
Package ‘simlandr’
February 12, 2025

Type Package

Title Simulation-Based Landscape Construction for Dynamical Systems

Version 0.4.0

Description A toolbox for constructing potential landscapes for dynamical
systems using Monte Carlo simulation. The method is based on the
potential landscape definition by Wang et al. (2008)
<doi:10.1073/pnas.0800579105> (also see Zhou & Li, 2016
<doi:10.1063/1.4943096> for further mathematical discussions) and can
be used for a large variety of models.

License GPL (>= 3)

URL https://sciurus365.github.io/simlandr/,

https://github.com/Sciurus365/simlandr

BugReports https://github.com/Sciurus365/simlandr/issues

Depends R (>= 4.1.0)

Imports bigmemory, coda, digest, dplyr, forcats, furrr, gganimate,
ggplot2, grDevices, htmlwidgets, ks, lifecycle, magrittr, MASS,
methods, plotly, progress, purrr, rlang, Sim.DiffProc, tibble,
tidyr

Suggests knitr, rmarkdown, webshot

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Jingmeng Cui [aut, cre] (<https://orcid.org/0000-0003-3421-8457>)

Maintainer Jingmeng Cui <jingmeng.cui@outlook.com>

Repository CRAN

Date/Publication 2025-02-12 15:30:02 UTC

1

https://doi.org/10.1073/pnas.0800579105
https://doi.org/10.1063/1.4943096
https://sciurus365.github.io/simlandr/
https://github.com/Sciurus365/simlandr
https://github.com/Sciurus365/simlandr/issues
https://orcid.org/0000-0003-3421-8457

2 arg_set-class

Contents
arg_set-class . 2
as.mcmc.list.list . 4
attach_all_matrices . 4
autolayer.barrier . 5
batch_simulation . 5
calculate_barrier . 6
check_conv . 8
get_dist . 9
hash_big_matrix-class . 10
make_2d_matrix . 11
make_2d_static . 12
make_3d_animation . 13
make_3d_matrix . 15
make_3d_static . 16
make_4d_static . 18
make_barrier_grid_2d . 19
make_barrier_grid_3d . 20
multi_init_simulation . 21
plot.landscape . 22
save_landscape . 23
sim_fun_grad . 23
sim_fun_nongrad . 24
sim_fun_test . 25
sim_SDE . 26
summary.barrier . 27

Index 29

arg_set-class Create and modify argument sets, then make an argument grid for
batch simulation

Description

An argument set contains the descriptions of the relevant variables in a batch simulation. Use
new_arg_set() to create an arg_set object, and use add_arg_ele() to add an element to the
arg_set. After adding all elements in the argument set, use make_arg_grid() to make an argument
grid that can be used directly for running batch simulation.

Usage

new_arg_set()

add_arg_ele(arg_set, arg_name, ele_name, start, end, by)

nele(arg_set)

arg_set-class 3

narg(arg_set)

S3 method for class 'arg_set'
print(x, detail = FALSE, ...)

make_arg_grid(arg_set)

S3 method for class 'arg_grid'
print(x, detail = FALSE, ...)

Arguments

arg_set An arg_set object.
arg_name, ele_name

The name of the argument and its element in the simulation function

start, end, by The data points where you want to test the variables. Passed to seq.

x An arg_set object

detail Do you want to print the object details as a full list?

... Not in use.

Value

new_arg_set() returns an arg_set object.

add_arg_ele() returns an arg_set object.

nele() returns an integer.

narg() returns an integer.

make_arg_gird() returns an arg_grid object.

Functions

• new_arg_set(): Create an arg_set.

• add_arg_ele(): Add an element to an arg_set.

• nele(): The number of elements in an arg_set.

• narg(): The number of arguments in an arg_set.

• print(arg_set): Print an arg_set object.

• make_arg_grid(): Make an argument grid from an argument set.

• print(arg_grid): Print an arg_grid object

See Also

batch_simulation() for running batch simulation and a concrete example.

4 attach_all_matrices

as.mcmc.list.list Convert a list of simulation output to a mcmc.list object

Description

This function can be used to convert a list of simulation output to a mcmc.list object. This may be
useful when the output of the simulation is a list of matrices, and you want to perform convergence
checks using the functions in the coda package. See coda::mcmc.list() for more information,
and also see the examples in the documentation of sim_SDE().

Usage

S3 method for class 'list'
as.mcmc.list(x, ...)

