Package ‘shinylight’

April 23, 2024
Title Web Interface to 'R' Functions
Version 1.2
Date 2024-04-22

Description Web front end for your 'R' functions producing plots or tables.
If you have a function or set of related functions, you can make them
available over the internet through a web browser. This is the same
motivation as the 'shiny' package, but note that the development of
'shinylight' is not in any way linked to that of 'shiny' (beyond the use of
the 'httpuv' package). You might prefer 'shinylight' to 'shiny" if you want
a lighter weight deployment with easier horizontal scaling, or if you want
to develop your front end yourself in JavaScript and HTML just using
a lightweight remote procedure call interface to your R code on the
server.

Author Pieter Vermeesch [aut],
Tim Band [aut, cre]

Maintainer Tim Band <t.band@ucl.ac.uk>
Depends R (>=3.0.0)

Imports grDevices (>= 3.6.2), httpuv (>= 1.5.4), jsonlite (>= 1.6.1),
later (>=1.0)

Suggests websocket (>=1.4.1)

License GPL-3

RoxygenNote 7.3.1

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-23 00:00:10 UTC

R topics documented:

browseTo e
downloadCsv e

R topics documented:

encodePlot. 4
encodePlotAs 5
framework shinylightFrameworkStart 6
getAddress oL L 8
indexWithInit 9
TIPCSEIVET . . o v v v ittt e e e e e e e e e 9
runR . . e 10
sendInfoText e 11
sendProgress L 12
shinylight.call 13
shinylight.initialize e 13
shinylight.makeTable 14
shinylight.passToOther 14
shinylightrunR00 15
shinylight.setElementJson 15
shinylight.setElementPlot L .. 16
shinylight.setElementText 16
shinylight.setGridResult 16
shinylight.setGridResultWithNamedRows 17
slRunRServer 17
sIServer 18
SIStOD .« . . e e 20
toolkitall 21
toOlKIt.ANY e 21
toolkit.banner 21
toolkit.button L 22
toolkit.deref 22
toolkit.footer 23
toolkit.forEach 23
toolkit.groupTitle 23
toolkit.header 24
toolkitt HTMLContainerElement, . 24
toolkit HTMLControlContainerElement 25
toolkit HTMLControlElement 25
toolkit. HTMLPositionedElement 26
toolkitimage L e e e 26
toolkit.leftSideBar 27
toolkit.loadFileButton L 27
toolkit.makeLabel 28
toolkit.nonScrollingWrapper L 28
toolkit.optionsPage 29
toolkitoverlay L e e e 29
toolKit.pageso e e e 30
toolkit.paramBoolean 30
toolkit.paramColor e 31
toolkit.paramFloat 32
toolkit.paramlInteger L 32

toolkit.paramSelectoro e 33

browseTo 3

toolkit.paramText e e e 34
toolkit.preformattedText 34
toolkit.progressBar L. 35
toolkit.rightSideBar 35
toolkit.scrollingWrapper 35
toolkit.setAsBody L. 36
toolkit.stack 36
toolkit.staticText e e e 37
toolkit.verticalDivide L 37
toolkit.whenQuiet 38
toolkit.withTimeout 38

Index 39

browseTo Opens a browser to look at the server
Description

Opens a browser to look at the server

Usage

browseTo(server)
Arguments

server The server to browse to
Value

No return value

downloadCsv Encodes a data frame as a CSV file to be downloaded

Description

Encodes a data frame as a CSV file to be downloaded

Usage

downloadCsv(results)

Arguments

results Data frame to be returned

4 encodePlot

Value

A list to be returned to the browser describing a CSV file to be downloaded.

encodePlot Renders a plot as a base64-encoded image

Description

Renders a plot as a base64-encoded image

Usage

encodePlot(device, mimeType, width, height, plotFn)

Arguments
device Graphics device function, such as grDevices: :png or grDevices: : pdf
mimeType Mime type for the data produced by device
width Width of the plot in units applicable to device
height Height of the plot in units applicable to device
plotFn Function to call to perform the plot
Value

list with two keys, whose values can each be NULL: 'plot' is a plot in HTML img src form and
'data’ is a data frame or other non-plot result.

Examples

pdf <- encodePlot(grDevices::png, "image/png"”, 200, 300, function() {
barplot(c(1, 2, 3, 4))
»

grDevices::png() # workaround; you do not have to do this

encodePlotAs 5

encodePlotAs Renders a plot as a base64-encoded PNG

Description

The result can be set as the src attribute of an element in HTML.

Usage

encodePlotAs(format, plotFn)

Arguments
format An object specifying the output, with the following members: format$type is
"png”, "pdf" or "csv”, and format$width and format$height are the dimen-
sions of the PDF (in inches) or PNG (in pixels) if appropriate.
plotFn Function to call to perform the plot
Details

You will not need to call this function unless you want to return more than one plot per call, as
the last plot produced will be returned in the plot property of the result from shinylight.call
anyway.

Value

list with two keys, whose values can each be NULL: 'plot' is a plot in HTML img src form and
'data’ is a data frame or other non-plot result.

A list with an element named plot containing the plot encoded as required either for an HTML
image element’s src attribute, or a element’s href attribute. If the function returns a matrix or data
frame, this will be returned in the list’s data element.

See Also

rrpcServer

Examples

pdf <- encodePlotAs(list(type="pdf", width=7, height=8), function() {
barplot(c(1, 2, 3, 4))
»

grDevices: :png() # workaround; you do not have to do this

6 framework.shinylightFrameworkStart

framework.shinylightFrameworkStart
JavaScript function: Starts the Shinylight Framework, if you want to
use it.

Description

The Shinylight Framework allows you to declare all your functions in R and have a nice-looking
web front end for your code without having to write any JavaScript.

