva Fabio [aut, cre], Reijs Victor [ctb]

Maintainer Silva Fabio <fsilva@bournemouth.ac.uk>

Repository CRAN

Date/Publication 2021-10-29 22:40:02 UTC

R topics documented:

tizenith	3
.pdf	4
2dec	5
C.AD	6
rnoulli.trial	6

body.position	. 7
coordtrans	. 8
createHor	. 9
createHWT	. 10
curvigram	. 11
downloadHWT	. 11
dS	. 12
EFM	. 13
eq	. 14
exportHor	. 15
findTargets	. 16
hor2alt	. 17
hpdi	. 17
jd2time	. 18
jS	
long.date	. 19
mag.dec	
moonphase	
nMjLX	
nmnLX	
obliquity	
orbit	
parallax.corr	
plot.skyscapeR.horizon	
plot.skyscapeR.pdf	
plot.skyscapeR.sigTest	
plot.skyscapeR.spd	
plot.skyscapeR.starphases	
plotAzimuth	
plotBars	
print.skyscapeR.sigTest	
pval2stars	
randomTest	
reduct.compass	
reduct.theodolite	
riseset	. 35
RugglesCKR	
RugglesRSC	. 38
sigTest	. 38
sky.objects	. 39
sky.sketch	. 40
skyscapeR.vars	. 41
sMjLX	. 42
smnLX	. 43
solar.date	. 44
spatial.equinox	. 44
spatial equility is a set of the	. 45
star	
· · · · · · · · · · · · · · · · · · ·	

antizenith

																																									52
zenith	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	·	•	•	•	•	•	51
timestring	•	•	•		•	•	•		•		•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		50
time2jd							•								•	•								•									•	•	•		•				49
ten	•	•				•	•							•	•	•								•						•			•	•	•		•		•		49
sunAz	•	•	•			•					•		•	•											•	•	•	•		•						•			•		48
star.phases	•	•				•	•				•		•	•	•	•				•				•	•	•				•			•	•	•	•	•		•		46

Index

	•		•	
ant	٦.	70	nı	th

Declination of the anti-zenith sun for a given location

Description

This function returns the declination of the sun when it is at the anti-zenith for a given location with corrected average parallax. If this phenomena does not occur at given location (i.e. if location is outside the tropical band) the function returns a *NULL* value.

Usage

```
antizenith(loc, parallax = 0.00224, altitude = 0)
```

Arguments

loc	This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object.
parallax	(Optional) Average parallax value for the sun. Defaults to 0.00224.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.

See Also

jS, dS, eq, zenith, spatial.equinox, parallax.corr

```
# Anti-zenith sun declination for Mexico City:
antizenith(19.419)
```

```
# There is no anti-zenith sun phenomena in London:
antizenith(51.507)
```

az.pdf

Description

Convert discrete azimuth measurements into probability distributions

Usage

```
az.pdf(
   pdf = "normal",
   az,
   unc,
   name,
   verbose = T,
   .cutoff = 1e-04,
   .res = 0.01
)
```

Arguments

pdf	(Optional) String describing the probability distribution to be used. At the mo- ment only <i>normal</i> and <i>uniform</i> are supported. Default is <i>normal</i>
az	An array of azimuths
unc	Azimuth uncertainties as either an array of the same length as az or a single value to be applied to all measurements
name	(Optional) An array of names to identify each measurement
verbose	(Optional) Boolean to control whether or not to display text. Default is TRUE.
.cutoff	(Optional) Value of probability distribution(s) at which point it will be cutoff to save on memory. Default is 1e-4
.res	(Optional) Azimuth resolution with which to output probability distribution(s). Default is 0.01 degrees.

References

Silva, F (2020) A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology *Journal of Archaeological Science* 118, 105138. <doi:10.1016/j.jas.2020.105138>

```
test <- az.pdf(az=c(87,93,90,110), unc=3)
plot(test)</pre>
```

az2dec

Description

This function calculates the declination corresponding to an orientation, i.e. an azimuth. The altitude can either be given or, alternatively, if a *skyscapeR.horizon* object is provided, the corresponding horizon altitude will be automatically retrieved. This function is a wrapper for function swe_azalt_rev of package *swephR*.

Usage

```
az2dec(
  az,
  loc,
  alt,
  refraction = skyscapeR.env$refraction,
  atm = skyscapeR.env$atm,
  temp = skyscapeR.env$temp
)
```

Arguments

az	Azimuth(s) for which to calculate declination(s). See examples below.
loc	Location, can be either a <i>skyscapeR.horizon</i> object or, alternatively, an array of latitude values.
alt	(Optional) Altitude of orientation. If left empty and a <i>skyscapeR.horizon</i> is provided then this is will automatically retrieved from the horizon data via hor2alt
refraction	(Optional) Whether atmospheric refraction is to be taken into account. If not given the value set by skyscapeR.vars will be used instead.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.

See Also

swe_azalt_rev, hor2alt

```
dec <- az2dec(az=92, loc=c(35,-8), alt=2)</pre>
```

```
# flat horizon with 2 degrees of altitude
hor <- createHor(az=c(0,360), alt=c(2,2), loc=c(35,-8,25))
dec <- az2dec(92, loc=hor)</pre>
```

```
# Can also be used for an array of azimuths:
decs <- az2dec(az=c(87,92,110), loc=hor)</pre>
```

BC.AD

```
Converts year number (epoch) to calendar year
```

Description

Converts year number (epoch) to calendar year

Usage

BC.AD(year)

Arguments year

year number

Examples

BC.AD(100) BC.AD(0) BC.AD(-1) BC.AD(-99) BC.AD(-100)

bernoulli.trial Execute a (series of) Bernoulli trial(s)

Description

This function allows one to calculate the probability of having r structures out of n, orientated towards a target with probability p.

Usage

```
bernoulli.trial(n, p, r, type = "tail")
```

Arguments

n	Total number of structures
р	Probability of target (e.g. ratio of azimuths)
r	Number of structures orientated towards target (hits)
type	(Optional) Type of probability to output. Possibilities are: (a) <i>single</i> in which case the result of a single Bernoulli trial is reported; or (b) <i>tail</i> in which case it calculates Bernoulli trials for all hit values between 1 and (r-1) and then outputs 1 minus the calculated probability. The latter is effectively a p-value. Default is <i>tail</i>

6

body.position

References

Ruggles, C (1999) Astronomy in Prehistoric Britain and Ireland. Yale University Press.

Examples

```
# probability of having at least 10 out of 30 structures
# aligned to targets covering 20% of the horizon
bernoulli.trial(30, 0.2, 10)
```

body.position Computes position of Solar System bodies in equatorial coordinates

Description

This function calculates the geocentric or topocentric declination and right ascension of solar system bodies at a given time. It is a wrapper for function swe_calc_ut of package swephR.

Usage

```
body.position(
   obj = "sun",
   time,
   timezone,
   calendar,
   dec,
   loc = NULL,
   refraction,
   atm,
   temp,
   verbose = T
)
```

obj	(Optional) String containing name of the solar system body of interest. Can be any of the planets (inc. Pluto), the Moon, the Sun or the Ecliptic. Defaults to 'sun'.
time	Either a string containing the date and time in the format "YYYY/MM/DD HH:MM:SS" (see timestring), or a numeric containing the julian date (see time2jd).
timezone	(Optional) Timezone of input either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Only needed if <i>time</i> is a string. #' If not given the value set by skyscapeR.vars will be used instead.
calendar	(Optional) Calendar used in parameter <i>time</i> . G for gregorian and J for julian. Only needed if <i>time</i> is a string. If not given the value set by skyscapeR.vars will be used instead.

dec	(Optional) Output declination: <i>geo</i> for the geocentric, or <i>topo</i> for the topocentric frame of reference. If not given the value set by skyscapeR.vars will be used instead.
loc	(Optional) Location, only needed if output is in topocentric declination.
refraction	(Optional) Whether atmospheric refraction is to be taken into account. If not given the value set by skyscapeR.vars will be used instead.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
verbose	(Optional) Boolean to control whether or not to display text. Default is TRUE.

