Package ‘shelter’

June 2, 2025

Type Package

Title Support for Secure API Key Management

Version 0.2.1

Maintainer Shawn Garbett <Shawn.Garbett@vumc.org>

Description Secure handling of API keys can be difficult. This package provides
secure convenience functions for
entering / handling API keys and opening connections via inversion of control
on those keys. Works seamlessly between production and developer environments.

Depends R (>=4.1.0)

License GPL-3

Encoding UTF-8

Imports checkmate, getPass, yaml, filelock, rappdirs, sodium
Suggests testthat (>= 3.0.0), rstudioapi, mockery, keyring

URL https://github.com/vubiostat/shelter
RoxygenNote 7.3.2

BugReports https://github.com/vubiostat/shelter/issues
NeedsCompilation no

Author Benjamin Nutter [ctb, aut],
Shawn Garbett [cre, ctb] (ORCID:
<https://orcid.org/0000-0003-4079-5621>),
Hui Wu [aut],
Cole Beck [aut],
Savannah Obregon [aut]
Repository CRAN

Date/Publication 2025-06-02 19:30:02 UTC

Contents

keyring_create L.
keyring_delete

https://github.com/vubiostat/shelter
https://github.com/vubiostat/shelter/issues
https://orcid.org/0000-0003-4079-5621

2 keyring_create
Keyring_existS e e e e e e e e 3
keyring _list L L e 4
keyring_lock 4
keyring_locked 5
keyring_unlock 5
key_delete e e e e 6
Key_exists e e e 6
key_get . . .o e e 7
key_List L 8
key_set 8
unlockKeys e 9
unsafe_export L e e e e e e 11
Index 13
keyring_create Create a new empty keyring.
Description
Create a new empty keyring with of a given name with the specified password.
Usage
keyring_create(keyring, password)
Arguments
keyring character(1); Name of keyring
password character(1); Password for keyring
Value
logical(1); Success or failure of operation
Examples

Not run:
keyring_create('mypersonalkeyring', '<PASSWORD>')

End(Not run)

keyring_delete

keyring_delete Delete a given keyring

Description

Given the name of a keyring, delete it and remove all cached information.

Usage

keyring_delete(keyring)

Arguments

keyring character(1); Name of keyring

Value

logical(1); Success or failure of operation

Examples

Not run:
keyring_delete('mypersonalkeyring')

End(Not run)

keyring_exists Check if a keyring exists.

Description

Given a keyring name will check if the keyring file exists.

Usage

keyring_exists(keyring)

Arguments

keyring character(1); Name of the keyring.

Value

logical(1); Keyring file store existence status.

4 keyring_lock

keyring_list Provides a ‘data.frame* of information on available keyrings.

Description

Looks in a local directory where keyrings are stored for the current user and returns information
about keyrings found. Keyrings are stored in ‘rappdirs::user_config_dir("r-shelter")‘ and end in
keyring.RDS

Usage

keyring_list()

Value

data.frame of (keyring, secrets, locked)

Examples

keyring_list()

keyring_lock Locks a given keyring

Description

Given the name of a keyring lock it.

Usage
keyring_lock(keyring)

Arguments

keyring character(1); Name of keyring

Value

logical(1); Success or failure of operation

Examples

Not run:
keyring_lock('mypersonalkeyring')

End(Not run)

keyring_locked 5

keyring_locked Is a keyring unlocked for key operations and reading

Description

Query if a keyring is unlocked

Usage
keyring_locked(keyring)

Arguments

keyring character(1); Name of keyring

Value

logical(1); Success or failure of operation

Examples

Not run:
keyring_locked('mypersonalkeyring')

End(Not run)

keyring_unlock Unlock a keyring.

Description
Unlock a given keyring using the specified password. Secrets exist in plain text in memory while a
keyring is unlocked.

Usage

keyring_unlock(keyring, password)

Arguments
keyring character(1); Name of keyring
password character(1); Password for keyring
Value

logical(1); Success or failure of operation

Examples

Not run: keyring_unlock('mypersonalkeyring', '<PASSWORD>')

key_exists

key_delete Delete a key from a keyring

Description

Delete a key from an unlocked keyring.

Usage
key_delete(keyring, key)

Arguments
keyring character(1); Name of keyring
key character(1); Name of key
Value

logical(1); Success of operation

Examples

Not run:
key_delete('mypersonalkeyring', 'keyl')

End(Not run)

key_exists Does a given key exist in a keyring

Description

In an unlocked keyring return if a key exists.

Usage
key_exists(keyring, key)

Arguments

keyring character(1); Name of keyring

key character(1); Name of key

key_get

Value

logical(1); Existence of key in keyring

Examples

Not run:
key_exists('mypersonalkeyring', 'keyl')

End(Not run)

key_get Get a secret from a keyring.

Description

Get a secret from an unlocked keyring given it’s key.

Usage

key_get(keyring, key)

Arguments
keyring character(1); Name of keyring
key character(1); Name of key
Value

character(1); The requested secret

Examples

Not run:
key_get('mypersonalkeyring', 'keyl')

End(Not run)

key_set

key_list Returns vector of keys in a keyring.

Description

Return vector key names in a keyring that is unlocked.

Usage
key_list(keyring)

Arguments

keyring character(1); Name of keyring

Value

character; Key names

Examples

Not run:
key_list('mypersonalkeyring"')

End(Not run)

key_set Set a key secret in a keyring

Description

Sets a key secret in a keyring

Usage

key_set(keyring, key, secret)

Arguments

keyring character(1); Name of keyring
key character(1); Name of key to store in keyring

secret character(1); The secret to store in keyring

Value

logical(1); Status of operation

unlockKeys

Examples

Not run:

key_set('mypersonalkeyring', 'keyl','a secret')

End(Not run)

unlockKeys

Open an API key and use it build a connection.