You should never need to call this function yourself; if you do not provide your own index.html,
the default Shinylight one will be used that will call this function on page load.

Using the Shinylight Framework entails calling the s1Server function with the interface argu-
ment set to 1list(getSchema=schema), where schema is defined in the following section.

Arguments

options object [optional] An optional object containing options to modify the behaviour
of the framework.

options.createFileInput
function [optional] A function to create an element that uploads a file, as re-
quired for toolkit.loadFileButton.

The Schema
It is a list with the following members:

functions a list of functions (keyed by their names), each of which is a list with the following
members:

params a list of the main parameters the function accepts. The keys are the parameter names
and the values are keys into the schema’s params list.

optiongroups a vector of keys into the schema’s optiongroups list giving other parameters
to this function.

functiongroups optional: the menu structure for the functions menu. Each item in the list is
either a function name (a string referencing a key in the functions list) or a list representing
a submenu. Submenu keys are the name to be displayed in the list, which can be overridden
in the app.json file’s functions object, just like providing localized names for functions.

params a list of the parameters the functions take, each of which is a list with the following mem-
bers:

type either a key into the schema’s types list, giving the type of this parameter or the values
it can take, or one of a set of standard types:
b’ Boolean
’f’ Floating point
’u8’ 8-bit unsigned integer
"color’ Colour

framework.shinylightFrameworkStart 7

’subheader’ Vector of settings the user can choose for each column using selectors in
the subheader row. This is usually used to select units (for example percent-by-weight
versus parts-per-million) for the columns.

data akey into the schema’s data list, giving initial or example data for this parameter.
types alist of types with keys referened from the schema’s params lists’s type values. The values
are a list with the following members:
kind Mandatory; one of:
’enum’ Enumeration type
’column’ A column from the input grid
values A vector of permitted values (only if kind="enum")

factors Only if kind="enum' and this enum is used as the unit type for some column; a
vector of factors to multiply column data by if the unit is changed by the user. Must
have the same number of elements as the values vector. For every n, factors[[n]] of
unit values[[n]] must be equal. For example, if values=c('mm', 'cm', "inch"') then
factors could be c(25.4, 2.54, 1.0).

subtype Only if kind="'column'. The type of data that can be entered into the column.
Currenly only ' f' works well.

unittype Optional and only if kind="column'. The name of an enum type defining the units
that the data in this column can be expressed in.

data A list of initial data with which table columns and controls will be populated. Can be a single
value or vector (or list) as appropriate.

optiongroups A list of option groups. Each one is a set of parameters that can be added as a block
to functions that want them. Each element is a list with the following keys:

type The same as for param’s type: either a key into the schema’s types list or one of the
standard types ('b', 'u8', 'f' or 'color’).
initial The initial value for this option.

There is one special key in the optiongroups list; this is the framework key. This is reserved
for options that apply to the framework itself, not to any of your functions. So far, the only
option it has is autorefresh=1ist(type="b", initial=FALSE). You can set its initial value
to TRUE if you prefer. If you add this option, it controls whether the GUI has a "Calculate"
button (FALSE) or whether the output should refresh a second or two after the user finishes
changing parameters (TRUE).

Localization

To display human-friendly text on the controls and to get tooltip help text, you need one or more
localization files. These files are named inst/www/locales/XX/app.json where XX is replaced
with the appropriate ISO language code.

These files are JSON files containing an object with the following keys:

title Text for the link to put in the top left
homepage Destination for the link to put in the top left
functions One pair of translations for each function in the schema.

params One pair of translations for each parameter in the schema.

8 getAddress

optiongroups Each of the optiongroups in the schema gets a key which maps to an object which
has the following keys:

@title A translation pair for the option group itself.
... One translation pair for each option in the group.

types One object for each 'enum' type in the schema. Each value is an object with one key per
possible enum value. Each value in this object is that enum value’s translation pair.

A "translation pair" is an object with the following keys:

name A short name

help Tooltip text

See Also

toolkit.loadFileButton

getAddress Obtains the address that the server is listening on

Description

Obtains the address that the server is listening on

Usage

getAddress(server)
Arguments

server The server (returned by s1Server or s1RunRServer)
Value

The HTTP address as protocol://address:port

Examples

server <- slServer(
port = 50051,
interface = list(
multiply = function(x, y) { x x y }
)
)

address <- getAddress(server)

...

slStop(server)

stopifnot(address == "http://127.0.0.1:50051")

index WithInit 9

indexWithInit Get index.html with (potentially) the JSON data in ‘text* inserted.

Description

Get index.html with (potentially) the JSON data in ‘text‘ inserted.

Usage

indexWithInit(text, path)

Arguments
text The text to insert as shinylight_initial_data
path File system path to the index.html file
Value

The updated text

rrpcServer Makes and starts a server for serving R calculations

Description

It will serve files from the app directories specified by appDirs. If a file is requested that is not in
one of those directories, the files in Shinylight’s own inst/www directory will be served. Some paths

have special meanings: / returns /index.html, /lang/ is redirected to /locales/<language-code>/

depending on the language selected in the request’s Accept-Language header (that is, the browser’s
language setting) and the availability of the file requested. A POST requestto /init with a data pa-

rameter will return /index. html, except that if the file has a line containing shinylight_initial_data

= then this line with be replaced with a line initializing shinylight_initial_data to the data
passed. This is used in shinylight-framework to permit linking to a framework app with specific
data preloaded — the text should be as is downloaded with the "Save Data" button. Of course, this is
available to non-framework apps, too.

Usage

rrpcServer(
interface,
host = "0.0.0.0",
port NULL,
appDirs = NULL,
root = "/",
initialize = NULL,
testFunction = NULL

10

Arguments

interface

host
port
appDirs
root

initialize

testFunction

Value

runR

List of functions to be served. The names of the elements are the names that the
client will use to call them.

