Package ‘skmeans’

November 13, 2024
Version 0.2-18
Title Spherical k-Means Clustering

Description Algorithms to compute spherical k-means partitions.
Features several methods, including a genetic and a fixed-point
algorithm and an interface to the CLUTO vcluster program.

Imports slam (>= 0.1-31), clue (>= 0.3-39), cluster, stats, utils

Enhances Matrix, kmndirs

Additional_repositories https://R-Forge.R-project.org/
License GPL-2
NeedsCompilation no

Author Kurt Hornik [aut, cre] (<https://orcid.org/0000-0003-4198-9911>),
Ingo Feinerer [aut] (<https://orcid.org/0000-0001-7656-8338>),
Martin Kober [aut]

Maintainer Kurt Hornik <Kurt.Hornik@R-project.org>
Repository CRAN
Date/Publication 2024-11-13 07:13:29 UTC

Contents
skmeans 1
skmeans_XdiSt L L e e e e e 6
Index 7
skmeans Compute Spherical k-Means Partitions
Description

Partition given vectors z;, by minimizing the spherical k-means criterion), . wyuy;d(zp, p;) over
memberships and prototypes, where the w;, are case weights, uy; is the membership of z;, to class
J» pj is the prototype of class j (thus minimizing), wbug;.d(a:b,p) over p), and d is the cosine
dissimilarity d(z, p) = 1 — cos(z, p).

https://R-Forge.R-project.org/
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0001-7656-8338

2 skmeans

Usage

skmeans(x, k, method = NULL, m = 1, weights = 1, control = list())

Arguments

X A numeric data matrix, with rows corresponding to the objects to be partitioned
(such that row b contains ;). Can be a dense matrix, a simple triplet matrix
(package slam), or a dgTMatrix (package Matrix). Zero rows are not allowed.

k an integer giving the number of classes to be used in the partition.

method a character string specifying one of the built-in methods for computing spher-
ical k-means partitions, or a function to be taken as a user-defined method, or
NULL (default value). If a character string, its lower-cased version is matched
against the lower-cased names of the available built-in methods using pmatch.
See Details for available built-in methods and defaults.

m a number not less than 1 controlling the softness of the partition (as the “fuzzi-
fication parameter” of the fuzzy c-means algorithm). The default value of 1 cor-
responds to hard partitions; values greater than one give partitions of increasing
softness obtained from a generalized soft spherical k-means problem.

weights a numeric vector of non-negative case weights. Recycled to the number of ob-
jects given by x if necessary.

control a list of control parameters. See Details.

Details

The “standard” spherical k-means problem where all case weights are one and m = 1 is equivalent
to maximizing the criterion), > ,c . cos(y, p;), where Cj is the j-th class of the partition. This
is the formulation used in Dhillon & Modha (2001) and related references, and when optimized
over the prototypes yields the criterion function 75 in the CLUTO documentation.

Obtaining optimal spherical k-means partitions obviously is a computationally hard problem, and
several methods are available which attempt to obtain optimal partitions. The built-in methods are
as follows.

"genetic” agenetic algorithm patterned after the genetic k-means algorithm of Krishna & Narasimha
Murty (1999).

"pclust” a Lloyd-Forgy style fixed-point algorithm which iterates between determining optimal
memberships for fixed prototypes, and computing optimal prototypes for fixed memberships.
For hard partitions, this can optionally attempt further local improvements via Kernighan-Lin
chains of first variation single object moves as suggested by Dhillon, Guan and Kogan (2002).

"CLUTO" an interface to the vcluster partitional clustering program from CLUTO, the CLUstering
TOolkit by George Karypis.

"gmeans” an interface to the gmeans partitional clustering program by Yuqgiang Guan.

"kmndirs" an interface to the C code for the k-mean-directions algorithm of Ranjan Maitra and
Ivan P. Ramler.

skmeans 3

Method "pclust” is the only method available for soft spherical k-means problems. Method

"genetic” can handle case weights. By default, the genetic algorithm is used for obtaining hard

partitions, and the fixed-point algorithm otherwise.