See Also

swe_calc_ut, timestring, time2jd

Examples

```
# Position of the sun at noon GMT on Christmas day 2018:
body.position('sun', '2018/12/25 12:00:00', timezone='GMT')
```

```
# Declination of the moon at same time
body.position('moon', '2018/12/25 12:00:00', timezone='GMT')$equatorial$Dec
```

coordtrans	Coordinate-transform azimuth prob distributions into declination prob distributions

Description

Coordinate-transform azimuth prob distributions into declination prob distributions

Usage

```
coordtrans(pdf, hor, refraction, atm, temp, verbose = T, .res = 0.1)
```

pdf	A skyscapeR.pdf object created with az.pdf
hor	A <i>skyscapeR.horizon</i> object created with createHor or downloadHWT
refraction	(Optional) Whether atmospheric refraction is to be taken into account. If not given the value set by skyscapeR.vars will be used instead.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.

createHor

verbose	(Optional) Boolean to control whether or not to display text. Default is TRUE.
.res	(Optional) Declination resolution with which to output probability distribution(s). Default is 0.1 degrees.

References

Silva, F (2020) A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology *Journal of Archaeological Science* 118, 105138. <doi:10.1016/j.jas.2020.105138>

Examples

```
Az <- az.pdf(az=c(87,93,90,110), unc=3)
hor <- createHor(az=c(0,360), alt=c(0,0), loc=c(35,-8,25)) # flat horizon with 0 degrees of altitude
Dec <- coordtrans(Az, hor)
plot(Dec)</pre>
```

```
createHor
```

Create skyscapeR.horizon object from Az/Alt data

Description

This function creates a skyscapeR.horizon object from measurements of azimuth and altitude.

Usage

```
createHor(az, alt, alt.unc = 0.5, loc, name = "", smooth = F, .scale = 1000)
```

Arguments

az	Array of azimuth values
alt	Array of altitude values.
alt.unc	(Optional) Either a single value or an array of altitude uncertainty.
loc	Location, a vector containing the latitude, longitude and elevation of the loca- tion, in this order.
name	Name of site.
smooth	Boolean to control whether to smooth horizon profile using rolling mean. Defaults to FALSE
.scale	Rolling mean window for smoothing. See createHWT

See Also

plot.skyscapeR.horizon
createHWT,downloadHWT

Examples

```
# Create a skyscapeR.horizon from 5 measurements:
az <- c(0,90,180,270,360)
alt <- c(0,5,5,0,0)
hor <- createHor(az, alt, 0.1, c(40.1,-8), 'Test')
plot(hor)
```

```
createHWT
```

Create and download horizon data from HeyWhatsThat

Description

This function send a data request to *HeyWhatsThat*, for the creation of a horizon profile for a give Lat/Lon and elevation. It then downloads the data and saves it as a *skyscapeR.horizon* object.

Usage

createHWT(lat, lon, elevation = 1.6, name, src = "skyscapeR", verbose = T)

Arguments

lat	The latitude of the location.
lon	The longitude of the location.
elevation	(Optional) The elevation of the observer above ground level in meters. Default is 1.6 meters (eye level).
name	(Optional) Name for horizon.
src	(Optional) Request source ID for <i>HeyWhatsThat</i> . Default is 'skyscapeR'. Only change this if you have been given a source ID by the creator of <i>HeyWhatsThat</i> .
verbose	(Optional) Boolean switch to control output. Default is TRUE.

References

HeyWhatsThat.com

See Also

downloadHWT

Examples

```
## Not run:
# Create and retrieve horizon data for the London Mithraeum:
hor <- createHWT(lat=ten(51,30,45), lon=ten(0,5,26.1), name='London Mithraeum')</pre>
```

End(Not run)

10

curvigram

Description

This function no longer works. Please use spd of density instead.

Usage

curvigram()

See Also

spd

downloadHWT

Download horizon data from HeyWhatsThat

Description

This function downloads previously created horizon data from *HeyWhatsThat*, given its ID, and saves it as a *skyscapeR.horizon* object.

Usage

downloadHWT(HWTID)

Arguments

HWTID This is the 8 character ID attributed by *HeyWhatsThat.com*

References

HeyWhatsThat.com

See Also

createHWT

Examples

```
## Not run:
```

Retrieve horizon data for \href{https://www.heywhatsthat.com/?view=HIFVTBGK}{Liverpool Cathedral}: hor <- downloadHWT('HIFVTBGK')</pre>

End(Not run)

Description

This function calculates the declination of the sun at December Solstice for a given year, based upon obliquity estimation and corrected average parallax.

Usage

```
dS(
   year = skyscapeR.env$cur.year,
   loc = FALSE,
   parallax = 0.00224,
   altitude = 0,
   verbose = TRUE
)
```

Arguments

year	Year for which to calculate the declination. Defaults to present year as given by <i>Sys.Date.</i>
loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the sun. Defaults to 0.00224.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

obliquity, jS, eq, zenith, antizenith, spatial.equinox, parallax.corr

Examples

```
\# December Solstice geocentric declination for year 4001 BC: dS(-4000)
```

Topocentric declination for same year and latitude of 50 degrees N: dS(-4000, loc=50)

dS

EFM

Description

This function calculates the date, rise/set times, azimuth and declination for sun and moon on the days of the Spring Full Moon (SFM) and Autumn Full Moon (AFM), for a given year and location.

Usage

```
EFM(
   season = "spring",
   rise = T,
   year,
   loc,
   min.phase = 0.99,
   refraction,
   atm,
   temp,
   timezone,
   calendar
)
```

season	(Optional) Either 'spring' or 'autumn'. Default is 'spring.
rise	(Optional) Boolean to choose whether to calculate Equinoctial Full Moon rises or sets. Defaults to <i>TRUE</i> .
year	Epoch(s) for which to do calculations. Can be either a single value (the year), two values (range of years), or a vector of years.
loc	This can be either a <i>skyscapeR.horizon</i> object, or a vector with the latitude, longitude and elevation of the site, in this order.
min.phase	(Optional) Minimum lunar phase (between 0 and 1) for which a moon is considered to be full. Defaults to 0.99.
refraction	(Optional) Boolean for whether or not atmospheric refraction should be taken into account. Defaults to <i>TRUE</i> .
atm	(Optional) Atmospheric pressure (in mbar). Only needed if <i>refraction</i> is set to <i>TRUE</i> . Default is 1013.25 mbar.
temp	(Optional) Atmospheric temperature (in Celsius). Only needed if <i>refraction</i> is set to <i>TRUE</i> . Default is 15 degrees.
timezone	(Optional) Timezone for output of rising and setting time either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Defaults to system timezone.
calendar	(Optional) Calendar used to output dates. G for gregorian and J for julian. Defaults to <i>Gregorian</i> .

14

Examples

```
# Spring Full Moon from a location in Portugal in the year 2018
EFM(year=2018, loc=c(35,-8,100))
# Autumn Full Moons in the last three years
## Not run:
EFM(season='autumn', year=c(2019,2021), loc=c(35,-8,100))
## End(Not run)
```

eq

Declination of the sun at the Equinox

Description

This function calculates the declination of the sun at the astronomical equinox with corrected average parallax.

