Package 'simET'

August 19, 2023

Type Package

Title Tools for Simulation of Evapotranspiration of Field Crops and Soil Water Balance

Version 1.0.3

Date 2023-07-21

Description Supports the calculation of meteorological characteristics in evapotranspiration research and reference crop evapotranspiration, and offers three models to simulate crop evapotranspiration and soil water balance in the field, including single crop coefficient and dual crop coefficient, as well as the Shuttleworth-Wallace model. These calculations main refer to Allen et al.(1998, ISBN:92-5-104219-5), Teh (2006, ISBN:1-58-112-998-X), and Liu et al.(2006) <doi:10.1016/j.agwat.2006.01.018>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports dplyr, ggplot2, ggpmisc, ggpubr, lubridate, magrittr, plyr, rlang, stringr, tidyr

RoxygenNote 7.1.2

NeedsCompilation no

Author Minguo Liu [aut, cre], Huimin Yang [dtc, fnd]

Maintainer Minguo Liu <liumg15@lzu.edu.cn>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2023-08-19 14:40:02 UTC

R topics documented:

cal_ActualVapourPressure_for_hourly	4
cal_ActualVapourPressure_from_dewPoint	4
cal_ActualVapourPressure_from_psychrometricData	5

cal_ActualVapourPressure_from_RHmax	. 6
cal_ActualVapourPressure_from_RHmaxAndRHmin	
cal_ActualVapourPressure_from_RHmean	
cal_afterRedistribution	
cal_airVaporPressureDeficit_meanCanopyflow	
cal_angerFromSouth	
cal_atmosphericPressure	
cal_bulkBoundaryLayerResistance	
cal_canopyPenetrationProbabilityForNetRadiation	
cal_canopyResistance	
cal_canopyTem	
cal_capillaryRise	
cal_cropRoughnessLength	
cal_daylightHours	
cal_DeepPercolation	
cal_Dei_for_DualKc	
cal_DPe_for_DualKc	. 16
cal_DPr_for_DualKc	. 17
cal_DP_for_singleKc	. 18
cal_eddyDiffusivity_Canopytop	
cal_eddyDiffusivity_heightZ	
cal_ET0_from_PM	
cal_ET0_from_PM_for_daily	
cal_ET0_from_PM_for_hourly	
cal_extraterrestrialRadiation_for_daily	
cal_extraterrestrialRadiation_for_shorter	. 23
cal_frictionVelocity	
cal_hourAngle.	
cal_inverseRelativeDistance_Earth_sun	
cal_Kcend_for_singleKc	
cal_Kcini_for_SingleKc	
cal_Kcmid_for_singleKc	
cal_Kc_max_for_DualKc	
cal_Kr_for_DualKc	
cal_latentHeatFluxesForCrop	
cal_latentHeatFluxesForSoil	
cal_localDolarTime	
cal_meanCanopyFlowToReferenceLevel	. 31
cal_meanSaturationVapourPressure	. 32
cal_netLongwaveRadiation	. 33
cal_netRadiation	. 34
cal_netRadiationForCrop	. 34
cal_netRadiationForSoil	. 35
cal_netRadiationForSystem	. 35
cal_netSolarRadiation	
cal_percolationForExcessWater	
cal_psychrometriCconstant	
cal_reductionFactorForE	

cal_reductionFactorForT	. 38
cal_relativeHumidity	. 38
cal_Rs_from_Na	. 39
cal_saturationVapourPressure	. 40
cal_sensibleHeatFluxesForCrop	. 40
cal_sensibleHeatFluxesForSoil	. 41
cal_skySolarRadiation_withas_bs	. 42
cal_skySolarRadiation_withas_elevation	
cal_slopeOfSaturationVapourPressureCurve	
cal_soilHeatFlux	
cal_soilHeatFlux_day	
cal_soilHeatFlux_general	
cal_soilHeatFlux_hourly	
cal_soilHeatFlux_monthly	
cal_soilSurfaceResistance	
cal_soilSurfaceToMeanCanopyFlow	
cal_solarDeclination	
cal_solarDeclination_in_FAO	
cal_solarInclination	
cal solarRadiation	
—	
cal_sunsetHourAngle	
cal_sunsetTime	
cal_TemMean	
cal_TEW_for_DualKc	
cal_totalLatentHeatFlux	
cal_WaterStressCoef	
cal_windSpeed_Canopy	
cal_zeroPlaneHeight	
compare_model_plot	
convert_angert_to_radian	
convert_Date_to_dayofyear	
convert_degreesCelsius_to_Fahrenheit	
convert_Fahrenheit_to_degreesCelsius	
convert_Rad_unit	. 59
convert_windSpeed_to_2m	. 60
create_modelDF	. 60
estimate_ea	. 61
estimate_ET0_with_TmaxAndTmin	. 62
estimate_goodnessOfFit	. 63
estimate LAI for alfalfa	. 64
estimate_Rs_for_islandLocations	. 64
estimate_Rs_from_airTemDiff	
FIalfalfa	
Kcb_adj_for_DualKc	
linear_interpolation	
Model_DualKc	
Model_single_Kc	
Model_SM	
	0

cal_ActualVapourPressure_for_hourly Calculating actual vapour pressure for hourly time step

Description

Calculating actual vapour pressure for hourly time step

Usage

cal_ActualVapourPressure_for_hourly(Thr, RHhr)

Arguments

Thr	is average hourly temperature (degrees Celsius).
RHhr	is average hourly relative humidity [%].

Value

A vector for average hourly actual vapour pressure [kPa].

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_ActualVapourPressure_from_dewPoint Actual vapour pressure derived from dewpoint temperature

Description

As the dewpint temperature is the temperature to which the air needs to be cooled to make the air saturated, the actual vapour pressure is the saturation vapour pressure at the dewpoint temperature.

Usage

cal_ActualVapourPressure_from_dewPoint(Tdew)

Arguments

Tdew dew point temperature(degrees Celsius).

Value

A vector for actual vapour pressure

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_ActualVapourPressure_from_psychrometricData Actual vapour pressure (ea) derived from psychrometric data

Description

The actual vapour pressure can be determined from the difference between the dry and wet bulb temperatures, the so-called wet bulb depression.

Usage

cal_ActualVapourPressure_from_psychrometricData(Twet, Tdry, P, type)

Arguments

Twet, Tdry	wet bulb depression, with Tdry the dry bulb and Twet the wet bulb temperature (degrees Celsius).
Ρ	is the atmospheric pressure (kPa).
type	psychrometer type ("Asmann type", "natural ventilated", "non-ventilated").

Value

A vector for Actual vapour pressure (ea)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_ActualVapourPressure_from_RHmax

Calculating actual vapour pressure derived from RHmax

Description

When using equipment where errors in estimating RHmin can be large, or when RH data integrity are in doubt, then one should use only RHmax.

Usage

cal_ActualVapourPressure_from_RHmax(Tmin, RHmax)

Arguments

Tmin	daily minimum temperature (degrees Celsius).
RHmax	maximum relative humidity (%).

Value

A vector for actual vapour pressure

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_ActualVapourPressure_from_RHmaxAndRHmin Actual vapour pressure derived from RHmax and RHmin

Description

The actual vapour pressure can also be calculated from the relative humidity. Depending on the availability of the humidity data, different equations should be used.

Usage

cal_ActualVapourPressure_from_RHmaxAndRHmin(Tmax, Tmin, RHmax, RHmin)

Arguments

Tmax	daily maximum temperature (kPa).
Tmin	daily minimum temperature (KPa).
RHmax	maximum relative humidity %.
RHmin	minimum relative humidity %.

Details

For periods of a week, ten days or a month, RHmax and RHmin are obtained by dividing the sum of the daily values by the number of days in that period.

Value

A vector for actual vapour pressure

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_ActualVapourPressure_from_RHmean Calculating actual vapour pressure derived from RHmean

Description

In the absence of RH max and RHmin, it can be used to estimate actual vapour pressure.

Usage

cal_ActualVapourPressure_from_RHmean(RHmean, Tmax, Tmin)

Arguments

RHmean	mean relative humidity(%).
Tmax	daily maximum temperature (degrees Celsius).
Tmin	daily minimum temperature (degrees Celsius).

Value

A vector for actual vapour pressure

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

```
cal_afterRedistribution
```

Calculating the volumetric water content after redistribution

Description

Calculating the volumetric water content after redistribution

Usage

```
cal_afterRedistribution(THETA_v_sat, alpha, Ksat, deltaT, L, THETA11_1)
```

Arguments

THETA_v_sat	soil saturation water content (m3 m-3)
alpha	empirical coefficient. 13 for homogenous soil, 13-16 for heterogeneous soil
Ksat	saturated hydraulic conductitity
deltaT	time step difference (day)
L	the thickness(m) of soil layer i
THETA11_1	the volumetric water content before redistribution (m3 m-3)

Value

A value for the volumetric water content after redistribution(m3 m-3)

cal_airVaporPressureDeficit_meanCanopyflow Calculating air vapor pressure deficit at the mean canopy

Description

Calculating air vapor pressure deficit at the mean canopy

Usage

```
cal_airVaporPressureDeficit_meanCanopyflow(
   D,
   r_a_a,
   rho_cp = 1221.09,
   DELTA,
   A,
   gamma = 0.658,
   lambda_ET
)
```

Arguments

D	the vapor pressure deficit (mbar)
r_a_a	the aerodynamic resistance between the mean canopy flow and reference height (s m-1)
rho_cp	the volumetric heat capacity for air (1221.09 J m-3 K-1)
DELTA	is the slope of the saturated vapor pressure curve (mbar K-1)
А	is the total energy available to the system (W m-2 ground)
gamma	psychometric constant (0.658 mbar K-1)
lambda_ET	the total latent heat flux (W m-2 ground)

Value

A vector for the vapor pressure deficit at the mean canopy flow (mbar)

Note

Knowing D0 is essential because this value is used to calculate the latent and sensible heat fluxes for the soil and crop components.

cal_angerFromSouth Calculating anger from south

Description

A parameter used to determine the position of the sun relative to the observer (the other one is solar inclination).

