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alphaToA Valid drift matrices for the Ornstein—Uhlenbeck diffusion in 2D
Description

Constructs drift matrices A such that solve(A) %*% Sigma is symmetric.

Usage

alphaToA(alpha, sigma = NULL, rho = @, Sigma = NULL)

aToAlpha(A, sigma = NULL, rho = @, Sigma = NULL)

Arguments
alpha vector of length 3 containing the A matrix. The first two elements are the diago-
nal.
sigma vector of length 2 containing the square root of the diagonal of Sigma.
rho correlation of Sigma.
Sigma the diffusion matrix of size c(2, 2).
A matrix of size c(2, 2).
Details

The parametrization enforces that solve (A) %*% Sigma is symmetric. Positive definiteness is guar-
anteed if alpha[3]%2 <rho*2 * (alphal[1] - alpha[2])*2 / 4 + alpha[1] * alpha[2].

Value

The drift matrix A or the alpha vector.
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Examples

# Parameters
alpha <- 3:1
Sigma <- rbind(c(1, 0.5), c(0.5, 4))

# Covariance matrix

A <- alphaToA(alpha = alpha, Sigma = Sigma)
S <- 0.5 * solve(A) %x% Sigma

det(S)

# Check
aToAlpha(A = alphaToA(alpha = alpha, Sigma = Sigma), Sigma = Sigma)
alphaToA(alpha = aToAlpha(A = A, Sigma = Sigma), Sigma = Sigma)

approxMleWniD Approximate MLE of the WN diffusion in 1D

Description
Approximate Maximum Likelihood Estimation (MLE) for the Wrapped Normal (WN) in 1D using
the wrapped Ornstein—Uhlenbeck diffusion.

Usage

approxMleWn1D(data, delta, start, alpha = NA, mu = NA, sigma = NA,
lower = c(0.01, -pi, 0.01), upper = c(25, pi, 25), vmApprox = FALSE,

maxK = 2, ...)
Arguments
data a matrix of dimension c(n, p).
delta discretization step.
start starting values, a matrix with p columns, with each entry representing a different

starting value.

alpha, mu, sigma
if their values are provided, the likelihood function is optimized with respect to
the rest of unspecified parameters. The number of elements in start, lower and
upper has to be modified accordingly (see examples).

lower, upper bound for box constraints as in method "L-BFGS-B" of optim.

VMApprox flag to indicate von Mises approximation to wrapped normal. See
momentMatchWnVm and scoreMatchWnBvm.

maxK maximum absolute winding number used if circular = TRUE.
further parameters passed to mleOptimWrapper.
Details

See Section 3.3 in Garcia-Portugués et al. (2019) for details.
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Value

Output from mleOptimWrapper.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
s1122201797902

Examples

alpha <- 0.5

mu <- @

sigma <- 2

samp <- rTrajWn1D(x@ = @, alpha = alpha, mu = mu, sigma = sigma, N = 1000,

delta = 0.1)

approxMleWniD(data = samp, delta = @.1, start = c(alpha, mu, sigma))

approxMleWni1D(data = samp, delta = 0.1, sigma = sigma, start = c(alpha, mu),
lower = c(0.01, -pi), upper = c(25, pi))

approxMleWni1D(data = samp, delta = 0.1, mu = mu, start = c(alpha, sigma),
lower = ¢(0.01, 0.01), upper = c(25, 25))

approxMleWn2D Approximate MLE of the WN diffusion in 2D

Description

Approximate Maximum Likelihood Estimation (MLE) for the Wrapped Normal (WN) in 2D using
the wrapped Ornstein—Uhlenbeck diffusion.

Usage

approxMleWn2D(data, delta, start, alpha = rep(NA, 3), mu = rep(NA, 2),
sigma = rep(NA, 2), rho = NA, lower = c(0.01, @0.01, -25, -pi, -pi,
0.01, 0.01, -0.99), upper = c(rep(25, 3), pi, pi, 25, 25, 0.99),

maxK = 2, ...)
Arguments
data a matrix of dimension c(n, p).
delta discretization step.
start starting values, a matrix with p columns, with each entry representing a different

starting value.

alpha, mu, sigma, rho
if their values are provided, the likelihood function is optimized with respect to
the rest of unspecified parameters. The number of elements in start, lower and
upper has to be modified accordingly (see examples).


