Package 'simuclustfactor'

October 18, 2022

Type Package

Title Simultaneous Clustering and Factorial Decomposition of Three-Way Datasets

Version 0.0.3

Maintainer Prosper Ablordeppey <pablordeppey@ua.pt>

Description Implements two iterative techniques called T3Clus and 3Fkmeans, aimed at simultane-ously clustering objects and a factorial dimensionality reduction of variables and occasions on three-mode datasets developed by Vichi et al. (2007) <doi:10.1007/s00357-007-0006-x>. Also, we provide a convex combination of these two simultaneous procedures called CT3Clus and based on a hyperparameter alpha (alpha in [0,1], with 3FKMeans for alpha=0 and T3Clus for alpha=1) also developed by Vichi et al. (2007) <doi:10.1007/s00357-007-0006-x>. Furthermore, we implemented the traditional tandem procedures of T3Clus (TWCFTA) and 3FKMeans (TWFCTA) for sequential clustering-factorial decomposition (TWCFTA), and vice-versa (TWFCTA) proposed by P. Arabie and L. Hubert (1996) <doi:10.1007/978-3-642-79999-0_1>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.1

Depends R (>= 2.10)

Imports methods, stats, Rdpack

RdMacros Rdpack

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Prosper Ablordeppey [aut, cre]

(<https://orcid.org/0000-0002-5581-7005>),
Adelaide Freitas [ctb] (<https://orcid.org/0000-0002-4685-1615>),
Giorgia Zaccaria [ctb] (<https://orcid.org/0000-0001-9119-9104>)

Repository CRAN

Date/Publication 2022-10-18 06:40:05 UTC

R topics documented:

attributes.simultaneous-class	2
attributes.tandem-class	3
fit.3fkmeans	4
fit.ct3clus	6
fit.t3clus	8
fit.twcfta	9
fit.twfcta	1
	4
generate_dataset	4
c –	5
	6
	7
pseudof.reduced	8
1	8
simultaneous-class	0
tandem	1
	2
	2
unfold	2
2	4

Index

attributes.simultaneous-class

Simultaneous results attributes

Description

Simultaneous results attributes

Slots

U_i_g0 matrix. Initial object membership function matrix
B_j_q0 matrix. Initial factor/component matrix for the variables
C_k_r0 matrix. Initial factor/component matrix for the occasions
U_i_g matrix. Final/updated object membership function matrix
B_j_q matrix. Final/updated factor/component matrix for the variables
C_k_r matrix. Final/updated factor/component matrix for the occasions
Y_g_qr matrix. Derived centroids in the reduced space (data matrix)
X_i_jk_scaled matrix. Standardized dataset matrix
BestTimeElapsed numeric. Execution time for the best iterate
BestLoop numeric. Loop that obtained the best iterate
BestIteration numeric. Iteration yielding the best results
Converged numeric. Flag to check if algorithm converged for the K-means

nConverges numeric. Number of loops that converged for the K-means TSS_full numeric. Total deviance in the full-space BSS_full numeric. Between deviance in the reduced-space PF_full numeric. Residual deviance in the reduced-space PF_full numeric. Total deviance in the reduced-space BSS_reduced numeric. Between deviance in the reduced-space RSS_reduced numeric. Residual deviance in the reduced-space PF_reduced numeric. Residual deviance in the reduced-space PF_reduced numeric. PseudoF in the reduced-space PF_reduced numeric. PseudoF in the reduced-space PF_reduced numeric. Object cluster assignments Fs numeric. Objective function values for the KM best iterate Enorm numeric. Average 12 norm of the residual norm.