Usage

```
eq(loc = FALSE, parallax = 0.00224, altitude = 0, verbose = TRUE)
```

Arguments

loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the sun. Defaults to 0.00224.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

obliquity, jS, eq, zenith, antizenith, spatial.equinox, parallax.corr

```
# Equinoctial geocentric declination:
eq()
```

```
# Topocentric declination for same year and latitude of 50 degrees N:
eq(loc=50)
```

exportHor

Description

This function exports any *skyscapeR.horizon* object into the landscape format of *Stellarium*, ready to be imported.

Usage

```
exportHor(hor, name, author = "skyscapeR", description, ground_col, hor_col)
```

Arguments

hor	Horizon data in skyscapeR.horizon format.
name	Horizon name to be displayed in <i>Stellarium</i> , if different from one in <i>skyscapeR.horizon</i> object.
author	(Optional) Author, to be included in <i>landscape.ini</i> file.
description	(Optional) Description, to be included in <i>landscape.ini</i> file.
ground_col	Color of ground. Defaults to Stellarium's default.
hor_col	Color of horizon line. Defaults to Stellarium's default.

References

Stellarium: a free open source planetarium

See Also

createHor, downloadHWT, plot.skyscapeR.horizon

Examples

```
# Downloads horizon data from HeyWhatsThat and exports it into Stellarium:
## Not run:
hor <- downloadHWT('HIFVTBGK')
exportHor(hor, name='Test', description='Test horizon export to Stellarium')
```

End(Not run)

findTargets

Description

Find celestial targets within declination and time ranges

Usage

```
findTargets(
   decrange,
   timerange,
   max.mag = 2.5,
   loc = FALSE,
   calendar = skyscapeR.env$calendar
)
```

Arguments

decrange	Range of declination to consider.
timerange	Temporal range to consider
max.mag	(Optional) Maximum magnitude of stars to consider. Defaults to 2.5
loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude, longitude and elevation of location, in this order. Defaults to FALSE, thus checking only geocentric declination.
calendar	(Optional) Calendar used in parameter <i>time</i> . G for gregorian and J for julian. If not given the value set by skyscapeR.vars will be used instead.

Examples

```
## Not run:
findTargets(c(-25,-17.5), c(-2500,-1750))
```

if a location is given then the zenith and anti-zenith sun will also be looked at: findTargets(c(3,12), c(-2500,-1750), loc=c(8.6, 7.3, 200))

```
# if a horizon profile is given then the spatial equinox will also be looked at:
hor <- downloadHWT('J657KVEV')
findTargets(c(-7,2), c(-2500,-1750), loc=hor)
```

End(Not run)

hor2alt

Retrieves horizon altitude for a given azimuth from a given horizon profile

Description

This function retrieves the horizon altitude for a given azimuth from a previously created *skysca-peR.horizon* object via spline interpolation.

Usage

hor2alt(hor, az, return.unc = F)

Arguments

hor	A skyscapeR.horizon object from which to retrieve horizon altitude.
az	Array of azimuth(s) for which to retrieve horizon altitude(s).
return.unc	(Optional) Boolean switch control where to output altitude uncertainty. Default is <i>FALSE</i> .

See Also

createHor, downloadHWT

Examples

hor <- downloadHWT('HIFVTBGK')
hor2alt(hor, 90)</pre>

hpdi

Returns the high-density region of a probability distribution

Description

Returns the high-density region of a probability distribution

Usage

hpdi(x, mass = 0.954)

х	A skyscapeR.spd or skyscapeR.pdf object.
mass	(Optional) Probability mass of the region. Default is 0.954.

jd2time

Description

Converts Julian date and time (in any timezone) to julian date

Usage

jd2time(jd, timezone, calendar, verbose = F)

Arguments

jd	Julian date in numeric format
timezone	(Optional) Desired timezone for output either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Default is system timezone.
calendar	(Optional) Calendar used in parameter <i>time</i> . G for gregorian and J for julian. Only needed if <i>time</i> is a string. Defaults to <i>Gregorian</i> .
verbose	(Optional) Controls whether messages should be displayed. Default is FALSE.

See Also

swe_julday, as.POSIX1t, timezones

Examples

jd <- time2jd('2018/12/25 12:00:00', 'GMT') # Julian date at noon GMT on Christmas day 2018 jd2time(jd, 'CET') # converts julian date to Central European timezone

jS

Declination of June Solstice for a given year

Description

This function calculates the declination of the sun at June Solstice for a given year, based upon obliquity estimation and corrected average parallax.

Usage

```
jS(
   year = skyscapeR.env$cur.year,
   loc = FALSE,
   parallax = 0.00224,
   altitude = 0,
   verbose = TRUE
)
```

long.date

Arguments

year	Year for which to calculate the declination. Defaults to present year as given by <i>Sys.Date</i> .
loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the sun. Defaults to 0.00224.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

obliquity, dS, eq, zenith, antizenith, spatial.equinox, parallax.corr

Examples

```
# June Solstice geocentric declination for year 4001 BC:
jS(-4000)
```

Topocentric declination for same year and latitude of 50 degres N: $jS(-4000,\ loc=50)$

long.date

Converts day-month in 'MM-DD' format to a more readable format

Description

Converts day-month in 'MM-DD' format to a more readable format

Usage

long.date(date)

Arguments

date date in 'MM-DD' format

```
long.date('01-01')
long.date('08-23')
```

mag.dec

Estimates magnetic declination (difference between true and magnetic north) based on IGRF 12th gen model

Description

This function estimates the magnetic declination at a given location and moment in time, using the *12th generation International Geomagnetic Reference Field (IGRF)* model. This function is a wrapper for function magneticField of package *oce*.

Usage

mag.dec(loc, date)

Arguments

loc	Location, can be either a <i>skyscapeR.horizon</i> object or, alternatively, a latitude.
date	Date for which to calculate magnetic declination in the format: 'YYYY/MM/DD

See Also

magneticField

Examples

```
# Magnetic Declination for London on April 1st 2016:
loc <- c( 51.5074, -0.1278 )
mag.dec( loc, "2016/04/01" )
```

moonphase

Computes the phase of the moon

Description

This function calculates the moon phase, in percentage of full. It is a wrapper for function swe_pheno_ut of package *swephR*.

Usage

moonphase(time, timezone, calendar)

nMjLX

Arguments

time	Either a string containing the date and time in the format "YYYY-MM-DD HH:MM:SS" (see timestring), or a numeric containing the julian date (see time2jd).
timezone	(Optional) Timezone of input either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Only needed if <i>time</i> is a string. Defaults to system timezone.
calendar	(Optional) Calendar used in parameter <i>time</i> . G for gregorian and J for julian. Only needed if <i>time</i> is a string. Defaults to Gregorian.

See Also

swe_pheno_ut

Examples

Moonphase at noon GMT on Christmas day 2018: moonphase('2018/12/25 12:00:00', 'GMT')

nMjLX

Declination of northern major Lunar Extreme for a given year

Description

This function calculates the declination of the northern major Lunar Extreme for a given year, based upon obliquity estimation and corrected average parallax.

Usage

```
nMjLX(
   year = skyscapeR.env$cur.year,
   loc = FALSE,
   parallax = 0.952,
   altitude = 0,
   verbose = TRUE
)
```

year	Year for which to calculate the declination. Defaults to present year as given by <i>Sys.Date.</i>
loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the moon Defaults to 0.952.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

nmnLX, smnLX, sMjLX, parallax.corr

Examples

Northern major Lunar Extreme geocentric declination for year 2501 BC: nMjLX(-2500)

Topocentric declination for same year and latitude of 50 degrees N: nMjLX(-2500, loc=50)

nmnLX

Declination of northern minor Lunar Extreme for a given year

Description

This function calculates the declination of the northern minor Lunar Extreme for a given year, based upon obliquity estimation and corrected average parallax.