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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lower, upper bound for box constraints as in method "L-BFGS-B" of optim.
maxK maximum absolute winding number used if circular = TRUE.

further parameters passed to mleOptimWrapper.

Details

See Section 3.3 in Garcia-Portugués et al. (2019) for details.

Value

Output from mleOptimWrapper.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

Examples
alpha <- c¢c(2, 2, -0.5)
mu <- c(0, 0)
sigma <- c(1, 1)
rho <- 0.2

samp <- rTrajWn2D(x@ = c(@, @), alpha = alpha, mu = mu, sigma = sigma,
rho = rho, N = 1000, delta = 0.1)

approxMleWn2D(data = samp, delta = 0.1, start = c(alpha, mu, sigma, rho))

approxMleWn2D(data = samp, delta = @.1, alpha = alpha,
start = c(mu, sigma), lower = c(-pi, -pi, 0.01, 0.01),
upper = c(pi, pi, 25, 25))

mleMou(data = samp, delta = 0.1, start = c(alpha, mu, sigma),

optMethod = "Nelder-Mead")

approxMleWnPairs Approximate MLE of the WN diffusion in 2D from a sample of initial
and final pairs of angles.

Description

Approximate Maximum Likelihood Estimation (MLE) for the Wrapped Normal (WN) diffusion,
using the wrapped Ornstein—Uhlenbeck diffusion and assuming initial stationarity.

Usage

approxMleWnPairs(data, delta, start = c(0, o, 1, 1, @, 1, 1),
alpha = rep(NA, 3), mu = rep(NA, 2), sigma = rep(NA, 2), rho = NA,
lower = c(-pi, -pi, 0.01, 0.01, -25, 0.01, 0.01, -0.99), upper = c(pi,
pi, 25, 25, 25, 25, 25, 0.99), maxK = 2, expTrc = 30, ...)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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Arguments

data
delta

start

alpha
mu

sigma

rho
lower, upper

maxK

expTrc

Value

a matrix of dimension c(n, p).
discretization step.

starting values, a matrix with p columns, with each entry representing a different
starting value.

vector of length 3 parametrizing the A matrix as in alphaToA.
a vector of length 2 giving the mean.

vector of length 2 containing the square root of the diagonal of X, the diffusion
matrix.

correlation coefficient of >..
bound for box constraints as in method "L-BFGS-B" of optim.

maximum absolute value of the windings considered in the computation of the
WN.

truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.

further parameters passed to mleOptimWrapper.

Output from mleOptimWrapper.

Examples

mu <- c(0, 0)

alpha <- c(1, 2, 0.5)

sigma <- c(1, 1

rho <- 0.5

set.seed(4567345)

begin <- rStatWn2D(n = 200, mu = mu, alpha = alpha, sigma = sigma)
end <- t(apply(begin, 1, function(x) rTrajWn2D(x@ = x, alpha = alpha,

mu = mu, sigma = sigma,
rho = rho, N =1,
delta = 0.1)[2, 1))

data <- cbind(begin, end)
approxMleWnPairs(data = data, delta = 0.1,

start = ¢(2, pi/2, 2, 0.5, @0, 2, 1, 0.5))

crankNicolson1D

Crank—Nicolson finite difference scheme for the 1D Fokker—Planck
equation with periodic boundaries




Description

crankNicolsonlD

Implementation of the Crank—Nicolson scheme for solving the Fokker—Planck equation

p(a; 1) = —(p(x, )b(x)) + %(02(@?(% t))az

where p(z, t) is the transition probability density of the circular diffusion

Usage

dXt = b(Xt)dt + O'(Xt)th

crankNicolson1D(u@, b, sigma2, N, deltat, Mx, deltax, imposePositive = QL)