attributes.tandem-class

Tandem results attributes

Description

Tandem results attributes

Slots

U_i_g0 matrix. Initial object membership function matrix.
B_j_q0 matrix. Initial factor/component matrix for the variables.
C_k_r0 matrix. Initial factor/component matrix for the occasions.
U_i_g matrix. Final/updated object membership function matrix.
B_j_q matrix. Final/updated factor/component matrix for the variables.
C_k_r matrix. Final/updated factor/component matrix for the occasions.
Y_g_qr matrix. Derived centroids in the reduced space (data matrix).
X_i_jk_scaled matrix. Standardized dataset matrix.
BestTimeElapsed numeric. Execution time for the best iterate.
BestKmIteration numeric. Number of iteration until best iterate for the K-means.
BestFalteration numeric. Flag to check if algorithm converged for the K-means.
KmConverges numeric. Number of loops that converged for the K-means.

nFaConverges numeric. Number of loops that converged for the Factor decomposition.

TSS_full numeric. Total deviance in the full-space.

BSS_full numeric. Between deviance in the reduced-space.

RSS_full numeric. Residual deviance in the reduced-space.

PF_full numeric. PseudoF in the full-space.

TSS_reduced numeric. Total deviance in the reduced-space.

BSS_reduced numeric. Between deviance in the reduced-space.

RSS_reduced numeric. Residual deviance in the reduced-space.

PF_reduced numeric. PseudoF in the reduced-space.

PF numeric. Actual PseudoF value to obtain best loop.

Labels integer. Object cluster assignments.

FsKM numeric. Objective function values for the KM best iterate.

FsFA numeric. Objective function values for the FA best iterate.

Enorm numeric. Average 12 norm of the residual norm.

fit.3fkmeans

3FKMeans Model

Description

Implements simultaneous version of TWFCTA

Usage

fit.3fkmeans(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)

S4 method for signature 'simultaneous'
fit.3fkmeans(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)

Arguments

model	Initialized simultaneous model.	
X_i_jk	Matricized tensor along mode-1 (I objects).	
full_tensor_shape		
	Dimensions of the tensor in full-space.	
reduced_tensor_shape		
	Dimensions of tensor in the reduced-space.	

Details

The procedure performs simultaneously the sequential TWFCTA model. The model finds B_j_q and C_k_r such that the within-clusters deviance of the component scores is minimized.

fit.3fkmeans

Value

Output attributes accessible via the '@' operator.

- U_i_g0 Initial object membership function matrix
- B_j_q0 Initial factor/component matrix for the variables
- C_k_r0 Initial factor/component matrix for the occasions
- U_i_g Final/updated object membership function matrix
- B_j_q Final/updated factor/component matrix for the variables
- C_k_r Final/updated factor/component matrix for the occasions
- Y_g_qr Derived centroids in the reduced space (data matrix)
- X_i_jk_scaled Standardized dataset matrix
- BestTimeElapsed Execution time for the best iterate
- BestLoop Loop that obtained the best iterate
- · BestIteration Iteration yielding the best results
- · Converged Flag to check if algorithm converged for the K-means
- · nConverges Number of loops that converged for the K-means
- TSS_full Total deviance in the full-space
- BSS_full Between deviance in the reduced-space
- RSS_full Residual deviance in the reduced-space
- PF_full PseudoF in the full-space
- TSS_reduced Total deviance in the reduced-space
- BSS_reduced Between deviance in the reduced-space
- RSS_reduced Residual deviance in the reduced-space
- PF_reduced PseudoF in the reduced-space
- PF Weighted PseudoF score
- · Labels Object cluster assignments
- · Fs Objective function values for the KM best iterate
- Enorm Average 12 norm of the residual norm.

References

Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311. html. Vichi M, Kiers HAL (2001). "Factorial k-means analysis for two-way data." *Computa-tional Statistics and Data Analysis*, **37**(1), 49-64. https://EconPapers.repec.org/RePEc:eee: csdana:v:37:y:2001:i:1:p:49-64. Vichi M, Rocci R, Kiers H (2007). "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches." *Journal of Classification*, **24**, 71-98. doi:10.1007/s003570070006x.

