Package ‘shinyHugePlot’

October 1, 2024

Type Package

Title Efficient Plotting of Large-Sized Data

Version 0.3.0

Maintainer Junta Tagusari <j.tagusari@eng.hokudai.ac.jp>
Language en-US

Depends R (>=4.2.0), plotly (>=4.10.0), shiny (>=1.7.1)

Imports R6 (>=2.5.1), dplyr (>= 1.0.9), tibble (>= 3.1.7), tidyr (>=
1.2.0), tidyselect (>= 1.1.2), data.table (>= 1.14.2), stringr
(>= 1.4.0), nanotime (>= 0.3.6), assertthat (>= 0.2.1), bit64
(>=4.0.5), purrr (>=0.3.4), jsonlite (>= 1.8.0), lazyeval (>=
0.2.2), shinyjs (>=2.1.0), htmltools (>= 0.5.2), rlang (>=
1.0.5), duckdb (>=1.0.0), DBI (>=1.2.2)

Suggests testthat

Description A tool to plot data with a large sample size using 'shiny' and 'plotly’.
Relatively small samples are obtained from the original data using a specific algorithm.
The samples are updated according to a user-defined x range.
Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost (2022) <https:
//github.com/predict-idlab/plotly-resampler>.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.3.1
NeedsCompilation no

Author Junta Tagusari [aut, cre, cph],
Jonas Van Der Donckt [cph],
Jeroen Van Der Donckt [cph],
Emiel Deprost [cph]

Repository CRAN
Date/Publication 2024-10-01 13:50:02 UTC

https://github.com/predict-idlab/plotly-resampler
https://github.com/predict-idlab/plotly-resampler

2 aggregator

Contents
AZEICZAOT .« . . v vt e e e e e e e e e e e e e e e 2
candlestick_aggregator 4
custom_func_aggregator oo e e e e e 5
custom_stat_aggregator e e e e e e e e e e 6
downsampler 8
eLTTB_aggregator o v i it e i e e e e e e e 12
liSt_ag@regators e e e e 13
LTTB_aggregator o v v it e i e e e e e e e e e e e e e 13
Max_aggregator vttt e e e e e e e e e e e e e e e e e 15
MIN_Max_aggregator v v v v v v v e e e e e e e e e e e e e e e 16
min_max_ovlp_aggregatoro e e 17
noise_fluct L e 18
nth_pnt_aggregator e 18
null_aggregator e e 19
plotly_build_light 20
plotly_datahandler 21
range_stat_ag@regator e e e e e e e e e e e e e e e 23
MS_MAX_AZEIEZAOT . . . « . v v v v e e e e et e e e e e e e e e e e e e e 25
INZ_AZETEZALOT . . v v v v e 26
shinyHugePlot 27
shiny_hugeplot e 28
updatePlotlyH 32

Index 33

aggregator RG6 base class for the aggregation
Description

A base class for the aggregation, which defines the structure of the class and is not available on a
stand-alone basis.

Format

An R6: :R6Class object

Active bindings

parameters Parameters for the aggregation, returned as a named list. Generate a matrix using x

and n_out Apply function for nanotime

aggregator 3

Methods

Public methods:

e aggregator$new()

e aggregator$aggregate()

* aggregator$set_parameters()
* aggregator$clone()

Method new(): Constructor of aggregator

Usage:

aggregator$new(
interleave_gaps = FALSE,
NA_position = "begin”,
coef_gap = 3

)

Arguments:
. Not used.

interleave_gaps, NA_position, coef_gap Arguments passedto self$set_parameters, op-
tional.

Method aggregate(): Aggregates the given input and returns samples.
Usage:
aggregator$aggregate(x, y, n_out, db = NULL)

Arguments:
x, y Indexes and values that has to be aggregated.
n_out Integer or numeric.

db Character. The duck-db that contains the x-y data. The number of samples that the aggre-
gated data contains.

Method set_parameters(): Setting of the parameters for the aggregation

Usage:
aggregator$set_parameters(..., interleave_gaps, NA_position, coef_gap)

Arguments:
. Not used.

interleave_gaps Boolean, optional. Whether NA values should be added when there are gaps
/ irregularly sampled data. Irregular gaps between samples are determined whether the gap
is larger than the median of the sample gaps times the coefficient for detecting irregular
gaps. By default, FALSE.

NA_position Character, optional. Indicates where NAs are placed when gaps are detected. If
"end", the first point after a gap will be replaced. If "begin”, the last point before a gap will
be replaced. If "both"”, both the encompassing gap data points are replaced. This parameter
is only effective when interleave_gaps == TRUE. By default, "begin”.

coef_gap Numeric, optional. The coefficient to detect irregular gaps. By default, 3.0.

4 candlestick_aggregator

accepted_datatype Character, optional. This parameter indicates the supported data classes.
If all data classes are accepted, set it to NULL.

Method clone(): The objects of this class are cloneable with this method.
Usage:
aggregator$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

candlestick_aggregator
Aggregation which returns the candle sticks

Description
This aggregator divides the data into no-overlapping intervals and calculate the first, maximum,
minimum, and last values of the data, which represents candle sticks.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> candlestick_aggregator

Methods
Public methods:

e candlestick_aggregator$new()
e candlestick_aggregator$clone()

Method new(): Constructor of the aggregator.