Interface to listen on (defaultis '0.0.0.0", that is, all interfaces)
Port to listen on

List of directories in which to find static files to serve

Root of the app on the server (with trailing slash)

A json string or list (that will be converted to a JSON string) to be passed to the
JavaScript as initial data. For non-framework apps, the index.html must con-
tain a line containing var shinylight_initial_data=, which will be replaced
with code that sets shinylight_initial_data to this supplied JSON string.

Function to be called if the /test endpoint is requested. If the function returns
successfully, a 200 status will be returned. If not, a 500 status will be returned.

The server object, can be passed to s1Stop

runk

Returns a function that runs an R command

Description

If you set this as a part of your interface, like: runR=shinylight::runR(c("+", "plot”, "c",

ny,n

x", "y")) then you can call it from Javascript like this:

rrpc.call("runR”, {

Rcommand: "2+2"

}, function(x) {console.log(x);});
rrpc.call("runR”, {

Rcommand: "y<-c(2,0,1);plot(c(1,2,3),y);y",
'rrpc.resultformat’: {

type: 'png',
width: 200,
height: 300,

}

}, function(x) {img.setAttribute('src', x.plot[01)});

Usage

runR(symbolList)

Arguments

symbollList

A list of permitted symbols in the R command

sendInfoText 11

Value

A function that can be passed as one of the elements of s1Server’s interface argument.

Examples

server <- slServer(
port = 50050,
interface = list(
run_the_users_r_code = runR(

List("c”, "$", "list”, "+" "-n /0 wen wgartmy
)
)
)
...
slStop(server)
sendInfoText Sends informational text to the client.
Description

During a slow remote procedure call, call this to inform the client of progress.

Usage

sendInfoText (text)
Arguments

text The text to send
Value

No return value

See Also

sendProgress for sending a progress completion ratio to the user.

Examples

server <- slServer(

port = 50051,

interface = list(long_and_complicated = function(x) {
First part of work that takes some time
...
sendInfoText("We are about half way through")
Second part of work that takes some time
...

12 sendProgress

»

)
o

slStop(server)

sendProgress Sends a progress update to the client.

Description

During a slow remote procedure call, call this to inform the client of progress.

Usage

sendProgress(numerator, denominator = 1)

Arguments
numerator The progress, out of denominator
denominator What the progress is out of. You could use this for the number of known items
to be completed so that each call increases either the numerator (for more items
done) and/or the denominator (for more items discovered that need to be done).
However, it is not necessary to be so precise; you can set the numerator and
denominator however you like on each call as long as it makes sense to the user.
Value

No return value

See Also

sendInfoText for sending text to the user.

Examples

server <- slServer(

port = 50051,

interface = list(long_and_complicated = function(x) {
sendProgress(9, 3)
First part of work that takes some time
...
sendProgress(1,3)
Second part of work that takes some time
...
sendProgress(2,3)
Last part of work that takes some time
...
sendProgress(3, 3)

D)

shinylight.call

)
#o...

slStop(server)

13

shinylight.call

JavaScript function

Description

Calls a server function as defined in the server’s call to the s1Server function.

Arguments

fn
data

plotElement

extra

Value

string The name of the R function to call.
object An object whose keys are the arguments to the function being called.

string, HTMLElement If provided, the element (or id of the element) that
will receive the plot output (if any). The plot returned will be the size that this
element already has, so ensure that it is styled in a way that it has the correct
size even if no image (or an old image) has been set.

object [optional] An object whose keys can be: "imgType": Type of image re-
quired, "png"” (default) or "svg"”; "info": Function to be called if the R function
sendInfoText is called; "progress"”: Function to be called if the R function
sendProgress is called.

Result object that might have a plot property (giving a string that would work as the src attribute
of an img element, representing graphics drawn by the command), a data property (giving the value
returned by the command) and a headers property (giving the column names in the data returned if
any). If the promise resolves to an error, the argument to the error function is a string representing
the cause of the error.

shinylight.initialize JavaScript function

Description

Call this before calling any other ShinyLight function. Returns a promise that resolves (to nothing)
when the connection is ready.

14 shinylight.passToOther

shinylight.makeTable JavaScript function

Description

Turns data received from R into a form that can be set into dataentrygrid.js.

Arguments

data object Data as returned from R

extraColumns Array.<string>, number The extra column headers required or the number of
extra columns required.

Value

Headers and rows

Examples

Not run:
t = shinylight.makeTable(data);
grid.init(t.headers, t.rows);

End(Not run)

shinylight.passToOther
JavaScript function

Description

Open another tab with another (possibly remote from this one) instance of shinylight, initializing it
with our own data.

Arguments
url string The URL of the other shinylight instance
data any The JSON to send. If a string is passed, this is assumed to be JSON and

sent as-is. Otherwise it is stringified into JSON before being sent.

shinylight.runR

15

shinylight.runR

JavaScript function: Runs an R function.

Description

The R side must be running the sIRunRServer function.

Arguments

rCommand

data

plotElement

extra

Value

string The R text to run. It can plot a graph and/or return some R data structure
(such as a data frame).

any A javascript value that will be translated to the R command as a value also
called ’data’.

string, HTMLElement If provided, the element (or id of the element) that
will receive the plot output (if any). The plot returned will be the size that this
element already has, so ensure that it is styled in a way that it has the correct
size even if no image (or an old image) has been set.

object [optional] An object whose keys can be: "imgType”: Type of image re-
quired, "png"” (default) or "svg"”; "info": Function to be called if the R function
sendInfoText is called; "progress"”: Function to be called if the R function
sendProgress is called.