Examples

```
X_i_jk = generate_dataset()$X_i_jk
model = simultaneous()
tfkmeans = fit.3fkmeans(model, X_i_jk, c(8,5,4), c(3,3,2))
```

fit.ct3clus

Description

Implements simultaneous T3Clus and 3FKMeans integrating an alpha value between 0 and 1 inclusive for a weighted result.

Usage

```
fit.ct3clus(
   model,
   X_i_jk,
   full_tensor_shape,
   reduced_tensor_shape,
   alpha = 0.5
)
## S4 method for signature 'simultaneous'
fit.ct3clus(
   model,
   X_i_jk,
   full_tensor_shape,
   reduced_tensor_shape,
   alpha = 0.5
)
```

Arguments

model	Initialized simultaneous model.
X_i_jk	Matricized tensor along mode-1 (I objects).
full_tensor_sha	pe
	Dimensions of the tensor in full space.
reduced_tensor_	shape
	Dimensions of tensor in the reduced space.
alpha	0 <alpha>1 hyper parameter. Model is T3Clus when alpha=1 and 3FKMeans when alpha=0.</alpha>

Value

Output attributes accessible via the '@' operator.

- U_i_g0 Initial object membership function matrix
- B_j_q0 Initial factor/component matrix for the variables
- C_k_r0 Initial factor/component matrix for the occasions
- U_i_g Final/updated object membership function matrix

- B_j_q Final/updated factor/component matrix for the variables
- C_k_r Final/updated factor/component matrix for the occasions
- Y_g_qr Derived centroids in the reduced space (data matrix)
- X_i_jk_scaled Standardized dataset matrix
- · BestTimeElapsed Execution time for the best iterate
- BestLoop Loop that obtained the best iterate
- · BestIteration Iteration yielding the best results
- · Converged Flag to check if algorithm converged for the K-means
- nConverges Number of loops that converged for the K-means
- TSS_full Total deviance in the full-space
- BSS_full Between deviance in the reduced-space
- RSS_full Residual deviance in the reduced-space
- PF_full PseudoF in the full-space
- TSS_reduced Total deviance in the reduced-space
- BSS_reduced Between deviance in the reduced-space
- RSS_reduced Residual deviance in the reduced-space
- PF_reduced PseudoF in the reduced-space
- PF Weighted PseudoF score
- · Labels Object cluster assignments
- Fs Objective function values for the KM best iterate
- Enorm Average 12 norm of the residual norm.

References

Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311. html. Rocci R, Vichi M (2005). "Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units." *Psychometrika*, **70**, 715-736. doi:10.1007/s113360010926z. Vichi M, Kiers HAL (2001). "Factorial k-means analysis for two-way data." *Computational Statistics and Data Analysis*, **37**(1), 49-64. https://EconPapers.repec.org/RePEc:eee:csdana:v:37:y:2001:i:1:p: 49-64. Vichi M, Rocci R, Kiers H (2007). "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches." *Journal of Classification*, **24**, 71-98. doi:10.1007/s003570070006x.

See Also

fit.t3clus fit.3fkmeans simultaneous

Examples

```
X_i_jk = generate_dataset()$X_i_jk
model = simultaneous()
ct3clus = fit.ct3clus(model, X_i_jk, c(8,5,4), c(3,3,2), alpha=0.5)
```

fit.t3clus

Description

Implements simultaneous version of TWCFTA

Usage

fit.t3clus(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)

S4 method for signature 'simultaneous'
fit.t3clus(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)

Arguments

model	Initialized simultaneous model.	
X_i_jk	Matricized tensor along mode-1 (I objects).	
full_tensor_sha	ре	
	Dimensions of the tensor in full-space.	
reduced_tensor_shape		
	Dimensions of tensor in the reduced-space.	

Details

The procedure performs simultaneously the sequential TWCFTA model. The model finds B_j_q and C_k_r such that the between-clusters deviance of the component scores is maximized.

Value

Output attributes accessible via the '@' operator.

