Package 'semidist'

November 21, 2023

Type Package

Title Measure Dependence Between Categorical and Continuous Variables

Version 0.1.0

Date 2023-11-19

Description Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable.
Test of independence and feature screening for classification problems can be implemented via the two dependence measures.
For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.

License MIT + file LICENSE

Encoding UTF-8

Imports energy, FNN, furrr, purrr, Rcpp, stats

RoxygenNote 7.2.3

LinkingTo Rcpp, RcppArmadillo

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/wzhong41/semidist

BugReports https://github.com/wzhong41/semidist/issues

NeedsCompilation yes

Author Wei Zhong [aut], Zhuoxi Li [aut, cre, cph], Wenwen Guo [aut], Hengjian Cui [aut], Runze Li [aut]

Maintainer Zhuoxi Li <chainchei@gmail.com>

Repository CRAN

Date/Publication 2023-11-21 06:50:02 UTC

R topics documented:

	15
tr_estimate	14
switch_cat_repr	
sd_test	11
sd_sis	
sdcov	8
print.indtest	7
mv_test	6
mv_sis	
mv	3
MINTsemiperm	2

Index

```
MINTsemiperm
```

Mutual information independence test (categorical-continuous case)

Description

Implement the mutual information independence test (MINT) (Berrett and Samworth, 2019), but with some modification in estimating the mutual information (MI) between a categorical random variable and a continuous variable. The modification is based on the idea of Ross (2014).

MINTsemiperm() implements the permutation independence test via mutual information, but the parameter k should be pre-specified.

MINTsemiauto() automatically selects an appropriate k based on a data-driven procedure, and conducts MINTsemiperm() with the k chosen.

Usage

MINTsemiperm(X, y, k, B = 1000)

MINTsemiauto(X, y, kmax, B1 = 1000, B2 = 1000)

Arguments

Х	Data of multivariate continuous variables, which should be an n -by- p matrix, or, a vector of length n (for univariate variable).
У	Data of categorical variables, which should be a factor of length n .
k	Number of nearest neighbor. See References for details.
B, B1, B2	Number of permutations to use. Defaults to 1000.
kmax	Maximum k in the automatic search for optimal k.

Value

A list with class "indtest" containing the following components

- method: name of the test;
- name_data: names of the X and y;
- n: sample size of the data;
- num_perm: number of replications in permutation test;
- stat: test statistic;
- pvalue: computed p-value.

For MINTsemiauto(), the list also contains

- kmax: maximum k in the automatic search for optimal k;
- kopt: optimal k chosen.

References

- Berrett, Thomas B., and Richard J. Samworth. "Nonparametric independence testing via mutual information." *Biometrika* 106, no. 3 (2019): 547-566.
- 2. Ross, Brian C. "Mutual information between discrete and continuous data sets." *PloS one* 9, no. 2 (2014): e87357.

Examples

```
X <- mtcars[, c("mpg", "disp", "drat", "wt")]
y <- factor(mtcars[, "am"])
MINTsemiperm(X, y, 5)
MINTsemiauto(X, y, kmax = 32)</pre>
```

mν

Mean Variance (MV) statistics

Description

Compute the statistics of mean variance (MV) index, which can measure the dependence between a univariate continuous variable and a categorical variable. See Cui, Li and Zhong (2015); Cui and Zhong (2019) for details.

Usage

 $mv(x, y, return_mat = FALSE)$

Arguments

х	Data of univariate continuous variables, which should be a vector of length n .
У	Data of categorical variables, which should be a factor of length n .
return_mat	A boolean. If FALSE (the default), only the calculated statistic is returned. If TRUE, also return the matrix of the indicator for $x \le x_i$, which is useful for the permutation test.

Value

The value of the corresponding sample statistic.

If the argument return_mat of mv() is set as TRUE, a list with elements

- mv: the MV index statistic;
- mat_x: the matrices of the distances of the indicator for x <= x_i;

will be returned.