Usage

cal_angerFromSouth(latitude, solar_altitude, solar_declination)

Arguments

Details

The minus and positive signs are taken before and after solar noon, receptively. The reason for having the positive-and-negative signs is merely an artificial convention so that we are able to distinguish between the sun lying westwards (posite angles and after solar noon) and eastwards (negative angles and before solar noon).

Value

A vector for anger from south (Radian)

References

Teh CBS.Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer model. Brown Walker Press, 2006.

Examples

cal_angerFromSouth(latitude=0.52,solar_altitude=-0.715,solar_declination=-0.2974005)

cal_atmosphericPressure

Calculating atmospheric pressure

Description

The atmospheric pressure, P, is the pressure exerted by the weight of the earth's atmosphere.

Usage

cal_atmosphericPressure(elevation)

Arguments

elevation elevation above sea level (m)

Details

Assuming 20°C for a standard atmosphere. Evaporation at high altitudes is promoted due to low atmospheric pressure as expressed in the psychrometric constant. The effect is, however, small and in the calculation procedures, the average value for a location is sufficient.

Value

A vector for atmospheric pressure (Kpa)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

Examples

cal_atmosphericPressure(100)

cal_bulkBoundaryLayerResistance

Calculating bulk boundary layer resistance

Description

Calculating bulk boundary layer resistance

Usage

cal_bulkBoundaryLayerResistance(nu, u_h, w, L)

Arguments

nu	the wind speed extinction coefficient (taken as 2)
u_h	the wind speed at the canopy top (i.e., at plant height h) (m s-1)
W	is the mean leaf width (m)
L	leaf area index

Value

A vector for bulk boundary layer resistance (s/m)

cal_canopyPenetrationProbabilityForNetRadiation *The canopy penetration probability for net radiation*

Description

The canopy penetration probability for net radiation

Usage

```
cal_canopyPenetrationProbabilityForNetRadiation(kRn, L)
```

Arguments

kRn	the canopy extinction coefficient for net radiation (taken as 0.3)
L	the leaf area index (m2 leaf m-2 ground)

Value

The vector for canopy penetration probability for net radiation

cal_canopyResistance Calculating canopy resistance

Description

Calculating canopy resistance

Usage

cal_canopyResistance(a1, a2, It, L, Lmax)

Arguments

a1, a2	are empirical coefficients, dependent on the crop type.
It	the total hourly solar irradiance (W m-2 ground)
L	the leaf area index (m2 leaf m-2 ground)
Lmax	the maximum total leaf area index (m2 leaf m-2 ground)

Value

A vector for canopy resistance(s/m)

cal_canopyTem	Calculating canopy temperature

Description

Calculating canopy temperature

Usage

cal_canopyTem(Hc, r_c_a, Hs, r_a_a, rho_cp, Tr)

Arguments

Нс	crop sensible heat fluxes (W m-2)
r_c_a	the bulk boundary layer resistance (s m-1)
Hs	soil sensible heat fluxes (W m-2)
r_a_a	the aerodynamic resistance between the mean canopy flow and reference level (s m-1)
rho_cp	the volumetric heat capacity for air (1221.09 J m-3 K-1)
Tr	Tr is the air temperature at reference level (Celsius degree). weather station.

Value

A vector for the canopy (foliage) temperature (Celsius degree)

cal_capillaryRise Calculating capillary rise

Description

Calculating capillary rise

Usage

```
cal_capillaryRise(
    a1,
    b1 = -0.17,
    a2,
    b2 = -0.27,
    a3 = -1.3,
    b3,
    a4,
    b4,
    Dw,
    Wa,
    LAI,
    ETm
)
```

Arguments

a1	Soil water storage to maximum root depth at field capacity(mm).
b1	A parameter.
a2	storage above the average between those at field capacity and the wilting point(mm).
b2	A parameter.
a3	A parameter.
b3	A parameter.6.7 for clay and silty clay loam soils, decreasing to 6.2 for loamy sands
a4	A parameter.4.6 for silty loam and silty clay loam soils, decreasing to 6.2 for loamy sands.
b4	A parameter0.65 for silty loam soils and decreasing to -2.5 for loamy sand soils.
Dw	Groudwater depth below root zone(m).
Wa	actual soil water storage in the root zone.
LAI	Leaf area index.
ETm	potential crop evaporanspiration (mm/day), usually ETm=ETc(mm/d).

Value

The value for capillary Rise (mm/day).

References

Liu Y, Pereira L S, Fernando R M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation[J]. Agricultural Water Management, 2006, 84(1):27-40.

cal_cropRoughnessLength

Calculating the crop roughness length

Description

Calculating the crop roughness length

Usage

cal_cropRoughnessLength(h)

Arguments

h the plant height (m)

Value

A vector for the crop roughness length(m)

cal_daylightHours Calculating Daylight hours

Description

Calculating Daylight hours

Usage

cal_daylightHours(sunsetHourAngle)

Arguments

sunsetHourAngle

is the sunset hour angle in radians from cal_sunsetHourAngle().

Value

A vector for day light Hours

cal_DeepPercolation

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_DeepPercolation Calculating Deep percolation

Description

Calculating Deep percolation

Usage

cal_DeepPercolation(Wa, Wfc, a, b, t)

Arguments

Wa	actual soil water storage in the root zone (mm)
Wfc	soil water storage to maximum root depth (Zr) at field capacity (mm)
а	A water storage value comprised between WFc and Wa at saturation.
b	b<-0.0173 for soils draining quickly. Otherwise b>-0.0173.
t	time after an irrigation or rain that produced a storage above field capacity (days)

Value

A vector for deep percolation(mm/day).

References

Liu Y, Pereira L S, Fernando R M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation[J]. Agricultural Water Management, 2006, 84(1):27-40.

cal_Dei_for_DualKc calculating the depletion in the topsoil layer at the end of the day

Description

In fact, it performs water balance in a day

Usage

cal_Dei_for_DualKc(Dei_start, P, I, E, Dep, TEW)

Arguments

Dei_start	Depletion in the topsoil layer
Ρ	Precipitation
I	Irrigation
E	Evaporation on day i, mm
Dep	Deep percolation loss from the topsoil layer on day i if soil water content exceeds field capacity, mm
TEW	Maximum cumulative depth of evaporation (depletion) from the topsoil layer

Value

A value for the depletion in the topsoil layer at the end of the day

cal_DPe_for_DualKc Deep percolation loss from the topsoil layer

Description

Deep percolation loss from the topsoil layer

Usage

```
cal_DPe_for_DualKc(P, I, Dei_start, fw)
```

Arguments

Р	Precipitation
I	Irrigation
Dei_start	Depletion in the topsoil layer
fw	Fraction of soil surface wetted by irrigation, 0.01-1

Value

A value for deep percolation loss from the topsoil layer

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_DPr_for_DualKc Deep percolation loss from the root layer

Description

Deep percolation loss from the root layer

Usage

```
cal_DPr_for_DualKc(P, Irrigation, ETa, Dri_start)
```

Arguments

Р	Precipitation
Irrigation	Irrigation
ЕТа	Actual evapotranspiration
Dri_start	Depletion in the root layer

Value

A value for deep percolation loss from the root layer

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_DP_for_singleKc Calculating deep percolation

Description

Calculating deep percolation

Usage

```
cal_DP_for_singleKc(P, I, ETa, Dri_start)
```

Arguments

Р	Precipitation
I	Irrigation
ETa	Actual evapotranspiration
Dri_start	The depletion of root layer

Value

A value for deep percolation

```
cal_eddyDiffusivity_Canopytop
Calculating eddy diffusivity at the canopy top
```

Description

Calculating eddy diffusivity at the canopy top

Usage

```
cal_eddyDiffusivity_Canopytop(k = 0.4, u_, h)
```

Arguments

k	the von Karman constant (0.4)
u_	the friction velocity (m/s)
h	the plant height (m)

Value

A vector for eddy diffusivity at the canopy top(m2/s)

cal_eddyDiffusivity_heightZ

Calculating eddy diffusivity at height z

Description

Calculating eddy diffusivity at height z

Usage

```
cal_eddyDiffusivity_heightZ(Kh, nK, z, h)
```

Arguments

eddy diffusivity at the canopy top(m2/s)
the eddy diffusivity extinction coefficient (taken as 2)
height(m)
the plant height(m)

Value

A vector for eddy diffusivity at height z (m2/s)

cal_ET0_from_PM	calculating	reference	evapotranspiration	from	Penman-Monteith
	method				

Description

The FAO Penman-Monteith method is maintained as the sole standard method for the computation of ETo from meteorological data.

Usage

```
cal_ET0_from_PM(delta, Rn, G, gamma, Tem, u2, es, ea)
```

Arguments

delta	slope vapour pressure curve (kPa °C). From cal_slopeOfSaturationVapourPressureCurve()
Rn	net Radiation at the crop surface [MJ m-2 day-1]. From cal_netRadiation()
G	soil heat flux density [MJ m-2 day-1].
gamma	psychrometric constant (kPa °C).
Tem	air temperature at 2 m height [°C].
u2	wind speed at 2 m height [m s-1].
es	saturation vapour pressure [kPa].
ea	actual vapour pressure [kPa].

A vector for reference evapotranspiration [mm day-1].

Note

Ten-day or monthly time step :

Notwithstanding the non-linearity in the Penman-Monteith equation and some weather parameter methods, mean ten-day or monthly weather data can be used to compute the mean ten-day or monthly values for the reference evapotranspiration. The value of the reference evapotranspiration calculated with mean monthly weather data is indeed very similar to the average of the daily ETo values calculated with daily average weather data for that month.