Usage

```
nmnLX(
   year = skyscapeR.env$cur.year,
   loc = FALSE,
   parallax = 0.952,
   altitude = 0,
   verbose = TRUE
)
```

Arguments

year	Year for which to calculate the declination. Defaults to present year as given by <i>Sys.Date</i> .
loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the moon Defaults to 0.952.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

smnLX, nMjLX, sMjLX, parallax.corr

22

obliquity

Examples

```
# Northern minor Lunar Extreme geocentric declination for year 2501 BC:
nmnLX(-2500)
```

Topocentric declination for same year and latitude of 50 degrees N: nmnLX(-2500, loc=50)

obliquity

Computes obliquity of the ecliptic

Description

This function calculates the obliquity for a given epoch. It is a wrapper for function swe_calc_ut of package *swephR*.

Usage

obliquity(year = skyscapeR.env\$cur.year)

Arguments

year Year for which to calculate the obliquity. Defaults to present year as given by *Sys.Date*

References

Laskar, J. et al. (2004), A long-term numerical solution for the insolation quantities of the Earth, *Astron. Astroph.*, 428, 261-285, doi:10.1051/0004-6361:20041335.

See Also

swe_calc_ut

```
#' # Obliquity for year 3999 BC:
obliquity(-4000)
```

orbit

Description

This function calculates the visible path of a celestial object from any location on earth. It outputs a *skyscapeR.orbit* object, which includes AZ and ALT information.

Usage

orbit(dec, loc, res = 0.25, refraction, atm, temp)

Arguments

dec	Declination of object.
loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude and lon- gitude of location, in this order.
res	The resolution (in degrees of RA) with which to calculate the path.
refraction	(Optional) Whether atmospheric refraction is to be taken into account. If not given the value set by skyscapeR.vars will be used instead.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.

Examples

```
# Visible path of sun on june solstice on year 3999 BC from London:
sun.dec <- jS(-4000)
london.lat <- 51.5074 #N
london.lon <- -0.1278 #W
loc <- c( london.lat, london.lon, 0 )
path <- orbit(sun.dec, loc)
plot(path$az, path$alt, ylim=c(0,90), type='l', xlab='AZ', ylab='ALT', col='red', lwd=2)
```

parallax.corr Corrected

Corrected parallax for a given location and object altitude

Description

Given the average parallax, this function corrects this value for a given latitude of the observer and for the altitude of the celestial object.

Usage

parallax.corr(parallax, loc, altitude = 0)

Arguments

parallax	Average parallax to correct (e.g. 0.00224 for the Sun, or 0.952 for the Moon)
loc	This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object.
altitude	(Optional) Altitude of the celestial object Defaults to 0 degrees.

Examples

Parallax correction for the moon, as seen from latitude $50^{\circ}N$ and at 0° altitude parallax.corr(0.952, 50, 0)

plot.skyscapeR.horizon

Plot horizon data

Description

This function creates a plot of horizon data.

Usage

```
## S3 method for class 'skyscapeR.horizon'
plot(
    x,
    show.az = F,
    xlim,
    ylim,
    obj,
    refraction = F,
    col.ground = "#fdae61",
    ...
)
```

x	Object of <i>skyscapeR.horizon</i> format.
show.az	(Optional) Boolean that controls whether to display azimuth values or cardinal directions. Defaults to FALSE.
xlim	(Optional) Azimuth rage for plotting.
ylim	(Optional) Altitude rage for plotting.
obj	(Optional) A <i>skyscapeR.object</i> object created with sky.objects for displaying the paths of celestial objects.

refraction	(Optional) Boolean switch controlling whether to take refraction into account when displaying the paths of celestial objects.
col.ground	(Optional) Color of the ground. Defaults to #fdae61.
	Additional arguments to be passed to <i>plot</i> .

See Also

downloadHWT, sky.objects

Examples

```
# Plot a horizon retrieved from HeyWhatsThat:
hor <- downloadHWT('HIFVTBGK')
plot(hor)
# Add the paths of the solstices and equinoxes sun in the year 1999 BC:
tt <- sky.objects('solar extremes', epoch=-2000, col='blue')
plot(hor, obj=tt)
```

plot.skyscapeR.pdf *Plot orientation probability distributions*

Description

Plot orientation probability distributions

Usage

```
## S3 method for class 'skyscapeR.pdf'
plot(
    x,
    index,
    hdr = 0.954,
    show.az = T,
    xlim,
    col = MESS::col.alpha("blue", 0.5),
    ...
)
```

х	A <i>skyscapeR.pdf</i> object created with either az.pdf or coordtrans
index	(Optional) A value to indicate which distribution to plot, when only one is desired.
hdr	(Optional) High density region to highlight. Defaults to 0.954
show.az	(Optional) Whether to show the azimuth and transformation curve (horizon) when displaying declination distributions. Defaults to TRUE.

xlim	(Optional) Range of x-axis to plot.
col	(Optional) Color of high density region to highlight. Defaults to blue with 0.5 alpha.
	Additional arguments to be passed to <i>plot</i> .

plot.skyscapeR.sigTest

Plot significance test of orientations

Description

Plot significance test of orientations

Usage

```
## S3 method for class 'skyscapeR.sigTest'
plot(
    x,
    xlim,
    title = NULL,
    show.pval = T,
    show.local = F,
    pal = brewer.pal(5, "PRGn")[c(1, 5)],
    ...
)
```

x	A <i>skyscapeR.sigTest</i> object created with randomTest
xlim	(Optional) Range of x-axis to plot.
title	(Optional) Title to add to the plot.
show.pval	(Optional) Boolean to control whether to print the global p-value. Default is TRUE.
show.local	(Optional) Boolean to control whether to show local regions of significance. Default is FALSE
pal	(Optional) Color palette for local regions of significance. Default is brewer.pal(5, 'PRGn')
	Additional arguments to be passed to <i>plot</i> .

plot.skyscapeR.spd Plot orientation summed probability density

Description

Plot orientation summed probability density

Usage

```
## S3 method for class 'skyscapeR.spd'
plot(x, xlim, ylim, title = NULL, col = "blue", shading = T, ...)
```

Arguments

х	A <i>skyscapeR.spd</i> object created with spd
xlim	(Optional) Range of x-axis to plot.
ylim	(Optional) Range of y-axis to plot.
title	(Optional) Title to add to the plot.
col	(Optional) Color of summed probability density. Defaults to blue with 0.5 alpha.
shading	(Optional) Boolean to control whether to color the entire distribution. Defaults to TRUE
	Additional arguments to be passed to <i>plot</i> .

```
plot.skyscapeR.starphases
```

Plot stellar phase and seasonality

Description

This function creates a plot of stellar seasonality and phases/events.

Usage

S3 method for class 'skyscapeR.starphases'
plot(x, ...)

Arguments

Х	Object of skyscapeR.starphases format.
	Additional arguments to be passed to <i>plot</i> .