Description

Opens a set of connections from API keys stored in an encrypted keyring. If the keyring does
not exist, it will ask for password to this keyring to use on later requests. Next it will ask for the
API keys specified in ‘connections‘. If an API key does not work, it will request again. On later
executions it will use an open keyring to retrieve all API_KEYs or for a password if the keyring is

currently locked.

Usage

unlockKeys(
connections,
keyring,

connectFUN = NULL,

envir = NULL,

passwordFUN =

.default_pass(),

yaml_tag = "shelter”,
max_attempts = 3,

Arguments

connections

keyring
connectFUN

envir

character vector. A list of strings that define the connections with associated
API_KEYs to load into environment. Each name should correspond to a RED-
Cap project for traceability, but it can be named anything one desires. The name
in the returned list is this name.

character(1). Name of keyring.

function or list(function). A function that takes a key and returns a connection.
the function should call ‘stop‘ if the key is invalid in some manner. The first
argument of the function is the API key. The validation of the key via a con-
nection test is important for the full user interaction algorithm to work properly.
If one wished to just retrieve an API key and not test the connection this would
work ‘function(x, ...) x‘, but be aware that if the key is invalid it will not query
the user as the validity is not tested.

environment. The target environment for the connections. Defaults to NULL

which returns the keys as a list. Use [globalenv()] to assign in the global envi-
ronment. Will accept a number such a ’1” for global as well.

10 unlockKeys

passwordFUN function. Function to get the password for the keyring. Usually defaults ‘get-
Pass::getPass‘. On MacOS it will use rstudioapi::askForPassword if available.

yaml_tag character(1). Only used as an identifier in yaml override files. Defaults to pack-
age name ‘shelter".

max_attempts numeric(1).

Additional arguments passed to ‘connectFUN()*.

Details

If one forgets the password to this keyring, or wishes to start over: ‘keyring_delete("<NAME_OF_KEY_RING_HERE>")*

IMPORTANT: Make sure that R is set to NEVER save workspace to .RData as this *is* writing
the API_KEY to a local file in clear text because connection objects contain the unlocked key in
memory. One can use the following in .Rprofile, ‘usethis::edit_r_profile()*:

newfun <- function (save = "no”, status = @, runLast = TRUE)
.Internal(quit(save, status, runlLast))

pkg <- 'base'

oldfun <- 'q'

pkgenv <- as.environment(paste@("package:", pkg))
unlockBinding(oldfun, pkgenv)

utils::assignInNamespace(oldfun, newfun, ns = pkg, envir = pkgenv)
assign(oldfun, newfun, pkgenv)

lockBinding(oldfun, pkgenv)

It will store the provided password in the shell environment. This can sometimes end up with the
password set command appearing in the console when using RStudio. If one wishes this to not hap-

pen and/or for it to always query for the password this can be done using: ‘options(shelter.save.env=FALSE)*
to turn off the password saving behavior for an R session. Note: this will not clear a password that

already exists in a given shell environment.

For production servers where the secrets must be stored in a readable plain text file, it will search
for ‘../<basename>.yml‘. DO NOT USE this unless one is a sysadmin on a production hardened
system, as this defeats the security and purpose of a local encrypted file (the point of using this
package).

The expected structure of this yaml file is as follows:

other-config-stuffi1: blah blah
shelter:
keys:
intake: THIS_IS_THE_INTAKE_DATABASE_APIKEY
details: THIS_IS_THE_DETAILS_DATABASE_APIKEY
other-config-stuff2: blah blah
other-config-stuff3: blah blah

For production servers the use of ENV variables is also supported. The connection string is con-
verted to upper case for the search of ENV. If a YAML file and ENV definitions both exist, the
YAML will take precedence.

unsafe_export 11

Value

If ‘envir® is NULL returns a list of opened connections. Otherwise connections are assigned into
the specified ‘envir®.

Examples
Not run:
unlockKeys(c(test_conn = 'Testshelter',
sandbox_conn = 'SandboxAPI'),
keyring = '<NAME_OF_KEY_RING_HERE>',
envir = globalenv(),
passwordfFUN = function(x, ...) x)

End(Not run)

unsafe_export Export keyring to plain text format as a string.

Description

This functions exports a keyring to a file as a convenience function for production deployments.

Usage

unsafe_export(keyring, format, yaml_tag = "shelter”, warn = TRUE)

Arguments

keyring character(1); Name of keyring.

format character(1); One of "yaml’ or "ENV’.

yaml_tag character(1); Tag to use in "yaml’. Defaults to ’shelter’

warn boolean(1); Should the user be warned of the dangers. Defaults to TRUE.
Details

WARNING: It is not recommended to use this function unless you are deploying to a hardened
secured production environment. To restate, if you are developing on a personal laptop a report or
code this function should NOT be used.

For this reason the function is not exported.

Value

A character(1) string of the desired export.

12 unsafe_export

Examples

Not run:
cat(shelter:::unsafe_export('mypersonalkeyring', 'yaml'), file="myproject.yml")

End(Not run)

Index

key_delete, 6
key_exists, 6
key_get, 7
key_list, 8
key_set, 8
keyring_create, 2
keyring_delete, 3
keyring_exists, 3
keyring_list, 4
keyring_lock, 4
keyring_locked, 5
keyring_unlock, 5

unlockKeys, 9
unsafe_export, 11

13

	keyring_create
	keyring_delete
	keyring_exists
	keyring_list
	keyring_lock
	keyring_locked
	keyring_unlock
	key_delete
	key_exists
	key_get
	key_list
	key_set
	unlockKeys
	unsafe_export
	Index

