
Package ‘sgs’
June 12, 2025

Title Sparse-Group SLOPE: Adaptive Bi-Level Selection with FDR Control

Version 0.3.8

Date 2025-06-12

Maintainer Fabio Feser <ff120@ic.ac.uk>

Description Implementation of Sparse-group SLOPE (SGS) (Feser and Evan-
gelou (2023) <doi:10.48550/arXiv.2305.09467>) models. Linear and logistic regression mod-
els are supported, both of which can be fit using k-fold cross-validation. Dense and sparse in-
put matrices are supported. In addition, a general Adaptive Three Operator Splitting (ATOS) (Pe-
dregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) implementation is pro-
vided. Group SLOPE (gS-
LOPE) (Brzyski et al. (2019) <doi:10.1080/01621459.2017.1411269>) and group-based OS-
CAR models (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) are also imple-
mented. All models are available with strong screening rules (Feser and Evan-
gelou (2024) <doi:10.48550/arXiv.2405.15357>) for computational speed-up.

Imports Matrix, MASS, caret, grDevices, graphics, methods, stats,
SLOPE, Rlab, Rcpp (>= 1.0.10)

LinkingTo Rcpp, RcppArmadillo

Suggests SGL, gglasso, glmnet, testthat, knitr, grpSLOPE, rmarkdown

RoxygenNote 7.3.1

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/ff1201/sgs

BugReports https://github.com/ff1201/sgs/issues

VignetteBuilder knitr

NeedsCompilation yes

Author Fabio Feser [aut, cre] (ORCID: <https://orcid.org/0009-0007-3088-9727>)

Repository CRAN

Date/Publication 2025-06-12 16:20:02 UTC

1

https://doi.org/10.48550/arXiv.2305.09467
https://doi.org/10.48550/arXiv.1804.02339
https://doi.org/10.1080/01621459.2017.1411269
https://doi.org/10.48550/arXiv.2405.15357
https://doi.org/10.48550/arXiv.2405.15357
https://github.com/ff1201/sgs
https://github.com/ff1201/sgs/issues
https://orcid.org/0009-0007-3088-9727

2 arma_mv

Contents

arma_mv . 2
arma_sparse . 3
as_sgs . 3
atos . 5
coef.sgs . 7
fit_goscar . 8
fit_goscar_cv . 11
fit_gslope . 14
fit_gslope_cv . 18
fit_sgo . 21
fit_sgo_cv . 24
fit_sgs . 27
fit_sgs_cv . 32
gen_pens . 35
gen_toy_data . 37
plot.sgs . 38
predict.sgs . 39
print.sgs . 40
scaled_sgs . 41

Index 44

arma_mv Matrix Product in RcppArmadillo.

Description

Matrix Product in RcppArmadillo.

Usage

arma_mv(m, v)

Arguments

m numeric matrix

v numeric vector

Value

matrix product of m and v

arma_sparse 3

arma_sparse Matrix Product in RcppArmadillo.

Description

Matrix Product in RcppArmadillo.

Usage

arma_sparse(m, v)

Arguments

m numeric sparse matrix

v numeric vector

Value

matrix product of m and v

as_sgs Fits the adaptively scaled SGS model (AS-SGS).

Description

Fits an SGS model using the noise estimation procedure, termed adaptively scaled SGS (Algorithm
2 from Feser and Evangelou (2023)). This adaptively estimates λ and then fits the model using the
estimated value. It is an alternative approach to cross-validation (fit_sgs_cv()). The approach is
only compatible with the SGS penalties.

Usage

as_sgs(
X,
y,
groups,
type = "linear",
pen_method = 2,
alpha = 0.95,
vFDR = 0.1,
gFDR = 0.1,
standardise = "l2",
intercept = TRUE,
verbose = FALSE

)

4 as_sgs

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

pen_method The type of penalty sequences to use.

• "1" uses the vMean and gMean SGS sequences.
• "2" uses the vMax and gMax SGS sequences.

alpha The value of α, which defines the convex balance between SLOPE and gSLOPE.
Must be between 0 and 1.

vFDR Defines the desired variable false discovery rate (FDR) level, which determines
the shape of the variable penalties. Must be between 0 and 1.

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the group penalties. Must be between 0 and 1.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

verbose Logical flag for whether to print fitting information.

Value

An object of type "sgs" containing model fit information (see fit_sgs()).

References

Feser, F., Evangelou, M. (2023). Sparse-group SLOPE: adaptive bi-level selection with FDR-
control, https://arxiv.org/abs/2305.09467

See Also

scaled_sgs()

Other model-selection: fit_goscar_cv(), fit_gslope_cv(), fit_sgo_cv(), fit_sgs_cv(),
scaled_sgs()

Other SGS-methods: coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(), plot.sgs(),
predict.sgs(), print.sgs(), scaled_sgs()

https://arxiv.org/abs/2305.09467

atos 5

atos Adaptive three operator splitting (ATOS).

Description

Function for fitting adaptive three operator splitting (ATOS) with general convex penalties. Supports
both linear and logistic regression, both with dense and sparse matrix implementations.

Usage

atos(
X,
y,
type = "linear",
prox_1,
prox_2,
pen_prox_1 = 0.5,
pen_prox_2 = 0.5,
max_iter = 5000,
backtracking = 0.7,
max_iter_backtracking = 100,
tol = 1e-05,
prox_1_opts = NULL,
prox_2_opts = NULL,
standardise = "l2",
intercept = TRUE,
x0 = NULL,
u = NULL,
verbose = FALSE

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package)

y Output vector of dimension n. For type="linear" needs to be continuous and
for type="logistic" needs to be a binary variable.

type The type of regression to perform. Supported values are: "linear" and "logistic".

prox_1 The proximal operator for the first function, h(x).

prox_2 The proximal operator for the second function, g(x).

pen_prox_1 The penalty for the first proximal operator. For the lasso, this would be the
sparsity parameter, λ. If operator does not include a penalty, set to 1.

pen_prox_2 The penalty for the second proximal operator.

max_iter Maximum number of ATOS iterations to perform.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).

6 atos

max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

prox_1_opts Optional argument for first proximal operator. For the group lasso, this would
be the group IDs. Note: this must be inserted as a list.

prox_2_opts Optional argument for second proximal operator.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

x0 Optional initial vector for x0.

u Optional initial vector for u.

verbose Logical flag for whether to print fitting information.

Details

atos() solves convex minimization problems of the form

f(x) + g(x) + h(x),

where f is convex and differentiable with Lf -Lipschitz gradient, and g and h are both convex. The
algorithm is not symmetrical, but usually the difference between variations are only small numerical
values, which are filtered out. However, both variations should be checked regardless, by looking
at x and u. An example for the sparse-group lasso (SGL) is given.

Value

An object of class "atos" containing:

beta The fitted values from the regression. Taken to be the more stable fit between x
and u, which is usually the former.

x The solution to the original problem (see Pedregosa and Gidel (2018)).

u The solution to the dual problem (see Pedregosa and Gidel (2018)).

z The updated values from applying the first proximal operator (see Pedregosa and
Gidel (2018)).

type Indicates which type of regression was performed.

success Logical flag indicating whether ATOS converged, according to tol.

num_it Number of iterations performed. If convergence is not reached, this will be
max_iter.

certificate Final value of convergence criteria.

intercept Logical flag indicating whether an intercept was fit.

coef.sgs 7

References

Pedregosa, F., Gidel, G. (2018). Adaptive Three Operator Splitting, https://proceedings.mlr.
press/v80/pedregosa18a.html

coef.sgs Extracts coefficients for one of the following object types: "sgs",
"sgs_cv", "gslope", "gslope_cv".