Arguments

x A list of simulation output

... Not used

Value

A mcmc.list object

attach_all_matrices Attach all matrices in a batch simulation

Description

Attach all matrices in a batch simulation

Usage

attach_all_matrices(bs, backingpath = "bp")

Arguments

bs A batch_simulation object.

backingpath Passed to bigmemory::as.big.matrix().

Value

A batch_simulation object with all hash_big_matrixes attached.

autolayer.barrier 5

autolayer.barrier Get a ggplot2 layer from a barrier object

Description

This layer can show the saddle point (2d) and the minimal energy path (3d) on the landscape.

Usage

S3 method for class 'barrier'
autolayer(object, path = TRUE, ...)

Arguments

object A barrier object.

path Show the minimum energy path in the graph?

... Not in use.

Value

A ggplot2 layer that can be added to an existing landscape plot.

batch_simulation Perform a batch simulation.

Description

Perform a batch simulation.

Usage

batch_simulation(
arg_grid,
sim_fun,
default_list = list(),
bigmemory = TRUE,
...

)

S3 method for class 'batch_simulation'
print(x, detail = FALSE, ...)

6 calculate_barrier

Arguments

arg_grid An arg_grid object. See make_arg_grid().

sim_fun The simulation function. See sim_fun_test() for an example.

default_list A list of default values for sim_fun.

bigmemory Use hash_big_matrix-class() to store large matrices?

... Other parameters passed to sim_fun

x An arg_set object

detail Do you want to print the object details as a full list?

Value

A batch_simulation object, also a data frame. The first column, var, is a list of ele_list that
contains all the variables; the second to the second last columns are the values of the variables; the
last column is the output of the simulation function.

Functions

• batch_simulation(): Perform a batch simulation.

Examples

batch_arg_set_grad <- new_arg_set()
batch_arg_set_grad <- batch_arg_set_grad %>%

add_arg_ele(
arg_name = "parameter", ele_name = "a",
start = -6, end = -1, by = 1

)
batch_grid_grad <- make_arg_grid(batch_arg_set_grad)
batch_output_grad <- batch_simulation(batch_grid_grad, sim_fun_grad,

default_list = list(
initial = list(x = 0, y = 0),
parameter = list(a = -4, b = 0, c = 0, sigmasq = 1)

),
length = 1e2,
seed = 1614,
bigmemory = FALSE

)
print(batch_output_grad)

calculate_barrier Functions for calculating energy barrier from landscapes

Description

Functions for calculating energy barrier from landscapes

calculate_barrier 7

Usage

calculate_barrier(l, ...)

S3 method for class '`2d_landscape`'
calculate_barrier(
l,
start_location_value,
start_r,
end_location_value,
end_r,
base = exp(1),
...

)

S3 method for class '`3d_landscape`'
calculate_barrier(
l,
start_location_value,
start_r,
end_location_value,
end_r,
Umax,
expand = TRUE,
omit_unstable = FALSE,
base = exp(1),
...

)

S3 method for class '`2d_landscape_batch`'
calculate_barrier(
l,
bg = NULL,
start_location_value,
start_r,
end_location_value,
end_r,
base = exp(1),
...

)

S3 method for class '`3d_landscape_batch`'
calculate_barrier(
l,
bg = NULL,
start_location_value,
start_r,
end_location_value,
end_r,

8 check_conv

Umax,
expand = TRUE,
omit_unstable = FALSE,
base = exp(1),
...

)

Arguments

l A landscape object.

... Not in use.
start_location_value, end_location_value

The initial position (in value) for searching the start/end point.

start_r, end_r The search radius (in L1 distance) for the start/end point.

base The base of the log function.

Umax The highest possible value of the potential function.

expand If the values in the range all equal to Umax, expand the range or not?

omit_unstable If a state is not stable (the "local minimum" overlaps with the saddle point), omit
that state or not?

bg A 2d_barrier_grid or 3d_barrier_grid object if you want to use different
parameters for each condition. Otherwise NULL as default.

Value

A barrier object that contains the (batch) barrier calculation result(s).

check_conv Graphical diagnoses to check if the simulation converges

Description

Compare the distribution of different stages of simulation (for plot_type == "bin" or plot_type
= "density"), or show how the percentiles of the distribution evolve over time (for plot_type ==
cumuplot, see coda::cumuplot() for details). More convergence checking methods for MCMC
data are available at the coda package. Be cautious: each convergence checking method has its
shortcomings, so do not blindly use any results as the definitive conclusion that a simulation con-
verges or not.