Usage:

candlestick_aggregator$new(..., interleave_gaps, coef_gap, NA_position)

Arguments:

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

yupr, y, ylwr Functions. Statistical values are calculated using this function. By default, max,
mean, min, respectively. Note that the NA values are omitted automatically.

Method clone(): The objects of this class are cloneable with this method.
Usage:
candlestick_aggregator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

custom_func_aggregator 5

Examples

data(noise_fluct)
agg <- candlestick_aggregator$new(interleave_gaps = TRUE)
d_agg <- agg$aggregate(nanotime::as.nanotime(noise_fluct$time), noise_fluct$f500, 100)
fig <- plotly::plot_ly(
x = d_agg$x, open = d_agg$open, high = d_agg$high, low = d_agg$low, close = d_agg$close,
type = "candlestick”
)

custom_func_aggregator
Aggregation using a user-defined function.

Description

Arbitrary function can be applied using this aggregation class.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> custom_func_aggregator

Methods

Public methods:

e custom_func_aggregator$new()
* custom_func_aggregator$set_aggregation_func()
e custom_func_aggregator$clone()

Method new(): Constructor of the Aggregator.

Usage:
custom_func_aggregator$new(
aggregation_func,
interleave_gaps,
coef_gap,
NA_position

)

Arguments:

aggregation_func Function. User-defined function to aggregate data, of which arguments are
X, y and n_out.

6 custom_stat_aggregator

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

Method set_aggregation_func(): Set a function to aggregate the data

Usage:
custom_func_aggregator$set_aggregation_func(aggregation_func)

Arguments:
aggregation_func Function. User-defined function to aggregate data, of which arguments are
X, y and n_out.

Method clone(): The objects of this class are cloneable with this method.

Usage:
custom_func_aggregator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

custom_agg_func <- function(x, y, n_out) {
bin_width <- floor(length(x)/n_out)
x_idx <- seq(floor(bin_width / 2), bin_width *x n_out, bin_width)
y_mat <- y[1:(bin_width * n_out)] %>%
matrix(nrow = bin_width)
y_agg <- apply(y_mat, 2, quantile, probs = 0.25)
return(list(x = x[x_idx], y = y_agg))
3
data(noise_fluct)
agg <- custom_func_aggregator$new(
aggregation_func = custom_agg_func, interleave_gaps = TRUE
)
d_agg <- agg$aggregate(
x = noise_fluct$time, y = noise_fluct$f500, n_out = 1000

)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

custom_stat_aggregator
Aggregation which returns arbitrary statistics

Description

This aggregator divides the data into no-overlapping intervals and calculate specific statistical values
such as the mean.

Format

An R6: :R6Class object

custom_stat_aggregator 7

Super class

shinyHugePlot: :aggregator -> custom_stat_aggregator

Methods

Public methods:

e custom_stat_aggregator$new()
e custom_stat_aggregator$clone()

Method new(): Constructor of the Aggregator.
Constructor of the Aggregator.

Usage:

custom_stat_aggregator$new(

y_func = mean,
x_mean = TRUE,
interleave_gaps,
coef_gap,
NA_position

)
Arguments:

y_func Function. Statistical values are calculated using this function. By default, mean.

x_mean Boolean. Whether using the mean values or not for the x values. If not, the x values
that give the specific y values are used. E.g., if you use max as the aggregation_func and
set this argument to FALSE, x values that give the maximum y values are used. By default,
TRUE.

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
custom_stat_aggregator$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

data(noise_fluct)

agg <- custom_stat_aggregator$new(y_func = mean, interleave_gaps = TRUE)
d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

8 downsampler

downsampler RO class for down-sampling data

Description

A class for down-sampling data with a large number of samples. An instance contains (the reference
of) original data, layout of the figure, and options for aggregating the original data. An interactive
plot for displaying large-sized data can be obtained using the figure, down-sampler and its options
included in the instance, while making the plot using shiny_hugeplot function is easier (see ex-
amples). See the super class (plotly_datahandler) to find more members to handle the data in
plotly.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :plotly_datahandler -> downsampler

Active bindings

downsample_options Options for aggregating (down-sampling) data registered in this instance.
n_out_default Default sample size.

aggregator_default Default aggregator instance.

Methods

Public methods:

e downsampler$new()

* downsampler$add_trace()

* downsampler$update_trace()

e downsampler$set_downsample_options()

¢ downsampler$clone()

Method new(): To construct an instance, original data, layout of the figure, and options for
aggregating the original data are necessary. The original data and the layout of the figure can be
given by providing a plotly object (figure argument). The options for aggregating the original
data can be given by providing an aggregator (aggregator argument) and the number of samples
(n_out argument). See the constructor of the plotly_datahandler class for more information
on other arguments.