See Also

star.phases

plotAzimuth

Examples

```
# Plot the seasonality of Aldebaran for 3999 BCE:
## Not run:
ss <- star.phases('Aldebaran',-4000, c(35,-8, 200))
plot(ss)
## End(Not run)
```

plotAzimuth

Polar plot of orientations (azimuths)

Description

Polar plot of orientations (azimuths)

Usage

```
plotAzimuth(az, col = "blue", lwd = 1.5, lty = 1, obj, show.obj.labels = T)
```

Arguments

az	(Optional) Array of azimuths. Can be omitted is <i>obj</i> is given.
col	(Optional) Single color or color palette to use for plotting measurements.
lwd	(Optional) Line width to plot measurements. Defaults to 1.
lty	(Optional) Line type to plot measurements. Defaults to 1.
obj	(Optional) A <i>skyscapeR.object</i> object created with sky.objects for displaying the azimuths of celestial objects. Note that this assumes a single location and a flat horizon of zero degrees.
<pre>show.obj.labels</pre>	

(Optional) Boolean to control whether to display celestial objects names. Defaults to TRUE.

```
# Plot some azimuth data:
az <- c(120, 100, 93, 97, 88, 115, 112, 67)
plotAzimuth(az)
```

```
# To visualize this data against the common solar and lunar targets:
tt <- sky.objects('solar extremes', epoch=-2000, loc=c(35,-8), col='red')
plotAzimuth(az, obj=tt)
```

```
# To display only celestial objects
plotAzimuth(obj=tt)
```

plotBars

Description

Bar plot of orientations (declination)

Usage

```
plotBars(
  val,
  unc,
  names,
  unit = "Declination",
  col = "blue",
  shade = TRUE,
  mark = TRUE,
  sort = FALSE,
  xrange,
  yrange,
  obj,
  show.obj.label = TRUE
)
```

val	Array of declination or azimuth values.
unc	Single value or array of measurement uncertainty
names	(Optional) Array of names of measurements in val
unit	(Optional). Either 'Declination' or 'Azimuth'. Defaults to 'Declination'.
col	(Optional) Color to plot measurements in. Defaults to blue.
shade	(Optional) Boolean to control whether to shade a polygon of measurements. Defaults to $TRUE$
mark	(Optional) Boolean to control whether to mark the declination value. Defaults to $TRUE$
sort	(Optional) Boolean to control whether to sort the measurements by their declination value. Defaults to <i>FALSE</i>
xrange	(Optional) Array of limits for x-axis.
yrange	(Optional) Array of limits for y-axis.
obj	(Optional) A <i>skyscapeR.object</i> object created with sky.objects for displaying the declination values of celestial objects.
show.obj.label	(Optional) Boolean to control whether to label the celestial objects in the polar plot. Defaults to <i>TRUE</i> .

print.skyscapeR.sigTest

See Also

sky.objects

Examples

```
# Plot some declination data:
decs <- c(10, 12, -5, 4)
plotBars(decs, unc=5)
```

```
# To visualize this data against the common solar and lunar targets:
tt <- sky.objects(c('solar extremes','lunar extremes'), epoch=-2000, lty=c(2,3))
plotBars(decs, unc=5, obj=tt)
```

print.skyscapeR.sigTest

Prints significance test results

Description

This function prints the results of randomTest.

Usage

```
## S3 method for class 'skyscapeR.sigTest'
print(x, ...)
```

Arguments

х	Object of <i>skyscapeR.sigTest</i> format.
	Additional arguments to be passed to print.

See Also

randomTest

pval2stars Converts p-value into symbol

Description

Converts p-value into symbol

Usage

pval2stars(p.value)

Arguments

p.value

p-value

randomTest

Significance test against the null hypothesis of random orientation

Description

Significance test against the null hypothesis of random orientation

Usage

```
randomTest(
   pdf,
   nsims = 1000,
   conf = 0.95,
   tails = 2,
   normalise = F,
   ncores = parallel::detectCores() - 1,
   save.sim = F,
   verbose = T
)
```

Arguments

pdf	A <i>skyscapeR.pdf</i> object created with either az.pdf or coordtrans
nsims	(Optional) Boolean switch controlling whether to normalize the SPD. Default is FALSE
conf	(Optional) Array of values (min and max) for SPD if different from range of pdf
tails	(Optional) Whether to calculate 1-tailed p-value (greater than) or 2-tailed p-value (smaller than or greater than). Default is 2.
normalise	(Optional) Boolean to control whether to normalize SPDs. Default is FALSE
ncores	(Optional) Number of CPU cores to use. Default is the number of available cores minus 1.
save.sim	(Optional) Boolean to control whether to save the output of each random simulation. For testing/advanced use only. Default is FALSE
verbose	(Optional) Boolean to control whether or not to display text. Default is TRUE.

References

Silva, F (2020) A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology *Journal of Archaeological Science* 118, 105138. <doi:10.1016/j.jas.2020.105138>

reduct.compass

Examples

```
## Not run:
# significance test for azimuth
Az <- az.pdf(az=c(87,93,90,110), unc=3)
st1 <- randomTest(Az, nsims=1000)
plot(st1)
# significance test for declination
hor <- createHor(az=c(0,360), alt=c(0,0), loc=c(35,-8,25)) # flat horizon with 0 degrees of altitude
Dec <- coordtrans(Az, hor)
st2 <- randomTest(Dec, nsims=1000)
plot(st2)
## End(Not run)
```

reduct.compass Data reduction for compass measurements

Description

This function calculates the true azimuth of a structure measured with a compass.

Usage

```
reduct.compass(loc, mag.az, date, magdec, alt, name, ID, HWT.ID)
```

Arguments

loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude, longitude and elevation of location, in this order.
mag.az	Array of magnetic azimuth measurements.
date	(Optional) Date of measurements as a string in the format: 'YYYY/MM/DD'. Only necessary if <i>magdec</i> is not given.
magdec	(Optional) Magnetic declination, if known.
alt	(Optional) Altitude, necessary for automatic declination calculation. If missing and <i>loc</i> is a <i>skyscapeR.horizon</i> object then the altitude will be automatically read from the horizon profile.
name	(Optional) Names or labels to identify each measurement.
ID	(Optional) IDs or codes to identify each measurement.
HWT.ID	(Optional) HeyWhatsThat IDs relating to a previously generated horizon profile for measurement.

See Also

mag.dec,az2dec,hor2alt

Examples

```
loc <- c(35,-7, 100)
mag.az <- c(89.5, 105, 109.5)
data <- reduct.compass(loc, mag.az, "2016/04/02")
# Declination will be automatically calculated if the altitude is also given:
data <- reduct.compass(loc, mag.az, "2016/04/02", alt=c(1,2,0))
# Alternatively, the altitude can be automatically retrieved from a horizon profile:
hor <- downloadHWT('HIFVTBGK')
data <- reduct.compass(hor, mag.az, "2016/04/02")</pre>
```

reduct.theodolite Data reduction for theodolite measurements using the sun-sight method

Description

This function calculates the true azimuth of a structure measured with a theodolite using the sunsight technique.

Usage

```
reduct.theodolite(
    loc,
    az,
    date,
    time,
    tz,
    az.sun = 0,
    limb,
    alt,
    name,
    ID,
    HWT.ID
)
```

Arguments

loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude, longitude and elevation of location, in this order.
az	Array of azimuths. Use ten to convert to decimal point format if necessary.
date	Date of measurements as a string in the format: 'YYYY/MM/DD'
time	Time of sun-sight measurement in the format: 'HH:MM:SS'
tz	Timezone of input wither as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London").

34

riseset

az.sun	(Optional) Measured azimuth of the sun. Defaults to zero.
limb	(Optional) Measured limb of the sun. Options are <i>left</i> , <i>right</i> . If missing the center of the sun will be used for calculations.
alt	(Optional) Altitude, necessary for automatic declination calculation. If missing and <i>loc</i> is a <i>skyscapeR.horizon</i> object then the altitude will be automatically read from the horizon profile.
name	(Optional) Names or labels to identify each measurement.
ID	(Optional) IDs or codes to identify each measurement.
HWT.ID	(Optional) HeyWhatsThat IDs relating to a previously generated horizon profile for measurement.

References

Ruggles, C.L.N. (1999). Astronomy in Prehistoric Britain and Ireland. Yale University Press.