Description

Print the coefficients using model fitted with one of the following functions: fit_sgs(), fit_sgs_cv(),
fit_gslope(), fit_gslope_cv(), fit_sgo(), fit_sgo_cv(), fit_goscar(), fit_goscar_cv().
The predictions are calculated for each "lambda" value in the path.

Usage

S3 method for class 'sgs'
coef(object, ...)

Arguments

object Object of one of the following classes: "sgs", "sgs_cv", "gslope", "gslope_cv".

... further arguments passed to stats function.

Value

The fitted coefficients

See Also

fit_sgs(), fit_sgs_cv(), fit_gslope(), fit_gslope_cv()

Other SGS-methods: as_sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(), plot.sgs(),
predict.sgs(), print.sgs(), scaled_sgs()

Other gSLOPE-methods: fit_goscar(), fit_goscar_cv(), fit_gslope(), fit_gslope_cv(),
plot.sgs(), predict.sgs(), print.sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run SGS
model = fit_sgs(X = data$X, y = data$y, groups = groups, type="linear", lambda = 1, alpha=0.95,
vFDR=0.1, gFDR=0.1, standardise = "l2", intercept = TRUE, verbose=FALSE)
use predict function
model_coef = coef(model)

https://proceedings.mlr.press/v80/pedregosa18a.html
https://proceedings.mlr.press/v80/pedregosa18a.html

8 fit_goscar

fit_goscar Fit a gOSCAR model.

Description

Group OSCAR (gOSCAR) main fitting function. Supports both linear and logistic regression, both
with dense and sparse matrix implementations.

Usage

fit_goscar(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
max_iter = 5000,
backtracking = 0.7,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
screen = TRUE,
verbose = FALSE,
w_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by min_frac.

fit_goscar 9

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

max_iter Maximum number of ATOS iterations to perform.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one. When using this
"lambda" is scaled internally by 1/

√
n.

• "l1" standardises the input data to have ℓ1 norms of one. When using this
"lambda" is scaled internally by 1/n.

• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

w_weights Optional vector for the group penalty weights. Overrides the OSCAR penalties
when specified. When entering custom weights, these are multiplied internally
by λ. To void this behaviour, set λ = 1.

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

fit_goscar() fits a gOSCAR model (Feser and Evangelou (2024)) using adaptive three operator
splitting (ATOS). gOSCAR uses the same model set-up as for gSLOPE, but with different weights
(see Bao et al. (2020) and Feser and Evangelou (2024)). The penalties are given by (for a group g
with m groups):

wg = σ1 + σ3(m− g),

where
σ1 = di∥X⊺y∥∞, σ3 = σ1/m.

10 fit_goscar

Value

A list containing:

beta The fitted values from the regression. Taken to be the more stable fit between
x and z, which is usually the former. A filter is applied to remove very small
values, where ATOS has not been able to shrink exactly to zero. Check this
against x and z.

group_effects The group values from the regression. Taken by applying the ℓ2 norm within
each group on beta.

selected_var A list containing the indicies of the active/selected variables for each "lambda"
value. Index 1 corresponds to the first column in X.

selected_grp A list containing the indicies of the active/selected groups for each "lambda"
value. Index 1 corresponds to the first group in the groups vector. You can see
the group order by running unique(groups).

num_it Number of iterations performed. If convergence is not reached, this will be
max_iter.

success Logical flag indicating whether ATOS converged, according to tol.

certificate Final value of convergence criteria.

x The solution to the original problem (see Pedregosa and Gidel (2018)).

u The solution to the dual problem (see Pedregosa and Gidel (2018)).

z The updated values from applying the first proximal operator (see Pedregosa and
Gidel (2018)).

screen_set List of groups that were kept after screening step for each "lambda" value. (cor-
responds to S in Feser and Evangelou (2024)).

epsilon_set List of groups that were used for fitting after screening for each "lambda" value.
(corresponds to E in Feser and Evangelou (2024)).

kkt_violations List of groups that violated the KKT conditions each "lambda" value. (corre-
sponds to K in Feser and Evangelou (2024)).

pen_gslope Vector of the group penalty sequence.

screen Logical flag indicating whether screening was applied.

type Indicates which type of regression was performed.

intercept Logical flag indicating whether an intercept was fit.

standardise Type of standardisation used.

lambda Value(s) of λ used to fit the model.

References

Bao, R., Gu B., Huang, H. (2020). Fast OSCAR and OWL Regression via Safe Screening Rules,
https://proceedings.mlr.press/v119/bao20b

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

Pedregosa, F., Gidel, G. (2018). Adaptive Three Operator Splitting, https://proceedings.mlr.
press/v80/pedregosa18a.html

https://proceedings.mlr.press/v119/bao20b
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357
https://proceedings.mlr.press/v80/pedregosa18a.html
https://proceedings.mlr.press/v80/pedregosa18a.html

fit_goscar_cv 11

See Also

Other gSLOPE-methods: coef.sgs(), fit_goscar_cv(), fit_gslope(), fit_gslope_cv(), plot.sgs(),
predict.sgs(), print.sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run gOSCAR
model = fit_goscar(X = data$X, y = data$y, groups = groups, type="linear", path_length = 5,
standardise = "l2", intercept = TRUE, verbose=FALSE)

fit_goscar_cv Fit a gOSCAR model using k-fold cross-validation.

Description

Function to fit a pathwise solution of group OSCAR (gOSCAR) models using k-fold cross-validation.
Supports both linear and logistic regression, both with dense and sparse matrix implementations.

Usage

fit_goscar_cv(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
nfolds = 10,
backtracking = 0.7,
max_iter = 5000,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
error_criteria = "mse",
screen = TRUE,
verbose = FALSE,
w_weights = NULL,
warm_start = NULL

)

12 fit_goscar_cv

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

nfolds The number of folds to use in cross-validation.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).

max_iter Maximum number of ATOS iterations to perform.
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

error_criteria The criteria used to discriminate between models along the path. Supported
values are: "mse" (mean squared error) and "mae" (mean absolute error).

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

w_weights Optional vector for the group penalty weights. Overrides the OSCAR penalties
when specified. When entering custom weights, these are multiplied internally
by λ. To void this behaviour, set λ = 1.

fit_goscar_cv 13

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

Fits gOSCAR models under a pathwise solution using adaptive three operator splitting (ATOS),
picking the 1se model as optimum. Warm starts are implemented.

Value

A list containing:

errors A table containing fitting information about the models on the path.

all_models Fitting information for all models fit on the path, which is a "gslope" object
type.

fit The 1se chosen model, which is a "gslope" object type.

best_lambda The value of λ which generated the chosen model.

best_lambda_id The path index for the chosen model.

References

Bao, R., Gu B., Huang, H. (2020). Fast OSCAR and OWL Regression via Safe Screening Rules,
https://proceedings.mlr.press/v119/bao20b

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

See Also

fit_goscar()

Other gSLOPE-methods: coef.sgs(), fit_goscar(), fit_gslope(), fit_gslope_cv(), plot.sgs(),
predict.sgs(), print.sgs()

Other model-selection: as_sgs(), fit_gslope_cv(), fit_sgo_cv(), fit_sgs_cv(), scaled_sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run gOSCAR with cross-validation
cv_model = fit_goscar_cv(X = data$X, y = data$y, groups=groups, type = "linear", path_length = 5,
nfolds=5, min_frac = 0.05, standardise="l2",intercept=TRUE,verbose=TRUE)

https://proceedings.mlr.press/v119/bao20b
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357

14 fit_gslope

fit_gslope Fit a gSLOPE model.