See Also

- mv_test() for implementing independence test via MV index;
- mv_sis() for implementing feature screening via MV index.

```
x <- mtcars[, "mpg"]
y <- factor(mtcars[, "am"])
print(mv(x, y))
# Man-made independent data ------
n <- 30; R <- 5; prob <- rep(1/R, R)
x <- rnorm(n)
y <- factor(sample(1:R, size = n, replace = TRUE, prob = prob), levels = 1:R)
print(mv(x, y))
# Man-made functionally dependent data ------
n <- 30; R <- 3
x <- rep(0, n)
x[1:10] <- 0.3; x[11:20] <- 0.2; x[21:30] <- -0.1
y <- factor(rep(1:3, each = 10))
print(mv(x, y))
```

mv_sis

Description

Implement the feature screening for the classification problem via MV index.

Usage

mv_sis(X, y, d = NULL, parallel = FALSE)

Arguments

Х	Data of multivariate covariates, which should be an n -by- p matrix.
У	Data of categorical response, which should be a factor of length n .
d	An integer specifying how many features should be kept after screening. Defaults to NULL. If NULL, then it will be set as $[n/log(n)]$, where $[x]$ denotes the integer part of x.
parallel	A boolean indicating whether to calculate parallelly via furr::future_map. Defaults to FALSE.

Value

A list of the objects about the implemented feature screening:

- measurement: sample MV index calculated for each single covariate;
- selected: indicies or names (if avaiable as colnames of X) of covariates that are selected after feature screening;
- ordering: order of the calculated measurements of each single covariate. The first one is the largest, and the last is the smallest.

```
X <- mtcars[, c("mpg", "disp", "hp", "drat", "wt", "qsec")]
y <- factor(mtcars[, "am"])
mv_sis(X, y, d = 4)</pre>
```

mv_test

Description

Implement the MV independence test via permutation test, or via the asymptotic approximation

Usage

mv_test(x, y, test_type = "perm", num_perm = 10000)

Arguments

x	Data of univariate continuous variables, which should be a vector of length n .
У	Data of categorical variables, which should be a factor of length n .
test_type	Type of the test:
	• "perm" (the default): Implement the test via permutation test;
	• "asym": Implement the test via the asymptotic approximation.
	See the Reference for details.
num_perm	The number of replications in permutation test.

Value

A list with class "indtest" containing the following components

- method: name of the test;
- name_data: names of the x and y;
- n: sample size of the data;
- num_perm: number of replications in permutation test;
- stat: test statistic;
- pvalue: computed p-value. (Notice: asymptotic test cannot return a p-value, but only the critical values crit_vals for 90%, 95% and 99% confidence levels.)

```
x <- mtcars[, "mpg"]
y <- factor(mtcars[, "am"])
test <- mv_test(x, y)
print(test)
test_asym <- mv_test(x, y, test_type = "asym")
print(test_asym)
# Man-made independent data ------
n <- 30; R <- 5; prob <- rep(1/R, R)
x <- rnorm(n)</pre>
```

print.indtest

```
y <- factor(sample(1:R, size = n, replace = TRUE, prob = prob), levels = 1:R)
test <- mv_test(x, y)
print(test)
test_asym <- mv_test(x, y, test_type = "asym")
print(test_asym)
# Man-made functionally dependent data ------
n <- 30; R <- 3
x <- rep(0, n)
x[1:10] <- 0.3; x[11:20] <- 0.2; x[21:30] <- -0.1
y <- factor(rep(1:3, each = 10))
test <- mv_test(x, y)
print(test)
test_asym <- mv_test(x, y, test_type = "asym")
print(test_asym)</pre>
```

print.indtest	Print Method for Independence Tests Between Categorical and Con-
	tinuous Variables

Description

Printing object of class "indtest", by simple print method.

Usage

S3 method for class 'indtest'
print(x, digits = getOption("digits"), ...)

Arguments

Х	"indtest" class object.
digits	minimal number of significant digits.
	further arguments passed to or from other methods.

Value

None

```
# Man-made functionally dependent data ------
n <- 30; R <- 3
x <- rep(0, n)
x[1:10] <- 0.3; x[11:20] <- 0.2; x[21:30] <- -0.1
y <- factor(rep(1:3, each = 10))
test <- mv_test(x, y)
print(test)</pre>
```

sdcov

```
test_asym <- mv_test(x, y, test_type = "asym")
print(test_asym)</pre>
```

sdcov

Semi-distance covariance and correlation statistics

Description

Compute the statistics (or sample estimates) of semi-distance covariance and correlation. The semidistance correlation is a standardized version of semi-distance covariance, and it can measure the dependence between a *multivariate* continuous variable and a categorical variable. See Details for the definition of semi-distance covariance and semi-distance correlation.