- U_i_g0 Initial object membership function matrix
- B_j_q0 Initial factor/component matrix for the variables
- C_k_r0 Initial factor/component matrix for the occasions
- U_i_g Final/updated object membership function matrix
- B_j_q Final/updated factor/component matrix for the variables
- C_k_r Final/updated factor/component matrix for the occasions
- Y_g_qr Derived centroids in the reduced space (data matrix)
- X_i_jk_scaled Standardized dataset matrix
- · BestTimeElapsed Execution time for the best iterate
- BestLoop Loop that obtained the best iterate
- BestIteration Iteration yielding the best results
- Converged Flag to check if algorithm converged for the K-means

fit.twcfta

- nConverges Number of loops that converged for the K-means
- TSS_full Total deviance in the full-space
- BSS_full Between deviance in the reduced-space
- RSS_full Residual deviance in the reduced-space
- PF_full PseudoF in the full-space
- TSS_reduced Total deviance in the reduced-space
- · BSS_reduced Between deviance in the reduced-space
- RSS_reduced Residual deviance in the reduced-space
- PF_reduced PseudoF in the reduced-space
- PF Weighted PseudoF score
- Labels Object cluster assignments
- · Fs Objective function values for the KM best iterate
- Enorm Average 12 norm of the residual norm.

References

Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311. html. Rocci R, Vichi M (2005). "Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units." *Psychometrika*, **70**, 715-736. doi:10.1007/s113360010926z. Vichi M, Rocci R, Kiers H (2007). "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches." *Journal of Classification*, **24**, 71-98. doi:10.1007/s003570070006x.

Examples

```
X_i_jk = generate_dataset()$X_i_jk
model = simultaneous()
t3clus = fit.t3clus(model, X_i_jk, c(8,5,4), c(3,3,2))
```

fit.twcfta TWCFTA model

Description

Implements K-means clustering and afterwards factorial reduction in a sequential fashion.

Usage

fit.twcfta(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)
S4 method for signature 'tandem'
fit.twcfta(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)

Arguments

model	Initialized tandem model.	
X_i_jk	Matricized tensor along mode-1 (I objects).	
full_tensor_shape		
	Dimensions of the tensor in full space.	
reduced_tensor_shape		
	Dimensions of tensor in the reduced space.	

Details

The procedure requires sequential clustering and factorial decomposition.

- The K-means clustering algorithm is initially applied to the matricized tensor X_i_jk to obtain the centroids matrix X_g_jk and the membership matrix U_i_g.
- The Tucker2 decomposition technique is then implemented on the centroids matrix X_g_jk to yield the core centroids matrix Y_g_qr and the component weights matrices B_j_q and C_k_r.

Value

Output attributes accessible via the '@' operator.

- U_i_g0 Initial object membership function matrix.
- B_j_q0 Initial factor/component matrix for the variables.
- C k r0 Initial factor/component matrix for the occasions.
- U i g Final/updated object membership function matrix.
- B j q Final/updated factor/component matrix for the variables.
- C_k_r Final/updated factor/component matrix for the occasions.
- Y_g_qr Derived centroids in the reduced space (data matrix).
- X_i_jk_scaled Standardized dataset matrix.
- BestTimeElapsed Execution time for the best iterate.
- BestLoop Loop that obtained the best iterate.
- BestKmIteration Number of iteration until best iterate for the K-means.
- BestFalteration Number of iteration until best iterate for the FA.
- FaConverged Flag to check if algorithm converged for the K-means.
- KmConverged Flag to check if algorithm converged for the Factor Decomposition.
- nKmConverges Number of loops that converged for the K-means.
- nFaConverges Number of loops that converged for the Factor decomposition.
- TSS_full Total deviance in the full-space.
- BSS_full Between deviance in the reduced-space.
- RSS_full Residual deviance in the reduced-space.
- PF_full PseudoF in the full-space.
- TSS_reduced Total deviance in the reduced-space.

fit.twfcta

- BSS_reduced Between deviance in the reduced-space.
- RSS_reduced Residual deviance in the reduced-space.
- PF_reduced PseudoF in the reduced-space.
- PF Actual PseudoF value to obtain best loop.
- Labels Object cluster assignments.
- FsKM Objective function values for the KM best iterate.
- FsFA Objective function values for the FA best iterate.
- Enorm Average 12 norm of the residual norm.