See Also

sunAz, ten

Examples

```
lat <- ten(35,50,37.8)
lon <- ten(14,34,6.4)
elev <- 100
az <- c( ten(298,24,10), ten(302,20,40))
az.sun <- ten(327,29,50)
date <- "2016/02/20"
time <- "11:07:17"
data <- reduct.theodolite(c(lat,lon,elev), az, date , time, tz= "Europe/Malta", az.sun)
# Declination will be automatically calculated if the altitude is also given:
data <- reduct.theodolite(c(lat,lon,elev), az, date , time, tz= "Europe/Malta", az.sun, alt=c(2,5))
# Alternatively, the altitude can be automatically retrieved from a horizon profile:
hor <- downloadHWT('HIFVTBGK')
data <- reduct.theodolite(hor, az, date, time, tz= "Europe/Malta", az.sun)</pre>
```

riseset

Computes the rising and setting azimuth, declination and time of a Solar System object for a given location and day

Description

Computes the rising and setting azimuth, declination and time of a Solar System object for a given location and day

riseset

Usage

```
riseset(
   obj = "sun",
   date,
   jd,
   alt = 0,
   loc,
   calendar,
   timezone,
   dec,
   refraction,
   atm,
   temp,
   verbose = T
```

)

Arguments

obj	(Optional) String containing name of the solar system body of interest. Can be any of the planets (inc. Pluto), the Moon, the Sun or the Ecliptic. Defaults to 'sun'.
date	Either a string containing the date in the format "YYYY/MM/DD" (see timestring), or a numeric containing the julian date (see time2jd). Can also be a single year ("YYYY") or a month ("YYYY/MM") to calculate risings and settings for every day in the year or month, respectively. Not necessary if <i>jd</i> is given.
jd	(Optional) A numeric containing the julian date (see time2jd) for which to cal- culate rising and settings. Only needed if <i>date</i> is not given.
alt	(Optional) The altitude of the horizon to consider. Defaults to zero degrees.
loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude, longitude and elevation of location, in this order.
calendar	(Optional) Calendar used in parameter <i>date</i> . G for gregorian and J for julian. If not given the value set by skyscapeR.vars will be used instead.
timezone	(Optional) Timezone for output of rising and setting time either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. If not given the value set by skyscapeR.vars will be used instead.
dec	(Optional) Output declination: <i>geo</i> for the geocentric, or <i>topo</i> for the topocentric frame of reference. If not given the value set by skyscapeR.vars will be used instead.
refraction	(Optional) Whether atmospheric refraction is to be taken into account. If not given the value set by skyscapeR.vars will be used instead.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.#'
verbose	(Optional) Boolean to control whether or not to display text. Default is TRUE.

36
RugglesCKR

See Also

swe_calc_ut, swe_azalt

Examples

Rising and setting of the sun on june solstice 2018, from the location of London
riseset('sun', '2018/06/21', loc=c(51.5, 0.11, 100))
Rising and setting of the moon on june solstice 2018, using a horizon profile
hor <- downloadHWT('HIFVTBGK') # Liverpool cathedral
riseset('moon', '2018/06/21', loc=hor)
Rising and setting of the sun throughout February 1999, from the location of London
riseset('sun', '1999/02', loc=c(51.5, 0.11, 100))
Not run:
Rising and setting of the sun throughout 3001 BC, from the location of London
riseset('sun', -3000, loc=c(51.5, 0.11, 100))
End(Not run)</pre>

RugglesCKR

Cork and Kerry Stone Row Data

Description

Data from C.L.N. Ruggles' fieldwork on the Stone Rows of Cork and Kerry.

Usage

data(RugglesCKR)

Format

A data frame with 41 rows and 5 variables:

Ref Site Ref

NE.SW String indicating whether they are towards the NE or SW

Az.Hill Azimuth of hill towards which the Stone Rows are pointing

Alt.Hill Altitude of hill towards which the Stone Rows are pointing

Dec.Hill Declination of hill towards which the Stone Rows are pointing

References

Ruggles, C.L.N. (1999). Astronomy in Prehistoric Britain and Ireland. Yale University Press.

Examples

```
data(RugglesCKR)
kde <- density(RugglesCKR$Dec.Hill, 2)
plot(kde)</pre>
```

RugglesRSC

Recumbent Stone Circle Data

Description

Declination data from C.L.N. Ruggles' fieldwork on the Scottish Recumbent Stone Circles.

Usage

data(RugglesRSC)

Format

A data frame with 37 rows and 2 variables:

Dec Declination **ID** Site ID

References

Ruggles, C.L.N. (1999). Astronomy in Prehistoric Britain and Ireland. Yale University Press.

Examples

```
data(RugglesRSC)
kde <- density(RugglesRSC$Dec, 2)
plot(kde)</pre>
```

sigTest	(Defunct) Perform a null hypothesis significance test of a given curvi-
	gram

Description

This function no longer works. Please use randomTest instead.

Usage

sigTest()

See Also

randomTest

38

sky.objects

Creates a skyscapeR.object for plotting of celestial objects at given epoch

Description

This function creates an object containing all the necessary information to plot celestial objects/events unto the many plotting functions of *skyscapeR* package.

Usage

```
sky.objects(names, epoch, loc = FALSE, col = "red", lty = 1, lwd = 1)
```

Arguments

names	The name(s) of the celestial object(s) or event(s) of interest. These can be one of the following soli-lunar events: <i>jS</i> , <i>dS</i> , <i>eq</i> , <i>nmnLX</i> , <i>nMjLX</i> , <i>smnLX</i> , <i>sMjLX</i> , or the name of any star in the database. As shorthand, the names <i>sun</i> and <i>moon</i> can be used to represent all the above solar and lunar events, respectively. Alternatively, custom declination values can also be used.
epoch	The year or year range (as an array) one is interested in.
loc	(Optional) This can be either a vector with the latitude and longitude of the location, or a <i>skyscapeR.horizon</i> object.
col	(Optional) The color for plotting, and differentiating these objects. Defaults to red for all objects.
lty	(Optional) Line type (see par) used for differentiation. Only activated for single year epochs.
lwd	(Optional) Line width (see par) used for differentiation. Only activated for sin- gle year epochs.

Examples

```
# Create a object with solar targets for epoch range 4000-2000 BC:
tt <- sky.objects('solar extremes', c(-4000,-2000))
# Create an object with a few stars for same epoch:
tt <- sky.objects(c('Sirius', 'Betelgeuse', 'Antares'), c(-4000,-2000),
col=c('white', 'red', 'orange'))
# Create an object with solstices and a custom declination value:
```

sky.sketch

Description

Create a simplistic sketch of the sky at a given moment in time

Usage

```
sky.sketch(
   time,
   timezone,
   calendar,
   xrange = c(30, 150),
   yrange = c(-45, 45),
   sun = T,
   moon = T,
   planets = F,
   exagerate = T,
   max.mag = 6,
   loc,
   atm,
   temp
)
```

Arguments

time	Either a string containing the date and time in the format "YYYY-MM-DD HH:MM:SS" (see timestring), or a numeric containing the julian date (see time2jd).
timezone	(Optional) Timezone of input either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Only needed if <i>time</i> is a string. If not given the value set by skyscapeR.vars will be used instead.
calendar	(Optional) Calendar used in parameter <i>time</i> . G for gregorian and J for julian. Only needed if <i>time</i> is a string. If not given the value set by skyscapeR.vars will be used instead.
xrange	Range of azimuths to display, preferably no larger than 120 degrees.
yrange	Range of altitudes to display, preferably no larger than 120 degrees.
sun	(Optional) Boolean on whether the sun should be displayed. Defaults to <i>TRUE</i> .
moon	(Optional) Boolean on whether the moon should be displayed. Defaults to <i>TRUE</i> .
planets	(Optional) Boolean on whether the visible planets should be displayed. Defaults to <i>FALSE</i> .

exagerate	(Optional) Boolean on whether the size of the sun, moon and planets should be exaggerated, which can be useful when attempting wider viewing angles. Defaults to <i>TRUE</i> .
max.mag	(Optional) Maximum magnitude of stars to consider. Default is 6.
loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude and lon- gitude of location, in this order.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.