Description

Group SLOPE (gSLOPE) main fitting function. Supports both linear and logistic regression, both
with dense and sparse matrix implementations.

Usage

fit_gslope(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
gFDR = 0.1,
pen_method = 1,
max_iter = 5000,
backtracking = 0.7,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
screen = TRUE,
verbose = FALSE,
w_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

fit_gslope 15

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the group penalties. Must be between 0 and 1.

pen_method The type of penalty sequences to use (see Brzyski et al. (2019)):

• "1" uses the gMean gSLOPE sequence.
• "2" uses the gMax gSLOPE sequence.

max_iter Maximum number of ATOS iterations to perform.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one. When using this
"lambda" is scaled internally by 1/

√
n.

• "l1" standardises the input data to have ℓ1 norms of one. When using this
"lambda" is scaled internally by 1/n.

• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

w_weights Optional vector for the group penalty weights. Overrides the penalties from
pen_method if specified. When entering custom weights, these are multiplied
internally by λ. To void this behaviour, set λ = 1.

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

fit_gslope() fits a gSLOPE model (Brzyski et al. (2019)) using adaptive three operator splitting
(ATOS). gSLOPE is a sparse-group method, so that it selects both variables and groups. Unlike

16 fit_gslope

group selection approaches, not every variable within a group is set as active. It solves the convex
optimisation problem given by

1

2n
f(b; y,X) + λ

m∑
g=1

wg
√
pg∥b(g)∥2,

where the penalty sequences are sorted and f(·) is the loss function. In the case of the linear model,
the loss function is given by the mean-squared error loss:

f(b; y,X) = ∥y −Xb∥22 .

In the logistic model, the loss function is given by

f(b; y,X) = −1/n log(L(b; y,X)).

where the log-likelihood is given by

L(b; y,X) =

n∑
i=1

{yib⊺xi − log(1 + exp(b⊺xi))} .

The penalty parameters in gSLOPE are sorted so that the largest group effects are matched with the
largest penalties, to reduce the group FDR. The gMean sequence (pen_method=1) is given by

wmean
i = F

−1

χpj
(1− qgi/m), i = 1, . . . ,m,where Fχpj

(x) :=
1

m

m∑
j=1

Fχpj
(
√
pjx),

where Fχpj
is the cumulative distribution function of a χ distribution with pj degrees of freedom.

The gMax sequence (pen_method=2) is given by

wmax
i = max

j=1,...,m

{
1

√
pj

F−1
χpj

(
1− qgi

m

)}
,

where Fχpj
is the cumulative distribution function of a χ distribution with pj degrees of freedom.

Value

A list containing:

beta The fitted values from the regression. Taken to be the more stable fit between
x and z, which is usually the former. A filter is applied to remove very small
values, where ATOS has not been able to shrink exactly to zero. Check this
against x and z.

group_effects The group values from the regression. Taken by applying the ℓ2 norm within
each group on beta.

selected_var A list containing the indicies of the active/selected variables for each "lambda"
value. Index 1 corresponds to the first column in X.

selected_grp A list containing the indicies of the active/selected groups for each "lambda"
value. Index 1 corresponds to the first group in the groups vector. You can see
the group order by running unique(groups).

fit_gslope 17

num_it Number of iterations performed. If convergence is not reached, this will be
max_iter.

success Logical flag indicating whether ATOS converged, according to tol.

certificate Final value of convergence criteria.

x The solution to the original problem (see Pedregosa and Gidel (2018)).

u The solution to the dual problem (see Pedregosa and Gidel (2018)).

z The updated values from applying the first proximal operator (see Pedregosa and
Gidel (2018)).

screen_set List of groups that were kept after screening step for each "lambda" value. (cor-
responds to S in Feser and Evangelou (2024)).

epsilon_set List of groups that were used for fitting after screening for each "lambda" value.
(corresponds to E in Feser and Evangelou (2024)).

kkt_violations List of groups that violated the KKT conditions each "lambda" value. (corre-
sponds to K in Feser and Evangelou (2024)).

pen_gslope Vector of the group penalty sequence.

screen Logical flag indicating whether screening was applied.

type Indicates which type of regression was performed.

intercept Logical flag indicating whether an intercept was fit.

standardise Type of standardisation used.

lambda Value(s) of λ used to fit the model.

References

Brzyski, D., Gossmann, A., Su, W., Bodgan, M. (2019). Group SLOPE – Adaptive Selection
of Groups of Predictors, https://www.tandfonline.com/doi/full/10.1080/01621459.2017.
1411269

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

Pedregosa, F., Gidel, G. (2018). Adaptive Three Operator Splitting, https://proceedings.mlr.
press/v80/pedregosa18a.html

See Also

Other gSLOPE-methods: coef.sgs(), fit_goscar(), fit_goscar_cv(), fit_gslope_cv(), plot.sgs(),
predict.sgs(), print.sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run gSLOPE
model = fit_gslope(X = data$X, y = data$y, groups = groups, type="linear", path_length = 5,
gFDR=0.1, standardise = "l2", intercept = TRUE, verbose=FALSE)

https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1411269
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1411269
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357
https://proceedings.mlr.press/v80/pedregosa18a.html
https://proceedings.mlr.press/v80/pedregosa18a.html

18 fit_gslope_cv

fit_gslope_cv Fit a gSLOPE model using k-fold cross-validation.

Description

Function to fit a pathwise solution of group SLOPE (gSLOPE) models using k-fold cross-validation.
Supports both linear and logistic regression, both with dense and sparse matrix implementations.

Usage

fit_gslope_cv(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
nfolds = 10,
gFDR = 0.1,
pen_method = 1,
backtracking = 0.7,
max_iter = 5000,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
error_criteria = "mse",
screen = TRUE,
verbose = FALSE,
w_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

fit_gslope_cv 19

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

nfolds The number of folds to use in cross-validation.

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the penalties. Must be between 0 and 1.

pen_method The type of penalty sequences to use (see Brzyski et al. (2019)):

• "1" uses the gMean gSLOPE sequence.
• "2" uses the gMax gSLOPE sequence.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).

max_iter Maximum number of ATOS iterations to perform.
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

error_criteria The criteria used to discriminate between models along the path. Supported
values are: "mse" (mean squared error) and "mae" (mean absolute error).

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

w_weights Optional vector for the group penalty weights. Overrides the penalties from
pen_method if specified. When entering custom weights, these are multiplied
internally by λ. To void this behaviour, set λ = 1.

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

20 fit_gslope_cv

Details

Fits gSLOPE models under a pathwise solution using adaptive three operator splitting (ATOS),
picking the 1se model as optimum. Warm starts are implemented.

Value

A list containing:

errors A table containing fitting information about the models on the path.

all_models Fitting information for all models fit on the path, which is a "gslope" object
type.

fit The 1se chosen model, which is a "gslope" object type.

best_lambda The value of λ which generated the chosen model.

best_lambda_id The path index for the chosen model.