Usage

sdcov(X, y, type = "V", return_mat = FALSE)

sdcor(X, y)

Arguments

Х	Data of multivariate continuous variables, which should be an n -by- p matrix, or, a vector of length n (for univariate variable).
У	Data of categorical variables, which should be a factor of length n .
type	Type of statistic: "V" (the default) or "U". See Details.
return_mat	A boolean. If FALSE (the default), only the calculated statistic is returned. If TRUE, also return the matrix of the distances of X and the divergences of y, which is useful for the permutation test.

Details

For $X \in \mathbb{R}^p$ and $Y \in \{1, 2, \dots, R\}$, the (population-level) semi-distance covariance is defined as

$$\operatorname{SDcov}(\boldsymbol{X}, Y) = \operatorname{E}\left[\|\boldsymbol{X} - \widetilde{\boldsymbol{X}}\| \left(1 - \sum_{r=1}^{R} I(Y = r, \widetilde{Y} = r)/p_r\right)\right],$$

where $p_r = P(Y = r)$ and $(\widetilde{X}, \widetilde{Y})$ is an iid copy of (X, Y). The (population-level) semi-distance correlation is defined as

$$\operatorname{SDcor}(\boldsymbol{X}, Y) = \frac{\operatorname{SDcov}(\boldsymbol{X}, Y)}{\operatorname{dvar}(\boldsymbol{X})\sqrt{R-1}},$$

where dvar(X) is the distance variance (Szekely, Rizzo, and Bakirov 2007) of X.

With n observations $\{(X_i, Y_i)\}_{i=1}^n$, sdcov() and sdcor() can compute the sample estimates for the semi-distance covariance and correlation.

8

If type = "V", the semi-distance covariance statistic is computed as a V-statistic, which takes a very similar form as the energy-based statistic with double centering, and is always non-negative. Specifically,

$$\operatorname{SDcov}_n(\boldsymbol{X}, y) = \frac{1}{n^2} \sum_{k=1}^n \sum_{l=1}^n A_{kl} B_{kl},$$

where

$$A_{kl} = a_{kl} - \bar{a}_{k.} - \bar{a}_{.l} + \bar{a}_{.l}$$

is the double centering (Szekely, Rizzo, and Bakirov 2007) of $a_{kl} = ||X_k - X_l||$, and

$$B_{kl} = 1 - \sum_{r=1}^{R} I(Y_k = r) I(Y_l = r) / \hat{p}_r$$

with $\hat{p}_r = n_r/n = n^{-1} \sum_{i=1}^n I(Y_i = r)$. The semi-distance correlation statistic is

$$\operatorname{SDcor}_n(\boldsymbol{X}, y) = \frac{\operatorname{SDcov}_n(\boldsymbol{X}, y)}{\operatorname{dvar}_n(\boldsymbol{X})\sqrt{R-1}},$$

where $dvar_n(X)$ is the V-statistic of distance variance of X.

If type = "U", then the semi-distance covariance statistic is computed as an "estimated U-statistic", which is utilized in the independence test statistic and is not necessarily non-negative. Specifically,

$$\widetilde{\operatorname{SDcov}}_n(\boldsymbol{X}, y) = \frac{1}{n(n-1)} \sum_{i \neq j} \|\boldsymbol{X}_i - \boldsymbol{X}_j\| \left(1 - \sum_{r=1}^R I(Y_i = r) I(Y_j = r) / \tilde{p}_r \right),$$

where $\tilde{p}_r = (n_r - 1)/(n - 1) = (n - 1)^{-1} (\sum_{i=1}^n I(Y_i = r) - 1)$. Note that the test statistic of the semi-distance independence test is

$$T_n = n \cdot \widetilde{\mathrm{SDcov}}_n(\boldsymbol{X}, y).$$

Value

The value of the corresponding sample statistic.

If the argument return_mat of sdcov() is set as TRUE, a list with elements

- sdcov: the semi-distance covariance statistic;
- mat_x, mat_y: the matrices of the distances of X and the divergences of y, respectively;

will be returned.