Note

- This procedure is useful to further interpret the between clusters variability of the data and to understand the variables and/or occasions that most contribute to discriminate the clusters. However, the application of this technique could lead to the masking of variables that are not informative of the clustering structure.
- since the Tucker2 model is applied after the clustering, this cannot help select the most relevant information for the clustering in the dataset.

References

Arabie P, Hubert L (1996). "Advances in Cluster Analysis Relevant to Marketing Research." In Gaul W, Pfeifer D (eds.), *From Data to Knowledge*, 3–19. Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311.html.

See Also

fit.twfcta tandem

Examples

```
X_i_jk = generate_dataset()$X_i_jk
model = tandem()
twcfta = fit.twcfta(model, X_i_jk, c(8,5,4), c(3,3,2))
```

fit.twfcta

TWFCTA model

Description

Implements factorial reduction and then K-means clustering in a sequential fashion.

Usage

```
fit.twfcta(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)
```

S4 method for signature 'tandem'
fit.twfcta(model, X_i_jk, full_tensor_shape, reduced_tensor_shape)

Arguments

model	Initialized tandem model.	
X_i_jk	Matricized tensor along mode-1 (I objects).	
full_tensor_shape		
	Dimensions of the tensor in full space.	
reduced_tensor_shape		
	Dimensions of tensor in the reduced space.	

The procedure implements sequential factorial decomposition and clustering.

- The technique performs Tucker2 decomposition on the X_i_jk matrix to obtain the matrix of component scores Y_i_qr with component weights matrices B_j_q and C_k_r.
- The K-means clustering algorithm is then applied to the component scores matrix Y_i_qr to obtain the desired core centroids matrix Y_g_qr and its associated stochastic membership function matrix U_i_g.

Value

Details

Output attributes accessible via the '@' operator.

- U_i_g0 Initial object membership function matrix.
- B_j_q0 Initial factor/component matrix for the variables.
- C_k_r0 Initial factor/component matrix for the occasions.
- U_i_g Final/updated object membership function matrix.
- B_j_q Final/updated factor/component matrix for the variables.
- C_k_r Final/updated factor/component matrix for the occasions.
- Y_g_qr Derived centroids in the reduced space (data matrix).
- X_i_jk_scaled Standardized dataset matrix.
- BestTimeElapsed Execution time for the best iterate.
- BestLoop Loop that obtained the best iterate.
- BestKmIteration Number of iteration until best iterate for the K-means.
- BestFalteration Number of iteration until best iterate for the FA.
- FaConverged Flag to check if algorithm converged for the K-means.
- KmConverged Flag to check if algorithm converged for the Factor Decomposition.
- nKmConverges Number of loops that converged for the K-means.

fit.twfcta

- nFaConverges Number of loops that converged for the Factor decomposition.
- TSS_full Total deviance in the full-space.
- BSS_full Between deviance in the reduced-space.
- RSS_full Residual deviance in the reduced-space.
- PF_full PseudoF in the full-space.
- TSS_reduced Total deviance in the reduced-space.
- BSS_reduced Between deviance in the reduced-space.
- RSS_reduced Residual deviance in the reduced-space.
- PF_reduced PseudoF in the reduced-space.
- PF Actual PseudoF value to obtain best loop.
- Labels Object cluster assignments.
- FsKM Objective function values for the KM best iterate.
- FsFA Objective function values for the FA best iterate.
- Enorm Average 12 norm of the residual norm.