References

Brzyski, D., Gossmann, A., Su, W., Bodgan, M. (2019). Group SLOPE – Adaptive Selection
of Groups of Predictors, https://www.tandfonline.com/doi/full/10.1080/01621459.2017.
1411269

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

See Also

fit_gslope()

Other gSLOPE-methods: coef.sgs(), fit_goscar(), fit_goscar_cv(), fit_gslope(), plot.sgs(),
predict.sgs(), print.sgs()

Other model-selection: as_sgs(), fit_goscar_cv(), fit_sgo_cv(), fit_sgs_cv(), scaled_sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run gSLOPE with cross-validation
cv_model = fit_gslope_cv(X = data$X, y = data$y, groups=groups, type = "linear", path_length = 5,
nfolds=5, gFDR = 0.1, min_frac = 0.05, standardise="l2",intercept=TRUE,verbose=TRUE)

https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1411269
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1411269
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357

fit_sgo 21

fit_sgo Fit an SGO model.

Description

Sparse-group OSCAR (SGO) main fitting function. Supports both linear and logistic regression,
both with dense and sparse matrix implementations.

Usage

fit_sgo(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
alpha = 0.95,
max_iter = 5000,
backtracking = 0.7,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
screen = TRUE,
verbose = FALSE,
w_weights = NULL,
v_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

22 fit_sgo

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

alpha The value of α, which defines the convex balance between OSCAR and gOSCAR.
Must be between 0 and 1. Recommended value is 0.95.

max_iter Maximum number of ATOS iterations to perform.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one. When using this
"lambda" is scaled internally by 1/

√
n.

• "l1" standardises the input data to have ℓ1 norms of one. When using this
"lambda" is scaled internally by 1/n.

• "sd" standardises the input data to have standard deviation of one.
• "noBaone" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

w_weights Optional vector for the group penalty weights. Overrides the OSCAR penalties
when specified. When entering custom weights, these are multiplied internally
by λ and 1− α. To void this behaviour, set λ = 2 and α = 0.5.

v_weights Optional vector for the variable penalty weights. Overrides the OSCAR penal-
ties when specified. When entering custom weights, these are multiplied inter-
nally by λ and α. To void this behaviour, set λ = 2 and α = 0.5.

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

fit_sgo() fits an SGO model (Feser and Evangelou (2024)) using adaptive three operator splitting
(ATOS). SGO uses the same model set-up as for SGS, but with different weights (see Bao et al.

fit_sgo 23

(2020) and Feser and Evangelou (2024)). The penalties are given by (for a group g and variable i,
with p variables and m groups):

vi = σ1 + σ2(p− i), wg = σ1 + σ3(m− g),

where
σ1 = di∥X⊺y∥∞, σ2 = σ1/p, σ3 = σ1/m, di = i× exp (−2).

Value

A list containing:

beta The fitted values from the regression. Taken to be the more stable fit between
x and z, which is usually the former. A filter is applied to remove very small
values, where ATOS has not been able to shrink exactly to zero. Check this
against x and z.

group_effects The group values from the regression. Taken by applying the ℓ2 norm within
each group on beta.

selected_var A list containing the indicies of the active/selected variables for each "lambda"
value. Index 1 corresponds to the first column in X.

selected_grp A list containing the indicies of the active/selected groups for each "lambda"
value. Index 1 corresponds to the first group in the groups vector. You can see
the group order by running unique(groups).

num_it Number of iterations performed. If convergence is not reached, this will be
max_iter.

success Logical flag indicating whether ATOS converged, according to tol.

certificate Final value of convergence criteria.

x The solution to the original problem (see Pedregosa and Gidel (2018)).

z The updated values from applying the first proximal operator (see Pedregosa and
Gidel (2018)).

u The solution to the dual problem (see Pedregosa and Gidel (2018)).

screen_set_var List of variables that were kept after screening step for each "lambda" value.
(corresponds to Sv in Feser and Evangelou (2024)).

screen_set_grp List of groups that were kept after screening step for each "lambda" value. (cor-
responds to Sg in Feser and Evangelou (2024)).

epsilon_set_var

List of variables that were used for fitting after screening for each "lambda"
value. (corresponds to Ev in Feser and Evangelou (2024)).

epsilon_set_grp

List of groups that were used for fitting after screening for each "lambda" value.
(corresponds to Eg in Feser and Evangelou (2024)).

kkt_violations_var

List of variables that violated the KKT conditions each "lambda" value. (corre-
sponds to Kv in Feser and Evangelou (2024)).

24 fit_sgo_cv

kkt_violations_grp

List of groups that violated the KKT conditions each "lambda" value. (corre-
sponds to Kg in Feser and Evangelou (2024)).

pen_slope Vector of the variable penalty sequence.

pen_gslope Vector of the group penalty sequence.

screen Logical flag indicating whether screening was performed.

type Indicates which type of regression was performed.

intercept Logical flag indicating whether an intercept was fit.

lambda Value(s) of λ used to fit the model.

References

Bao, R., Gu B., Huang, H. (2020). Fast OSCAR and OWL Regression via Safe Screening Rules,
https://proceedings.mlr.press/v119/bao20b

Feser, F., Evangelou, M. (2023). Sparse-group SLOPE: adaptive bi-level selection with FDR-
control, https://arxiv.org/abs/2305.09467

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

Pedregosa, F., Gidel, G. (2018). Adaptive Three Operator Splitting, https://proceedings.mlr.
press/v80/pedregosa18a.html

See Also

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(), plot.sgs(),
predict.sgs(), print.sgs(), scaled_sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run SGO
model = fit_sgo(X = data$X, y = data$y, groups = groups, type="linear", path_length = 5,
alpha=0.95, standardise = "l2", intercept = TRUE, verbose=FALSE)

fit_sgo_cv Fit an SGO model using k-fold cross-validation.

Description

Function to fit a pathwise solution of sparse-group SLOPE (SGO) models using k-fold cross-
validation. Supports both linear and logistic regression, both with dense and sparse matrix im-
plementations.

https://proceedings.mlr.press/v119/bao20b
https://arxiv.org/abs/2305.09467
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357
https://proceedings.mlr.press/v80/pedregosa18a.html
https://proceedings.mlr.press/v80/pedregosa18a.html

fit_sgo_cv 25

Usage

fit_sgo_cv(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
alpha = 0.95,
nfolds = 10,
backtracking = 0.7,
max_iter = 5000,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
error_criteria = "mse",
screen = TRUE,
verbose = FALSE,
v_weights = NULL,
w_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

26 fit_sgo_cv

alpha The value of α, which defines the convex balance between OSCAR and gOSCAR.
Must be between 0 and 1. Recommended value is 0.95.

nfolds The number of folds to use in cross-validation.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).

max_iter Maximum number of ATOS iterations to perform.
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

error_criteria The criteria used to discriminate between models along the path. Supported
values are: "mse" (mean squared error) and "mae" (mean absolute error).

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

v_weights Optional vector for the variable penalty weights. Overrides the OSCAR penal-
ties when specified. When entering custom weights, these are multiplied inter-
nally by λ and α. To void this behaviour, set λ = 2 and α = 0.5.

w_weights Optional vector for the group penalty weights. Overrides the OSCAR penalties
when specified. When entering custom weights, these are multiplied internally
by λ and 1− α. To void this behaviour, set λ = 2 and α = 0.5.

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

Fits SGO models under a pathwise solution using adaptive three operator splitting (ATOS), picking
the 1se model as optimum. Warm starts are implemented.

Value

A list containing:

all_models A list of all the models fitted along the path.

fit The 1se chosen model, which is a "sgs" object type.

best_lambda The value of λ which generated the chosen model.

fit_sgs 27

best_lambda_id The path index for the chosen model.

errors A table containing fitting information about the models on the path.

type Indicates which type of regression was performed.