When the soil is warming (spring) or cooling (autumn), the soil heat flux (G) for monthly periods may become significant relative to the mean monthly Rn. In these cases G cannot be ignored and its value should be determined from the mean monthly air temperatures of the previous and next month.

Daily time step:

Calculation of ETo with the Penman-Monteith equation on 24-hour time scales will generally provide accurate results.

As the magnitude of daily soil heat flux (G) beneath the reference grass surface is relatively small, it may be ignored for 24-hour time steps.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_ET0_from_PM_for_daily

Calculating reference evapotranspiration from Penman-Monteith for daily

Description

Based on lat, z, J, Tmax, Tmin, n, RHmax, RHmin, windSpeed parameters, reference evapotranspiration was calculated by Penman-Monteith.

Usage

cal_ET0_from_PM_for_daily(Latitude, Altitude, J, Tmax, Tmin, Rs, RHmean, Wind)

Arguments

Latitude	latitude (radian), positive for the northern hemisphere and negative for the south- ern hemisphere.
Altitude	station elevation above sea level [m].
J	is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).
Tmax	daily maximum air temperature (degrees Celsius).
Tmin	daily minimum air temperature (degrees Celsius).
Rs	Solar radiation [MJ m-2 d-1].
RHmean	daily mean relative humidity %.
Wind	wind speed at 2 m height [m s-1].

Value

A vector for reference evapotranspiration (mm/day)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

Examples

```
library(simET)
data("FIalfalfa")
names(FIalfalfa)
Result_data<- dplyr::mutate(FIalfalfa,</pre>
                      ET0=cal_ET0_from_PM_for_daily(Latitude=Latitude,
                                                     Altitude=Altitude,
                                                     J=Julian,
                                                     Tmax=Tmax,
                                                     Tmin=Tmin,
                                                     Rs=Rs,
                                                     RHmean=RHmean,
                                                     Wind=Wind))
```

names(Result_data)

cal_ET0_from_PM_for_hourly

Calculating reference evapotranspiration from Penman-Monteith method for hourly time step

Description

Calculating reference evapotranspiration from Penman-Monteith method for hourly time step

Usage

```
cal_ET0_from_PM_for_hourly(
    slopVapourPressureCurve,
    netRadiation,
    soilHeatFlux,
    psychrometricConstant,
    meanHourlyTem,
    windSpeed,
    saturationVapourPressure,
    actualVapourPressure
)
```

Arguments

slopVapourPressureCurve

	saturation slope vapour pressure curve at Thr [kPa °C].	
netRadiation	net radiation at the grass surface [MJ m-2 hour-1].	
soilHeatFlux	soil heat flux density [MJ m-2 hour-1].	
psychrometricCo	onstant	
	psychrometric constant [kPa °C].	
meanHourlyTem	mean hourly air temperature [°C].	
windSpeed	average hourly wind speed [m s-1].	
saturationVapourPressure		
	saturation vapour pressure at air temperature Thr [kPa].	
actualVapourPre	essure	
	average hourly actual vapour pressure [kPa].	

Details

In areas where substantial changes in wind speed, dewpoint or cloudiness occur during the day, calculation of the ETo equation using hourly time steps is generally better than using 24-hour calculation time steps. Such weather changes can cause 24-hour means to misrepresent evaporative power of the environment during parts of the day and may introduce error into the calculations. However, under most conditions, application of the FAO Penman-Monteith equation with 24-hour data produces accurate results.

Value

A vector for reference evapotranspiration [mm hour-1].

Note

With the advent of electronic, automated weather stations, weather data are increasingly reported for hourly or shorter periods. Therefore, in situations where calculations are computerized, the FAO Penman-Monteith equation can be applied on an hourly basis with good results. When applying the FAO Penman-Monteith equation on an hourly or shorter time scale, the equation and some of the procedures for calculating meteorological data should be adjusted for the smaller time step.

For the calculation of radiation parameters, see P74-75

22

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_extraterrestrialRadiation_for_daily Calculating extraterrestrial radiation for daily periods

Description

The extraterrestrial radiation, Ra, for each day of the year and for different latitudes can be estimated from the solar constant, the solar declination and the time of the year.

Usage

cal_extraterrestrialRadiation_for_daily(J, lat)

Arguments

J	is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).
lat	latitude (Radian), positive for the northern hemisphere and negative for the southern hemisphere.

Value

A vector for extraterrestrial radiation for daily(MJ m-2 day-1)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_extraterrestrialRadiation_for_shorter Calculating extraterrestrial radiation for hourly or shorter periods

Description

Calculating extraterrestrial radiation for hourly or shorter periods

Usage

```
cal_extraterrestrialRadiation_for_shorter(lat, J, t, lz, lm, t1)
```

Arguments

lat	latitude (radian), positive for the northern hemisphere and negative for the south- ern hemisphere.
J	is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).
t	standard clock time at the midpoint of the period (hour). For example for a period between 14.00 and 15.00 hours, $t = 14.5$.
lz	longitude of the centre of the local time zone (degrees west of Greenwich). For example, $Lz = 75$, 90, 105 and 120° for the Eastern, Central, Rocky Mountain and Pacific time zones (United States) and $Lz = 0°$ for Greenwich, 330° for Cairo (Egypt), and 255° for Bangkok (Thailand), radian.
lm	longitude of the measurement site (degrees west of Greenwich) radian.
t1	length of the calculation period (hour)

Value

A vector for extraterrestrial Radiation (MJ m-2 hour-1)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_frictionVelocity Calculating friction velocity

Description

Calculating friction velocity

Usage

cal_frictionVelocity(k = 0.4, zr = 2, u_zr, d, z0)

Arguments

k	the von Karman constant (0.4)
zr	the height of the weather station(m).
u_zr	the wind speed(m/s) at the reference height $zr(m)$.
d	zero plane displacement height (m)
z0	the crop roughness length(m)

Value

A vector for friction velocity(m/s)

cal_hourAngle Calculating hour angle

Description

Calculating hour angle

Usage

cal_hourAngle(th)

Arguments th

is the local solar time.

Value

A vector for hour angle (Radian)

References

Teh CBS.Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer model. Brown Walker Press, 2006.

Examples

cal_hourAngle(12)

cal_inverseRelativeDistance_Earth_sun Calculating inverse relative distance Earth-sun

Description

Calculating inverse relative distance Earth-sun

Usage

cal_inverseRelativeDistance_Earth_sun(J)

Arguments

J is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).

A vector for inverse relative distance Earth-sun (Radian)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_Kcend_for_singleKc

Crop coefficient for the end of the late season stage

Description

Typical values for the crop coefficient at the end of the late season growth stage, Kc end, are listed in Table 12 for various agricultural crops.

Usage

cal_Kcend_for_singleKc(RHmine, u2e, Ktable, he)

Arguments

RHmine	mean value for daily minimum relative humidity during the mid-season growth stage , for 20 <= RHmine<= 80
u2e	mean value for daily wind speed at 2 m height over grass during the mid- season growth stage (m/s), for $1 \le u2e \le 6$
Ktable	value for Kc mid taken from Table 12
he	mean plant height during the mid-season stage (m) for $0.1 \text{ m} < h < 10 \text{ m}$

Value

A value for Kcend value

Note

only applied when the tabulated values for Kc end exceed 0.45. The equation reduces the Kc end with increasing RHmin. This reduction in Kc end is characteristic of crops that are harvested 'green' or before becoming completely dead and dry (Kc end ≥ 0.45).

No adjustment is made when Kc end (Table) < 0.45 (Kc end = Kc end (Tab)). When crops are allowed to senesce and dry in the field (as evidenced by Kc end < 0.45), u2 and RHmin have less effect on Kc end and no adjustment is necessary.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_Kcini_for_SingleKc

Calculating Kcini value

Description

Calculating Kcini value

Usage

cal_Kcini_for_SingleKc(Pmean, ET0, tw, type, fw)

Arguments

Pmean	is the average depth od infiltrated water per wetting events(mm)
ETØ	mean ET0 during initial period(mm/day)
tw	is the mean interval between wetting events(days)
type	soil type:"coarse soil textures" and "medium and fine soil textures"
fw	the fraction of surfaces wetted by irrigation or rain (0-1)

Value

A value for Kcini value

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_Kcmid_for_singleKc

Crop coefficient for the mid-season stage

Description

Typical values for the crop coefficient at the end of the late season growth stage, Kc end, are listed in Table 12 for various agricultural crops.For specific adjustment in climates where RHmin differs from 45 % or where u2 is larger or smaller than 2.0 m/s.

Usage

cal_Kcmid_for_singleKc(RHmine, u2e, Ktable, he)

Arguments

RHmine	mean value for daily minimum relative humidity during the mid-season growth stage , for 20 <= RHmine <= 80 $$
u2e	mean value for daily wind speed at 2 m height over grass during the mid- season growth stage (mls), for 1 <= u2e <= 6
Ktable	value for Kc mid taken from Table 12
he	mean plant height during the mid-season stage [m] for $0.1 \text{ m} < h < 10 \text{ m}$

Value

A value for Kcmid value

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_Kc_max_for_DualKc An upper limit on the evaporation and transpiration from any cropped surface

Description

It is imposed to reflect the natural constraints placed on available energy represented by the energy balance difference Rn - G - H

Usage

cal_Kc_max_for_DualKc(u2, RHmin, h, Kcb)

Arguments

u2	The wind speed at 2 m
RHmin	Minimum relative humidity
h	Plant height
Kcb	Basal crop coefficient

Value

A vector for the upper limit on the evaporation and transpiration from any cropped surface

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_Kr_for_DualKc Dimensionless evaporation reduction coefficient

Description

It dependent on the soil water depletion (cumulative depth of evaporation) from the topsoil layer (Kr = 1 when De,i-1 is equal or lesser than REW)

Usage

cal_Kr_for_DualKc(TEW, REW, De)