Note

- The technique helps interpret the within clusters variability of the data. The Tucker2 tends to explain most of the total variation in the dataset. Hence, the variance of variables that do not contribute to the clustering structure in the dataset is also included.
- The Tucker2 dimensions may still mask some essential clustering structures in the dataset.

References

Arabie P, Hubert L (1996). "Advances in Cluster Analysis Relevant to Marketing Research." In Gaul W, Pfeifer D (eds.), *From Data to Knowledge*, 3–19. Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311.html.

See Also

fit.twcfta tandem

Examples

```
X_i_jk = generate_dataset()$X_i_jk
model = tandem()
twfCta = fit.twfcta(model, X_i_jk, c(8,5,4), c(3,3,2))
```

Description

 $X_i_jk \Rightarrow X_i_j_k, X_j_ki \Rightarrow X_i_j_k, X_k_ij \Rightarrow X_i_j_k$

Usage

fold(X, mode, shape)

Arguments

Х	Data matrix to fold.
mode	Mode of operation.
shape	Dimension of original tensor.

Value

X_i_j_k Three-mode tensor.

Examples

X_i_jk = generate_dataset()\$X_i_jk
X_i_j_k = fold(X_i_jk, mode=1, shape=c(I=8,J=5,K=4)) # X_i_j_k

generate_dataset Three-Mode Dataset Generator for Simulations

Description

Generate G clustered synthetic dataset of I objects measured on J variables for K occasions with additive noise.

Usage

generate_dataset(
 I = 8,
 J = 5,
 K = 4,
 G = 3,
 Q = 3,
 R = 2,
 centroids_spread = c(0, 1),

fold

generate_rmfm

```
noise_mean = 0,
noise_stdev = 0.5,
seed = NULL
)
```

Arguments

I	Number of objects.	
J	Number of variables per occasion.	
К	Number of occasions.	
G	Number of clusters.	
Q	Number of factors for the variables.	
R	Number of factors for the occasions.	
centroids_spread		
	interval from which to uniformly pick the centroids.	
noise_mean	Mean of noise to generate.	
noise_stdev	Noise effect level/spread/standard deviation.	
seed	Seed for random sequence generation.	

Value

Z_i_jk: Component scores in the full space.

E_i_jk: Generated noise at the given noise level.

X_i_jk: Dataset with noise level set to noise_stdev specified.

Y_g_qr: Centroids matrix in the reduced space.

U_i_g: Stochastic membership function matrix.

B_j_q: Objects component scores matrix.

C_k_r: Occasions component scores matrix.

Examples

generate_dataset(seed=0)

generate_rmfm Random Membership Function Matrix Generator

Description

Generates random binary stochastic membership function matrix for the I objects.

Usage

generate_rmfm(I, G, seed = NULL)

Arguments

I	Number of objects.
G	Number of groups/clusters.
seed	Seed for random number generation.

Value

U_i_g, binary stochastic membership matrix.

Examples

generate_rmfm(I=8,G=3)

onekmeans

One-run of the K-means clustering technique

Description

Initializes centroids based on a given membership function matrix or randomly. Iterate once over the input data to update the membership function matrix assigning objects to the closest centroids.

Usage

onekmeans(Y_i_qr, G, U_i_g = NULL, seed = NULL)

Arguments

Y_i_qr	Input data to group/cluster.
G	Number of clusters to find.
U_i_g	Initial membership matrix for the I objects.
seed	Seed for random values generation.

Value

updated membership matrix U_i_g.

References

Oti EU, Olusola MO, Eze FC, Enogwe SU (2021). "Comprehensive Review of K-Means Clustering Algorithms." *International Journal of Advances in Scientific Research and Engineering (IJASRE), ISSN:2454-8006, DOI: 10.31695/IJASRE*, **7**(8), 64–69. doi:10.31695/IJASRE.2021.34050, https://ijasre.net/index.php/ijasre/article/view/1301.