Arguments

uo

sigma2

deltat
Mx
deltax

imposePositive

Details

matrix of size c(Mx, 1) giving the initial condition. Typically, the evaluation
of a density highly concentrated at a given point. If nt == 1, then u@ can be a
matrix c(Mx, nu@) containing different starting values in the columns.

vector of length Mx containing the evaluation of the drift.
vector of length Mx containing the evaluation of the squared diffusion coefficient.

increasing integer vector of length nt giving the indexes of the times at which
the solution is desired. The times of the solution are delta * c(@:max(N))[N +
11.

time step.
size of the equispaced spatial grid in [—, 7).
space grid discretization.

flag to indicate whether the solution should be transformed in order to be always
larger than a given tolerance. This prevents spurious negative values. The tol-
erance will be taken as imposePositiveTol if this is different from FALSE or
0.

The function makes use of solvePeriodicTridiag for obtaining implicitly the next step in time

of the solution.

If imposePositive = TRUE, the code implicitly assumes that the solution integrates to one at any
step. This might b unrealistic if the initial condition is not properly represented in the grid (for
example, highly concentrated density in a sparse grid).

Value

e If nt > 1, a matrix of size c(Mx, nt) containing the discretized solution at the required times.

e If nt == 1, a matrix of size c(Mx, nu®@) containing the discretized solution at a fixed time for
different starting values.
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References

Thomas, J. W. (1995). Numerical Partial Differential Equations: Finite Difference Methods. Springer,
New York. doi:10.1007/9781489972781

Examples

# Parameters

Mx <- 200

N <- 200

x <- seq(-pi, pi, 1 = Mx + 1)[-c(Mx + 1)]

times <- seq(@, 1, 1 =N+ 1)

ud <- dwWni1D(x, pi/2, 0.05)

b <- driftWni1D(x, alpha = 1, mu = pi, sigma = 1)
sigma2 <- rep(1, Mx)

# Full trajectory of the solution (including initial condition)
u <- crankNicolson1D(u@ = cbind(u@), b = b, sigma2 = sigma2, N = @:N,
deltat = 1 / N, Mx = Mx, deltax = 2 * pi / Mx)

# Mass conservation
colMeans(u) * 2 * pi

# Visualization of tpd
plotSurface2D(times, x, z = t(u), levels = seq(@, 3, 1 = 50))

# Only final time

v <- crankNicolson1D(u@ = cbind(u@), b = b, sigma2 = sigma2, N = N,
deltat = 1 / N, Mx = Mx, deltax = 2 * pi / Mx)

sum(abs(ul, N + 1] - v))

crankNicolson2D Crank—Nicolson finite difference scheme for the 2D Fokker—Planck
equation with periodic boundaries

Description

Implementation of the Crank—Nicolson scheme for solving the Fokker—Planck equation

p(@,y, 1) = —(p(@,y,)b1(,9))z — (p(x,y,t)bz(x,y))y—k

1 1
+§ (J% (1’, y)p(xa Y, t))zm + 5(0—3 (.’t, y)p(x, Y, t))yy + (012(1’, y)P(”Jf’ Y, t))zyv
where p(z,y, t) is the transition probability density of the toroidal diffusion

Xy = b (X, Ya)dt + 01(Xp, Yi)AW, + 012(Xy, Vi) dWP,

dY; = bo( Xy, Yy)dt 4 019( X, Y2)dW} + 0o( Xy, Yy)dW?E.


https://doi.org/10.1007/978-1-4899-7278-1
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Usage

crankNicolson2D(u@, bx, by, sigma2x, sigma2y, sigmaxy, N, deltat, Mx, deltax,
My, deltay, imposePositive = QL)

Arguments
uo matrix of size c(Mx * My, 1) giving the initial condition matrix column-wise
stored. Typically, the evaluation of a density highly concentrated at a given
point. If nt == 1, then u@ can be a matrix c(Mx * My, nu@) containing different
starting values in the columns.
bx, by matrices of size c(Mx, My) containing the evaluation of the drift in the first and

second space coordinates, respectively.
sigma2x, sigma2y, sigmaxy
matrices of size c(Mx, My) containing the evaluation of the entries of the diffu-
sion matrix (it has to be positive definite)
rbind(c(sigma2x, sigmaxy), c(sigmaxy, sigma2y)).