Arguments

TEW	maximum cumulative depth of evaporation (depletion) from the soil surface layer when $Kr = 0$ (TEW = total evaporable water)
REW	cumulative depth of evaporation (depletion) at the end of stage 1 (REW = readily evaporable water), mm
De	cumulative depth of evaporation (depletion) from the soil surface layer at the end of day i-1 (the previous day),mm

Value

A value for evaporation reduction coefficient

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_latentHeatFluxesForCrop Calculating latent heat fluxes for crop

Description

Calculating latent heat fluxes for crop

Usage

```
cal_latentHeatFluxesForCrop(DELTA, Ac, rho_cp, D0, r_c_a, gamma, r_c_s)
```

Arguments

DELTA	the slope of the saturated vapor pressure curve (mbar K-1)
Ac	energy available to the crop (W m-2 ground)
rho_cp	the volumetric heat capacity for air (1221.09 J m-3 K-1)
DØ	the vapor pressure deficit at the mean canopy flow
r_c_a	is the bulk boundary layer resistance (s m-1)
gamma	is the psychometric constant (0.658 mbar K-1)
r_c_s	the canopy resistance (s m-1)

Value

A vector for latent heat fluxes for crop (W m-2 ground)

cal_latentHeatFluxesForSoil Calculating latent heat fluxes for soil

Description

Calculating latent heat fluxes for soil

Usage

```
cal_latentHeatFluxesForSoil(
    DELTA,
    As,
    rho_cp = 1221.09,
    D0,
    r_s_a,
    gamma = 0.658,
    r_s_s
)
```

Arguments

DELTA	the slope of the saturated vapor pressure curve (mbar K-1)
As	energy available to the soil (W m-2 ground)
rho_cp	the volumetric heat capacity for air (1221.09 J m-3 K-1)
DØ	the vapor pressure deficit at the mean canopy flow
r_s_a	the aerodynamic resistance between the soil and mean canopy flow (s m-1)
gamma	the psychometric constant (0.658 mbar K-1)
r_s_s	soil surface resistance, (s m-1)

Value

A vector for soil latent heat fluxes (W m-2 ground)

cal_localDolarTime Calculating local solar time

Description

Local solar time is different with local time.

Usage

cal_localDolarTime(td, t, gamma, gamma_sm)

Arguments

td	The day of year.
t	is the local time.
gamma	is the local longitude (Radian).
gamma_sm	is the standard longitude (Radian).

Value

A vector for local solar time(Hour)

References

Teh CBS.Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer model. Brown Walker Press, 2006.

Examples

cal_localDolarTime(td=1,t=12,gamma=0.52,gamma_sm=2.09)

cal_meanCanopyFlowToReferenceLevel Calculating mean canopy flow to reference level

Description

Calculating mean canopy flow to reference level

Usage

```
cal_meanCanopyFlowToReferenceLevel(k = 0.4, u_, zr, d, h, nK, z0)
```

Arguments

k	the von Karman constant (0.4)
u_	the friction velocity (m s-1)
zr	is the reference height (m).the height of the weather station(m).
d	zero plane displacement height (m)
h	the plant height(m)
nK	the eddy diffusivity extinction coefficient (taken as 2)
zØ	the crop roughness length (m)

Value

A vector for mean canopy flow to reference level

cal_meanSaturationVapourPressure Calculating mean saturation vapour pressure

Description

Due to the non-linearity of the above equation, the mean saturation vapour pressure for a day, week, decade or month should be computed as the mean between the saturation vapour pressure at the mean daily maximum and minimum air temperatures for that period.

Usage

cal_meanSaturationVapourPressure(Tmax, Tmin)

Arguments

Tmax	the daily maximum air temperature(degrees Celsius).
Tmin	the daily minimum air temperature(degrees Celsius).

Details

Using mean air temperature instead of daily minimum and maximum temperatures results in lower estimates for the mean saturation vapour pressure. The corresponding vapour pressure deficit (a parameter expressing the evaporating power of the atmosphere) will also be smaller and the result will be some underestimation of the reference crop evapotranspiration. Therefore, the mean sauration vapour pressure should be calculated as the mean between the saturation vapour pressure at both the daily maximum and minimum air temperature.

Value

A vector for mean saturation vapour pressure (es)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_netLongwaveRadiation

Calculating net longwave radiation Rnl

Description

Calculating net longwave radiation Rnl

Usage

cal_netLongwaveRadiation(TKmax, TKmin, ea, Rs, Rso)

Arguments

TKmax	maximum absolute temperature during the 24-hour period [K].
TKmin	minimum absolute temperature during the 24-hour period [K].
ea	actual vapour pressure [kPa].
Rs	measured or calculated solar radiation [MJ m-2 day-1]. From cal_solarRadiation().
Rso	calculated clear-sky radiation [MJ m-2 day-1]. From cal_skySolarRadiation_withas_bs() or cal_skySolarRadiation_withas_elevation().

Value

A vector for net outgoing longwave radiation [MJ m-2 day-1]

Note

The rate of longwave energy emission is proportional to the absolute temperature of the surface raised to the fourth power. This relation is expressed quantitatively by the Stefan-Boltzmann law. The net energy flux leaving the earth's surface is, however, less than that emitted and given by the Stefan-Boltzmann law due to the absorption and downward radiation from the sky. Water vapour, clouds, carbon dioxide and dust are absorbers and emitters of longwave radiation. Their concentrations should be known when assessing the net outgoing flux. As humidity and cloudiness play an important role, the Stefan-Boltzmann law is corrected by these two factors when estimating the net outgoing flux of longwave radiation. It is thereby assumed that the concentrations of the other absorbers are constant. An average of the maximum air temperature to the fourth power and the minimum air temperature to the fourth power is commonly used in the Stefan-Boltzmann equation for 24-hour time steps. The term (0.34-0.14*sqrt(ea)) expresses the correction for air humidity, and will be smaller if the humidity increases. The effect of cloudiness is expressed by (1.35 Rs/Rso -0.35). The term becomes smaller if the cloudiness increases and hence Rs decreases. The smaller the correction terms, the smaller the net outgoing flux of longwave radiation. Note that the Rs/Rso term in Equation 39 must be limited so that Rs/Rso <= 1.0. Where measurements of incoming and outgoing short and longwave radiation during bright sunny and overcast hours are available, calibration of the coefficients in Equation 39 can be carried out.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_netRadiation Calculating net radiation Rn

Description

The net radiation (Rn) is the difference between the incoming net shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl).

Usage

cal_netRadiation(Rns, Rnl)

Arguments

Rns	incoming net shortwave radiation. From cal_netSolarRadiation().
Rnl	outgoing net longwave radiation. From cal_netLongwaveRadiation()

Value

A vector for net radiation

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_netRadiationForCrop

Calculating net radiation available to the crop

Description

Calculating net radiation available to the crop

Usage

cal_netRadiationForCrop(pRn, Rn)

Arguments

pRn	canopy penetration probability for net radiation
Rn	the net radiation (W/m2 ground).see cal_hourlyNetRadiation()

Value

A vector for net radiation available to the crop (W/m2 ground)

```
cal_netRadiationForSoil
```

Calculating net radiation available to the soil

Description

Calculating net radiation available to the soil

Usage

cal_netRadiationForSoil(pRn, Rn, G)

Arguments

pRn	canopy penetration probability for net radiation
Rn	the net radiation (W/m2 ground).see cal_hourlyNetRadiation()
G	the soil heat flux(W/m2 ground)

Value

A vector for net radiation available to the soil (W/m2 ground)

cal_netRadiationForSystem

Calculating net radiation available to the system(soil and crop)

Description

Calculating net radiation available to the system(soil and crop)

Usage

cal_netRadiationForSystem(Ac, As)

Arguments

Ac	net radiation available to the crop (W/m2 ground)
As	net radiation available to the soil(W/m2 ground)

Value

A vector for net radiation available to the system(soil and crop) (W/m2 ground)

cal_netSolarRadiation Calculating net solar (shortware radiation) Rns

Description

The net shortwave radiation resulting from the balance between incoming and reflected solar radiation.

Usage

cal_netSolarRadiation(alpha, Rs)

Arguments

alpha	albedo or canopy reflection coefficient, which is 0.23 for the hypothetical grass reference crop [dimensionless].
Rs	the incoming solar radiation [MJ m-2 day-1]. From cal_solarRadiation()

Value

A vector for net solar or shortwave radiation [MJ m-2 day-1].

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_percolationForExcessWater Calculating percolation for excess water

Description

Calculating percolation for excess water

Usage

cal_percolationForExcessWater(THETA_i_t0, Pe_i_t1, THETA_sat_i)

Arguments

THETA_i_t0	the water amount of the day before in soil layer i (mm)
Pe_i_t1	the percolation of previous soil layer(mm)
THETA_sat_i	soil saturation water amount (mm)
Value

A value for percolation for excess water (mm)

cal_psychrometriCconstant

Calculating psychrometric constant

Description

Calculating psychrometric constant

Usage

cal_psychrometriCconstant(atmospheric_pressure)

Arguments

atmospheric_pressure

atmospheric pressure (kPa).

Value

A vector for Psychrometric constant (kPa/degree Celsius)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

Examples

cal_psychrometriCconstant(100.1235)

cal_reductionFactorForE

Calculating reduction factor for evaporation

Description

Calculating reduction factor for evaporation

Usage

cal_reductionFactorForE(THETA, THETA_sat)

Arguments

THETA	the water amount of the day before in stop soil layer (mm)
THETA_sat	soil saturation water content in stop oil layer (mm)

Value

A value for reduction factor for evaporation

cal_reductionFactorForT

calculating reduction factor for transpiration

Description

calculating reduction factor for transpiration

Usage

```
cal_reductionFactorForT(THETA_v_wp, p, THETA_v_sat, THETA_v)
```

Arguments

THETA_v_wp	soil water content at wilting point (m3 m-3)
р	a coefficient. 0.5 for C3 and 0.3 for C4 plant
THETA_v_sat	soil saturation water content (m3 m-3)
THETA_V	the water amount of the day before in root layer(m3 m-3)

Value

A value for reduction factor for transpiration

cal_relativeHumidity Calculating relative humidity

Description

The relative humidity (RH) expresses the degree of saturation of the air as a ratio of the actual (ea) to the saturation (eo(T)) vapour pressure at the same temperature (T).