See Also

- sd_test() for implementing independence test via semi-distance covariance;
- sd_sis() for implementing groupwise feature screening via semi-distance correlation.

Examples

```
X <- mtcars[, c("mpg", "disp", "drat", "wt")]</pre>
y <- factor(mtcars[, "am"])</pre>
print(sdcov(X, y))
print(sdcor(X, y))
# Man-made independent data ------
n <- 30; R <- 5; p <- 3; prob <- rep(1/R, R)
X <- matrix(rnorm(n*p), n, p)</pre>
y <- factor(sample(1:R, size = n, replace = TRUE, prob = prob), levels = 1:R)</pre>
print(sdcov(X, y))
print(sdcor(X, y))
# Man-made functionally dependent data -----
n <- 30; R <- 3; p <- 3
X <- matrix(0, n, p)
X[1:10, 1] <- 1; X[11:20, 2] <- 1; X[21:30, 3] <- 1
y <- factor(rep(1:3, each = 10))</pre>
print(sdcov(X, y))
print(sdcor(X, y))
```

sd_sis

Feature screening via semi-distance correlation

Description

Implement the (grouped) feature screening for the classification problem via semi-distance correlation.

Usage

sd_sis(X, y, group_info = NULL, d = NULL, parallel = FALSE)

Arguments

Х	Data of multivariate covariates, which should be an n -by- p matrix.
У	Data of categorical response, which should be a factor of length n .
group_info	A list specifying the group information, with elements being sets of indicies of covariates in a same group. For example, $list(c(1, 2, 3), c(4, 5))$ specifies that covariates 1, 2, 3 are in a group and covariates 4, 5 are in another group. Defaults to NULL. If NULL, then it will be set as $list(1, 2,, p)$, that is, treat each single covariate as a group.
	If X has colnames, then the colnames can be used to specified the group_info. For example, list(c("a", "b"), c("c", "d")).
	The names of the list can help recoginize the group. For example, list(grp_ab = c("a", "b"), grp_cd = c("c", "d")). If names of the list are not specified, c("Grp 1", "Grp 2",, "Grp J") will be applied.

10

sd_test

d	An integer specifying <i>at least</i> how many (single) features should be kept after screening. For example, if group_info = $list(c(1, 2), c(3, 4))$ and d = 3, then all features 1, 2, 3, 4 must be selected since it should guarantee at least 3 features are kept.
	Defaults to NULL. If NULL, then it will be set as $[n/log(n)]$, where $[x]$ denotes the integer part of x.
parallel	A boolean indicating whether to calculate parallelly via furr::future_map. Defaults to FALSE.

Value

A list of the objects about the implemented feature screening:

- group_info: group information;
- measurement: sample semi-distance correlations calculated for the groups specified in group_info;
- selected: indicies/names of (single) covariates that are selected after feature screening;
- ordering: order of the calculated measurements of the groups specified in group_info. The first one is the largest, and the last is the smallest.

See Also

sdcor() for calculating the sample semi-distance correlation.

Examples

```
X <- mtcars[, c("mpg", "disp", "hp", "drat", "wt", "qsec")]
y <- factor(mtcars[, "am"])
sd_sis(X, y, d = 4)
# Suppose we have prior information for the group structure as
# ("mpg", "drat"), ("disp", "hp") and ("wt", "qsec")
group_info <- list(
    mpg_drat = c("mpg", "drat"),
    disp_hp = c("disp", "hp"),
    wt_qsec = c("wt", "qsec")
)
sd_sis(X, y, group_info, d = 4)</pre>
```

sd_test

Semi-distance independence test

Description

Implement the semi-distance independence test via permutation test, or via the asymptotic approximation when the dimensionality of continuous variables p is high.

Usage

sd_test(X, y, test_type = "perm", num_perm = 10000)

Arguments

Х	Data of multivariate continuous variables, which should be an n -by- p matrix, or, a vector of length n (for univariate variable).
У	Data of categorical variables, which should be a factor of length n .
test_type	Type of the test:
	 "perm" (the default): Implement the test via permutation test; "asym": Implement the test via the asymptotic approximation when the dimension of continuous variables p is high.
	See the Reference for details.
num_perm	The number of replications in permutation test. Defaults to 10000. See Details and Reference.