References

Bao, R., Gu B., Huang, H. (2020). Fast OSCAR and OWL Regression via Safe Screening Rules,
https://proceedings.mlr.press/v119/bao20b

Feser, F., Evangelou, M. (2023). Sparse-group SLOPE: adaptive bi-level selection with FDR-
control, https://arxiv.org/abs/2305.09467

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

See Also

fit_sgo()

Other model-selection: as_sgs(), fit_goscar_cv(), fit_gslope_cv(), fit_sgs_cv(), scaled_sgs()

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgs(), fit_sgs_cv(), plot.sgs(),
predict.sgs(), print.sgs(), scaled_sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run SGO with cross-validation
cv_model = fit_sgo_cv(X = data$X, y = data$y, groups=groups, type = "linear",
path_length = 5, nfolds=5, alpha = 0.95, min_frac = 0.05,
standardise="l2",intercept=TRUE,verbose=TRUE)

fit_sgs Fit an SGS model.

Description

Sparse-group SLOPE (SGS) main fitting function. Supports both linear and logistic regression,
both with dense and sparse matrix implementations.

Usage

fit_sgs(
X,
y,
groups,
type = "linear",

https://proceedings.mlr.press/v119/bao20b
https://arxiv.org/abs/2305.09467
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357

28 fit_sgs

lambda = "path",
path_length = 20,
min_frac = 0.05,
alpha = 0.95,
vFDR = 0.1,
gFDR = 0.1,
pen_method = 1,
max_iter = 5000,
backtracking = 0.7,
max_iter_backtracking = 100,
tol = 1e-05,
standardise = "l2",
intercept = TRUE,
screen = TRUE,
verbose = FALSE,
w_weights = NULL,
v_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

alpha The value of α, which defines the convex balance between SLOPE and gSLOPE.
Must be between 0 and 1. Recommended value is 0.95.

vFDR Defines the desired variable false discovery rate (FDR) level, which determines
the shape of the variable penalties. Must be between 0 and 1.

fit_sgs 29

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the group penalties. Must be between 0 and 1.

pen_method The type of penalty sequences to use (see Feser and Evangelou (2023)):
• "1" uses the vMean SGS and gMean gSLOPE sequences.
• "2" uses the vMax SGS and gMean gSLOPE sequences.
• "3" uses the BH SLOPE and gMean gSLOPE sequences, also known as

SGS Original.
max_iter Maximum number of ATOS iterations to perform.
backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.
standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one. When using this
"lambda" is scaled internally by 1/

√
n.

• "l1" standardises the input data to have ℓ1 norms of one. When using this
"lambda" is scaled internally by 1/n.

• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.
screen Logical flag for whether to apply screening rules (see Feser and Evangelou

(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.
w_weights Optional vector for the group penalty weights. Overrides the penalties from

pen_method if specified. When entering custom weights, these are multiplied
internally by λ and 1− α. To void this behaviour, set λ = 2 and α = 0.5.

v_weights Optional vector for the variable penalty weights. Overrides the penalties from
pen_method if specified. When entering custom weights, these are multiplied
internally by λ and α. To void this behaviour, set λ = 2 and α = 0.5.

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

fit_sgs() fits an SGS model (Feser and Evangelou (2023)) using adaptive three operator split-
ting (ATOS). SGS is a sparse-group method, so that it selects both variables and groups. Unlike
group selection approaches, not every variable within a group is set as active. It solves the convex
optimisation problem given by

1

2n
f(b; y,X) + λα

p∑
i=1

vi|b|(i) + λ(1− α)

m∑
g=1

wg
√
pg∥b(g)∥2,

30 fit_sgs

where f(·) is the loss function and pg are the group sizes. The penalty parameters in SGS are sorted
so that the largest coefficients are matched with the largest penalties, to reduce the FDR. For the
variables: |β|(1) ≥ . . . ≥ |β|(p) and v1 ≥ . . . ≥ vp ≥ 0. For the groups:

√
p1∥β(1)∥2 ≥ . . . ≥

√
pm∥β(m)∥2 and w1 ≥ . . . ≥ wg ≥ 0. In the case of the linear model, the loss function is given

by the mean-squared error loss:

f(b; y,X) = ∥y −Xb∥22 .

In the logistic model, the loss function is given by

f(b; y,X) = −1/n log(L(b; y,X)).

where the log-likelihood is given by

L(b; y,X) =

n∑
i=1

{yib⊺xi − log(1 + exp(b⊺xi))} .

SGS can be seen to be a convex combination of SLOPE and gSLOPE, balanced through alpha,
such that it reduces to SLOPE for alpha = 1 and to gSLOPE for alpha = 0. The penalty parameters
in SGS are sorted so that the largest coefficients are matched with the largest penalties, to reduce
the FDR. For the group penalties, see fit_gslope(). For the variable penalties, the vMean SGS
sequence (pen_method=1) (Feser and Evangelou (2023)) is given by

vmean
i = F

−1

N

(
1− qvi

2p

)
, where FN (x) :=

1

m

m∑
j=1

FN

(
αx+

1

3
(1− α)ajwj

)
, i = 1, . . . , p,

where FN is the cumulative distribution functions of a standard Gaussian distribution. The vMax
SGS sequence (pen_method=2) (Feser and Evangelou (2023)) is given by

vmax
i = max

j=1,...,m

{
1

α
F−1
N

(
1− qvi

2p

)
− 1

3α
(1− α)ajwj

}
,

The BH SLOPE sequence (pen_method=3) (Bogdan et al. (2015)) is given by

vi = z(1− iqv/2p),

where z is the quantile function of a standard normal distribution.

Value

A list containing:

beta The fitted values from the regression. Taken to be the more stable fit between
x and z, which is usually the former. A filter is applied to remove very small
values, where ATOS has not been able to shrink exactly to zero. Check this
against x and z.

group_effects The group values from the regression. Taken by applying the ℓ2 norm within
each group on beta.

selected_var A list containing the indicies of the active/selected variables for each "lambda"
value. Index 1 corresponds to the first column in X.

fit_sgs 31

selected_grp A list containing the indicies of the active/selected groups for each "lambda"
value. Index 1 corresponds to the first group in the groups vector. You can see
the group order by running unique(groups).

num_it Number of iterations performed. If convergence is not reached, this will be
max_iter.

success Logical flag indicating whether ATOS converged, according to tol.

certificate Final value of convergence criteria.

x The solution to the original problem (see Pedregosa and Gidel (2018)).

z The updated values from applying the first proximal operator (see Pedregosa and
Gidel (2018)).

u The solution to the dual problem (see Pedregosa and Gidel (2018)).

screen_set_var List of variables that were kept after screening step for each "lambda" value.
(corresponds to Sv in Feser and Evangelou (2024)).

screen_set_grp List of groups that were kept after screening step for each "lambda" value. (cor-
responds to Sg in Feser and Evangelou (2024)).

epsilon_set_var

List of variables that were used for fitting after screening for each "lambda"
value. (corresponds to Ev in Feser and Evangelou (2024)).

epsilon_set_grp

List of groups that were used for fitting after screening for each "lambda" value.
(corresponds to Eg in Feser and Evangelou (2024)).

kkt_violations_var

List of variables that violated the KKT conditions each "lambda" value. (corre-
sponds to Kv in Feser and Evangelou (2024)).

kkt_violations_grp

List of groups that violated the KKT conditions each "lambda" value. (corre-
sponds to Kg in Feser and Evangelou (2024)).

pen_slope Vector of the variable penalty sequence.

pen_gslope Vector of the group penalty sequence.

screen Logical flag indicating whether screening was performed.

type Indicates which type of regression was performed.

intercept Logical flag indicating whether an intercept was fit.

lambda Value(s) of λ used to fit the model.