Usage:

downsampler 9

downsampler$new(
figure = NULL,
formula = NULL,

srcs = NULL,
srcs_ext = list(),
n_out = 1000L,

aggregator = min_max_aggregator$new(),
tz = Sys.timezone(),
use_light_build = TRUE,
legend_options = list(name_prefix = "<b style=\"color:sandybrown\">[S] ",
name_suffix = "", xdiff_prefix = "<i style=\"color:#fc9944\"> ~" xdiff_suffix =
"</i>"y,
verbose = F

)

Arguments:

figure, srcs, srcs_ext, formula, legend_options, tz, use_light_build Arguments passed
to plotly_datahandler$new.

n_out Integer or numeric. The number of samples shown after down-sampling. By default
1000.

aggregator An instance of an R6 class for aggregation. Select an aggregation function. The

list of the functions are obtained using 1ist_aggregators. By default, mnin_max_aggregator$new().
verbose Boolean. Whether detailed messages to check the procedures are shown. By default,

FALSE.

Method add_trace(): Add a new series to the data registered in the instance. If a data frame
(traces_df argument) compliant with self$orig_datais given, it will be added to self$orig_data.
If attributes to construct a plotly object (... argument) are given, a data frame is constructed
and added. Options for aggregating data can be set using aggregator and n_out arguments. It is

a wrapper of self$set_trace_data and self$set_downsample_options. See these methods

for more information. Note that the traces of the figure are not updated with this method and
self$update_trace is necessary.

Usage:
downsampler$add_trace(..., traces_df = NULL, n_out = NULL, aggregator = NULL)

Arguments:
..., traces_df Arguments passedto self$set_trace_data (see the super class of plotly_datahandler)
n_out, aggregator Arguments passed to self$set_downsample_options.

Method update_trace(): Update traces of the figure registered in the instance (self$figure$x$data)
according to re-layout order (relayout_order argument). Using reset and reload arguments,

traces are updated without re-layout orders. It just registers the new traces and returns nothing by
default. It returns the new traces if send_trace is TRUE.

Usage:
downsampler$update_trace(
relayout_order = 1list(NULL),
reset = FALSE,
reload = FALSE,

10 downsampler
send_trace = FALSE
)
Arguments:
relayout_order Named list. A list generated by plotlyjs_relayout, which is obtained us-
ing plotly::event_data. e.g., If you would like set the range of the 2nd x axis to [10.0,
21.5],list("xaxis2.range[0@]" =10.0, ~xaxis2.range[1]" =21.5). If you would like
reset the range of the 1st x axis, list(xaxis.autorange = TRUE, xaxis.showspike =
TRUE).
reset Boolean. If it is TRUE, all other arguments are neglected and the figure will be reset (all
the ranges of x axes are initialized). By default, FALSE.
reload Boolean. If it is TRUE, the ranges of the figure are preserved but the aggregation will be
conducted with the current settings. By default, FALSE.
send_trace Boolean. If it is TRUE, a named list will be returned, which contains the indexes of
the traces that will be updated (trace_idx_update) and the updated traces (new_trace).
By default, FALSE.
Method set_downsample_options(): In the instance, options for aggregating data are regis-
tered as data frame. (see self$downsample_options.) Using this method, the options can be
set.
Usage:
downsampler$set_downsample_options(uid = NULL, n_out = NULL, aggregator = NULL)
Arguments:
uid Character, optional. The unique id of the trace. If NULL, all the options registered in this
instance are updated. By default, NULL.
n_out Numeric or integer, optional. The number of samples output by the aggregator. If NULL,
the default value registered in this instance is used. By default, NULL.
aggregator aggregator object, optional. An instance that aggregate the data. If NULL, the
default value registered in this instance is used.
Method clone(): The objects of this class are cloneable with this method.
Usage:
downsampler$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples

data(noise_fluct)

example 1 : Easy method using shiny_hugeplot
shiny_hugeplot(noise_fluct$time, noise_fluct$f500)

example 2 : Manual method using a downsampler object
fig <- plot_ly(

X = noise_fluct$time,
y = noise_fluct$f500,

downsampler

type = "scatter”,
mode = "lines"
) %%

layout(xaxis = list(type = "date")) %>%
shinyHugePlot: :plotly_build_light()

ds <- downsampler$new(
figure = fig,
aggregator = min_max_aggregator$new(interleave_gaps = TRUE)
)
ui <- fluidPage(
plotlyOutput(outputId = "hp", width = "800px", height = "600px")
)
server <- function(input, output, session) {

output$hp <- renderPlotly(ds$figure)

observeEvent(plotly::event_data("plotly_relayout”),{
updatePlotlyH(session, "hp", plotly::event_data(”"plotly_relayout”), ds)
b))

3

shinyApp(ui = ui, server = server)

example 3 : Add another series of which aggregator is different

noise_events <- tibble(
time = c("2022-11-09 12:25:50", "2022-11-09 12:26:14"),
level = c(60, 60)

)

ds$add_trace(
X = noise_events$time, y = noise_events$level, name = "event”,
type = "scatter”, mode = "markers”,
aggregator = null_aggregator$new()

)
ds$update_trace(reset = TRUE)

server <- function(input, output, session) {
output$hp <- renderPlotly(ds$figure)
observeEvent(plotly::event_data("plotly_relayout”),{

updatePlotlyH(session, "hp", plotly::event_data(”"plotly_relayout”), ds)
b))

shinyApp(ui = ui, server = server)

11

12 eLTTB_aggregator

eLTTB_aggregator Aggregation using local minimum and maximum values, and Largest
Triangle Three Buckets (LTTB) method.