Result object that might have a plot property (giving a string that would work as the src attribute
of an img element, representing graphics drawn by the command) and a data property (giving the
value returned by the command). If the promise resolves to an error, the argument to the error
function is a string representing the cause of the error.

shinylight.setElementJson

JavaScript function

Description

Sets the text content of an element (or its value as appropriate) to the JSON representation of an

object.

Arguments

elementOrId
object

string, HTMLElement The element (or its id) that will have its text set

any The object whose JSON representation will be set as the text content of the
element

16 shinylight.setGridResult

shinylight.setElementPlot

JavaScript function: Sets an element to display a plot returned
by runR.

Description

Normally you do not need to call this because to get shinylight to produce a plot you need to set
the plotElement argument, and doing so will cause this element to receive the plot automatically.

Arguments
elementOrId string, HTMLImageElement The element (or its id) that will receive the
image.
result object The result from runR.

shinylight.setElementText
JavaScript function

Description

Sets the text content of an element (or its value as appropriate).

Arguments
elementOrId string, HTMLElement The element (or its id) that will have its text set
text string The text to set into the element

shinylight.setGridResult
JavaScript function

Description

Sets a dataentrygrid object to the result of runR, if appropriate.

Arguments

grid DataEntryGrid Table that receives the result

result object Return value promised by runR

shinylight.setGridResultWithNamedRows 17

shinylight.setGridResultWithNamedRows
JavaScript function

Description

Sets a dataentrygrid object to the result of runR. The object will have fixed rows, with names
derived from the row names in the original data frame.

Arguments
grid DataEntryGrid Table that receives the result
result object Return value promised by runR
slRunRServer Start a ShinyLight server which runs R that it is sent
Description

Start a ShinyLight server which runs R that it is sent

Usage

s1RunRServer(
permittedSymbols,
appDir = NULL,
host = "127.0.0.1",
port = NULL,
daemonize = FALSE,
initialize = NULL

)
Arguments

permittedSymbols
List of symbols that are permitted in the R commands passed. Remember to
include data, $ and <-.

appDir Directory containing files to serve (for example system.file("www", package =
"your-package"))

host IP address to listen on, default is "127.0.0.1" (localhost). Use "0.0.0.0" to
run in a docker container.

port Internet port of the virtual server. If not defined, a random free port will be

chosen and the browser will be opened to show the GUI.

18 slServer

daemonize If TRUE, keep serving forever without returning. This is useful when called
from RScript, to keep

initialize A json string or list (that will be converted to a JSON string) to be passed to
the JavaScript as initial data. The index.html must contain a line containing
var shinylight_initial_data=, which will be replaced with code that sets
shinylight_initial_data to this supplied JSON string.

Value

server object, unless daemonize is TRUE.

See Also

s1Server for the more general form of this function, or s1Stop to stop a running server. shinylight.runR
is the JavaScript function you need to call to pass R code from the browser to the server.

Examples

server <- slRunRServer(
permitted = list("x"),
port = 50053
)
Normally we would use shinylight.js to send the function over
and receive the result, not R and websocket.
ws <- websocket: :WebSocket$new("ws://127.0.0.1:50053/x")
resultdata <- NULL
ws$onMessage (function(event) {
resultdata <<- jsonlite::fromJSON(event$data)$result$data
»
ws$onOpen(function(event) {
ws$send (' {"method”:"runR"”, "params"”:{"Rcommand”:"3 x 57"3}}")
»
timeout = 30
while(is.null(resultdata) && @ < timeout) {
later::run_now()
Sys.sleep(@.1)
timeout <- timeout - 1
3
ws$close()
slStop(server)
stopifnot(resultdata == 171) # 3 * 57 == 171
grDevices::png() # workaround; you do not have to do this

slServer Start a ShinyLight server

Description

Start a ShinyLight server

slServer

Usage

slServer(
interface,

19

appDir = NULL,
host = "127.0.0.1",

port = NULL,

daemonize =

FALSE,

initialize = NULL

Arguments

interface

appDir

host

port

daemonize

initialize

Value

List of functions you want to be able to call from the browser. If you want to
use the Shinylight Framework, this should have one member getSchema. For
details of this, see the documentation for [shinylightFrameworkStart].

Directory containing files to serve (for example system.file("www", package =
"your-package"))

IP address to listen on, default is "127.0.0.1" (localhost). Use "0.0.0.0" to
run in a docker container.

Internet port of the virtual server. If not defined, a random free port will be
chosen and the browser will be opened to show the GUI.

If TRUE, keep serving forever without returning. This is useful when called
from RScript, to keep

A json string or list (that will be converted to a JSON string) to be passed to the
JavaScript as initial data. For non-framework apps, the index.html must con-
tain a line containing var shinylight_initial_data=, which will be replaced
with code that sets shinylight_initial_data to this supplied JSON string.

server object, unless daemonize is TRUE in which case the function will not return.

See Also

s1Stop to stop a running server, and s1RunRServer to run a server that just accepts R code.

Examples

You can leave out port and daemonize to launch a browser
pointing at your server
server <- slServer(

port = 50052,

interface = list(
multiply = function(x, y) { x *x y }

)
)

Normally we would use shinylight.js to send the function over
and receive the result, not R and websocket.

20 sIStop

ws <- websocket: :WebSocket$new("ws://127.0.0.1:50052/x")
resultdata <- NULL
ws$onMessage(function(event) {

resultdata <<- jsonlite::fromJSON(event$data)$result$data
»
ws$onOpen(function(event) {

ws$send('{ "method”: "multiply”, "params”: { "x": 3, "y": 47 } }')
»
timeout = 30
while(is.null(resultdata) && @ < timeout) {

later: :run_now()

Sys.sleep(0.1)

timeout <- timeout - 1
3
ws$close()
slStop(server)
stopifnot(resultdata == 141) # multiply(3, 47) == 141
grDevices: :png() # workaround; you do not have to do this

s1Stop Stops a ShinyLight GUI

Description

Stops a ShinyLight GUI

Usage

slStop(server = NULL)

Arguments
server The server (returned by s1Server or sIRunRServer) to stop. If not supplied all
servers will be stopped.
Value

No return value

Examples

server <- slServer(
port = 50051, # leave this out if you don't care about the port number
interface = list(
multiply = function(x, y) { x * y }
)

)
#

slStop(server)

toolkit.all 21

toolkit.all JavaScript function: Finds if a predicate is true for all members of an
array or object.