Usage

cal_relativeHumidity(ea, e0)

Arguments

ea	actual saturation vapour pressure. From cal_ActualVapourPressure_for_*
e0	saturation vapour pressure. From cal_saturationVapourPressure()

Details

Relative humidity is the ratio between the amount of water the ambient air actually holds and the amount it could hold at the same temperature. It is dimensionless and is commonly given as a percentage. Although the actual vapour pressure might be relatively constant throughout the day, the relative humidity fluctuates between a maximum near sunrise and a minimum around early afternoon (Figure 12). The variation of the relative humidity is the result of the fact that the saturation vapour pressure is determined by the air temperature. As the temperature changes during the day, the relative humidity also changes substantially.

Value

A vector for relative humidity %

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_Rs_from_Na Calculating Solar radiation from actual duration of sunshine

Description

Calculating Solar radiation from actual duration of sunshine

Usage

```
cal_Rs_from_Na(as = 0.25, bs = 0.5, Na, Latitude, J)
```

Arguments

as	regression constant, expressing the fraction of extraterrestrial radiation reaching the earth on overcast days ($n = 0$).Default is 0.25.
bs	as+bs is fraction of extraterrestrial radiation reaching the earth on clear days (n = N). Default is 0.50 .
Na	actual duration of sunshine [hour].
Latitude	latitude (angert).
J	is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).

Value

A vector for solar radiation(MJ m-2 d-1)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_saturationVapourPressure

Calculating saturation vapour pressure

Description

saturation vapour pressure at the air temperature T.

Usage

```
cal_saturationVapourPressure(Tem)
```

Arguments

Tem

air temperature (degrees Celsius).

Value

A vector for saturation vapour pressure at the air temperature T (kPa).

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_sensibleHeatFluxesForCrop

Calculating sensible heat fluxes for crop

Description

Calculating sensible heat fluxes for crop

Usage

cal_sensibleHeatFluxesForCrop(gamma, Ac, r_c_s, r_c_a, rho_cp, D0, DELTA)

Arguments

gamma	is the psychometric constant (0.658 mbar K-1)
Ac	energy available to the crop (W m-2 ground)
r_c_s	the canopy resistance (s m-1)
r_c_a	is the bulk boundary layer resistance (s m-1)
rho_cp	the volumetric heat capacity for air (1221.09 J m-3 K-1)
DØ	the vapor pressure deficit at the mean canopy flow
DELTA	the slope of the saturated vapor pressure curve (mbar K-1)

Value

A vector for sensible heat fluxes for crop

cal_sensibleHeatFluxesForSoil Calaulating sensible heat fluxes for soil

Description

Calaulating sensible heat fluxes for soil

Usage

```
cal_sensibleHeatFluxesForSoil(
  gamma = 0.659,
  As,
  r_s_s,
  r_s_a,
  rho_cp,
  D0,
  DELTA
)
```

Arguments

gamma	is the psychometric constant (0.658 mbar K-1)
As	energy available to the soil (W m-2 ground)
r_s_s	soil surface resistance, (s m-1)
r_s_a	is the aerodynamic resistance between the soil and mean anopy flow (s m-1);
rho_cp	the volumetric heat capacity for air (1221.09 J m-3 K-1)
DØ	the vapor pressure deficit at the mean canopy flow
DELTA	the slope of the saturated vapor pressure curve (mbar K-1)

Value

A vector for soil sensible heat fluxes(W m-2 ground)

cal_skySolarRadiation_withas_bs

Calculating clear sky solar radiation with as and bs

Description

The calculation of the clear-sky radiation, Rso, when n = N, is required for computing net longwave radiation.

Usage

cal_skySolarRadiation_withas_bs(as, bs, Ra)

Arguments

as, bs	as+bs fraction of extraterrestrial radiation reaching the earth on clear-sky days $(n = N)$.
Ra	extraterrestrial radiation [MJ m-2 day-1]. From cal_extraterrestrialRadiation_for_daily()

Value

A vector for clear-sky solar radiation [MJ m-2 day-1].

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_skySolarRadiation_withas_elevation Calculating clear sky solar radiation with elevation

Description

The calculation of the clear-sky radiation, Rso, when n = N, is required for computing net longwave radiation.

Usage

cal_skySolarRadiation_withas_elevation(z, Ra)

Arguments

Z	station elevation above sea level [m].
Ra	extraterrestrial radiation [MJ m-2 day-1]. From cal_extraterrestrialRadiation_for_daily()

Value

A vector for clear-sky solar radiation [MJ m-2 day-1].

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_slopeOfSaturationVapourPressureCurve Calculating slope of saturation vapour pressure curve

Description

Calculating slope of saturation vapour pressure curve

Usage

cal_slopeOfSaturationVapourPressureCurve(Tem)

Arguments

Tem is air temperature (degrees Celsius).

Details

In the FAO Penman-Monteith equation, where it occurs in the numerator and denominator, the slope of the vapour pressure curve is calculated using mean air temperature.

Value

A vector for slope of saturation vapour pressure curve at air temperature T

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_soilHeatFlux Calculating Soil/ground heat flux

Description

Calculating Soil/ground heat flux

Usage

cal_soilHeatFlux(pRn, Rn)

Arguments

pRn	the canopy penetration probility for net radiation
Rn	the net radiation (W/m2 ground)

Value

A vector for the soil heat flux (W/m2 ground)

cal_soilHeatFlux_day Calculating soil heat flux(G) for day/ten-day periods

Description

As the magnitude of the day or ten-day soil heat flux beneath the grass reference surface is relatively small, it may be ignored .

Usage

```
cal_soilHeatFlux_day()
```

Value

A value for 0

References

FAO Irrigation and drainage paper 56 (P54)

cal_soilHeatFlux_general

Calculating soil heat flux (G) for general

Description

Complex models are available to describe soil heat flux. Because soil heat flux is small compared to Rn, particularly when the surface is covered by vegetation and calculation time steps are 24 hours or longer, a simple calculation procedure is presented here for long time steps, based on the idea that the soil temperature follows air temperature.

Usage

cal_soilHeatFlux_general(cs, T1, T0, delta_t, delta_z)

Arguments

CS	soil heat capacity [MJ m-3 degrees Celsius-1].
T1	air temperature at time i [degrees Celsius].
ТØ	air temperature at time i-1 [degrees Celsius].
delta_t	length of time interval [day].
delta_z	effective soil depth [m].

Value

A vector for soil heat flux [MJ m-2 day-1]

Note

Complex models are available to describe soil heat flux. Because soil heat flux is small compared to Rn, particularly when the surface is covered by vegetation and calculation time steps are 24 hours or longer, a simple calculation procedure is presented here for long time steps, based on the idea that the soil temperature follows air temperature.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

```
cal_soilHeatFlux_hourly
```

Calculating soil heat flux(G) for hourly/shorter periods

Description

For hourly (or shorter) calculations, G beneath a dense cover of grass does not correlate well with air temperature.

Usage

cal_soilHeatFlux_hourly(Rn, periods)

Arguments

Rn	net radiation.From cal_netRadiation().
periods	"daylight" or "nighttime".

Value

A vector for soil heat flux [MJ m-2 day-1]

Note

Where the soil is warming, the soil heat flux G is positive. The amount of energy required for this process is subtracted from Rn when estimating evapotranspiration.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_soilHeatFlux_monthly

Calculating soil heat flux(G) for monthly periods

Description

When assuming a constant soil heat capacity of 2.1 MJ m-3 °C-1 and an appropriate soil depth, cal_soilHeatFlux_general can be used to derive G for monthly periods.

Usage

```
cal_soilHeatFlux_monthly(T1, T0, Tmonth2 = TRUE)
```

Arguments

T1	air temperature at time i [degrees Celsius].
Τ0	air temperature at time i-1 [degrees Celsius].
Tmonth2	Is the mean air temperature of next month know?

Value

A vector for soil heat flux [MJ m-2 day-1]

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_soilSurfaceResistance

Calculating soil surface resistance

Description

Calculating soil surface resistance

Usage

```
cal_soilSurfaceResistance(
  tau,
  l,
  PHI_p,
  Dm_v,
  lambda_p,
  THETA_v_l,
  THETA_v_sat_l
)
```

Arguments

tau	soil tortuosity (taken as 2)
1	is the dry soil layer thickness (taken as the first soil layer thickness) (m)
PHI_p	is soil porosity
Dm_v	the vapor diffusion coefficient in air (24.7 10-6 m2 s-1)
lambda_p	the soil pore-size distribution index from the Brooks-Corey equation.
THETA_v_1	volumetric soil water content (m-3 m-3) of the first soil layer
THETA_v_sat_l	saturated soil water content (m3 m-3) of the first soil layer

Value

A vector for the soil surface resistance (s m-1)

cal_soilSurfaceToMeanCanopyFlow

Calculating soil surface to mean canopy flow

Description

the resistance between the soil surface and the mean canopy flow (s m-1)

Usage

cal_soilSurfaceToMeanCanopyFlow(h, nK, Kh, zs0, z0, d)

Arguments

h	the plant height(m)
nK	the eddy diffusivity extinction coefficient (taken as 2)
Kh	eddy diffusivity at the canopy top(m2/s)
zs0	is the soil surface roughnesslength (m). Note: for flat, tilled land, zs0 can be taken as 0.004 m.
z0	the crop roughness length (m)
d	zero plane displacement height (m)

Value

A vector for aerodynamic resistancessoil surface to mean canopy flow (s m-1)

cal_solarDeclination Calculating solar declination

Description

Calculating solar declination

Usage

cal_solarDeclination(td)

Arguments

td is the day of year.