Examples

sky.sketch(time='2019/01/10 18:51', loc=c(35,-8,100))

skyscapeR.vars	See and change the global variables used by skyscapeR	
----------------	---	--

Description

See and change the global variables used by skyscapeR

Usage

skyscapeR.vars(timezone, calendar, refraction, atm, temp, dec)

Arguments

timezone	Timezone of input either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Default is the system timezone
calendar	Calendar used in parameter <i>time</i> . G for gregorian and J for julian. Defaults to <i>Gregorian</i> .
refraction	Whether atmospheric refraction is to be taken into account. Default is TRUE.
atm	Atmospheric pressure for refraction calculation. Default is 1013.25 mbar.
temp	Atmospheric temperature for refraction calculation. Default is 15 degrees.
dec	Output declination: <i>geo</i> for the geocentric, or <i>topo</i> for the topocentric frame of reference. Defaults to topocentric.

Examples

```
# Julian date at noon GMT on Christmas day 2018
time2jd('2018-12-25 12:00:00', 'GMT')
```

sMjLX

Description

This function calculates the declination of the southern major Lunar Extreme for a given year, based upon obliquity estimation and corrected average parallax.

Usage

```
sMjLX(
   year = skyscapeR.env$cur.year,
   loc = FALSE,
   parallax = 0.952,
   altitude = 0,
   verbose = TRUE
)
```

Arguments

year	Year for which to calculate the declination. Defaults to present year as given by <i>Sys.Date</i> .
loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the moon Defaults to 0.952.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

nmnLX, smnLX, nMjLX, parallax.corr

Examples

Southern major Lunar Extreme geocentric declination for year 2501 BC: sMjLX(-2500)

Topocentric declination for same year and latitude of 50 degrees N: sMjLX(-2500, loc=50)

smnLX

Description

This function calculates the declination of the southern minor Lunar Extreme for a given year, based upon obliquity estimation and corrected average parallax.

Usage

```
smnLX(
   year = skyscapeR.env$cur.year,
   loc = FALSE,
   parallax = 0.952,
   altitude = 0,
   verbose = TRUE
)
```

Arguments

year	Year for which to calculate the declination. Defaults to present year as given by <i>Sys.Date</i> .
loc	(Optional) This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object. If missing or <i>FALSE</i> , function will output geocentric declination.
parallax	(Optional) Average parallax value for the moon Defaults to 0.952.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.
verbose	(Optional) Boolean to control output of warnings and messages. Defaults to TRUE.

See Also

nmnLX, nMjLX, sMjLX, parallax.corr

Examples

Southern minor Lunar Extreme geocentric declination for year 2501 BC: smnLX(-2500)

Topocentric declination for same year and latitude of 50 degrees N: $smnLX(-2500, \ loc=50)$

solar.date

Description

Returns the calendar date when the sun has the same declination as the input declination.

Usage

solar.date(dec, year, calendar, verbose = T)

Arguments

dec	Single value or array of declination values.
year	Year for which to do calculations.
calendar	(Optional) Calendar used for output. G for gregorian and J for julian. Defaults to Gregorian.
verbose	(Optional) Boolean to control whether or not to display text. Default is TRUE.

Examples

```
solar.date(-23, 2018)
solar.date(-12, 1200, calendar='G')
solar.date(-12, 1200, calendar='J')
solar.date(14, -2000)
```

spatial.equinox Declination of the spatial equinox for a given location

Description

Declination of the spatial equinox for a given location

Usage

```
spatial.equinox(hor, parallax = 0.00224)
```

Arguments

hor	This should be a <i>skyscapeR.horizon</i> object.
parallax	(Optional) Average parallax value for the sun. Defaults to 0.00224.

See Also

jS, dS, eq, zenith, antizenith, parallax.corr

Examples

spd

```
## Not run:
hor <- createHWT(34.174051531543405, 110.81299818694872, name='Xipo, Lingbao')
spatial.equinox(hor)
```

End(Not run)

spd

Summed probability density (SPD)

Description

Summed probability density (SPD)

Usage

spd(pdf, normalise = F, xrange, .cutoff = 1e-05, .res = 0.01)

Arguments

pdf	A <i>skyscapeR.pdf</i> object created with either az.pdf or coordtrans
normalise	(Optional) Boolean to control whether to normalize the SPD. Default is FALSE
xrange	(Optional) Array of values (min and max) for SPD if different from range of <i>pdf</i>
.cutoff	(Optional) Value of SPD at which point it will be cutoff to save on memory. Default is 1e-5
.res	(Optional) Resolution with which to output SPD. Default is 0.01 degrees.

References

Silva, F (2020) A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology *Journal of Archaeological Science* 118, 105138. <doi:10.1016/j.jas.2020.105138>

Examples

```
# SPD of azimuths
Az <- az.pdf(az=c(87,93,90,110), unc=3)
s1 <- spd(Az)
plot(s1)
# SPD of declinations
hor <- createHor(az=c(0,360), alt=c(0,0), loc=c(35,-8,25)) # flat horizon with 0 degrees of altitude
Dec <- coordtrans(Az, hor)
s2 <- spd(Dec)
plot(s2)</pre>
```

45

star

Description

This function retrieves information for a given star and saves it in the *skyscapeR.star* format ready to be used by other skyscapeR package function.

Usage

star(string, year = skyscapeR.env\$cur.year)

Arguments

string	This can be either the traditional name for the star or its Bayer designation.
year	Year for which to calculate the coordinates. Defaults to current year.

See Also

swe_fixstar2_ut, swe_fixstar2_mag

Examples

```
# Retrieve data for Aldebaran:
Aldeb <- star('Aldebaran')
# Retrieve data for Aldebaran on 2999 BC:
ss <- star('Aldebaran', -3000)</pre>
```

star.phases

Calculate the seasons and phase type of a star

Description

This function calculates the seasons (Rising, Setting, etc.) and phase types (Arising and Lying Hidden, Curtailed Passage) of a star for a given location and epoch. This functions uses the *arcus visionis* approximation of Purrington (1988) and the atmospheric extinction approximation of Schaefer (1989). For the nomenclature used, and description of star phase types, see Brady (2015).

star.phases

Usage

```
star.phases(
    star,
    year,
    loc,
    alt.hor = 0,
    k = 0.2,
    limit = 6,
    alt.rs = 10,
    res = 1/24/6,
    refraction,
    atm,
    temp
)
```

Arguments

star	Either the star name or a <i>skyscapeR.star</i> object.
year	The year of interest. Must be in the <i>swephR</i> range of 13201 cal BC to 17191 AD
loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude and lon- gitude of location, in this order.
alt.hor	(Optional) The altitude of the horizon to consider. Defaults to zero degrees.
k	(Optional) Extinction coefficient (see Schaefer 1989). Defaults to 0.2, corresponding to a poor night on mountain top or best night at a dry sea level site.
limit	(Optional) The maximum magnitude of a star that can be visible with the naked eye. Defaults to 6.
alt.rs	(Optional) The maximum altitude of a star's first or last visibility for it to still be considered to be as rising or setting. Defaults to ten degrees.
res	(Optional) Resolution of calculation. The smaller this figure the slower the computation. Defaults to 1/24/6, i.e. every 10 minutes.
refraction	(Optional) Whether atmospheric refraction is to be taken into account. If not given the value set by skyscapeR.vars will be used instead.
atm	(Optional) Atmospheric pressure for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.
temp	(Optional) Atmospheric temperature for refraction calculation. If not given the value set by skyscapeR.vars will be used instead.