Description

Efficient version off LTTB by first reducing really large data with the min_max_ov1lp_aggregator
and then further aggregating the reduced result with LTTB_aggregator.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> eLTTB_aggregator

Public fields
LTTB An R6 LTTB_aggregator instance

minmax An R6 min_max_ovlp_aggregator instance

Methods

Public methods:

e eLTTB_aggregator$new()
e eLTTB_aggregator$clone()

Method new(): Constructor of the aggregator.
Usage:
eLTTB_aggregator$new(..., interleave_gaps, coef_gap, NA_position)
Arguments:

. Arguments pass to the constructor of aggregator, LTTB_aggregator and min_max_oblp_aggregator
objects.
interleave_gaps, coef_gap, NA_position Arguments pass to the constructor of aggregator
object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
eLTTB_aggregator$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

list_aggregators 13

Examples

data(noise_fluct)

agg <- elLTTB_aggregator$new(interleave_gaps = TRUE)

d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

list_aggregators Show the aggregation functions

Description

It displays all the aggregators registered in the package. No arguments are necessary.

Usage

list_aggregators()

Examples

list_aggregators()

LTTB_aggregator Aggregation using Largest Triangle Three Buckets (LTTB) method.

Description

The LTTB method aggregates the huge samples using the areas of the triangles formed by the
samples. Numerical distances are employed in this class, which requires the ratio between x and y
values. When the x is datetime, nanosecond is a unit. When the x is factor or character, it will be
encoded into numeric codes.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> LTTB_aggregator

14 LTTB_aggregator

Methods

Public methods:

e LTTB_aggregator$new()
e LTTB_aggregator$clone()

Method new(): Constructor of the aggregator.

Usage:
LTTB_aggregator$new(

nt_y_ratio = 1e+@9,
x_y_ratio =1,
interleave_gaps,
coef_gap,
NA_position

)

Arguments:

x_y_ratio, nt_y_ratio Numeric. These parameters set the unit length of the numeric x and
nanotime x. For example, setting x_y_ratio to 2 is equivalent to assuming 2 is the unit
length of x (and 1 is always the unit length of y). The unit length is employed to calculate
the area of the triangles.

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object. Note that accepted_datatype has default value. Downsample with the Largest Tri-
angle Three Buckets (LTTB) aggregation method

Method clone(): The objects of this class are cloneable with this method.

Usage:
LTTB_aggregator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

data(noise_f1luct)
agg <- LTTB_aggregator$new(interleave_gaps = TRUE)
d_agg <- agg$aggregate(
x = noise_fluct$time, y = noise_fluct$f500, n_out = 1000

)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

max_aggregator 15

max_aggregator Aggregation using local maximum (absolute) values.

Description

Divide the data into small data ranges and find the maximum (absolute) value of each. It may be
useful for the waveform data.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> max_aggregator

Methods
Public methods:

* max_aggregator$new()
* max_aggregator$clone()

Method new(): Constructor of the Aggregator.

Usage:

max_aggregator$new(..., interleave_gaps, coef_gap, NA_position, use_abs = TRUE)

Arguments:

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

use_abs Logical. If TRUE, the absolute value is used.

Method clone(): The objects of this class are cloneable with this method.

Usage:
max_aggregator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

data(noise_fluct)
agg <- max_aggregator$new(interleave_gaps = TRUE)
d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)

plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

16 min_max_aggregator

min_max_aggregator Aggregation using local minimum and maximum values.

Description

Divide the data into small data ranges and find the maximum and minimum values of each. Note
that many samples may be replaced with NA, if interleave_gaps = TRUE and the original data is
increased or decreased monotonically. Use min_max_ovlp_aggregator instead in that case. n_out
must be even number.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> min_max_aggregator

Methods
Public methods:

* min_max_aggregator$new()
* min_max_aggregator$clone()

Method new(): Constructor of the Aggregator.

Usage:

min_max_aggregator$new(..., interleave_gaps, coef_gap, NA_position)

Arguments:

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
min_max_aggregator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

data(noise_fluct)

agg <- min_max_aggregator$new(interleave_gaps = TRUE)

d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

min_max_ovlp_aggregator 17

min_max_ovlp_aggregator
Aggregation using local minimum and maximum values of which small

data ranges have 50% overlaps.

Description

Divide the data into 50% overlapping intervals and find the maximum and minimum values of each.
n_out must be even number.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> min_max_ovlp_aggregator

Methods
Public methods:

e min_max_ovlp_aggregator$new()
e min_max_ovlp_aggregator$clone()

Method new(): Constructor of the Aggregator.

Usage:

min_max_ovlp_aggregator$new(..., interleave_gaps, coef_gap, NA_position)

Arguments:

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
min_max_ovlp_aggregator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

data(noise_fluct)

agg <- min_max_ovlp_aggregator$new(interleave_gaps = TRUE)

d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

18 nth_pnt_aggregator

noise_fluct Time-series fluctuations in sound level

Description

Results of the measurement of the sound level, where peaks due to road traffic are observed.