Usage

check_conv(output, vars, sample_perc = 0.2, plot_type = "bin")

S3 method for class 'check_conv'
print(x, ask = TRUE, ...)

get_dist 9

Arguments

output A matrix of simulation output, or a multi_init_simulation object generated
from multi_init_simulation().

vars The names of variables to check.

sample_perc The percentage of data sample for the initial, middle, and final stage of the
simulation. Not required if plot_type == "cumuplot".

plot_type Which type of plots should be generated? ("bin", "density", or "cumuplot"
which uses coda::cumuplot())

x The object.

ask Ask to press enter to see the next plot?

... Not in use.

Value

A check_conv object that contains the convergence checking result(for plot_type == "bin" or
plot_type = "density"), or draw the cumuplot without a return value (for plot_type == cumuplot).

Methods (by generic)

• print(check_conv): Print a check_conv object.

get_dist Get the probability distribution from a landscape object

Description

Get the probability distribution from a landscape object

Usage

get_dist(l, index = 1)

Arguments

l A landscape project.

index 1 to get the distribution in tidy format; 2 or "raw" to get the raw simulation result
(batch_simulation).

Value

A data.frame that contains the distribution in the tidy format or the raw simulation result.

10 hash_big_matrix-class

hash_big_matrix-class Class "hash_big_matrix": big matrix with a md5 hash reference

Description

hash_big_matrix class is a modified class from bigmemory::big.matrix-class(). Its purpose
is to help users operate big matrices within hard disk in a reusable way, so that the large matrices do
not consume too much memory, and the matrices can be reused for the next time. Comparing with
bigmemory::big.matrix-class(), the major enhancement of hash_big_matrix class is that the
backing files are, by default, stored in a permanent place, with the md5 of the object as the file
name. With this explicit name, hash_big_matrix objects can be easily reloaded into workspace
every time.

Usage

as_hash_big_matrix(x, backingpath = "bp", silence = TRUE, ...)

attach_hash_big_matrix(x, backingpath = "bp")

Arguments

x A matrix, vector, or data.frame for bigmemory::as.big.matrix().

backingpath, ...
Passed to bigmemory::as.big.matrix().

silence Suppress messages?

Functions

• as_hash_big_matrix(): Create a hash_big_matrix object from a matrix.

• attach_hash_big_matrix(): Attach a hash_big_matrix object from the backing file to the
workspace.

Slots

md5 The md5 value of the matrix.

address Inherited from big.matrix.

make_2d_matrix 11

make_2d_matrix Make a matrix of 2D static landscape plots for one or two parameters

Description

Make a matrix of 2D static landscape plots for one or two parameters

Usage

make_2d_matrix(
bs,
x,
rows = NULL,
cols,
lims,
kde_fun = c("ks", "base"),
n = 200,
h,
adjust = 1,
Umax = 5,
individual_landscape = TRUE

)

Arguments

bs A batch_simulation object created by [batch_simulation()].

x The name of the target variable.

rows, cols The names of the parameters. rows can be left blank if only one parameter is
needed.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

12 make_2d_static

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

individual_landscape

Make individual landscape for each simulation? Default is TRUE so that it is
possible to calculate barriers. Set to FALSE to save time.

Value

A 2d_matrix_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_2d_static Make 2D static landscape plot for a single simulation output

Description

Make 2D static landscape plot for a single simulation output

Usage

make_2d_static(
output,
x,
lims,
kde_fun = c("ks", "base"),
n = 200,
h,
adjust = 1,
Umax = 5,
weight_var = NULL

)

make_2d_single(
output,
x,
lims,
kde_fun = c("ks", "base"),
n = 200,
h,
adjust = 1,
Umax = 5,
weight_var = NULL

)

make_3d_animation 13

Arguments

output A matrix of simulation output, or a mcmc, mcmc.list object (see coda::mcmc()).

x The name of the target variable.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

weight_var The name of the weight variable, in case the weight of each observation is dif-
ferent. This may be useful when a weighted MC (e.g., importance sampling) is
used. Only effective for kde_fun = "ks".