Value

A vector for solar declination (Radian)

Note

The solar declination actually varies throughout the day too but its variation is very small; thus, it is often ignored. Negative angles occur when the angle is below the equator plane, positive for above the equator.

References

Teh CBS.Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer model. Brown Walker Press, 2006.

Examples

```
cal_solarDeclination(34)
```

cal_solarDeclination_in_FA0 Calculating solar declination with FAO56 method

Description

Calculating solar declination with FAO56 method

Usage

```
cal_solarDeclination_in_FAO(J)
```

Arguments

J

is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December)

Value

A vector for solar declination(Radian)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_solarInclination Calculating solar inclination

Description

A parameter used to determine the position of the sun relative to the observer (the other one is the angle from south).Conversion relationship with solar altitude angle: solar inclination=pi/2-solar altitude.

Usage

```
cal_solarInclination(solar_declination, latitude, hour_anger)
```

Arguments

solar_declination

	is solar declination anger. It can be calculated from cal_solardeclination().
latitude	is the latitude data (Radian).
hour_anger	is hour anger. It can be calculated from cal_hourangle().

Value

A vector for solar inclination (Radian)

References

Teh CBS.Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer model. Brown Walker Press, 2006.

Examples

```
cal_solarInclination(solar_declination=-0.297,latitude=30,hour_anger=0)
```

cal_solarRadiation Calculating Solar radiation

Description

If the solar radiation, Rs, is not measured, it can be calculated with the Angstrom formula, which relates solar radiation to extraterrestrial radiation and relative sunshine duration. This is a shortwave radiation.

Usage

```
cal_solarRadiation(as = 0.25, bs = 0.5, n, N, Ra)
```

Arguments

as	regression constant, expressing the fraction of extraterrestrial radiation reaching the earth on overcast days ($n = 0$).Default is 0.25.
bs	as+bs is fraction of extraterrestrial radiation reaching the earth on clear days (n = N). Default is 0.50.
n	actual duration of sunshine [hour].
Ν	maximum possible duration of sunshine or daylight hours [hour].from cal_daylightHours()
Ra	extraterrestrial radiation [MJ m-2 day-1]. From cal_extraterrestrialRadiation_for_daily()

Value

A vector for solar or shortwave radiation [MJ m-2 day-1]

Note

Rs is expressed in the above equation in MJ m-2 day-1. The corresponding equivalent evaporation in mm day-1 is obtained by multiplying Rs by 0.408 (Equation 20). Depending on atmospheric conditions (humidity, dust) and solar declination (latitude and month), the Angstrom values as and bs will vary. Where no actual solar radiation data are available and no calibration has been carried out for improved as and bs parameters, the values as = 0.25 and bs = 0.50 are recommended.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_sunsetHourAngle Calculating sunset hour angle

Description

Calculating sunset hour angle

Usage

cal_sunsetHourAngle(lat, solar_declination)

Arguments

lat latitude (Radian), positive for the northern hemisphere and negative for the southern hemisphere.

solar_declination

solar declination(Radina).

Value

A vector for sunset Hour Angle(Radian)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_sunsetTime Calculating the local solar time for sunset/sunrise

Description

Calculating the local solar time for sunset/sunrise.

Usage

cal_sunsetTime(solar_declination, latitude)

Arguments

solar_declina	tion
	can be calculated by cal_solardeclination().
latitude	is latitude data(Radian).

Details

Knowing the time of sunrise can calculate the time of sunset. sunrise_time=24-sunset_time. Day_length=2*(sunset_time-12).

Value

A vector for the local solar time for sunset/sunrise

References

Teh CBS.Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a computer model. Brown Walker Press, 2006.

cal_TemMean

Description

calculating the mean daily air temperature

Usage

```
cal_TemMean(Tmax, Tmin)
```

Arguments

Tmax	the daily maximum. The temperature is given in degree Celsius or Fahrenhei.
Tmin	the daily minimum. The temperature is given in degree Celsius, or Fahrenhei.

Details

It is only employed in the FAO Penman-Monteith equation to calculate the slope of the saturation vapor pressure curves and the impact of mean air density as the effect of temperature variations on the value of the climatic parameter is small in these cases. For standardization, Tmean for 24-hour periods is defined as the mean of mean of the daily maximum and minimum temperatures rather than as the average of hourly temperature measurements.

Value

A vector for the mean daily air temperature

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

cal_TEW_for_DualKc calculating total evaporable water

Description

maximum depth of water that can be evaporated from the soil when the topsoil has been initially completely wetted. Estimated TEW for Kr calculation

Usage

cal_TEW_for_DualKc(FC, WP, Ze)

Arguments

FC	Soil water content at field capacity, m3 m-3
WP	Soil water content at wilting point, m3 m-3
Ze	Depth of the surface soil layer that is subject to drying by way of evaporation, 0.10-0.15 m.

Value

A value for total evaporable water

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

```
cal_totalLatentHeatFlux
```

Calculating total latent heat flux

Description

Calculating total latent heat flux

Usage

```
cal_totalLatentHeatFlux(
    DELTA,
    gamma,
    r_a_a,
    r_c_a,
    r_s_a,
    r_c_s,
    r_s_s,
    A,
    rho_cp = 1221.09,
    D,
    As,
    Ac
)
```

Arguments

DELTA	the slope of the saturated vapor pressure curve (mbar K-1)
gamma	is the psychometric constant (0.658 mbar K-1)
r_a_a	the aerodynamic resistance between the mean canopy flow and reference height (s m-1)

cal_WaterStressCoef

r_c_a	the bulk boundary layer resistance (s m-1)
r_s_a	is the aerodynamic resistance between the soil and mean canopy flow (s m-1)
r_c_s	the canopy resistance(s m-1)
r_s_s	soil surface resistance (s m-1)
А	energy available to the system (total)(W m-2 ground)
rho_cp	is the volumetric heat capacity for air (1221.09 J m-3 K-1)
D	the vapor pressure deficit (mbar)
As	energy available to soil (W m-2 ground)
Ac	energy available to crop (W m-2 ground)

Value

A vector for the total latent heat flux (W m-2 ground)

cal_WaterStressCoef Calculating water stress coefficient

Description

Calculating water stress coefficient

Usage

cal_WaterStressCoef(Dr, TAW, p)

Arguments

Dr	root zone depletion(mm).
TAW	total available soil water in the root zone(mm).
р	fraction of TAW that a crop can extract from the root zone without suffering water stress.

Value

A value for water stress coefficient which is a dimensionless transpiration reduction factor dependent on available soil water

cal_windSpeed_Canopy Calculating wind speed above and within the canopies.

Description

Calculating wind speed above and within the canopies.

Usage

```
cal_windSpeed_Canopy(z, h, u_, k = 0.4, d, z0, nu = 2)
```

Arguments

Z	the height (m)
h	the plant height (m)
u_	the friction velocity (m/s)
k	the von Karman constant (0.4)
d	zero plane displacement height (m)
z0	the crop roughness length(m)
nu	the wind speed extinction coefficient (taken as 2)

Value

A vector for the wind speed (m/s) at height z(m)

cal_zeroPlaneHeight Calculating zero plane displacement height

Description

Calculating zero plane displacement height

Usage

cal_zeroPlaneHeight(h)

Arguments

h the plant height (m)

Value

A vector for zero plane displacement height (m)

compare_model_plot Show the results of different models

Description

Show the results of different models

Usage

```
compare_model_plot(model_list, names)
```

Arguments

model_list	List. Including output results of different models.
names	Vector. Name of models.

Value

A list for ggplot2 plot

```
convert_angert_to_radian
```

Converting angert to radian

Description

Converting the unit of angle in longitude and latitude into the unit of radian.

Usage

```
convert_angert_to_radian(anger)
```

Arguments

anger Longitude or dimension in Angle.

Value

A vector for longitude or dimension in radian.

Examples

convert_angert_to_radian(98.8)

convert_Date_to_dayofyear

Convert date to day of year

Description

Convert date to day of year

Usage

convert_Date_to_dayofyear(Date)

Arguments

Date is a date format data.

Value

A vector for the day of year.

convert_degreesCelsius_to_Fahrenheit

Convert degrees Celsius to Fahrenheit

Description

Convert degrees Celsius to Fahrenheit

Usage

convert_degreesCelsius_to_Fahrenheit(degrees_Celsius)

Arguments

degrees_Celsius

temperature in degrees Celsius(°C).

Value

A vector for atemperature in Fahrenheit(°F).

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

convert_Fahrenheit_to_degreesCelsius Convert Fahrenheit to degrees Celsius

Description

Convert Fahrenheit to degrees Celsius

Usage

convert_Fahrenheit_to_degreesCelsius(Fahrenheit)

Arguments

Fahrenheit temperature in Fahrenheit(°F).

Value

A vector for temperature in degrees Celsius(°C)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

convert_Rad_unit Convert radiation unit

Description

Type has the following types: MJ_m2_day_to_J_cm2_day; MJ_m2_day_to_cal_cm2_day; MJ_m2_day_to_W_m2; cal_cm2_day_to_MJ_m2_day cal_cm2_day_to_J_cm2_day cal_cm2_day_to_W_m2 cal_cm2_day_to_mm_day W_m2_to_J_m2_day W_m2_to_J_cm2_day W_m2_to_cal_cm2_day W_m2_to_mm_day_mm_day_to_MJ_m2_day mm_day_to_Cal_cm2_day mm_day_to_W_m2

Usage

```
convert_Rad_unit(rad, type)
```

Arguments

rad	Radiation data need to be converted from one unit to another unit
type	Used to specify how to convert.

Value

A vector for radiation converted unit

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

convert_windSpeed_to_2m

Convert wind speed to the standard of 2m

Description

For the calculation of evapotranspiration, wind. Speed measured at 2 m above the surface is required. To adjust wind speed data obtained from instruments placed at elevations other than the standard height of 2 m, a logarithmic wind speed profile may be used for measurements above a short grassed surface.