Usage

noise_fluct

Format

A data frame with 32,001 rows and 4 columns:

time time
500, £1000, £2000 Octave-band sound levels whose center frequencies are 500, 1000 and 2000 Hz.

Author(s)

Junta Tagusari <j . tagusari@eng.hokudai.ac.jp>

nth_pnt_aggregator Aggregation which returns every Nth point.

Description

Aggregation by extracting every Nth data.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> nth_pnt_aggregator

Methods

Public methods:

* nth_pnt_aggregator$new()
* nth_pnt_aggregator$clone()

Method new(): Constructor of the Aggregator.
Usage:

null_aggregator 19

nth_pnt_aggregator$new(..., interleave_gaps, coef_gap, NA_position)

Arguments:

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
nth_pnt_aggregator$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

data(noise_fluct)

agg <- nth_pnt_aggregator$new(interleave_gaps = TRUE)

d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500, 1000)
plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines")

null_aggregator NULL aggregator.

Description

It does not aggregate the data but returns the full samples within the range.

Format

An R6: :R6Class object

Super class

shinyHugePlot: :aggregator -> null_aggregator

Methods

Public methods:

e null_aggregator$new()
* null_aggregator$aggregate()
* null_aggregator$clone()

Method new(): Constructor of the Aggregator.

Usage:
null_aggregator$new(..., interleave_gaps, coef_gap, NA_position)

Arguments:

20

plotly_build_light

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.
Method aggregate(): A function that does nothing other than inserting NAs.

Usage:
null_aggregator$aggregate(...)

Arguments:
. Arguments passed to super$aggregate.

Method clone(): The objects of this class are cloneable with this method.
Usage:
null_aggregator$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

data(noise_fluct)
agg <- null_aggregator$new(interleave_gaps = TRUE)
d_agg <- agg$aggregate(noise_fluct$time, noise_fluct$f500)
plotly::plot_ly(

x = d_agg$x[1:100], y = d_agg$y[1:100], type = "scatter”, mode = "lines”
)

plotly_build_light Build plotly data with low computation cost

Description

Before illustrating data using plotly, it must be built (figurexdata are need to be made using
figurexattrs). However, because a lot of procedures are necessary, the computation cost is
relatively high. With this function, the data is built in quite short time by omitting several proce-
dures for high-frequency data. Note that this function is not universally applicable to all plotly
objects but made for high-frequency scatter data. plotly::plotly_build function may return
better results in specific cases although it takes more time.

Usage

plotly_build_light(fig, vars_hf = c("x", "y", "text”, "hovertext”))

Arguments
fig plotly object. Note that figxattrs is not NULL and each figxattrs
element has an element named x. This function generates figxdata using
figxattrs.
vars_hf Character, optional. Variable names where high frequency data is included. It

must include x.

plotly_datahandler 21

Value

built plotly object

Examples

data(noise_fluct)
plotly_build_light(
plotly::plot_ly(
x = noise_fluct$time,
y = noise_fluct$f500,
name = "level”,
type = "scatter”
)
)

plotly_build_light(
plotly::plot_ly(
data = noise_fluct,
X = ~time,
y = ~f500,
name = "level”,
type = "scatter”

plotly_datahandler R6 class for handling plotly data

Description

A class for handling plotly data, which defines functions used in the downsampler class

Format

An R6: :R6Class object

Public fields

figure plotly object.

Active bindings

orig_data Data frame representing plotly traces.

trace_df_default Data frame representing default values of plotly traces. name column rep-
resents the names of the attributes. required column represents whether the attributes are
necessary to construct a data frame of a trace. data column represents whether the attributes
are the data. default attributes represents default values of the attributes. When construct-
ing a data frame of a trace, default values are used if no values are assigned. class column
represents the acceptable classes of the attributes.

22 plotly_datahandler

Methods

Public methods:

e plotly_datahandler$new()

e plotly_datahandler$set_trace_data()

e plotly_datahandler$srcs_to_df ()

e plotly_datahandler$plotly_data_to_df ()
* plotly_datahandler$clone()

Method new(): Constructing an instance. The data contained in a plotly object (figure
argument) will be included in the instance (as a reference).

Usage:
plotly_datahandler$new(
figure = NULL,
srcs = NULL,
formula = NULL,
srcs_ext = NULL,
legend_options = list(name_prefix = "<b style=\"color:sandybrown\">[S] ",
name_suffix = "") xdiff_prefix = "<i style=\"color:#fc9944\"> ~" xdiff_suffix =
"</i>"),
tz = Sys.timezone(),
use_light_build = TRUE
)

Arguments:

figure plotly object. The traces of this object will be down-sampled.

srcs, srcs_ext, formula Character and formula, optional. srcs is the path of the source data
(or directory). When a directory is specified, srcs_ext is the extension of the source file.
formula is the formula to extract the data from the source data.

legend_options Named list, optional. Names of the elements are name_prefix, name_suffix,
xdiff_prefix, and xdiff_suffix. name_prefix and name_suffix will be added to the
name of the trace when the down-sampling is applied. By default, prefix is a bold orange
[S] and suffix is none. xdiff_prefix and xdiff_suffix are employed to show the mean
aggregation size of the down-sampling.

tz Character, optional. Time zone used to display time-series data. By default Sys. timezone().

use_light_build Boolean, optional. Whether plotly_build_light is used. It quickly build
scatter-type plotly data. By default, TRUE.