References

Bogdan, M., van den Berg, E., Sabatti, C., Candes, E. (2015). SLOPE - Adaptive variable selection
via convex optimization, https://projecteuclid.org/journals/annals-of-applied-statistics/
volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/
15-AOAS842.full

Feser, F., Evangelou, M. (2023). Sparse-group SLOPE: adaptive bi-level selection with FDR-
control, https://arxiv.org/abs/2305.09467

https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://arxiv.org/abs/2305.09467

32 fit_sgs_cv

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

Pedregosa, F., Gidel, G. (2018). Adaptive Three Operator Splitting, https://proceedings.mlr.
press/v80/pedregosa18a.html

See Also

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs_cv(), plot.sgs(),
predict.sgs(), print.sgs(), scaled_sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run SGS
model = fit_sgs(X = data$X, y = data$y, groups = groups, type="linear", path_length = 5,
alpha=0.95, vFDR=0.1, gFDR=0.1, standardise = "l2", intercept = TRUE, verbose=FALSE)

fit_sgs_cv Fit an SGS model using k-fold cross-validation.

Description

Function to fit a pathwise solution of sparse-group SLOPE (SGS) models using k-fold cross-
validation. Supports both linear and logistic regression, both with dense and sparse matrix im-
plementations.

Usage

fit_sgs_cv(
X,
y,
groups,
type = "linear",
lambda = "path",
path_length = 20,
min_frac = 0.05,
alpha = 0.95,
vFDR = 0.1,
gFDR = 0.1,
pen_method = 1,
nfolds = 10,
backtracking = 0.7,
max_iter = 5000,
max_iter_backtracking = 100,
tol = 1e-05,

https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357
https://proceedings.mlr.press/v80/pedregosa18a.html
https://proceedings.mlr.press/v80/pedregosa18a.html

fit_sgs_cv 33

standardise = "l2",
intercept = TRUE,
error_criteria = "mse",
screen = TRUE,
verbose = FALSE,
v_weights = NULL,
w_weights = NULL,
warm_start = NULL

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

type The type of regression to perform. Supported values are: "linear" and "logistic".

lambda The regularisation parameter. Defines the level of sparsity in the model. A
higher value leads to sparser models:

• "path" computes a path of regularisation parameters of length "path_length".
The path will begin just above the value at which the first predictor enters
the model and will terminate at the value determined by "min_frac".

• User-specified single value or sequence. Internal scaling is applied based
on the type of standardisation. The returned "lambda" value will be the
original unscaled value(s).

path_length The number of λ values to fit the model for. If "lambda" is user-specified, this
is ignored.

min_frac Smallest value of λ as a fraction of the maximum value. That is, the final λ will
be "min_frac" of the first λ value.

alpha The value of α, which defines the convex balance between SLOPE and gSLOPE.
Must be between 0 and 1. Recommended value is 0.95.

vFDR Defines the desired variable false discovery rate (FDR) level, which determines
the shape of the variable penalties. Must be between 0 and 1.

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the group penalties. Must be between 0 and 1.

pen_method The type of penalty sequences to use (see Feser and Evangelou (2023)):

• "1" uses the vMean SGS and gMean gSLOPE sequences.
• "2" uses the vMax SGS and gMean gSLOPE sequences.
• "3" uses the BH SLOPE and gMean gSLOPE sequences, also known as

SGS Original.

nfolds The number of folds to use in cross-validation.

backtracking The backtracking parameter, τ , as defined in Pedregosa and Gidel (2018).

34 fit_sgs_cv

max_iter Maximum number of ATOS iterations to perform.
max_iter_backtracking

Maximum number of backtracking line search iterations to perform per global
iteration.

tol Convergence tolerance for the stopping criteria.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

intercept Logical flag for whether to fit an intercept.

error_criteria The criteria used to discriminate between models along the path. Supported
values are: "mse" (mean squared error) and "mae" (mean absolute error).

screen Logical flag for whether to apply screening rules (see Feser and Evangelou
(2024)). Screening discards irrelevant groups before fitting, greatly improving
speed.

verbose Logical flag for whether to print fitting information.

v_weights Optional vector for the variable penalty weights. Overrides the penalties from
pen_method if specified. When entering custom weights, these are multiplied
internally by λ and α. To void this behaviour, set λ = 2 and α = 0.5

w_weights Optional vector for the group penalty weights. Overrides the penalties from
pen_method if specified. When entering custom weights, these are multiplied
internally by λ and 1− α. To void this behaviour, set λ = 2 and α = 0.5

warm_start Optional list for implementing warm starts. These values are used as initial val-
ues in the fitting algorithm. Need to supply "x" and "u" in the form "list(warm_x,
warm_u)". Not recommended for use with a path or CV fit as start from the null
model by design.

Details

Fits SGS models under a pathwise solution using adaptive three operator splitting (ATOS), picking
the 1se model as optimum. Warm starts are implemented.

Value

A list containing:

all_models A list of all the models fitted along the path.

fit The 1se chosen model, which is a "sgs" object type.

best_lambda The value of λ which generated the chosen model.

best_lambda_id The path index for the chosen model.

errors A table containing fitting information about the models on the path.

type Indicates which type of regression was performed.

gen_pens 35

References

Feser, F., Evangelou, M. (2023). Sparse-group SLOPE: adaptive bi-level selection with FDR-
control, https://arxiv.org/abs/2305.09467

Feser, F., Evangelou, M. (2024). Strong screening rules for group-based SLOPE models, https:
//arxiv.org/abs/2405.15357

See Also

fit_sgs()

Other model-selection: as_sgs(), fit_goscar_cv(), fit_gslope_cv(), fit_sgo_cv(), scaled_sgs()

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), plot.sgs(),
predict.sgs(), print.sgs(), scaled_sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run SGS with cross-validation
cv_model = fit_sgs_cv(X = data$X, y = data$y, groups=groups, type = "linear",
path_length = 5, nfolds=5, alpha = 0.95, vFDR = 0.1, gFDR = 0.1, min_frac = 0.05,
standardise="l2",intercept=TRUE,verbose=TRUE)

gen_pens Generate penalty sequences for SGS.

Description

Generates variable and group penalties for SGS.

Usage

gen_pens(gFDR, vFDR, pen_method, groups, alpha)

Arguments

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the group penalties.

vFDR Defines the desired variable false discovery rate (FDR) level, which determines
the shape of the variable penalties.

pen_method The type of penalty sequences to use (see Feser and Evangelou (2023)):

• "1" uses the vMean SGS and gMean gSLOPE sequences.
• "2" uses the vMax SGS and gMean gSLOPE sequences.
• "3" uses the BH SLOPE and gMean gSLOPE sequences, also known as

SGS Original.

https://arxiv.org/abs/2305.09467
https://arxiv.org/abs/2405.15357
https://arxiv.org/abs/2405.15357

36 gen_pens

• "4" uses the gMax gSLOPE sequence. For a gSLOPE model only.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

alpha The value of α, defines the convex balance between SLOPE and gSLOPE.