References

Purrington, Robert D. (1988) Heliacal Rising and Setting: Quantitative Aspects, *Journal for the History of Astronomy (Archaeoastronomy Supplement 12)* 19, S72-S84. Available online at [SAO/NASA ADS Astronomy Abstract Service](http://adsabs.harvard.edu/abs/1988JHAS...19...72P)

Brady, Bernadette (2015) Star Phases: the Naked-eye Astronomy of the Old Kingdom Pyramid Texts. In F Silva and N Campion (eds) *Skyscapes: The Role and Importance of the Sky in Archaeology*. Oxford: Oxbow Books, pp. 76-86.

See Also

plot.skyscapeR.starphases

Examples

```
## Not run:
ss1 <- star.phases('Aldebaran',-4000, c(35,-8,200))
# One can then look at the star's phase type:
ss1$metadata$type
# Date range of seasons:
ss1$metadata$seasons
# Date range of phase-type events:
ss1$metadata$events
# And plot them:
plot(ss1)
# You can play with the parameters and see how predictions change:
ss1 <- star.phases('Aldebaran',-4000, c(35,-8,200), alt.hor=2, alt.rs=5)
plot(ss1)
## End(Not run)
```

sunAz

Returns the azimuth of the sun at a given time from a specific location

Description

This function returns the azimuth of the sun at a given time and location, useful for data reduction of theodolite measurements using the sun-sight technique (reduct.theodolite).

Usage

```
sunAz(loc, time, timezone, limb, alt = F)
```

Arguments

loc	Location, either a <i>skyscapeR.object</i> or a vector containing the latitude, longitude and elevation of location, in this order.
time	String containing the date and time in the following format: "YYYY-MM-DD HH:MM:SS"
timezone	Timezone of input either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London").
limb	(Optional) Measured limb of the sun. Options are <i>left</i> , <i>right</i> . If missing the center of the sun will be output.

48

(Optional) Boolean that triggers output of altitude of the sun at exact time. Default is FALSE.

See Also

alt

reduct.theodolite

Examples

```
sunAz(c(52,-3,100), '2017-10-04 12:32:14', 'Europe/London')
```

ten	Converts degree measurements in deg-min-sec (° ' ") format into
	decimal-point degree format.

Description

Converts degree measurements in deg-min-sec (° ' ") format into decimal-point degree format.

Usage

ten(dd, mm = 0, ss = 0)

Arguments

dd	Degree
mm	(Optional) Arcminutes
SS	(Optional) Arcseconds

Examples

deg <- ten(24, 52, 16)

time2jd Converts date and time (in any timezone) to Julian date	time2jd	Converts date and time (in any timezone) to Julian date
---	---------	---

Description

Converts date and time (in any timezone) to Julian date

Usage

```
time2jd(time, timezone, calendar, verbose = F)
```

Arguments

time	String containing the date and time in the format "YYYY/MM/DD HH:MM:SS". BCE dates should use negative sign. Use timestring if needed.
timezone	(Optional) Timezone of input either as a known acronym (e.g. "GMT", "CET") or a string with continent followed by country capital (e.g. "Europe/London"). See timezones for details. Default is the system timezone
calendar	(Optional) Calendar used in parameter <i>time</i> . G for gregorian and J for julian. Defaults to <i>Gregorian</i> .
verbose	(Optional) Controls whether messages should be displayed. Default is FALSE.

See Also

swe_julday, as.POSIXlt, timezones, timestring

Examples

```
# Julian date at noon GMT on Christmas day 2018
time2jd('2018/12/25 12:00:00', 'GMT')
```

```
timestring
```

Converts date and time numeric values to a single string

Description

Converts date and time numeric values to a single string

Usage

```
timestring(year, month, day, hour = 12, minute = 0, second = 0)
```

Arguments

year	Year
month	Month
day	Day
hour	Hour
minute	Minute
second	Second

Examples

timestring(2018, 12, 25, 2, 34)

zenith

Description

This function returns the declination of the sun when it is at the zenith for a given location with corrected average parallax. If this phenomena does not occur at given location (i.e. if location is outside the tropical band) the function returns a *NULL* value.

Usage

zenith(loc, parallax = 0.00224, altitude = 0)

Arguments

loc	This can be either the latitude of the location, or a <i>skyscapeR.horizon</i> object.
parallax	(Optional) Average parallax value for the sun. Defaults to 0.00224.
altitude	(Optional) Altitude of the sun. Defaults to 0 degrees.

See Also

jS, dS, eq, antizenith, spatial.equinox, parallax.corr

Examples

Zenith sun declination for Mexico City: zenith(19.419)

```
# There is no zenith sun phenomenon in London:
zenith(51.507)
```

Index

* datasets RugglesCKR, 37 RugglesRSC, 38 antizenith, 3, 12, 14, 19, 44, 51 as.POSIX1t, 18, 50 az.pdf, 4, 8, 26, 32, 45 az2dec, 5, 33 BC.AD.6 bernoulli.trial, 6 body.position,7 coordtrans, 8, 26, 32, 45 createHor, 8, 9, 15, 17 createHWT, 9, 10, 11 curvigram, 11 density, 11 downloadHWT, 8-10, 11, 15, 17, 26 dS, 3, 12, 19, 44, 51 EFM, 13 eq, 3, 12, 14, 14, 19, 44, 51 exportHor, 15 findTargets, 16 hor2alt, 5, 17, 33 hpdi, 17 jd2time, 18 jS, 3, 12, 14, 18, 44, 51 long.date, 19 mag.dec, 20, 33 magneticField, 20 moonphase, 20 nMjLX, 21, 22, 42, 43 nmnLX, 22, 22, 42, 43

obliquity, 12, 14, 19, 23 orbit, 24 par. 39 parallax.corr, 3, 12, 14, 19, 22, 24, 42-44, 51 plot.skyscapeR.horizon, 9, 15, 25 plot.skyscapeR.pdf, 26 plot.skyscapeR.sigTest, 27 plot.skyscapeR.spd, 28 plot.skyscapeR.starphases, 28, 48 plotAzimuth, 29 plotBars, 30 print.skyscapeR.sigTest,31 pval2stars, 31 randomTest, 27, 31, 32, 38 reduct.compass, 33 reduct.theodolite, 34, 48, 49 riseset, 35 RugglesCKR, 37 RugglesRSC, 38 sigTest, 38 sky.objects, 25, 26, 29-31, 39 sky.sketch, 40 skyscapeR.vars, 5, 7, 8, 16, 24, 36, 40, 41, 41, 47 sMjLX, 22, 42, 43 smnLX, 22, 42, 43 solar.date,44 spatial.equinox, 3, 12, 14, 19, 44, 51 spd, *11*, *28*, 45 star, <mark>46</mark> star.phases, 28, 46 sunAz, 35, 48 swe_azalt, 37 swe_azalt_rev, 5 swe_calc_ut, 7, 8, 23, 37 swe_fixstar2_mag, 46

INDEX

swe_fixstar2_ut, 46
swe_julday, 18, 50
swe_pheno_ut, 20, 21

ten, *34*, *35*, 49 time2jd, *7*, *8*, *21*, *36*, *40*, 49 timestring, *7*, *8*, *21*, *36*, *40*, *50*, 50 timezones, *7*, *13*, *18*, *21*, *36*, *40*, *41*, *50*

zenith, *3*, *12*, *14*, *19*, *44*, 51