Value

A 2d_static_landscape object that describes the landscape of the system, including the smooth
distribution and the landscape plot.

make_3d_animation Make 3d animations from multiple simulations

Description

Make 3d animations from multiple simulations

14 make_3d_animation

Usage

make_3d_animation(
bs,
x,
y,
fr,
lims,
kde_fun = c("ks", "MASS"),
n = 200,
h,
adjust = 1,
Umax = 5,
individual_landscape = TRUE,
mat_3d = FALSE

)

Arguments

bs A batch_simulation object created by [batch_simulation()].

x, y The names of the target variables.

fr The names of the parameters used to represent frames in the animation.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.
individual_landscape

Make individual landscape for each simulation? Default is TRUE so that it is
possible to calculate barriers. Set to FALSE to save time.

mat_3d Also make the matrix by make_3d_matrix()? If so, the matrix can be drawn
with plot(<landscape>, 3).

make_3d_matrix 15

Value

A 3d_animation_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_3d_matrix Make a matrix of 3D static landscape plots for one or two parameters

Description

Currently only 3D (x, y, color) is supported. Matrices with 3D (x, y, z) plots are not supported.

Usage

make_3d_matrix(
bs,
x,
y,
rows = NULL,
cols,
lims,
kde_fun = c("ks", "MASS"),
n = 200,
h,
adjust = 1,
Umax = 5,
individual_landscape = TRUE

)

Arguments

bs A batch_simulation object created by [batch_simulation()].

x, y The names of the target variables.

rows, cols The names of the parameters. rows can be left blank if only one parameter is
needed.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

16 make_3d_static

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.
individual_landscape

Make individual landscape for each simulation? Default is TRUE so that it is
possible to calculate barriers. Set to FALSE to save time.

Value

A 3d_matrix_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_3d_static Make 3D static landscape plots from simulation output

Description

Make 3D static landscape plots from simulation output

Usage

make_3d_static(
output,
x,
y,
lims,
kde_fun = c("ks", "MASS"),
n = 200,
h,
adjust = 1,
Umax = 5,
weight_var = NULL

)

make_3d_single(
output,
x,
y,
lims,
kde_fun = c("ks", "MASS"),

make_3d_static 17

n = 200,
h,
adjust = 1,
Umax = 5,
weight_var = NULL

)

Arguments

output A matrix of simulation output, or a mcmc, mcmc.list object (see coda::mcmc()).

x, y The names of the target variables.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

weight_var The name of the weight variable, in case the weight of each observation is dif-
ferent. This may be useful when a weighted MC (e.g., importance sampling) is
used. Only effective for kde_fun = "ks".

Value

A 3d_static_landscape object that describes the landscape of the system, including the smooth
distribution and the landscape plot.

18 make_4d_static

make_4d_static Make 4D static space-color plots from simulation output

Description

Make 4D static space-color plots from simulation output

Usage

make_4d_static(
output,
x,
y,
z,
lims,
kde_fun = "ks",
n = 50,
h,
adjust = 1,
Umax = 5,
weight_var = NULL

)

make_4d_single(
output,
x,
y,
z,
lims,
kde_fun = "ks",
n = 50,
h,
adjust = 1,
Umax = 5,
weight_var = NULL

)

Arguments

output A matrix of simulation output, or a mcmc, mcmc.list object (see coda::mcmc()).

x, y, z The names of the target variables.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

make_barrier_grid_2d 19

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

weight_var The name of the weight variable, in case the weight of each observation is dif-
ferent. This may be useful when a weighted MC (e.g., importance sampling) is
used. Only effective for kde_fun = "ks".

Value

A 4d_static_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_barrier_grid_2d Make a grid for calculating barriers for 2d landscapes

Description

Make a grid for calculating barriers for 2d landscapes

Usage

make_barrier_grid_2d(
ag,
start_location_value,
start_r,
end_location_value,
end_r,
df = NULL,
print_template = FALSE

)

20 make_barrier_grid_3d

Arguments

ag An arg_grid object.
start_location_value, start_r, end_location_value, end_r

Default values for finding local minimum. See calculate_barrier().

df A data frame for the variables. Use print_template = TRUE to get a template.

print_template Print a template for df.

Value

A barrier_grid_2d object that specifies the condition for each barrier calculation.

make_barrier_grid_3d Make a grid for calculating barriers for 3d landscapes

Description

Make a grid for calculating barriers for 3d landscapes

Usage

make_barrier_grid_3d(
ag,
start_location_value,
start_r,
end_location_value,
end_r,
df = NULL,
print_template = FALSE

)

Arguments

ag An arg_grid object.
start_location_value, start_r, end_location_value, end_r

Default values for finding local minimum. See calculate_barrier().

df A data frame for the variables. Use print_template = TRUE to get a template.

print_template Print a template for df.