Common control parameters for methods "genetic” and "pclust” are as follows.

start a specification of the starting values to be employed. Can either be a character vector with
elements "p" (randomly pick objects as prototypes), "i" (randomly pick ids for the objects),
"S" (take p minimizing), wyd(zy, p) as the first prototype, and successively pick objects
farthest away from the already picked prototypes), or "s" (like "S", but with the first prototype
a randomly picked object). Can also be a list of skmeans objects (obtained by previous runs),
a list of prototype matrices, or a list of class ids. For the genetic algorithm, the given starting
values are used as the initial population; the fixed-point algorithm is applied individually to
each starting value, and the best solution found is returned. Defaults to randomly picking
objects as prototypes.

reltol The minimum relative improvement per iteration. If improvement is less, the algorithm
will stop under the assumption that no further significant improvement can be made. Defaults
to sqrt(.Machine$double.eps).

verbose a logical indicating whether to provide some output on minimization progress. Defaults
to getOption("verbose").

Additional control parameters for method "genetic” are as follows.

maxiter an integer giving the maximum number of iterations for the genetic algorithm. Defaults
to 12.

popsize an integer giving the population size for the genetic algorithm. Default: 6. Only used if
start is not given.

mutations a number between 0 and 1 giving the probability of mutation per iteration. Defaults to
0.1.

Additional control parameters for method "pclust” are as follows.

maxiter an integer giving the maximal number of fixed-point iterations to be performed. Default:
100.

nruns an integer giving the number of fixed-point runs to be performed. Default: 1. Only used if
start is not given.

maxchains an integer giving the maximal length of the Kernighan-Lin chains. Default: O (no first
variation improvements are attempted).

Control parameters for method "CLUTO" are as follows.

vcluster the path to the CLUTO vcluster executable.

colmodel a specification of the CLUTO column model. See the CLUTO documentation for more
details.

verbose as for the genetic algorithm.

control a character string specifying arguments passed over to the vcluster executable.
Control parameters for method "gmeans"” are as follows.

gmeans the path to the gmeans executable.

4 skmeans

verbose as for the genetic algorithm.

control a character string specifying arguments passed over to the gmeans executable.
Control parameters for method "kmndirs" are as follows.

nstart aninteger giving the number of starting points to compute the starting value for the iteration
stage. Default: 100.

maxiter an integer giving the maximum number of iterations. Default: 10.

Method "CLUTO" requires that the CLUTO vcluster executable is available. CLUTO binaries
for the Linux, SunOS, Mac OS X, and MS Windows platforms used to be downloadable from
‘https://www-users.cse.umn.edu/~karypis/cluto/’. If the executable cannot be found in the
system path via Sys.which(”vcluster”) (i.e., named differently or not made available in the
system path), its (full) path must be specified in control option vcluster.

Method "gmeans” requires that the gmeans executable is available. Sources for compilation with

ANSI C++ compliant compilers are available from https://github.com/feinerer/gmeans-ansi-compliant;
original sources can be obtained from https://www.cs.utexas.edu/~dml/Software/gmeans.

html. If the executable cannot be found in the system path via Sys.which("gmeans") (i.e., named

differently or not made available in the system path), its (full) path must be specified in control

option gmeans.

Method "kmndirs"” requires package kmndirs (available from https://R-Forge.R-project.
org/projects/kmndirs), which provides an R interface to a suitable modification of the C code
for the k-mean-directions algorithm made available as supplementary material to Maitra & Ramler
(2010) at https://www. tandfonline.com/doi/suppl/10.1198/jcgs.2009.08155.

User-defined methods must have formals x, k and control, and optionally may have formals
weights or m if providing support for case weights or soft spherical k-means partitions, respec-
tively.

Value

An object inheriting from classes skmeans and pclust (see the information on pclust objects in
package clue for further details) representing the obtained spherical k-means partition, which is a
list with components including the following:

prototypes a dense matrix with k rows giving the prototypes.

membership cluster membership as a matrix with k columns (only provided if m > 1).
cluster the class ids of the closest hard partition (the partition itself if m = 1).
value the value of the criterion.

Objects representing spherical k-means partitions have special methods for print, cl_validity
(providing the “dissimilarity accounted for”) from package clue, and silhouette from package
cluster (the latter two take advantage of the special structure of the cosine distance to avoid com-
puting full object-by-object distance matrices, and hence also perform well for large data sets).

Package clue provides additional methods for objects inheriting from class pclust, see the exam-
ples.

https://github.com/feinerer/gmeans-ansi-compliant
https://www.cs.utexas.edu/~dml/Software/gmeans.html
https://www.cs.utexas.edu/~dml/Software/gmeans.html
https://R-Forge.R-project.org/projects/kmndirs
https://R-Forge.R-project.org/projects/kmndirs
https://www.tandfonline.com/doi/suppl/10.1198/jcgs.2009.08155

skmeans 5

Author(s)

Kurt Hornik <Kurt.Hornik@wu.ac.at>,
Ingo Feinerer <feinerer@logic.at>,
Martin Kober <martin.kober@wu.ac.at>.