Details

The vMean and vMax SGS sequences are variable sequences derived specifically to give variable
false discovery rate (FDR) control for SGS under orthogonal designs (see Feser and Evangelou
(2023)). The BH SLOPE sequence is derived in Bodgan et al. (2015) and has links to the Benjamini-
Hochberg critical values. The sequence provides variable FDR-control for SLOPE under orthogonal
designs. The gMean gSLOPE sequence is derived in Brzyski et al. (2015) and provides group FDR-
control for gSLOPE under orthogonal designs.

Value

A list containing:

pen_slope_org A vector of the variable penalty sequence.

pen_gslope_org A vector of the group penalty sequence.

References

Bogdan, M., Van den Berg, E., Sabatti, C., Su, W., Candes, E. (2015). SLOPE — Adaptive variable
selection via convex optimization, https://projecteuclid.org/journals/annals-of-applied-statistics/
volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/
15-AOAS842.full

Brzyski, D., Gossmann, A., Su, W., Bodgan, M. (2019). Group SLOPE – Adaptive Selection
of Groups of Predictors, https://www.tandfonline.com/doi/full/10.1080/01621459.2017.
1411269

Feser, F., Evangelou, M. (2023). Sparse-group SLOPE: adaptive bi-level selection with FDR-
control, https://arxiv.org/abs/2305.09467

Examples

specify a grouping structure
groups = c(rep(1:20, each=3),

rep(21:40, each=4),
rep(41:60, each=5),
rep(61:80, each=6),
rep(81:100, each=7))

generate sequences
sequences = gen_pens(gFDR=0.1, vFDR=0.1, pen_method=1, groups=groups, alpha=0.5)

https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1411269
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1411269
https://arxiv.org/abs/2305.09467

gen_toy_data 37

gen_toy_data Generate toy data.

Description

Generates different types of datasets, which can then be fitted using sparse-group SLOPE.

Usage

gen_toy_data(
p,
n,
rho = 0,
seed_id = 2,
grouped = TRUE,
groups,
noise_level = 1,
group_sparsity = 0.1,
var_sparsity = 0.5,
orthogonal = FALSE,
data_mean = 0,
data_sd = 1,
signal_mean = 0,
signal_sd = sqrt(10)

)

Arguments

p The number of input variables.

n The number of observations.

rho Correlation coefficient. Must be in range [0, 1].

seed_id Seed to be used to generate the data matrix X .

grouped A logical flag indicating whether grouped data is required.

groups If grouped=TRUE, the grouping structure is required. Each input variable should
have a group id.

noise_level Defines the level of noise (σ) to be used in generating the response vector y.

group_sparsity Defines the level of group sparsity. Must be in the range [0, 1].

var_sparsity Defines the level of variable sparsity. Must be in the range [0, 1]. If grouped=TRUE,
this defines the level of sparsity within each group, not globally.

orthogonal Logical flag as to whether the input matrix should be orthogonal.

data_mean Defines the mean of input predictors.

data_sd Defines the standard deviation of the signal (β).

signal_mean Defines the mean of the signal (β).

signal_sd Defines the standard deviation of the signal (β).

38 plot.sgs

Details

The data is generated under a Gaussian linear model. The generated data can be grouped and
sparsity can be provided at both a group and/or variable level.

Value

A list containing:

y The response vector.

X The input matrix.

true_beta The true values of β used to generate the response.

true_grp_id Indices of which groups are non-zero in true_beta.

Examples

specify a grouping structure
groups = c(rep(1:20, each=3),

rep(21:40, each=4),
rep(41:60, each=5),
rep(61:80, each=6),
rep(81:100, each=7))

generate data
data = gen_toy_data(p=500, n=400, groups = groups, seed_id=3)

plot.sgs Plot models of the following object types: "sgs", "sgs_cv",
"gslope", "gslope_cv".

Description

Plots the pathwise solution of a cross-validation fit, from a call to one of the following: fit_sgs(),
fit_sgs_cv(), fit_gslope(), fit_gslope_cv(), fit_sgo(), fit_sgo_cv(), fit_goscar(),
fit_goscar_cv().

Usage

S3 method for class 'sgs'
plot(x, how_many = 10, ...)

Arguments

x Object of one of the following classes: "sgs", "sgs_cv", "gslope", "gslope_cv".

how_many Defines how many predictors to plot. Plots the predictors in decreasing order of
largest absolute value.

... further arguments passed to base function.

predict.sgs 39

Value

A list containing:

response The predicted response. In the logistic case, this represents the predicted class
probabilities.

class The predicted class assignments. Only returned if type = "logistic" in the model
object.

See Also

fit_sgs(), fit_sgs_cv(), fit_gslope(), fit_gslope_cv(), fit_sgo(), fit_sgo_cv(), fit_goscar(),
fit_goscar_cv()

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(),
predict.sgs(), print.sgs(), scaled_sgs()

Other gSLOPE-methods: coef.sgs(), fit_goscar(), fit_goscar_cv(), fit_gslope(), fit_gslope_cv(),
predict.sgs(), print.sgs()

Examples

specify a grouping structure
groups = c(1,1,2,2,3)
generate data
data = gen_toy_data(p=5, n=4, groups = groups, seed_id=3,signal_mean=20,group_sparsity=1)
run SGS
model = fit_sgs(X = data$X, y = data$y, groups=groups, type = "linear",
path_length = 20, alpha = 0.95, vFDR = 0.1, gFDR = 0.1,
min_frac = 0.05, standardise="l2",intercept=TRUE,verbose=FALSE)
plot(model, how_many = 10)

predict.sgs Predict using one of the following object types: "sgs", "sgs_cv",
"gslope", "gslope_cv".

Description

Performs prediction from one of the following fits: fit_sgs(), fit_sgs_cv(), fit_gslope(),
fit_gslope_cv(), fit_sgo(), fit_sgo_cv(), fit_goscar(), fit_goscar_cv(). The predic-
tions are calculated for each "lambda" value in the path.

Usage

S3 method for class 'sgs'
predict(object, x, ...)

40 print.sgs

Arguments

object Object of one of the following classes: "sgs", "sgs_cv", "gslope", "gslope_cv".

x Input data to use for prediction.

... further arguments passed to stats function.

Value

A list containing:

response The predicted response. In the logistic case, this represents the predicted class
probabilities.

class The predicted class assignments. Only returned if type = "logistic" in the model
object.

See Also

fit_sgs(), fit_sgs_cv(), fit_gslope(), fit_gslope_cv(), fit_sgo(), fit_sgo_cv(), fit_goscar(),
fit_goscar_cv()

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(),
plot.sgs(), print.sgs(), scaled_sgs()

Other gSLOPE-methods: coef.sgs(), fit_goscar(), fit_goscar_cv(), fit_gslope(), fit_gslope_cv(),
plot.sgs(), print.sgs()

Examples

specify a grouping structure
groups = c(1,1,1,2,2,3,3,3,4,4)
generate data
data = gen_toy_data(p=10, n=5, groups = groups, seed_id=3,group_sparsity=1)
run SGS
model = fit_sgs(X = data$X, y = data$y, groups = groups, type="linear", lambda = 1, alpha=0.95,
vFDR=0.1, gFDR=0.1, standardise = "l2", intercept = TRUE, verbose=FALSE)
use predict function
model_predictions = predict(model, x = data$X)

print.sgs Prints information for one of the following object types: "sgs",
"sgs_cv", "gslope", "gslope_cv".

Description

Prints out useful metric from a model fit.

Usage

S3 method for class 'sgs'
print(x, ...)

scaled_sgs 41

Arguments

x Object of one of the following classes: "sgs", "sgs_cv", "gslope", "gslope_cv".

... further arguments passed to base function.