Description

Calls a function for each member of an array or object until either one of them returns false (in
which case all returns false) or we run out of elements (in which case all returns true).

Arguments
a object Object or array to be iterated through.
p function Function to call with two arguments: the key of the element (or index
in the case of an array) and the value; should return a boolean.
toolkit.any JavaScript function: Finds if a predicate is true for any member of an
array or object.
Description

Calls a function for each member of an array or object until either one of them returns true (in which
case any returns true) or we run out of elements (in which case any returns false).

Arguments
a object Object or array to be iterated through.
p function Function to call with two arguments: the key of the element (or index
in the case of an array) and the value; should return a boolean.
toolkit.banner JavaScript function
Description

Returns a Container Element for displaying controls horizontally.

Arguments
elements Array.<HTMLControlElement> Initial array of elements to be added.
className string HTML class for the returned banner.

Value

The banner element.

22

toolkit.deref

toolkit.button

JavaScript function: Returns a button.

Description

This button is an HTML element, but it is not an HTML button. Styling and JavaScript provide the
button-like look-and-feel.

Arguments

id

fn

translations

Value

The button.

string The HTML id of the button will be 'button-' + id. It is also used in
the interpretation of the translations argument.

function Unary function that takes a single parameter of a nullary function.
This function will be called on completion of the work (which will be used to
remove the button’s ’click’ animation). If the function want to use as a call-
back does not take an argument, you can wrap it in toolkit.withTimeout.
You might also want to use toolkit.withTimeout if your function returns too
quickly, otherwise the user might not see the button click.

object An object with a key id having a value that is an object having a key
'name’ with value the display name of the button, and optionally a key 'help'
with value of the tooltip text.

toolkit.deref

JavaScript function: Dereferences an object or array through multiple
indices.

Description

deref (o, [a,b,c], d) is asafe way of doing o[al[b][c]. If that path does not exist, d is returned.
If d is not supplied, null is returned. Any undefined values in path are ignored.

Arguments

object
path
defaultValue

Value

object The object to be dereferenced.
Array The series of indices to be applied.

toolkit.any The default value to be returned if the path cannot be followed to
the end.

Object dereferenced, defaultValue, or null.

toolkit.footer 23

toolkit.footer JavaScript function: A panel with a smaller footer.

Description

Returns a Positioned Element consisting of a body and a footer.

Arguments

ftr HTMLElement The footer element.

main toolkit.HTMLPositionedElement The body element.
Value

The element containing the footer and body.

toolkit.forEach JavaScript function

Description

Calls a function for each member of an array or object.

Arguments
object Object or array to be iterated through.
f function Function to call with two arguments: the key of the element (or index
in the case of an array) and the value.
toolkit.groupTitle JavaScript function: Option group title
Description

Adds a group title to an toolkit.optionsPage.

Arguments
container HTMLElement The container, preferably the return value from toolkit.optionsPage.
labelTranslations

object An object with two keys: 'name’ is the display text for this title, 'help'
(optional) is the tooltip text.

24 toolkit. HTML ContainerElement

toolkit.header JavaScript function: A panel with a smaller header.

Description

Returns a Positioned Element consisting of a header and a body.

Arguments

hdr HTMLElement The header element.

main toolkit.HTMLPositionedElement The body element.
Value

The element containing the header and body.

toolkit.HTMLContainerElement
JavaScript class: A monkey-patched HTMLElement.

Description

A Container Element is an element for displaying a set of controls and their labels.

Properties

makeSubElement function Gets an element in which a control and its label can be stored. You
do not need to call this unless you have made your own custom control; it will be called by
functions such as toolkit.paramText. Pass in the ID of the control (you will need the ID for
the getData and setData calls).

getData function Returns an object mapping contained controls (or nested containers) to their
current values.

setData function Sets the values of the contained controls. data is a mapping from the IDs of the
contained controls to the data that should be set on them.

See Also

toolkit.stack
toolkit.banner

toolkit.optionsPage

toolkit. HTML ControlContainerElement

25

toolkit.HTMLControlContainerElement
JavaScript class

Description

A container for a single control.

Properties

addElement function Adds an element. Should be called once with a control’s label, and then

again with the control itself.

See Also

toolkit.HTMLContainerElement

toolkit.HTMLControlElement
JavaScript class

Description

A monkey-patched HTMLElement representing a control with its label.

Properties

getData function Returns the current displayed value.
setData function Sets the value.
hide function Makes the element invisible and non-interactive

show function makes the element visible and (potentially) interactive

See Also

toolkit.

toolkit

toolkit.
toolkit.
toolkit.
toolkit.

paramBoolean

.paramColor

paramFloat
paramInteger
paramSelector

paramText

26 toolkit.image

toolkit.HTMLPositionedElement
JavaScript class: A monkey-patched HTMLElement with some extra
methods.

Description

Certain elements returned by Toolkit methods are Positioned Elements. It is necessary for elements
in some places in the document to be Positioned Elements for the document resizing and formatting
to work.

If you have an HTML element that is not a Positioned Element that you want to add to a place where
only Positioned Elements are required, wrap itin toolkit.scrollingWrapper or toolkit.nonScrollingWrapper.