References

I. S. Dhillon and D. S. Modha (2001). Concept decompositions for large sparse text data using
clustering. Machine Learning, 42, 143—175. doi:10.1023/A:1007612920971.

I. S. Dhillon and Y. Guan and J. Kogan (2002). Iterative clustering of high dimensional text
data augmented by local search. In Proceedings of the Second IEEE International Conference
on Data Mining, pages 131-138. https://www.cs.utexas.edu/~inderjit/public_papers/
iterative_icdm@2.pdf.

K. Krishna and M. Narasimha Murty (1999). Genetic K -means algorithm. IEEE Transactions on
Systems, Man, and Cybernetics — Part B: Cybernetics, 29/3, 433-439. doi:10.1109/3477.764879.

G. Karypis (2003). CLUTO: A Clustering Toolkit. Technical Report #02-017, Department of Com-
puter Science, University of Minnesota. Used to be available from ‘http://glaros.dtc.umn.edu/gkhome/fetch/sw/clut

R. Maitra and I. P. Ramler (2010). A k-mean-directions algorithm for fast clustering of data on the
sphere. Journal of Computational and Graphical Statistics, 19/2, 377-396.
doi:10.1198/jcgs.2009.08155.

Examples

set.seed(1234)

Use CLUTO dataset 're@' and the reader for CLUTO sparse matrix
format in package 'slam'. (In text clustering applications, x will
often be a DocumentTermMatrix object obtained from package 'tm'.)
X <- slam::read_stm_CLUTO(system.file("cluto”, "re@.mat",
package = "skmeans"))
Which is not really small:
dim(x)

Hard partition into 5 clusters.

hparty <- skmeans(x, 5, control = list(verbose = TRUE))
Criterion value obtained:

hparty$value

Compare with "true" classifications:

class_ids <- attr(x, "rclass")

table(class_ids, hparty$cluster)

(Note that there are actually 10 "true" classes.)

Plot the silhouette information for the obtained partition.
require("cluster”)

plot(silhouette(hparty))

Clearly, cluster 3 is "best”, and cluster 5 needs splitting.

Soft partition into 5 clusters.
sparty <- skmeans(x, 5, m = 1.1,

https://doi.org/10.1023/A%3A1007612920971
https://www.cs.utexas.edu/~inderjit/public_papers/iterative_icdm02.pdf
https://www.cs.utexas.edu/~inderjit/public_papers/iterative_icdm02.pdf
https://doi.org/10.1109/3477.764879
https://doi.org/10.1198/jcgs.2009.08155

control = list(nruns = 5, verbose = TRUE))
Criterion value obtained:
sparty$value
(This should be a lower bound for the criterion value of the hard
partition.)

Compare the soft and hard partitions:

table(hparty$cluster, sparty$cluster)

Or equivalently using the high-level accessors from package 'clue’:
require(”"clue”)

table(cl_class_ids(hparty), cl_class_ids(sparty))

Which can also be used for computing agreement/dissimilarity measures
between the obtained partitions.

cl_agreement(hparty, sparty, "Rand”)

How fuzzy is the obtained soft partition?

cl_fuzziness(sparty)

And in fact, looking at the membership margins we see that the
"sureness” of classification is rather high:
summary(cl_margin(sparty))

skmeans_xdist

skmeans_xdist Cosine Cross-Distances

Description

Compute cosine cross-distances between the rows of matrices.

Usage

skmeans_xdist(x, y = NULL)

Arguments
X A numeric data matrix. Can be a dense matrix, simple triplet matrix (package
slam), or a dgTMatrix (package Matrix).
y NULL (default), or as for x. The default is equivalent to taking y as x (but more
efficient).
Value

A dense matrix d with entry d;; = 1 — cos(x;, y;) the cosine distance between the i-th row z; of x

and the j-th row y; of y.

Index

* cluster
skmeans, 1

cl_validity, 4
dgTMatrix, 2, 6

pclust objects, 4
pmatch, 2
print, 4

silhouette, 4

simple triplet matrix, 2,6
skmeans, 1

skmeans_xdist, 6
Sys.which, 4

	skmeans
	skmeans_xdist
	Index