N increasing integer vector of length nt giving the indexes of the times at which
the solution is desired. The times of the solution are delta * c(@:max(N))[N +
11.

deltat time step.

Mx, My sizes of the equispaced spatial grids in [—, 7r) for each component.

deltax, deltay space grid discretizations for each component.

imposePositive flag to indicate whether the solution should be transformed in order to be always
larger than a given tolerance. This prevents spurious negative values. The tol-
erance will be taken as imposePositiveTol if this is different from FALSE or
0.

Details

The function makes use of solvePeriodicTridiag for obtaining implicitly the next step in time
of the solution.

If imposePositive = TRUE, the code implicitly assumes that the solution integrates to one at any
step. This might b unrealistic if the initial condition is not properly represented in the grid (for
example, highly concentrated density in a sparse grid).

Value

e If nt > 1, a matrix of size c(Mx * My, nt) containing the discretized solution at the required
times with the ¢ (Mx, My) matrix stored column-wise.

e If nt == 1, a matrix of size c(Mx * My, nu@) containing the discretized solution at a fixed time
for different starting values.
References

Thomas, J. W. (1995). Numerical Partial Differential Equations: Finite Difference Methods. Springer,
New York. doi:10.1007/9781489972781


https://doi.org/10.1007/978-1-4899-7278-1

dBvm

Examples

# Parameters

Mx <- 100

My <- 100

N <- 200

x <- seq(-pi, pi, 1 = Mx + 1)[-c(Mx + 1)]
y <- seq(-pi, pi, 1 =My + 1)[-c(My + 1)]
m
p

<- c(pi / 2, pi)

<-c(o, 1
ud <- c(outer(dwWniD(x, p[1]1, ©.5), dwWniD(y, p[2], ©.5)))
bx <- outer(x, y, function(x, y) 5 * sin(m[1] - x))
by <- outer(x, y, function(x, y) 5 * sin(m[2] - y))
sigma2 <- matrix(1, nrow = Mx, ncol = My)
sigmaxy <- matrix(@.5, nrow = Mx, ncol = My)

# Full trajectory of the solution (including initial condition)

u <- crankNicolson2D(u@ = cbind(u@), bx = bx, by = by, sigma2x = sigma2,
sigma2y = sigma2, sigmaxy = sigmaxy,
N = @:N, deltat = 1 / N, Mx = Mx, deltax = 2 * pi / Mx,
My = My, deltay = 2 * pi / My)

# Mass conservation
colMeans(u) * 4 * pi*2

# Only final time

v <- crankNicolson2D(u@ = cbind(u@), bx = bx, by = by, sigma2x = sigma2,
sigma2y = sigma2, sigmaxy = sigmaxy,
N = N, deltat =1 / N, Mx = Mx, deltax = 2 * pi / Mx,
My = My, deltay = 2 * pi / My)

sum(abs(ul, N + 11 - v))

## Not run:
# Visualization of tpd
library(manipulate)
manipulate({
plotSurface2D(x, y, z = matrix(ul, j + 11, Mx, My),
main = round(mean(ul, j + 1]1) * 4 x pi*2, 4),
levels = seq(@, 2, 1 = 21))
points(p[1], p[2], pch = 16)
points(m[1], m[2], pch = 16)
}, j = slider(@, N))

## End(Not run)
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dBvm Bivariate Sine von Mises density

Description

Evaluation of the bivariate Sine von Mises density and its normalizing constant.
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Usage

diffCirc

dBvm(x, mu, kappa, logConst = NULL)

constBvm(M = 25, kappa)

Arguments

X
mu

kappa
logConst
M

Details

a matrix of size c(nx, 2) for evaluating the density.
two-dimensional vector of circular means.
three-dimensional vector with concentrations (k1, K2, A).
logarithm of the normalizing constant. Computed if NULL.

number of terms considered in the series expansion used for evaluating the nor-
malizing constant.