Details

The semi-distance independence test statistic is

$$T_n = n \cdot \widetilde{\mathrm{SDcov}}_n(X, y),$$

where the $SDcov_n(X, y)$ can be computed by sdcov(X, y, type = "U").

For the permutation test (test_type = "perm"), totally K replications of permutation will be conducted, and the argument num_perm specifies the K here. The p-value of permutation test is computed by

p-value =
$$(\sum_{k=1}^{K} I(T_n^{*(k)} \ge T_n) + 1)/(K+1),$$

where T_n is the semi-distance test statistic and $T_n^{*(k)}$ is the test statistic with k-th permutation sample.

When the dimension of the continuous variables is high, the asymptotic approximation approach can be applied (test_type = "asym"), which is computationally faster since no permutation is needed.

Value

A list with class "indtest" containing the following components

- method: name of the test;
- name_data: names of the X and y;
- n: sample size of the data;
- test_type: type of the test;
- num_perm: number of replications in permutation test, if test_type = "perm";
- stat: test statistic;
- pvalue: computed p-value.

switch_cat_repr

See Also

sdcov() for computing the statistic of semi-distance covariance.

Examples

```
X <- mtcars[, c("mpg", "disp", "drat", "wt")]</pre>
y <- factor(mtcars[, "am"])</pre>
test <- sd_test(X, y)</pre>
print(test)
# Man-made independent data ------
n <- 30; R <- 5; p <- 3; prob <- rep(1/R, R)
X <- matrix(rnorm(n*p), n, p)</pre>
y <- factor(sample(1:R, size = n, replace = TRUE, prob = prob), levels = 1:R)</pre>
test <- sd_test(X, y)</pre>
print(test)
# Man-made functionally dependent data -----
n <- 30; R <- 3; p <- 3
X <- matrix(0, n, p)
X[1:10, 1] <- 1; X[11:20, 2] <- 1; X[21:30, 3] <- 1
y <- factor(rep(1:3, each = 10))</pre>
test <- sd_test(X, y)</pre>
print(test)
#' Man-made high-dimensionally independent data -----
n <- 30; R <- 3; p <- 100
X <- matrix(rnorm(n*p), n, p)</pre>
y <- factor(rep(1:3, each = 10))</pre>
test <- sd_test(X, y)</pre>
print(test)
test <- sd_test(X, y, test_type = "asym")</pre>
print(test)
# Man-made high-dimensionally dependent data -----
n <- 30; R <- 3; p <- 100
X <- matrix(0, n, p)
X[1:10, 1] <- 1; X[11:20, 2] <- 1; X[21:30, 3] <- 1
y <- factor(rep(1:3, each = 10))</pre>
test <- sd_test(X, y)</pre>
print(test)
test <- sd_test(X, y, test_type = "asym")</pre>
print(test)
```

switch_cat_repr Switch the representation of a categorical object

Description

Categorical data with n observations and R levels can typically be represented as two forms in R: a factor with length n, or an n by K indicator matrix with elements being 0 or 1. This function is to switch the form of a categorical object from one to the another.

Usage

switch_cat_repr(obj)

Arguments

obj

an object representing categorical data, either a factor or an indicator matrix with each row representing an observation.

Value

categorical object in the another form.

tr_estimate

Estimate the trace of the covariance matrix and its square

Description

For a design matrix X, estimate the trace of its covariance matrix $\Sigma = cov(X)$, and the square of covariance matrix Σ^2 .

Usage

tr_estimate(X)

Arguments

X The design matrix.

Value

A list with elements:

- tr_S: estimate for trace of Σ;
- tr_S2: estimate for trace of Σ^2 .

Index

MINTsemiauto (MINTsemiperm), 2 MINTsemiperm, 2 mv, 3 mv_sis,5 mv_sis(),4 mv_test, 6 mv_test(), 4 print,7 print.indtest,7 sd_sis, 10 sd_sis(),9 sd_test, 11 $sd_test(), 9$ sdcor(sdcov), 8sdcor(), *11* sdcov, 8sdcov(), *13* switch_cat_repr, 13

tr_estimate, 14