Properties

setSize function Sets the position of the element on the document in pixels, with parameters for
left, top, width and height in that order.

getSize function Returns an object with members left, top, width and height for the position
of the element.

hide function Makes the element invisible and non-interactive

show function makes the element visible and (potentially) interactive

toolkit.image JavaScript function

Description

An image element.

Arguments
updateSizeFunction
function Nullary function called when the object’s size is changed.
Value

Image element. It has a getSize() method, returning an object with width and height members.
This is the width and height set by reposition(), not the actual on-screen width and height, if
that is different for some reason. In other words, it returns the width and height the image "should"
have.

toolkit.leftSideBar

27

toolkit.leftSideBar JavaScript function: A panel with a side bar.

Description

Returns a Positioned Element consisting of a left side bar and a body.

Arguments

bar

main

Value

HTMLElement The side bar element.
toolkit.HTMLPositionedElement The body element.

The Toolkit Positioned Element containing the side bar and body.

toolkit.loadFileButton

JavaScript function: Returns a button that uploads a file from the
client.

Description

This button is an HTML element, but it is not an HTML button. Styling and JavaScript provide the
button-like look-and-feel.

Arguments

id

fn

translations

createFilelInput

string The HTML id of the button will be 'button-' + id. It is also used in
the interpretation of the translations argument.

function A binary callback function. Its two parameters are the File object up-
loaded and a (nullary) function that will be called when the operation completes.

object An object with a key id having a value that is an object having a key
"name ' with value the display name of the button, and optionally a key "help'
with value of the tooltip text.

function [optional] A function to create an element that uploads a file. By de-
fault this is a normal <input type="file"> with an extra show member func-
tion that does nothing. The function takes two parameters: uploadFn and
doneFn. uploadFn must be called when a file has been chosen for upload; it
takes two parameters: a File object and a callback function that is called on
completion. You should either pass doneFn as this second parameter, or a func-
tion that performs some actions then calls doneFn() itself. The return value of
createFileInput should be the element itself, monkey-patched to include a
show() method that will be called when the Load button is clicked.

28 toolkit.nonScrollingWrapper

Value

The button.

toolkit.makelLabel JavaScript function: Makes a label suitable for labelling a control.

Description

The label has translatable text and a help tooltip (if translated for).

Arguments

translations object translations[id].name is the string to use as label’s text, translations[id].help
is the string to use as the label’s tooltip. If id is undefined or null, translations.name
and translations.help are used.

container toolkit.HTMLControlContainerElement [optional] Where to put the label.
id string [optional] Where to look in translations for the text.
idFor string [optional] The id attribute of the HTML element that this element refers
to.
Value
The label.

toolkit.nonScrollingWrapper

JavaScript function: Returns a Positioned Element just containing one
element.

Description

This element does not gain scrollbars if it is too large for this returned container, and it will try to
take up its full size in the layout.

Arguments
element HTMLElement The element to be wrapped
verticalPadding
int The number of extra pixels above the element’s height to use as the returned
element’s default height.
horizontalPadding
int The number of extra pixels above the element’s width to use as the returned
element’s default width.
Value

The wrapper.

toolkit.optionsPage 29

toolkit.optionsPage JavaScript function: Returns a Container Element for displaying con-
trols vertically.

Description

Returns an element with a makeSubElement method that adds elements vertically. This differs from
toolkit.stack in that the labels will be aligned on the left and the controls will be aligned on the
right. It would make a nice options page, for example.

Value

A Container Element for displaying elements vertically.

toolkit.overlay JavaScript function: A panel with an overlay.

Description

Returns a Positioned Element consisting of two elements placed in the same position. To be able
to see the lower (main) element you must either call hide() on the overlay, or make it transparent
with CSS.

Arguments
overlay HTMLElement The higher element. Any getData() or setData() call on the
returned element will not be passed on to this overlay element.
main toolkit.HTMLPositionedElement The lower element.
Value

The element containing both elements.

30 toolkit.paramBoolean

toolkit.pages JavaScript function: Returns a Positioned Element for displaying con-
trols in tabbed pages.

Description

Only one page will be visible at a time. The returned element has getData and setData methods
that take or return (respectively) an object with keys that are the IDs of the pages.

Arguments

pageElements object dictionary of pagelds to elements (that will be added to the return value
of this function). These elements each need methods show, hide and setData
(like the ones returned by toolkit.header, toolkit.scrollingWrapper, toolkit.nonScrollingWray
toolkit.leftSideBar, (that is to say, Positioned Elements) if they are to be
output pages. Only show and hide if they are to be available permanently and
not be set through the setData call.

labelTranslations
object dictionary of pagelds to objects with keys name (for the label text) and
help (for tooltip help HTML)

tabIdPrefix string If you want HTML IDs for your tab elements, set this and the ID will
be set to tabIdPrefix + pageld.

Value

An element that has the tabs and the tabs that switch between them. The active tab has the "active"
class. It has the following extra methods: setData(data): data is a dictionary with keys matching
the pagelds. The values are passed to the setData() functions of the corresponding elements.
Pages without any data (and their corresponding radio buttons) are summarily disabled. Pages with
data are enabled. reposition(): sets each page to the same dimensions as the container and calls
each page’s reposition() method (if it exists).

toolkit.paramBoolean JavaScript function: Returns a checkbox input Toolkit Control.

Description

A control for a boolean value rendered as a checkbox.

toolkit.paramColor 31

Arguments
id string when getData or setData is called on the container, the value at 'id’
refers to this selector. The HTML id is set to 'param-' + id.
container toolkit.HTMLContainerElement [optional] Where to put the control.

translations object Optional mapping: translations.id is the name of the control to be
displayed and translations.help is help text to be displayed if the user hovers
over the label

initial string Optional initial value for the control
callback function Optional function to be called whenever the input value changes
Value

Checkbox input control.

toolkit.paramColor JavaScript function: Returns a colour input Toolkit Control.