Usage

```
convert_windSpeed_to_2m(uz, z)
```

Arguments

uz	measured wind speed at z m above ground surface [m s-1].
Z	height of measurement above ground surface [m].

Value

A vector for wind speed at 2 m above ground surface [m s-1].

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

create_modelDF Create a csv file or a dataframe in R to store the model data

Description

#'@title Converting the every sheets in XLSX file to csv files #'@param xlsx_file the xlsx file path #'@export #'@importFrom utils write.csv #'@return No return value

Usage

```
create_modelDF(TreNum = 1, rowNum = 1)
```

estimate_ea

Arguments

TreNum	Number. Need to generate how many treatment columun
rowNum	Number. The number of row.

Details

convert_xlsx_to_csv<-function(xlsx_file) # library(readxl) # library(stringr) #sheetsname Sheetnames<-readxl::excel_sheets(xlsx_file)

#xlsx2csv

for (i in Sheetnames) data<-readxl::read_xlsx(xlsx_file,sheet=i) write.csv(data,file = stringr::str_c(i,".csv"),row.names = FALSE)

Latitude and Longitude use radians as units; Altitude use 'm' as units; Na use 'hour' as units;Tmax and Tmin use Celsius as units; Wind use m/s as units;RHmean and RHmin use percent sign as uits;Rs use MJ M-2 day-1 as units Height use cm as units;SoilWater and Irrigation use mm as units; GroundwaterDepth use cm as unit.

Value

A dataframe and a csv file (if to_CSV_file==TRUE)

Note

The column of soilwater refers to the measured soil water (mm) in the maximum root layer, which is used to compare the difference between the simulated value and the measured value, which is an optional variable. The columns of Stage includes four stages: Ini, Development, Mid, End, which are mainly determined by LAI and growth status and can refer to Allen et al., (1998).

estimate_ea

Estimating missing humidity data

Description

Where humidity data are lacking or are of questionable quality, an estimate of actual vapour pressure, ea, can be obtained by assuming that dewpoint temperature (Tdew) is near the daily minimum temperature (Tmin). This statement implicitly assumes that at sunrise, when the air temperature is close to Tmin, that the air is nearly saturated with water vapour and the relative humidity is nearly 100 %.

Usage

estimate_ea(Tmin)

Arguments

Tmin the minimum tem daily.

Value

A vector for humidity

Note

The relationship Tdew near Tmin holds for locations where the cover crop of the station is well watered. However, particularly for arid regions, the air might not be saturated when its temperature is at its minimum. Hence, Tmin might be greater than Tdew and a further calibration may be required to estimate dewpoint temperatures. In these situations, "Tmin" in the above equation may be better approximated by subtracting 2-3 degrees Celsius from Tmin. Appropriate correction procedures are given in Annex 6. In humid and subhumid climates, Tmin and Tdew measured in early morning may be less than Tdew measured during the daytime because of condensation of dew during the night. After sunrise, evaporation of the dew will once again humidify the air and will increase the value measured for Tdew during the daytime. This phenomenon is demonstrated in Figure 5.4 of Annex 5. However, it is standard practice in 24-hour calculations of ETo to use Tdew measured or calculated durin early morning. The estimate for ea from Tmin should be checked. When the prediction by Equation 48 is validated for a region, it can be used for daily estimates of ea.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

estimate_ET0_with_TmaxAndTmin

Estimating ETO with Tmax and Tmin

Description

When solar radiation data, relative humidity data and/or wind speed data are missing, they should be estimated using the procedures presented in this section. As an alternative, ETo can be estimated using the Hargreaves ETo equation.

Usage

estimate_ET0_with_TmaxAndTmin(Tmean, Tmax, Tmin, Ra)

Arguments

Tmean	mean temperature.
Tmax	max temperature.
Tmin	min temperature.
Ra	extraterrestrial radiation [mm day-1].

Value

A vector for reference evapotranspiration (mm day-1).

Note

Units for both ETo and Ra in Equation 52 are mm day-1. Equation 52 should be verified in each new region by comparing with estimates by the FAO Penman-Monteith equation (Equation 6) at weather stations where solar radiation, air temperature, humidity, and wind speed are measured. If necessary, Equation 52 can be calibrated on a monthly or annual basis by determining empirical coefficients where ETo = a + b ETo Eq.52, where the Eq. 52 subscript refers to ETo predicted using Equation 52. The coefficients a and b can be determined by regression analyses or by visual fitting. In general, estimating solar radiation, vapor pressure and wind speed as described in Equations 48 to 51 and Table 4 and then utilizing these estimates in Equation 6 (the FAO Penman-Monteith equation) will provide somewhat more accurate estimates as compared to estimating ETo directly using Equation 52. This is due to the ability of the estimation equations to incorporate general climatic characteristics such as high or low wind speed or high or low relative humidity into the ETo estimate made using Equation 6. Equation 52 has a tendency to underpredict under high wind conditions (u2 > 3 m/s) and to overpredict under conditions of high relative humidity.

```
estimate_goodnessOfFit
```

Calculating the goodness-of-fit indicators between measured and simulated values

Description

Calculating the goodness-of-fit indicators between measured and simulated values

Usage

```
estimate_goodnessOfFit(Sim, Obs)
```

Arguments

Sim	The simualtion value of model.
Obs	The observed value.

Value

A vector for the goodness-of-fit indicators

estimate_LAI_for_alfalfa

Estimate LAI for alfalfa

Description

Estimate LAI for alfalfa

Usage

estimate_LAI_for_alfalfa(hc)

Arguments

hc

is the vegetation height in meter. (in meter)

Value

A vector for leaf are index of alfalfa

References

Zhao C , Feng Z , Chen G . Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plateau[J]. Agricultural Water Management, 2004, 69(2):0-114.

estimate_Rs_for_islandLocations

Estimating solar radiation for island locations

Description

For island locations, where the land mass has a width perpendicular to the coastline of 20 km or less, the air masses influencing the atmospheric conditions are dominated by the adjacent water body in all directions. The temperature method is not appropriate for this situation. Where radiation data from another location on the island are not available, a first estimate of the monthly solar average can be obtained from the empirical relation.

Usage

estimate_Rs_for_islandLocations(Ra, b = 4)

Arguments

Ra	extraterrestrial radiation [MJ m-2 day-1].
b	empirical constant, equal to 4 MJ m-2 day-1.

Value

A vector for solar radiation

Note

This relationship is only applicable for low altitudes (from 0 to 100 m). The empirical constant represents the fact that in island locations some clouds are usually present, thus making the mean solar radiation 4 MJ m-2 day-1 below the nearly clear sky envelope (0.7 Ra). Local adjustment of the empirical constant may improve the estimation. The method is only appropriate for monthly calculations. The constant relation between Rs and Ra does not yield accurate daily estimates.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

```
estimate_Rs_from_airTemDiff
```

Estimating solar radiation data derived from air temperature differences

Description

The difference between the maximum and minimum air temperature is related to the degree of cloud cover in a location. Clear-sky conditions result in high temperatures during the day (Tmax) because the atmosphere is transparent to the incoming solar radiation and in low temperatures during the night (Tmin) because less outgoing longwave radiation is absorbed by the atmosphere. On the other hand, in overcast conditions, Tmax is relatively smaller because a significant part of the incoming solar radiation never reaches the earth's surface and is absorbed and reflected by the clouds. Similarly, Tmin will be relatively higher as the cloud cover acts as a blanket and decreases the net outgoing longwave radiation. Therefore, the difference between the maximum and minimum air temperature (Tmax - Tmin) can be used as an indicator of the fraction of extraterrestrial radiation that reaches the earth's surface. This principle has been utilized by Hargreaves and Samani to develop estimates of ETo using only air temperature data.

Usage

```
estimate_Rs_from_airTemDiff(Ra, Tmax, Tmin, locations)
```

Arguments

Ra	extraterrestrial radiation [MJ m-2 d-1].
Tmax	maximum air temperature.
Tmin	minimum air temperature.
locations	The adjustment coefficient kRs is empirical and differs for interior' or 'coastal' regions.

Value

A vector for solar radiation

Note

The temperature difference method is recommended for locations where it is not appropriate to import radiation data from a regional station, either because homogeneous climate conditions do not occur, or because data for the region are lacking. For island conditions, the methodology of Equation 50 is not appropriate due to moderating effects of the surrounding water body. Caution is required when daily computations of ETo are needed. The advice given for Equation 49 fully applies. It is recommended that daily estimates of ETo that are based on estimated Rs be summed or averaged over a several-day period, such as a week, decade or month to reduce prediction error.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

FIalfalfa

A example dataset of alfalfa under flood irrigation

Description

A example dataset of alfalfa under flood irrigation

Usage

FIalfalfa

Format

A data frame with 161 rows and 22 variables

Kcb_adj_for_DualKc Adjust the recommended Kc values at the middle and late stages

Description

Adjust the recommended Kc values at the middle and late stages

Usage

Kcb_adj_for_DualKc(Kcb_table, u2, RHmin, h)

linear_interpolation

Arguments

Kcb_table	Recommended value of KC in FAO 56 at the middle and late stages
u2	wind speed at 2 m
RHmin	Minimum relative humidity
h	Plant height

Value

A value for adjust Kc at middle and late stages

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

linear_interpolation linear interpolation for vector

Description

Linear interpolation is performed by using the values on both sides of the missing values.

Usage

linear_interpolation(DataVector)

Arguments

DataVector data vector.Note that the starting value of vector needs to be no missing value.

Value

A interpolated vector

Model_DualKc

Description

Simulation of evapotranspiration using dual crop coefficient method

Usage

Model_DualKc(data, param)

Arguments

data	A data box. Contains the daily data required by the model. You can refer to the function create_modelData()
param	A list. Contains additional parameters. list(Kini,Kmid,Kend,fw,rootDepth,Dei_start,Dri_start,FCe,WPe,Z

Value

A list for the model result including a data frame of daily model result, a list of plots, A data frame of summary data

Note

The stages of data should include all four stages. If a crop has multiple growth cycles, each cycle should include all four stages.