Value

A barrier_grid_3d object that specifies the condition for each barrier calculation.

multi_init_simulation 21

multi_init_simulation Simulate multiple 1-3D Markovian Stochastic Differential Equations

Description

Simulate multiple Monte Carlo simulations of 1-3D Markovian Stochastic Differential Equations
from a grid or random sample of initial values. Parallel processing is supported. To register a par-
allel backend, use future::plan(). For example, future::plan(future::multisession). For
more information, see future::plan(). Functions imported from other programming languages,
such as C++ or Python functions, may not work in parallel processing. If you are uncertain whether
there are unknown stable states of the system that are difficult to reach, it is recommended to start
with running a large number (i.e., increasing R) of short simulations to see if the system reaches to
the known stable states.

Usage

multi_init_simulation(
sim_fun,
R = 10,
range_x0,
sample_mode = c("grid", "random"),
...,
.furrr_options = list(.options = furrr::furrr_options(seed = TRUE)),
return_object = c("mcmc.list", "raw")

)

Arguments

sim_fun The simulation function to use. It should accept an argument x0 for the initial
values. Other arguments can be passed through

R The number of initial values to sample. If sample_mode is "grid", this will be
the number of initial values in each dimension. If sample_mode is "random",
this will be the total number of initial values.

range_x0 The range of initial values to sample in a vector of length 2 for each dimension
(i.e., c(<x0_minimum>, <x0_maximum>, <y0_minimum>, <y0_maximum>, <z0_minimum>, <z0_maximum>)).

sample_mode The mode of sampling initial values. Either "grid" or "random". If "grid", the
initial values will be sampled from a grid. If "random", the initial values will be
sampled randomly.

... Additional arguments passed to sim_fun.

.furrr_options A list of options to be passed to furrr::future_pmap().

return_object The type of object to return. Either "mcmc.list" or "raw". If "mcmc.list", a list
of mcmc objects will be returned. If "raw", a tibble of initial values and raw
simulation results will be returned.

22 plot.landscape

Value

A list of mcmc objects or a tibble of initial values and raw simulation results, depending on the
value of return_object.

Examples

Adapted from the example in the Sim.DiffProc package

set.seed(1234, kind = "L'Ecuyer-CMRG")
mu <- 4
sigma <- 0.1
fx <- expression(y, (mu * (1 - x^2) * y - x))
gx <- expression(0, 2 * sigma)

multiple_mod2d <- multi_init_simulation(sim_SDE, range_x0 = c(-3, 3, -10, 10),
R = 3, sample_mode = "grid", drift = fx, diffusion = gx,
N = 1000, Dt = 0.01, type = "str", method = "rk1",
keep_full = FALSE, M = 2)

The output is a mcmc.list object. You can use the functions
in the coda package to modify it and perform convergence check,
for example,

library(coda)
plot(multiple_mod2d)
window(multiple_mod2d, start = 500)
effectiveSize(multiple_mod2d)

plot.landscape Make plots from landscape objects

Description

Make plots from landscape objects

Usage

S3 method for class 'landscape'
plot(x, index = 1, ...)

Arguments

x A landscape object

index Default is 1. For some landscape objects, there is a second plot (usually 2d
heatmaps for 3d landscapes) or a third plot (usually 3d matrices for 3d anima-
tions). Use index = 2 to plot that one.

... Not in use.

save_landscape 23

Value

The plot.

save_landscape Save landscape plots

Description

Save landscape plots

Usage

save_landscape(l, path = NULL, selfcontained = FALSE, ...)

Arguments

l A landscape object

path The path to save the output. Default: "/pics/x_y.html".

selfcontained For ’plotly’ plots, save the output as a self-contained html file? Default: FALSE.