If k1 = 0or ke = 0 and A # 0, then constBvm will perform a Monte Carlo integration of the

constant.

Value

A vector of length nx with the evaluated density (dBvm) or a scalar with the normaalizing constant

(constBvm).

References

Singh, H., Hnizdo, V. and Demchuk, E. (2002) Probabilistic model for two dependent circular
variables, Biometrika, 89(3):719-723, doi:10.1093/biomet/89.3.719

Examples

x <- seq(-pi, pi, 1

101)[-101]

plotSurface2D(x, x, f = function(x) dBvm(x = x, mu = c(@, pi / 2),

kappa = c(2, 3, 1)),

fVect = TRUE)

diffCirc

Lagged differences for circular time series

Description

Returns suitably lagged and iterated circular differences.

Usage

diffCirc(x, circular = TRUE, ...)


https://doi.org/10.1093/biomet/89.3.719
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Arguments
X wrapped or unwrapped angles to be differenced. Must be a vector or a matrix,
see details.
circular convenience flag to indicate whether wrapping should be done. If FALSE, the
function is exactly diff.
parameters to be passed to diff.
Details

If x is a matrix then the difference operations are carried out row-wise, on each column separately.

Value

The value of diff(x, ...), circularly wrapped. Default parameters give an object of the kind of x
with one less entry or row.

Examples

# Vectors
x <- c(-pi, -pi/2, pi - 0.1, -pi + 0.2)
diffCirc(x) - diff(x)

# Matrices

set.seed(234567)

N <- 100

x <- t(euler2D(x@ = rbind(c(@, 0)), A = diag(c(1, 1)), sigma = rep(2, 2),
mu = c(pi, pi), N =N, delta =1, type = 2)[1, , 1D

diffCirc(x) - diff(x)

dJp Jones and Pewsey (2005)’s circular distribution

Description

Computes the circular density of Jones and Pewsey (2005).

Usage

dJp(x, mu, kappa, psi, const = NULL)

constJp(mu, kappa, psi, M = 200)
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Arguments

X evaluation angles, not necessary in [, 7).

mu circular mean.

kappa non-negative concentration parameter.

psi shape parameter, see details.

const normalizing constant, computed with constJp if not provided.

M grid size for computing the normalizing constant by numerical integration.
Details

Particular interesting choices for the shape parameter are:

e psi=-1: gives the Wrapped Cauchy as stationary density.
e psi = 0: is the sinusoidal drift of the vM diffusion.

* psi =1: gives the Cardioid as stationary density.

Value

A vector of the same length as x containing the density.

References

Jones, M. C. and Pewsey, A. (2005). A family of symmetric distributions on the circle. Journal of
the American Statistical Association, 100(472):1422—-1428. doi:10.1198/016214505000000286

Examples

x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "Density”, ylim = c(@, 0.6))
for (i in 9:20) {
lines(x, dJp(x = x, mu = @, kappa = 1, psi = -2 + 4 * i / 20),
col = rainbow(21)[i + 11)

3
dPsTpd Wrapped Euler and Shoji—Ozaki pseudo-transition probability densi-
ties
Description

Wrapped pseudo-transition probability densities.

Usage

dPsTpd(x, x@, t, method = c("E", "S0", "S02"), b, jac.b, sigma2, b1, b2,
circular = TRUE, maxK = 2, vmApprox = FALSE, twokpi = NULL, ...)


https://doi.org/10.1198/016214505000000286
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Arguments

X a matrix of dimension c(n, p). If a vector is provided, is assumed that p = 1.