Description

It is a standard HTML input control with type color. The value returned is a six-hex-digit string
prefixed with a #.

Arguments
id string when getData or setData is called on the container, the value at 'id'
refers to this selector. The HTML id is set to 'param-' + id.
container toolkit.HTMLContainerElement [optional] Where to put the control.

translations object Optional mapping: translations.id is the name of the control to be
displayed and translations.help is help text to be displayed if the user hovers
over the label

initial string Optional initial value for the control
callback function Optional function to be called whenever the input value changes
Value

Text input control.

32

toolkit.paramInteger

toolkit.paramFloat JavaScript function: Returns a floating point input Toolkit Control.

Description

Values outside the permitted range will gain the "invalid" class, but there is no other effect.

Arguments
id

container

translations

initial

callback

min

max
Value

Text input control.

string when getData or setData is called on the container, the value at 'id'
refers to this selector. The HTML id is set to 'param-' + id.

toolkit.HTMLContainerElement [optional] Where to put the control.

object Optional mapping: translations.id is the name of the control to be
displayed and translations.help is help text to be displayed if the user hovers
over the label

string Optional initial value for the control
function Optional function to be called whenever the input value changes
float Minimum permitted value (optional).

float Maximum permitted value (optional).

toolkit.paramInteger JavaScript function: Returns an integer input Toolkit Control.

Description

Values outside the permitted range will gain the "invalid" class, but there is no other effect.

Arguments

id

container

translations

initial
callback
min

max

string when getData or setData is called on the container, the value at 'id’
refers to this selector. The HTML id is set to 'param-' + id.

toolkit.HTMLContainerElement [optional] Where to put the control.

object Optional mapping: translations.id is the name of the control to be
displayed and translations.help is help text to be displayed if the user hovers
over the label

string Optional initial value for the control
function Optional function to be called whenever the input value changes
int Minimum permitted value (optional).

int Maximum permitted value (optional).

toolkit.paramSelector

Value

Text input control.

33

toolkit.paramSelector JavaScript function: Returns a custom selection box Toolkit Control.

Description

This is different to a normal selection box because it allows tooltips on the items within the list.

Arguments
id string when getData or setData is called on the container, the value at 'id’
refers to this selector. The HTML id is set to 'param-' + id.
container toolkit.HTMLContainerElement [optional] Where to put the control. the con-
tainer came from optionsPage () the new selection box will be formatted as a
table row.
labelTranslations
object A dictionary with two optional keys; 'name’ gives the label to display
and ’help’ gives HTML help text. ’help’ has no effect unless name’ is also
present.
values Array.<int> An array of the IDs of the options in the selection.
valueTranslations
object A dictionary whose keys are the IDs of the options in the selection, the
values are more dictionaries. These dictionaries have two optional keys; 'name’
(giving the name to display for this option) and 'help' (giving tooltip HTML
text).
initial string ID of the option to start selecting (optional)
callback function The (nullary) function to call when the value changes (optional)
Value

The selection box.

34 toolkit.preformattedText

toolkit.paramText JavaScript function: Returns a text input Toolkit Control.

Description

Any text is permitted unless a validate function is supplied.

Arguments
id string when getData or setData is called on the container, the value at 'id'
refers to this selector. The HTML id is set to 'param-' + id.
container toolkit.HTMLContainerElement [optional] Where to put the control.

translations object Optional mapping: translations.id is the name of the control to be
displayed and translations.help is help text to be displayed if the user hovers
over the label

initial string Optional initial value for the control
callback function Optional function to be called whenever the input value changes
validate function Optional function returning true if passed a value that this control

should accept or false otherwise.

Value

Text input control.

toolkit.preformattedText

JavaScript function: A static text Toolkit Control in a preformatted
style.

Description

This element is like a control in that it has a label and actual text content, but it is not interactive.

Arguments
id string The ID of this control within the container
container toolkit.HTMLContainerElement [optional] Where to put the control.

translations object An object with keys 'name’' for the label displayed by the text and
"help' for tooltop text.

Value

The static text element. The text content can be set by calling its setData() function with any plain
text.

toolkit.progressBar 35

toolkit.progressBar JavaScript function: Returns a Positioned Element progress bar.

Description

The progress is set by calling the setData() method.

Value

The progress bar element.

toolkit.rightSideBar JavaScript function: A panel with a side bar.

Description

Returns a Positioned Element consisting of a right side bar and a body.

Arguments

bar HTMLElement The side bar element.

main toolkit.HTMLPositionedElement The body element.
Value

The Toolkit Positioned Element containing the side bar and body.

toolkit.scrollingWrapper
JavaScript function: Returns a Positioned Element just containing one
element.

Description

This element gains scrollbars if it is too large for this returned container.

Arguments

element HTMLElement The element to be wrapped

verticalPadding
int The number of extra pixels above the element’s height to use as the returned
element’s default height.

horizontalPadding
int The number of extra pixels above the element’s width to use as the returned
element’s default width.

36 toolkit.stack

Value
The wrapper.
toolkit.setAsBody JavaScript function: Replaces the <main> tag in the document with
this element.
Description

The element will have its resize event wired up. If el is a Toolkit Positioned Element, it will be
resized correctly when the window is resized.

Arguments
el HTMLElement The element to set as <main>
toolkit.stack JavaScript function: Returns a Container Element for displaying con-
trols vertically.
Description

Returns a Container Element with a makeSubElement method that adds elements vertically, with
the labels above the controls they correspond to.

Arguments

elements Array.<HTMLElement> Initial array of elements to be added.

Value

A Container Element for displaying elements vertically.

toolkit.staticText 37

toolkit.staticText JavaScript function: A static text Toolkit Control.

Description

This element is like a control in that it has a label and actual text content, but it is not interactive.