... Other parameters passed to htmlwidgets::saveWidget() or ggplot2::ggsave()

Value

The function saves the plot to a specific path. It does not have a return value.

sim_fun_grad A simple gradient simulation function for testing

Description

This is a toy stochastic gradient system which can have bistability in some conditions. Model
specification:

U = x4 + y4 + axy + bx+ cy

dx/dt = −∂U/∂x+ σdW/dt = −4x3 − ay − b+ σdW/dt

dy/dt = −∂U/∂y + σdW/dt = −4y3 − ax− c+ σdW/dt

Usage

sim_fun_grad(
initial = list(x = 0, y = 0),
parameter = list(a = -4, b = 0, c = 0, sigmasq = 1),
length = 1e+05,
stepsize = 0.01,
seed = NULL

)

24 sim_fun_nongrad

Arguments

initial, parameter
Two sets of parameters. initial contains the initial value of x and y; parameter
contains a,b,c, which control the shape of the potential landscape, and sigmasq,
which is the square of σ and controls the amplitude of noise.

length The length of simulation.

stepsize The step size used in the Euler method.

seed The initial seed that will be passed to set.seed() function.

Value

A matrix of simulation results.

See Also

sim_fun_nongrad() and batch_simulation().

sim_fun_nongrad A simple non-gradient simulation function for testing

Description

This is a toy stochastic non-gradient system which can have multistability in some conditions.
Model specification:

Usage

sim_fun_nongrad(
initial = list(x1 = 0, x2 = 0, a = 1),
parameter = list(b = 1, k = 1, S = 0.5, n = 4, lambda = 0.01, sigmasq1 = 8, sigmasq2 =

8, sigmasq3 = 2),
constrain_a = TRUE,
amin = -0.3,
amax = 1.8,
length = 1e+05,
stepsize = 0.01,
seed = NULL,
progress = TRUE

)

Arguments

initial, parameter
Two sets of parameters. initial contains the initial value of x1, x2, and a;
parameter contains b,k,S,n,lambda, which control the model dynamics, and
sigmasq1,sigmasq2,sigmasq3, which are the squares of σ1, σ2, σ3 and con-
trols the amplitude of noise.

sim_fun_test 25

constrain_a Should the value of a be constrained? (TRUE by default).

amin, amax If constrain_a, the minimum and maximum values of a.

length The length of simulation.

stepsize The step size used in the Euler method.

seed The initial seed that will be passed to set.seed() function.

progress Show progress bar of the simulation?

Details

dx1

dt
=

axn
1

Sn + xn
1

+
bSn

Sn + xn
2

− kx1 + σ1dW1/dt

dx2

dt
=

axn
2

Sn + xn
2

+
bSn

Sn + xn
1

− kx2 + σ2dW2/dt

da

dt
= −λa+ σ3dW3/dt

Value

A matrix of simulation results.

References

Wang, J., Zhang, K., Xu, L., & Wang, E. (2011). Quantifying the Waddington landscape and
biological paths for development and differentiation. Proceedings of the National Academy of
Sciences, 108(20), 8257-8262. doi:10.1073/pnas.1017017108

See Also

sim_fun_grad() and batch_simulation().

sim_fun_test A simple simulation function for testing

Description

A simple simulation function for testing

Usage

sim_fun_test(arg1, arg2, length = 1000)

Arguments

arg1, arg2 Two parameters. arg1 contains ele1; arg2 contains ele2 and ele3.

length The length of simulation.

https://doi.org/10.1073/pnas.1017017108

26 sim_SDE

Value

A matrix of simulation results.

See Also

sim_fun_grad() and sim_fun_nongrad() for more realistic examples.

sim_SDE Simulate 1-3D Markovian Stochastic Differential Equations

Description

A wrapper to the simulation utilities provided by the Sim.DiffProc package. You may skip this step
and write your own simulation function for more customized simulation.

Usage

sim_SDE(
N = 1000,
M = 1,
x0,
t0 = 0,
T = 1,
Dt = rlang::missing_arg(),
drift,
diffusion,
corr = NULL,
alpha = 0.5,
mu = 0.5,
type = "ito",
method = "euler",
keep_full = TRUE

)

Arguments

N The number of time steps.

M The number of simulations.

x0 The initial values of the SDE. The number of values determine the dimension of
the SDE.

t0 initial time.

T terminal time.