Examples

X_i_jk = generate_dataset(seed=0)\$X_i_jk
onekmeans(X_i_jk, G=5)

pseudof.full

Description

Computes the PseudoF score in the full space.

Usage

```
pseudof.full(bss, wss, full_tensor_shape, reduced_tensor_shape)
```

Arguments

bss	Between sums of squared deviations between clusters.	
WSS	Within sums of squared deviations within clusters.	
full_tensor_shape		
	Dimensions of the tensor in the original space.	
reduced_tensor_shape		
	Dimension of the tensor in the reduced space.	

Value

PseudoF score

References

Caliński T, Harabasz J (1974). "A dendrite method for cluster analysis." *Communications in Statistics*, **3**(1), 1-27. doi:10.1080/03610927408827101, https://www.tandfonline.com/doi/pdf/10.1080/03610927408827101 , https://www.tandfonline.com/doi/abs/10.1080/03610927408827101. Rocci R, Vichi M (2005). "Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units." *Psychometrika*, **70**, 715-736. doi:10.1007/s113360010926z.

Examples

pseudof.full(12,6,c(8,5,4),c(3,3,2))

pseudof.reduced

Description

Computes the PseudoF score in the reduced space.

Usage

pseudof.reduced(bss, wss, full_tensor_shape, reduced_tensor_shape)

Arguments

bss	Between sums of squared deviations between clusters.		
WSS	Within sums of squared deviations within clusters.		
full_tensor_shape			
	Dimensions of the tensor in the original space.		
reduced_tensor_shape			
	Dimension of the tensor in the reduced space.		

Value

PseudoF score

References

Caliński T, Harabasz J (1974). "A dendrite method for cluster analysis." *Communications in Statistics*, **3**(1), 1-27. doi:10.1080/03610927408827101, https://www.tandfonline.com/doi/pdf/10.1080/03610927408827101, https://www.tandfonline.com/doi/abs/10.1080/03610927408827101.

Examples

pseudof.reduced(12,6,c(8,5,4),c(3,3,2))

simultaneous

Simultaneous Model Constructor

Description

Initialize model object required by the simultaneous methods.

simultaneous

Usage

```
simultaneous(
   seed = NULL,
   verbose = TRUE,
   init = "svd",
   n_max_iter = 10,
   n_loops = 10,
   tol = 1e-05,
   U_i_g = NULL,
   B_j_q = NULL,
   C_k_r = NULL
)
```

Arguments

seed	Seed for random sequence generation.
verbose	Flag to display output result for each loop.
init	The initialization method for the model parameters. Values could be 'svd', 'random', 'twcfta' or 'twfcta' Defaults to svd.
n_max_iter	Maximum number of iterations to optimize objective function.
n_loops	Number of runs/loops in search of the global result.
tol	Acceptable tolerance level.
U_i_g	Membership function matrix for the objects.
B_j_q	Component matrix for the variables.
C_k_r	Component matrix for the occasions.

Details

Two simultaneous models T3Clus and 3FKMeans are the implemented methods.

- T3Clus finds B_j_q and C_k_r such that the between-clusters deviance of the component scores is maximized.
- 3FKMeans finds B_j_q and C_k_r such that the within-clusters deviance of the component scores is minimized.

Value

An object of class "simultaneous".

Note

The model finds the best partition described by the best orthogonal linear combinations of the variables and orthogonal linear combinations of the occasions.

References

Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311. html. Vichi M, Rocci R, Kiers H (2007). "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches." *Journal of Classification*, **24**, 71-98. doi:10.1007/s003570070006x.

See Also

fit.t3clus fit.3fkmeans fit.ct3clus tandem

Examples

simultaneous()

simultaneous-class Simultaneous Model

Description

Simultaneous Model

Slots

seed numeric. Seed for random sequence generation. Defaults to None.

verbose logical. Whether to display executions output or not. Defaults to False.

init character. The parameter initialization method. Defaults to 'svd'.

n_max_iter numeric. Maximum number of iterations. Defaults to 10.

n_loops numeric. Number of initialization to guarantee global results. Defaults to 10.

tol numeric. Tolerance level/acceptable error. Defaults to 1e-5.