Method set_trace_data(): Inthe instance, datais contained as a data frame (see self$orig_data
for detailed information). Using this method, the data can be added or overwritten. If a data
frame (traces_df argument) is given, it will be added to self$orig_data or reassigned as
self$orig_data. If attributes to construct a plotly object (... argument) are given, a data
frame is constructed and used.

Usage:
plotly_datahandler$set_trace_data(..., traces_df = NULL, append = FALSE)

Arguments:

range_stat_aggregator 23

. Arguments to constitute a plotly attributes, optional. For instance, x, y, type, and mode
are applicable. See plotly: :plot_ly.

traces_df Data frame, optional. Data frame whose format is agreed with self$orig_data.
If traces_df is given, arguments in . .. are neglected.

append Boolean, optional. Whether the data is append or overwrite. By default, FALSE (the
traces are overwritten).

Method srcs_to_df (): Covert the data contained in srcs file(s) to a duck-db. A minimum data
and the path of the database will be returned.

Usage:

plotly_datahandler$srcs_to_df(fml, srcs, srcs_ext = NULL)

Arguments:

fml Formula. The formula to extract the data from the source data.

srcs Character. The name of the source file (e.g. data.parquet) or the directory can be specified.
srcs_ext Character, optional. The extension of the source file, if srcs is a directory.

Method plotly_data_to_df(): Covert the data contained in plotly object to a data frame. A
unique id (uid) is granted to each data. The data frame will be returned.

Usage:
plotly_datahandler$plotly_data_to_df(plotly_data, use_datatable = TRUE)
Arguments:

plotly_data List. The list whose elements are named list representing plotly traces. All
elements must have elements named type.

use_datatable Boolean. If it is TRUE, data such as x and y are nested in a data.table, of
which key column is x. By default, TRUE.
Method clone(): The objects of this class are cloneable with this method.
Usage:
plotly_datahandler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

range_stat_aggregator Aggregation which returns the ranges and nominal values within small
data ranges

Description
This aggregator divides the data into no-overlapping intervals and calculate specific statistics that
represents the range and nominal values of the data, such as the max, min and mean.

Format

An R6: :R6Class object

24 range_stat_aggregator

Super classes

shinyHugePlot: :aggregator ->shinyHugePlot: :rng_aggregator ->range_stat_aggregator

Methods

Public methods:

* range_stat_aggregator$new()
* range_stat_aggregator$clone()

Method new(): Constructor of the aggregator.

Usage:
range_stat_aggregator$new(
ylwr = min,
y = mean,
yupr = max,
interleave_gaps,
coef_gap,
NA_position

)

Arguments:

yupr, y, ylwr Functions. Statistical values are calculated using this function. By default, max,
mean, min, respectively. Note that the NA values are omitted automatically.

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
range_stat_aggregator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

data(noise_f1luct)

agg <- range_stat_aggregator$new(
ylwr = min, y = mean, yupr = max, interleave_gaps = TRUE

)

d_agg <- agg$aggregate(nanotime::as.nanotime(noise_fluct$time), noise_fluct$f500, 100)

plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines") %>%
plotly::add_trace(x = d_agg$x, y = d_agg$ylwr, type = "scatter”, mode = "lines")%>%
plotly::add_trace(x = d_agg$x, y = d_agg$yupr, type = "scatter”, mode = "lines")

rms_max_aggregator 25

rms_max_aggregator Aggregation which returns the rms and maximum values within small
data ranges

Description

This aggregator divides the data into no-overlapping intervals and calculate the root-mean-square
and the maximum absolute values of the data, which may be helpful to understand the waveforms.

Format

An R6: :R6Class object

Super classes

shinyHugePlot: :aggregator -> shinyHugePlot: :rng_aggregator -> rms_max_aggregator

Methods

Public methods:

* rms_max_aggregator$new()
* rms_max_aggregator$clone()

Method new(): Constructor of the aggregator.

Usage:

rms_max_aggregator$new(
interleave_gaps,
coef_gap,
NA_position,
use_abs = TRUE

)

Arguments:

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.

use_abs Boolean. If ‘TRUE‘, the maximum absolute values are calculated.

Method clone(): The objects of this class are cloneable with this method.

Usage:
rms_max_aggregator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

26 rng_aggregator

Examples

data(noise_fluct)

agg <- rms_max_aggregator$new(
ylwr = min, y = mean, yupr = max, interleave_gaps = TRUE

)

d_agg <- agg$aggregate(nanotime::as.nanotime(noise_fluct$time), noise_fluct$f500, 100)

plotly::plot_ly(x = d_agg$x, y = d_agg$y, type = "scatter”, mode = "lines") %>%
plotly::add_trace(x = d_agg$x, y = d_agg$ylwr, type = "scatter”, mode = "lines")%>%
plotly::add_trace(x = d_agg$x, y = d_agg$yupr, type = "scatter”, mode = "lines")

rng_aggregator Aggregation that returns ranges of the data.

Description

A super class for describing aggregator that returns x, y, ylwr and yupr values based on given x
and y data.