Dt time step. If missing, default will be (T - t0) / N.

drift An expression of the drift function. The number of expressions determine the
dimension of the SDE. Should be the function of t, x, y and z (y and z are only
included for 2D or 3D cases).

summary.barrier 27

diffusion An expression of the diffusion function. The number of expressions determine
the dimension of the SDE. Should be the function of t, x, y and z (y and z are
only included for 2D or 3D cases).

corr The correlations between the Brownian motions. Only used for 2D or 3D cases.
Must be a real symmetric positive-definite matrix of size 2x2 or 3x3. If NULL,
the default is the identity matrix.

alpha, mu weight of the predictor-corrector scheme; the default alpha = 0.5 and mu = 0.5.

type if type="ito" simulation sde of Itô type, else type="str" simulation sde of
Stratonovich type; the default type="ito".

method numerical methods of simulation, the default method = "euler".

keep_full Whether to keep the full snssde1d/snssde2d/snssde3d object. If TRUE, the full
object will be returned. If FALSE, only the simulated values will be returned as
a matrix or a list of matrices (when M >= 2).

Value

Depending on the value of keep_full, the output will be a list of snssde1d, snssde2d or snssde3d
objects, or a matrix or a list of matrices of the simulated values.

Examples

From the Sim.DiffProc package

set.seed(1234, kind = "L'Ecuyer-CMRG")
mu <- 4
sigma <- 0.1
fx <- expression(y, (mu * (1 - x^2) * y - x))
gx <- expression(0, 2 * sigma)
mod2d <- sim_SDE(drift = fx, diffusion = gx, N = 1000,
Dt = 0.01, x0 = c(0, 0), type = "str", method = "rk1",
M = 2, keep_full = FALSE)

print(as.mcmc.list(mod2d))

summary.barrier Summarize the barrier height from a barrier object

Description

Summarize the barrier height from a barrier object

Usage

S3 method for class 'barrier'
summary(object, ...)

28 summary.barrier

Arguments

object A barrier object.

... Not in use.

Value

A vector (for a single barrier calculation result) or a data.frame (for batch barrier calculation
results) that contains the barrier heights on the landscape.

Index

add_arg_ele (arg_set-class), 2
arg_set-class, 2
as.mcmc.list.list, 4
as_hash_big_matrix

(hash_big_matrix-class), 10
attach_all_matrices, 4
attach_hash_big_matrix

(hash_big_matrix-class), 10
autolayer.barrier, 5

batch_simulation, 5
batch_simulation(), 3, 24, 25
bigmemory::as.big.matrix(), 4, 10

calculate_barrier, 6
calculate_barrier(), 20
check_conv, 8
coda::cumuplot(), 8, 9
coda::mcmc(), 13, 17, 18
coda::mcmc.list(), 4

furrr::future_pmap(), 21
future::plan(), 21

get_dist, 9
ggplot2::ggsave(), 23

hash_big_matrix
(hash_big_matrix-class), 10

hash_big_matrix-class, 10
htmlwidgets::saveWidget(), 23

ks::kde(), 11, 13–15, 17, 19

make_2d_matrix, 11
make_2d_single (make_2d_static), 12
make_2d_static, 12
make_3d_animation, 13
make_3d_matrix, 15
make_3d_matrix(), 14
make_3d_single (make_3d_static), 16

make_3d_static, 16
make_4d_single (make_4d_static), 18
make_4d_static, 18
make_arg_grid (arg_set-class), 2
make_arg_grid(), 6
make_barrier_grid_2d, 19
make_barrier_grid_3d, 20
MASS::kde2d(), 11, 13–15, 17, 19
multi_init_simulation, 21
multi_init_simulation(), 9

narg (arg_set-class), 2
nele (arg_set-class), 2
new_arg_set (arg_set-class), 2

plot.landscape, 22
print.arg_grid (arg_set-class), 2
print.arg_set (arg_set-class), 2
print.batch_simulation

(batch_simulation), 5
print.check_conv (check_conv), 8

save_landscape, 23
sim_fun_grad, 23
sim_fun_grad(), 25, 26
sim_fun_nongrad, 24
sim_fun_nongrad(), 24, 26
sim_fun_test, 25
sim_fun_test(), 6
sim_SDE, 26
sim_SDE(), 4
summary.barrier, 27

29

	arg_set-class
	as.mcmc.list.list
	attach_all_matrices
	autolayer.barrier
	batch_simulation
	calculate_barrier
	check_conv
	get_dist
	hash_big_matrix-class
	make_2d_matrix
	make_2d_static
	make_3d_animation
	make_3d_matrix
	make_3d_static
	make_4d_static
	make_barrier_grid_2d
	make_barrier_grid_3d
	multi_init_simulation
	plot.landscape
	save_landscape
	sim_fun_grad
	sim_fun_nongrad
	sim_fun_test
	sim_SDE
	summary.barrier
	Index