Examples

```
library(simET)
data("FIalfalfa")
names(FIalfalfa)
#--Model parameter
Dparam_FI<-list(Kini=0.3,#Kcb for initial stage</pre>
              Kmid=1.15,#Kcb for mid-season stage
              Kend=1.1,#Kcb for late season stage
              DI=FALSE, #Is it drip irrigation?
              fw=1,# The fraction of the surface wetted
              rootDepth=1.2,#Maximum root depth
              Dei_start=0,#Initial depletion of evaporation layer
              Dri_start=35,#Initial depletion of root layer
              FCe=0.22,#Field capacity of evaporation layer
              WPe=0.15, #Wilting point of evaporation layer
              Ze=0.15, #Depth of the surface soil layer
              REW=6,#Readily evaporable water
              TAW=297, #Total available soil water of the root zone
              p=0.55,#Evapotranspiration depletion factor
              FCrmm=430, #Field capacity of root layer
              CR_param=c(430,-0.32,310,-0.16,-1.4,6.8,1.11,-0.98)
```

Model_single_Kc

Model_single_Kc Simulation for evapotranspiration using single crop coefficient method

Description

Simulation for evapotranspiration using single crop coefficient method

Usage

Model_single_Kc(data, param)

Arguments

data	A data box. Contains the daily data required by the model. You can refer to the
	function create_modelData()
param	A list. Contains additional parameters.

Value

A list for the model result including a data frame of daily model result ,a list of plots, A data frame of summary data

Note

The stages of data should include all four stages. If a crop has multiple growth cycles, each cycle should include all four stages.

Examples

```
soil_type="coarse soil textures",
                      Dr_start=40,#Initial depletion of root layer
                      TAW=290,#Total available soil water of the root zone
                      p=0.55,#Evapotranspiration depletion factor
                      Field_capacity=420,#Field capacity of root layer
                      fw=1,#The fraction of the surface wetted
                      #Capillary rise model parameters
                      CR_param=c(420,-0.32,303,-0.16,-1.4,6.8,1.11,-0.98)
                      )
#--Run model
Re_SingleKc<- Model_single_Kc(data = FIalfalfa, param = param_SingleKc)</pre>
#--The Result data
Re_SingleKc$Result
Re_SingleKc$Plot
#--The goodness Of Fit
estimate_goodnessOfFit(Sim = Re_SingleKc$Result$Sim_SoilWater,
                        Obs = Re_SingleKc$Result$SoilWater)
```

Model_SW

Simulation of evapotranspiration using Shuttleworth-Wallace model

Description

Simulation of evapotranspiration using Shuttleworth-Wallace model

Usage

Model_SW(data, param)

Arguments

data	A data box. Contains the daily data required by the model. You can refer to the function create_modelData()
param	A list. Contains additional parameters.

Value

A list for the model result including a data frame of daily model result ,a list of plots, A data frame of summary data

Note

The stages of data should include all four stages. If a crop has multiple growth cycles, each cycle should include all four stages.

Model_SW

Examples

```
library(simET)
#--Data preparation
data("FIalfalfa")
#--Parameter preparation
param_SW<-list(</pre>
    plant=list(
              #the canopy extinction coefficient for net radiation
              kRn=0.3.
              alpha_plant=0.3,#Canopy reflectance
              w=0.01,#Leaf width
              Lmax=10,#Maximum leaf area index
              a1=10,# Leaf stomatal resistance coefficients
              a2=0.005,# Leaf stomatal resistance coefficients
              p=0.5,#the param of reduction factor for T
              rootDepth=1.2 #Maximum root depth
              ).
    Soil=list(
            zs0=0.04, #The soil surface roughnesslength (m)
            tau2=2,#Soil tortuosity
            PHI_p=2, #Soil porosity
            #The soil pore-size distribution index
            #from the Brooks-Corey equation.
            lambda_p=0.18,
            l1=0.02,#Depth of the surface soil layer (m)
            12=1.2, #Depth of the root layer (m)
            #Saturation water content of evaporation layer
            THETA_v_sat_1=0.36,
            THETA_v_sat_2=0.40, #Saturation water content of root layer
            THETA_start_1=0.2, #Initial water content of evaporation layer
            THETA_start_2=0.36, #Initial water content of root layer
            THETA_wp1=0.15,#Wilting point of evaporation layer
            THETA_wp2=0.15,#Wilting point of root layer
            #Empirical coefficient of evaporation layer.
            #13 for homogenous soil
            alpha1=14,
            alpha2=14,#Empirical coefficient of root layer.
            #Saturated hydraulic conductitity of evaporation layer
            Ksat_1=13.52,
            Ksat_2=0.02, #Saturated hydraulic conductitity of root layer
            #Capillary rise model parameters
            CR_param=c(430,-0.32,313,-0.16,-1.4,6.8,0.5,-0.98)
            ),
  Mete=list(
           nu=2,#The wind speed extinction coefficient
           nK=2, #The eddy diffusivity extinction coefficient(taken as 2)
           zr=2, #The reference height (m)
           ##The vapor diffusion coefficient in air (24.7 10-6 m2 s-1)
           Dm_v=24.7*10^(-6),
           deltaT=1 #Time step difference (day)
           )
      )
```

SDIalfalfa

A example dataset of alfalfa under subsurface drip irrigation

Description

A example dataset of alfalfa under subsurface drip irrigation

Usage

SDIalfalfa

Format

A data frame with 161 rows and 22 variables

72

Index

* datasets cal_extraterrestrialRadiation_for_shorter, FIalfalfa, 66 23 SDIalfalfa, 72 cal_frictionVelocity, 24 cal_hourAngle, 25 cal_inverseRelativeDistance_Earth_sun, cal_ActualVapourPressure_for_hourly, 4 25 cal_ActualVapourPressure_from_dewPoint, cal_Kc_max_for_DualKc, 28 4 cal_ActualVapourPressure_from_psychrometricDa@al_Kcend_for_singleKc, 26 cal_Kcini_for_SingleKc, 27 cal_Kcmid_for_singleKc, 27 cal_ActualVapourPressure_from_RHmax, 6 cal_ActualVapourPressure_from_RHmaxAndRHmin, cal_Kr_for_DualKc, 29 cal_latentHeatFluxesForCrop, 29 cal_latentHeatFluxesForSoil, 30 cal_ActualVapourPressure_from_RHmean, cal_localDolarTime, 31 7 cal_meanCanopyFlowToReferenceLevel, 31 cal_afterRedistribution, 8 cal_meanSaturationVapourPressure, 32 cal_airVaporPressureDeficit_meanCanopyflow, cal_netLongwaveRadiation, 33 8 cal_netRadiation, 34 cal_angerFromSouth, 9 cal_atmosphericPressure, 10 cal_netRadiationForCrop, 34 cal_netRadiationForSoil, 35 cal_bulkBoundaryLayerResistance, 11 cal_canopyPenetrationProbabilityForNetRadiational_netRadiationForSystem, 35 11 cal_netSolarRadiation, 36 cal_canopyResistance, 12 cal_percolationForExcessWater, 36 cal_psychrometriCconstant, 37 cal_canopyTem, 12 cal_reductionFactorForE, 37 cal_capillaryRise, 13 cal_reductionFactorForT, 38 cal_cropRoughnessLength, 14 cal_relativeHumidity, 38 cal_daylightHours, 14 cal_DeepPercolation, 15 cal_Rs_from_Na, 39 cal_Dei_for_DualKc, 16 cal_saturationVapourPressure, 40 cal_DP_for_singleKc, 18 cal_sensibleHeatFluxesForCrop, 40 cal_DPe_for_DualKc, 16 cal_sensibleHeatFluxesForSoil, 41 cal_DPr_for_DualKc, 17 cal_skySolarRadiation_withas_bs, 42 cal_eddyDiffusivity_Canopytop, 18 cal_skySolarRadiation_withas_elevation, 42 cal_eddyDiffusivity_heightZ, 19 cal_slopeOfSaturationVapourPressureCurve, cal_ET0_from_PM, 19 cal_ET0_from_PM_for_daily, 20 43 cal_ET0_from_PM_for_hourly, 21 cal_soilHeatFlux, 44 cal_extraterrestrialRadiation_for_daily, cal_soilHeatFlux_day, 44 23 cal_soilHeatFlux_general, 45

INDEX

cal_soilHeatFlux_hourly, 46 cal_soilHeatFlux_monthly, 46 cal_soilSurfaceResistance, 47 cal_soilSurfaceToMeanCanopyFlow, 48 cal_solarDeclination, 48 cal_solarDeclination_in_FAO, 49 cal_solarInclination, 50 cal_solarRadiation, 50 cal_sunsetHourAngle, 51 cal_sunsetTime, 52 cal_TemMean, 53 cal_TEW_for_DualKc, 53 ${\tt cal_totalLatentHeatFlux, 54}$ cal_WaterStressCoef, 55 cal_windSpeed_Canopy, 56 cal_zeroPlaneHeight, 56 compare_model_plot, 57 convert_angert_to_radian, 57 convert_Date_to_dayofyear, 58 convert_degreesCelsius_to_Fahrenheit, 58 convert_Fahrenheit_to_degreesCelsius, 59 convert_Rad_unit, 59 convert_windSpeed_to_2m, 60 create_modelDF, 60

estimate_ea, 61 estimate_ET0_with_TmaxAndTmin, 62 estimate_goodnessOfFit, 63 estimate_LAI_for_alfalfa, 64 estimate_Rs_for_islandLocations, 64 estimate_Rs_from_airTemDiff, 65

FIalfalfa, 66

Kcb_adj_for_DualKc, 66

linear_interpolation, 67

Model_DualKc, 68 Model_single_Kc, 69 Model_SW, 70

SDIalfalfa, 72

74