Arguments
id string The ID of this control within the container
container toolkit.HTMLContainerElement [optional] Where to put the control.

translations object An object with keys 'name’' for the label displayed by the text and
"help' for tooltop text.

Value

The static text element. The text content can be set by calling its setData() function. This text can
include HTML entities, so you might want to replace & with & and < with &1t; if it is plain

text.

toolkit.verticalDivide
JavaScript function: Left/right panels with a draggable divider.

Description

Returns a Positioned Element with a draggable vertical divider bordering two other Positioned

Elements.
Arguments
container toolkit.HTMLPositionedElement The container to divide. If null, a container
will be created for you.
left toolkit.HTMLPositionedElement The element to put on the left of the divider.
right toolkit.HTMLPositionedElement The element to put on the right of the di-
vider.
Value

The element created. If a container was provided it is this argument.

38 toolkit.withTimeout

toolkit.whenQuiet JavaScript function: Transforms a function that should not be called
too often into a function that can be called as often as you like.

Description

The returned function can be called as often as you like with whatever arguments you like. If it is
called again within ticks ticks (a tick is 100ms), this call is ignored. If it is not called again within
this time, the arguments are passed on to the delegate function. In other words, in a string of calls
less than ticks x 100ms apart from each other, only the last of these calls actually happens.

Arguments
ticks int Duration (x 100ms) to wait until calling the delgate function.
f function Delegate function to be called ticks ticks after the last call to the
retuned function.
Value

Function that can be called often, resulting in fewer calls to the delegate function f.

toolkit.withTimeout JavaScript function: Adds a fake callback argument to a nullary func-
tion.

Description

Perhaps you have a nullary function that you want called when the user clicks a button, but the
toolkit.button function wants a unary function that has a completion callback so that the button
knows when to pop back up again. In this situation you might wrap your function with a call to
toolkit.withTimeout.

Arguments

fn function Nullary function to wrap.

Value

Unary function (taking one function as an argument) that simply calls fn immediately then calls its
argument again after 200ms.

Index

browseTo, 3
downloadCsv, 3

encodePlot, 4
encodePlotAs, 5

framework.shinylightFrameworkStart, 6

getAddress, 8
grDevices: :pdf, 4
grDevices: :png, 4

indexWithInit, 9

rrpcServer, 5,9
runR, 10, 16, 17

sendInfoText, 11, 12, 13,15
sendProgress, 11,12, 13,15
shinylight.call, 13
shinylight.initialize, 13
shinylight.makeTable, 14
shinylight.passToOther, 14
shinylight.runR, 15, I8
shinylight.setElementJson, 15
shinylight.setElementPlot, 16
shinylight.setElementText, 16
shinylight.setGridResult, 16
shinylight.setGridResultWithNamedRows,
17
slRunRServer, 8, 17, 19, 20
slServer, 6,8, 11, 18, 18, 20
s1Stop, 10, 18, 19, 20

toolkit.
toolkit.
toolkit.

all, 21

any, 21, 22
banner, 21, 24
toolkit.button, 22, 38
toolkit.deref, 22
toolkit.footer, 23

39

toolkit.
toolkit.
toolkit.
toolkit.

toolkit.

toolkit.
toolkit.

toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.
toolkit.

forEach, 23

groupTitle, 23

header, 24, 30
HTMLContainerElement, 24, 25,
31-34, 37
HTMLControlContainerElement,
25,28
HTMLControlElement, 25
HTMLPositionedElement, 23, 24,
26, 27, 29, 35, 37

image, 26

leftSideBar, 27, 30
loadFileButton, 27
makelLabel, 28
nonScrollingWrapper, 26, 28, 30
optionsPage, 23, 24, 29
overlay, 29

pages, 30
paramBoolean, 25, 30
paramColor, 25, 31
paramFloat, 25, 32
paramInteger, 25, 32
paramSelector, 25, 33
paramText, 24, 25, 34
preformattedText, 34
progressBar, 35
rightSideBar, 35
scrollingWrapper, 26, 30, 35
setAsBody, 36
stack, 24, 29, 36
staticText, 37
verticalDivide, 37
whenQuiet, 38
withTimeout, 22, 38, 38

	browseTo
	downloadCsv
	encodePlot
	encodePlotAs
	framework.shinylightFrameworkStart
	getAddress
	indexWithInit
	rrpcServer
	runR
	sendInfoText
	sendProgress
	shinylight.call
	shinylight.initialize
	shinylight.makeTable
	shinylight.passToOther
	shinylight.runR
	shinylight.setElementJson
	shinylight.setElementPlot
	shinylight.setElementText
	shinylight.setGridResult
	shinylight.setGridResultWithNamedRows
	slRunRServer
	slServer
	slStop
	toolkit.all
	toolkit.any
	toolkit.banner
	toolkit.button
	toolkit.deref
	toolkit.footer
	toolkit.forEach
	toolkit.groupTitle
	toolkit.header
	toolkit.HTMLContainerElement
	toolkit.HTMLControlContainerElement
	toolkit.HTMLControlElement
	toolkit.HTMLPositionedElement
	toolkit.image
	toolkit.leftSideBar
	toolkit.loadFileButton
	toolkit.makeLabel
	toolkit.nonScrollingWrapper
	toolkit.optionsPage
	toolkit.overlay
	toolkit.pages
	toolkit.paramBoolean
	toolkit.paramColor
	toolkit.paramFloat
	toolkit.paramInteger
	toolkit.paramSelector
	toolkit.paramText
	toolkit.preformattedText
	toolkit.progressBar
	toolkit.rightSideBar
	toolkit.scrollingWrapper
	toolkit.setAsBody
	toolkit.stack
	toolkit.staticText
	toolkit.verticalDivide
	toolkit.whenQuiet
	toolkit.withTimeout
	Index