U_i_g numeric. (I,G) initial stochastic membership function matrix.

B_j_q numeric. (J,Q) initial component weight matrix for variables.

C_k_r numeric. (K,R) initial component weight matrix for occasions.

20

tandem

Description

Initializes an instance of the tandem model required by the tandem methods.

Usage

```
tandem(
   seed = NULL,
   verbose = TRUE,
   init = "svd",
   n_max_iter = 10,
   n_loops = 10,
   tol = 1e-05,
   U_i_g = NULL,
   B_j_q = NULL,
   C_k_r = NULL
)
```

Arguments

seed	Seed for random sequence generation.
verbose	Flag to display iteration outputs for each loop.
init	Parameter initialization method, 'svd' or 'random'.
n_max_iter	Maximum number of iteration to optimize the objective function.
n_loops	Maximum number of loops/runs for global results.
tol	Allowable tolerance to check convergence.
U_i_g	Initial membership function matrix for the objects.
B_j_q	Initial component scores matrix for the variables.
C_k_r	Initial component sores matrix for the occasions.

Value

An object of class "tandem".

References

Arabie P, Hubert L (1996). "Advances in Cluster Analysis Relevant to Marketing Research." In Gaul W, Pfeifer D (eds.), *From Data to Knowledge*, 3–19. Tucker L (1966). "Some mathematical notes on three-mode factor analysis." *Psychometrika*, **31**(3), 279-311. doi:10.1007/BF02289464, https://ideas.repec.org/a/spr/psycho/v31y1966i3p279-311.html.

unfold

See Also

fit.twcfta fit.twfcta simultaneous

tandem-class Tandem Class

Description

Tandem Class

Slots

seed Seed for random sequence generation. Defaults to None. verbose logical. Whether to display executions output or not. Defaults to False. init character. The parameter initialization method. Defaults to 'svd'. n_max_iter numeric. Maximum number of iterations. Defaults to 10. n_loops numeric. Number of initialization to guarantee global results. Defaults to 10. tol numeric. Tolerance level/acceptable error. Defaults to 1e-5. U_i_g matrix. (I,G) initial stochastic membership function matrix. B_j_q matrix. (J,Q) initial component weight matrix for variables. C_k_r matrix. (K,R) initial component weight matrix for occasions.

unfold

Tensor Matricization

Description

Unfold/Matricize tensor. convert matrix to tensor by mode.

Usage

unfold(tensor, mode)

Arguments

tensor	Three-mode tensor array.
mode	Mode of operation.

Value

Matrix

unfold

Examples

X_i_jk = generate_dataset()\$X_i_jk
X_i_j_k = fold(X_i_jk, mode=1, shape=c(I=8,J=5,K=4))
unfold(X_i_j_k, mode=1) # X_i_jk

Index

```
attributes.simultaneous-class, 2
attributes.tandem-class, 3
fit.3fkmeans, 4, 7, 20
fit.3fkmeans,simultaneous-method
        (fit.3fkmeans), 4
fit.ct3clus, 6, 20
fit.ct3clus,simultaneous-method
        (fit.ct3clus), 6
fit.t3clus, 7, 8, 20
fit.t3clus,simultaneous-method
        (fit.t3clus), 8
fit.twcfta, 9, 13, 22
fit.twcfta,tandem-method(fit.twcfta),9
fit.twfcta, 11, 11, 22
fit.twfcta,tandem-method(fit.twfcta),
        11
fold, 14
generate_dataset, 14
generate_rmfm, 15
onekmeans, 16
pseudof.full, 17
pseudof.reduced, 18
simultaneous, 7, 18, 22
simultaneous-class, 20
tandem, 11, 13, 20, 21
tandem-class, 22
unfold, 22
```