Value

A summary of the model fit(s).

See Also

fit_sgs(), fit_sgs_cv(), fit_gslope(), fit_gslope_cv(), fit_sgo(), fit_sgo_cv(), fit_goscar(),
fit_goscar_cv()

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(),
plot.sgs(), predict.sgs(), scaled_sgs()

Other gSLOPE-methods: coef.sgs(), fit_goscar(), fit_goscar_cv(), fit_gslope(), fit_gslope_cv(),
plot.sgs(), predict.sgs()

Examples

specify a grouping structure
groups = c(rep(1:20, each=3),

rep(21:40, each=4),
rep(41:60, each=5),
rep(61:80, each=6),
rep(81:100, each=7))

generate data
data = gen_toy_data(p=500, n=400, groups = groups, seed_id=3)
run SGS
model = fit_sgs(X = data$X, y = data$y, groups = groups, type="linear", lambda = 1, alpha=0.95,
vFDR=0.1, gFDR=0.1, standardise = "l2", intercept = TRUE, verbose=FALSE)
print model
print(model)

scaled_sgs Fits a scaled regression SLOPE-based.

Description

Fits a scaled regression SLOPE-based model using the noise estimation procedure (Algorithm 5
from Bogdan et al. (2015)). This estimates λ and then fits the model using the estimated value. It
is an alternative approach to cross-validation (fit_sgs_cv()).

42 scaled_sgs

Usage

scaled_sgs(
X,
y,
groups,
model = "sgs",
type = "linear",
pen_method = 1,
alpha = 0.95,
vFDR = 0.1,
gFDR = 0.1,
standardise = "l2",
intercept = TRUE,
verbose = FALSE

)

Arguments

X Input matrix of dimensions n×p. Can be a sparse matrix (using class "sparseMatrix"
from the Matrix package).

y Output vector of dimension n. For type="linear" should be continuous and
for type="logistic" should be a binary variable.

groups A grouping structure for the input data. Should take the form of a vector of
group indices.

model The type of model to fit. Supported values are: "sgs" and "gslope".

type The type of regression to perform. Supported values are: "linear" and "logistic".

pen_method The type of penalty sequences to use.

• "1" uses the vMean SGS and gMean gSLOPE sequences. For the gSLOPE
model, uses the mean sequence.

• "2" uses the vMax SGS and gMean gSLOPE sequences. For the gSLOPE
model, uses the max sequence.

• "1" uses the BH SLOPE and gMean gSLOPE sequences, also known as
SGS Original.

alpha The value of α, which defines the convex balance between SLOPE and gSLOPE.
Must be between 0 and 1.

vFDR Defines the desired variable false discovery rate (FDR) level, which determines
the shape of the variable penalties. Must be between 0 and 1.

gFDR Defines the desired group false discovery rate (FDR) level, which determines
the shape of the group penalties. Must be between 0 and 1.

standardise Type of standardisation to perform on X:

• "l2" standardises the input data to have ℓ2 norms of one.
• "l1" standardises the input data to have ℓ1 norms of one.
• "sd" standardises the input data to have standard deviation of one.
• "none" no standardisation applied.

scaled_sgs 43

intercept Logical flag for whether to fit an intercept.

verbose Logical flag for whether to print fitting information.

Value

An object of type "sgs" containing model fit information (see fit_sgs()).

References

Bogdan, M., Van den Berg, E., Sabatti, C., Su, W., Candes, E. (2015). SLOPE — Adaptive variable
selection via convex optimization, https://projecteuclid.org/journals/annals-of-applied-statistics/
volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/
15-AOAS842.full

See Also

as_sgs()

Other model-selection: as_sgs(), fit_goscar_cv(), fit_gslope_cv(), fit_sgo_cv(), fit_sgs_cv()

Other SGS-methods: as_sgs(), coef.sgs(), fit_sgo(), fit_sgo_cv(), fit_sgs(), fit_sgs_cv(),
plot.sgs(), predict.sgs(), print.sgs()

Examples

specify a grouping structure
groups = c(1,1,2,2,3)
generate data
data = gen_toy_data(p=5, n=4, groups = groups, seed_id=3,
signal_mean=20,group_sparsity=1,var_sparsity=1)
run noise estimation
model = scaled_sgs(X=data$X, y=data$y, groups=groups, pen_method=1)

https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/SLOPEAdaptive-variable-selection-via-convex-optimization/10.1214/15-AOAS842.full

Index

∗ SGS-methods
as_sgs, 3
coef.sgs, 7
fit_sgo, 21
fit_sgo_cv, 24
fit_sgs, 27
fit_sgs_cv, 32
plot.sgs, 38
predict.sgs, 39
print.sgs, 40
scaled_sgs, 41

∗ gSLOPE-methods
coef.sgs, 7
fit_goscar, 8
fit_goscar_cv, 11
fit_gslope, 14
fit_gslope_cv, 18
plot.sgs, 38
predict.sgs, 39
print.sgs, 40

∗ model-selection
as_sgs, 3
fit_goscar_cv, 11
fit_gslope_cv, 18
fit_sgo_cv, 24
fit_sgs_cv, 32
scaled_sgs, 41

arma_mv, 2
arma_sparse, 3
as_sgs, 3, 7, 13, 20, 24, 27, 32, 35, 39–41, 43
as_sgs(), 43
atos, 5

coef.sgs, 4, 7, 11, 13, 17, 20, 24, 27, 32, 35,
39–41, 43

fit_goscar, 7, 8, 13, 17, 20, 39–41
fit_goscar(), 7, 13, 38–41

fit_goscar_cv, 4, 7, 11, 11, 17, 20, 27, 35,
39–41, 43

fit_goscar_cv(), 7, 38–41
fit_gslope, 7, 11, 13, 14, 20, 39–41
fit_gslope(), 7, 20, 30, 38–41
fit_gslope_cv, 4, 7, 11, 13, 17, 18, 27, 35,

39–41, 43
fit_gslope_cv(), 7, 38–41
fit_sgo, 4, 7, 21, 27, 32, 35, 39–41, 43
fit_sgo(), 7, 27, 38–41
fit_sgo_cv, 4, 7, 13, 20, 24, 24, 32, 35,

39–41, 43
fit_sgo_cv(), 7, 38–41
fit_sgs, 4, 7, 24, 27, 27, 35, 39–41, 43
fit_sgs(), 4, 7, 35, 38–41, 43
fit_sgs_cv, 4, 7, 13, 20, 24, 27, 32, 32,

39–41, 43
fit_sgs_cv(), 3, 7, 38–41

gen_pens, 35
gen_toy_data, 37

plot.sgs, 4, 7, 11, 13, 17, 20, 24, 27, 32, 35,
38, 40, 41, 43

predict.sgs, 4, 7, 11, 13, 17, 20, 24, 27, 32,
35, 39, 39, 41, 43

print.sgs, 4, 7, 11, 13, 17, 20, 24, 27, 32, 35,
39, 40, 40, 43

scaled_sgs, 4, 7, 13, 20, 24, 27, 32, 35,
39–41, 41

scaled_sgs(), 4

44

	arma_mv
	arma_sparse
	as_sgs
	atos
	coef.sgs
	fit_goscar
	fit_goscar_cv
	fit_gslope
	fit_gslope_cv
	fit_sgo
	fit_sgo_cv
	fit_sgs
	fit_sgs_cv
	gen_pens
	gen_toy_data
	plot.sgs
	predict.sgs
	print.sgs
	scaled_sgs
	Index