Format

An R6: :R6Class object

Value

List of which elements represent the ranges. If there are no NAs, the length of the list is 1; multiple
lists are obtained if there are NAs. Each element of list has x and y values that surround the range of
values.

Super class

shinyHugePlot: :aggregator -> rng_aggregator

Methods
Public methods:

* rng_aggregator$new()

* rng_aggregator$as_plotly_range()
* rng_aggregator$as_range()

* rng_aggregator$clone()

Method new(): Constructor of the Aggregator.

Usage:
rng_aggregator$new(interleave_gaps, coef_gap, NA_position, ...)

Arguments:

shinyHugePlot 27

interleave_gaps, coef_gap, NA_position, ... Arguments pass to the constructor of aggregator
object.
Method as_plotly_range(): Compute a plotly trace to illustrate the range of the data.

Usage:
rng_aggregator$as_plotly_range(x, y, ylwr, yupr, opacity = 0.5)

Arguments:
X, ¥, ylwr, yupr Outputs of the sub class of rng_aggregator.
opacity Numeric, optional. Opacity of the range fill. By default, 0.5.

Method as_range(): Compute x, ylwr and yupr from a plotly trace made by self$as_plotly_range.

Usage:
rng_aggregator$as_range(prng)

Arguments:
prng List that represents range values, which must contains x, y. Note that the list may be an

element of a list generated by self$as_plotly_range.
Method clone(): The objects of this class are cloneable with this method.

Usage:
rng_aggregator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

shinyHugePlot shinyHugePlot

Description

An interactive plot for data with a large sample size using shiny andplotly can be obtained. For
an easy application, see shiny_hugeplot function. For a manual application, see downsampler

class.

Author(s)
Maintainer: Junta Tagusari <j.tagusari@eng.hokudai.ac. jp> [copyright holder]
Other contributors:
* Jonas Van Der Donckt [copyright holder]
* Jeroen Van Der Donckt [copyright holder]
* Emiel Deprost [copyright holder]

28 shiny_hugeplot

shiny_hugeplot Wrapper for plotting large-sized data using shinyHugePlot

Description

This is a S3 class function to easily plot large-sized data using downsampler object including
plotly and shiny application. Using data that is given as a first argument, shiny application
will be constructed and (by default,) executed. As the first argument, many classes are applicable,
ranging from a numeric vector representing y values to a downsampler object containing original
data, layout of the figure and options for aggregating the original data.

Usage
shiny_hugeplot(obj, ...)

Default S3 method:
shiny_hugeplot(
obj = NULL,
y = NULL,
tz = Sys.timezone(),
use_light_build = TRUE,
plotly_options = list(type = "scatter”, mode = "lines"),
plotly_layout_options = list(),
aggregator = min_max_aggregator$new(),
n_out = 1000L,
run_shiny = TRUE,
downsampler_options = list(),
shiny_options = list(),
width = "100%",
height = "600px",
verbose = FALSE,

)

S3 method for class 'formula’
shiny_hugeplot(
obj = NULL,
srcs = NULL,
n_out = 1000L,
aggregator = min_max_aggregator$new(),
run_shiny = TRUE,
use_light_build = TRUE,
fread_options = list(),
downsampler_options = list(),
plotly_options = list(type = "scatter”, mode = "lines"),
plotly_layout_options = list(),
shiny_options = list(),

shiny_hugeplot

width = "100%",
height = "600px",
verbose = FALSE,

)

S3 method for class 'character'
shiny_hugeplot(
obj = NULL,
n_out = 1000L,
aggregator = min_max_aggregator$new(),
run_shiny = TRUE,
use_light_build = TRUE,
fread_options = list(),
downsampler_options = list(),
plotly_options = list(type = "scatter”, mode = "lines"),
plotly_layout_options = list(),
shiny_options = list(),
width = "100%",
height = "600px",
verbose = FALSE,

)

S3 method for class 'matrix'
shiny_hugeplot(
obj = NULL,
n_out = 1000L,
aggregator = min_max_aggregator$new(),
run_shiny = TRUE,
use_light_build = TRUE,
downsampler_options = list(),
plotly_options = list(type = "scatter”, mode = "lines"),
plotly_layout_options = list(),
shiny_options = list(),
width = "100%",
height = "600px",
verbose = FALSE,

)

S3 method for class 'data.frame'
shiny_hugeplot(
obj = NULL,
tz = Sys.timezone(),
n_out = 1000L,
aggregator = min_max_aggregator$new(),
run_shiny = TRUE,

30

use_light_build = TRUE,
downsampler_options = list(),

plotly_options = list(type = "scatter”, mode = "lines"),

plotly_layout_options = list(),
shiny_options = list(),

width = "100%",

height = "600px",

verbose = FALSE,

)

S3 method for class 'plotly'

shiny_hugeplot(
obj,
n_out = 1000L,
aggregator = min_max_aggregator$new(),
run_shiny = TRUE,
use_light_build = TRUE,
downsampler_options = list(),
shiny_options = list(),
width = "100%",
height = "600px",
verbose = FALSE,

)

S3 method for class 'downsampler'
shiny_hugeplot(

obj,

run_shiny = TRUE,

shiny_options = list(),

width = "100%",

height = "600px",

verbose = FALSE,

Arguments

shiny_hugeplot

obj Numeric/nanotime/POSIXt vector, numeric matrix, data.frame, single character
string, plotly object, or downsampler object. If a numeric vector is given, it
will be used as y values of the figure of the shiny application (the x values are
calculated by seq_along(obj)). It will be interpreted as the x values if you use
y argument together. If a nanotime (see nanotime package) vector is given,
it will be used as the x values (y argument is mandatory). If a numeric matrix
is given, which must have more than 2 columns, the first and second column
values will be used as the x and y values. If a data frame is given, which must
have columns named x and y, these columns will be used as the x and y values.
If a single character string is given, it will be used as a file path to obtain a

shiny_hugeplot

tz

use_light_build

plotly_options

31

data frame (data frame will be loaded using data.table: :fread). If a plotly
object is given, the data and layout of it will be used for constructing the figure
of the shiny application. If a downsampler object is given, the data, layout,
and down-sampling options for aggregating original data of it will be used for
constructing shiny application. If a formula is given, the data will be saved
and loaded using duck-db. The sources of the data (srcs) must be given as a
character string

Not used.

Numeric vector, optional. y values of the figure of shiny application, which is
required if the obj argument is used as the x values.

Timezone, optional. It is used to convert the nanotime to the time displayed in
the figure. By default, Sys.timezone().

Boolean, optional. Whether shinyHugePlot: :plotly_build_light will be
used. (if FALSE, plotly::plotly_build will be used) By default, TRUE.

Named list, optional. Arguments passed to plotly::plot_ly.

plotly_layout_options

aggregator

n_out

run_shiny

Named list, optional. Arguments passed to plotly: :layout.

Instance of R6 classes for aggregating data, optional. The classes can be listed
using list_aggregators. By default, min_max_aggregator$new().

Integer, optional. Number of samples get by the down-sampling. By default,
1000.

Boolean, optional. whether a generated shiny application will be launched. By
default, TRUE.

downsampler_options

shiny_options

width, height

verbose

Srcs

fread_options

Examples

data(noise_fluct)

Named list, optional. Arguments passed to downsampler$new. Note that use
aggregator and n_out arguments if you want to set these arguments.

Named list, optional. Arguments passed to shinyApp function.

Character, optional. Arguments passed to plotlyOutput. By default, 100% and
600px.

Boolean. Whether detailed messages to check the procedures are shown. By
default, FALSE.

Character, used when a formula is given as the obj.

Named list, optional. Arguments passed to data. table: : fread, which is used
if a single character string is given as the obj.

shiny_hugeplot(noise_fluct$f500)
shiny_hugeplot(noise_fluct$time, noise_fluct$f500)

32

updatePlotlyH

updatePlotlyH

Function to call a method to update plotly traces

Description

It is used by registering in a shiny application. It receives events in plotly figure and update it
using a method of a downsampler instance. See the examples in downsampler class

Usage

updatePlotlyH(
session,
outputld,

relayout_order,

ds_obj,

reset = FALSE,
reload = FALSE,
verbose = FALSE

Arguments

session
outputlId

relayout_order

ds_obj

reset

reload

verbose

session object. The object passed to function given to shinyServer.
Character. The outputId of the figure, whose data will be down-sampled

Named list. The list generated by plotlyjs_relayout, which is obtained using
plotly::event_data

downsampler instance. The instance containing original data of the figure,
which is also used for updating the traces of plotly.

Boolean. It it is TRUE, the figure will be updated even if relayout_order is
NULL. The ranges of x axes are reset (initialized).

Boolean. It it is TRUE, the figure will be updated even if relayout_order is
NULL. The ranges of x axes are preserved.

Boolean. Whether detailed messages to check the procedures are shown. By
default, FALSE.

Index

* noise
noise_fluct, 18
+ sound
noise_fluct, 18
* time-series
noise_fluct, 18
* traffic
noise_fluct, 18

aggregator, 2

candlestick_aggregator, 4
custom_func_aggregator, 5
custom_stat_aggregator, 6

downsampler, 8
eLTTB_aggregator, 12

list_aggregators, 13
LTTB_aggregator, 13

max_aggregator, 15
min_max_aggregator, 16
min_max_ovlp_aggregator, 17

noise_fluct, 18
nth_pnt_aggregator, 18
null_aggregator, 19

plotly_build_light, 20
plotly_datahandler, 21

range_stat_aggregator, 23
rms_max_aggregator, 25
rng_aggregator, 26

shiny_hugeplot, 28

shinyHugePlot, 27

shinyHugePlot-package (shinyHugePlot),
27

updatePlotlyH, 32

33

	aggregator
	candlestick_aggregator
	custom_func_aggregator
	custom_stat_aggregator
	downsampler
	eLTTB_aggregator
	list_aggregators
	LTTB_aggregator
	max_aggregator
	min_max_aggregator
	min_max_ovlp_aggregator
	noise_fluct
	nth_pnt_aggregator
	null_aggregator
	plotly_build_light
	plotly_datahandler
	range_stat_aggregator
	rms_max_aggregator
	rng_aggregator
	shinyHugePlot
	shiny_hugeplot
	updatePlotlyH
	Index