X0 a matrix of dimension c(n, p). If all x@ are the same, a matrix of dimension
c(1, p) can be passed for better performance. If a vector is provided, is assumed
that p=1.

t time step between x and x0.

method a string for choosing "E" (Euler), "S0" (Shoji—Ozaki) or "S02" (Shoji—Ozaki
with Ito’s expansion in the drift) method.

b drift function. Must return a matrix of the same size as x.

jac.b jacobian of the drift function.

sigma2 diagonal of the diffusion matrix (if univariate, this is the square of the diffusion
coefficient). Must return an object of the same size as x.

b1 first derivative of the drift function (univariate). Must return a vector of the same
length as x.

b2 second derivative of the drift function (univariate). Must return a vector of the
same length as x.

circular flag to indicate circular data.

maxK maximum absolute winding number used if circular = TRUE.

VMApprox flag to indicate von Mises approximation to wrapped normal. See
momentMatchWnVm and scoreMatchWnBvm.

twokpi optional matrix of winding numbers to avoid its recomputation. See details.
additional parameters passed to b, b1, b2, jac.b and sigma2.

Details

See Section 3.2 in Garcia-Portugués et al. (2019) for details. "S02" implements Shoji and Ozai
(1998)’s expansion with for p = 1. "S0" is the same expansion, for arbitrary p, but considering null
second derivatives.

twokpi is repRow(2 * pi * c(-maxK:maxK), n=n) if p=1 and

as.matrix(do.call(what = expand.grid,args =rep(list(2 * pi * c(-maxK:maxK)), p))) oth-
erwise.

Value

Output from mleOptimWrapper.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
s1122201797902

Shoji, I. and Ozaki, T. (1998) A statistical method of estimation and simulation for systems of
stochastic differential equations. Biometrika, 85(1):240-243. doi:10.1093/biomet/85.1.240


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1093/biomet/85.1.240
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Examples
# 1D
grid <- seq(-pi, pi, 1 = 501)[-501]
alpha <- 1
sigma <- 1
t <- 0.5
X0 <- pi/2

# manipulate::manipulate({

# Drifts
b <- function(x) driftWni1D(x =
b1 <- function(x, h = 1e-4) {
1 <- length(x)
res <- driftWniD(x = c(x + h, x - h), alpha = alpha, mu = 0,
sigma = sigma)
drop(res[1:1] - res[(1 + 1):(2 * 1)1)/(2 * h)
}
b2 <- function(x, h = 1e-4) {
1 <- length(x)
res <- driftWniD(x = c(x + h, x, x - h), alpha = alpha, mu =
sigma = sigma)
drop(res[1:1] - 2 x res[(1 + 1):(2 x 1)] +
resf(2 x 1+ 1):(3 % 1)]) / (h*2)

x, alpha = alpha, mu = @, sigma

}

# Squared diffusion
sigma2 <- function(x) rep(sigma*2, length(x))

# Plot
plot(grid, dTpdPdelD(Mx = length(grid), x0 = x@, t = t, alpha =
mu = @, sigma = sigma), type = "1",
ylab = "Density”, xlab = "", ylim = c(0@, 0.75), lwd = 2)
lines(grid, dTpdWoulD(x = grid, x@ = rep(x@, length(grid)), t
alpha = alpha, mu = @, sigma = sigma), col
lines(grid, dPsTpd(x = grid, x0 = x@0, t = t, method = "E", b =
b1 = b1, b2 = b2, sigma2 = sigma2), col = 3)
lines(grid, dPsTpd(x = grid, x0 = x@0, t = t, method = "S0", b =
b1 = b1, b2 = b2, sigma2 = sigma2), col = 4)
lines(grid, dPsTpd(x = grid, x@ = x0, t = t, method = "S02", b
b1 = b1, b2 = b2, sigma2 = sigma2),

col = 5)
lines(grid, dPsTpd(x = grid, x@ = x@0, t = t, method = "E", b =
b1 = b1, b2 = b2, sigma2 = sigma2, vmApprox

col = 6)
lines(grid, dPsTpd(x = grid, x@ = x@, t = t, method = "S0", b =
b1 = b1, b2 = b2, sigma2 = sigma2, vmApprox

col =7)
lines(grid, dPsTpd(x = grid, x@ = x@, t = t, method = "S02", b
b1 = b1, b2 = b2, sigma2 = sigma2, vmApprox

col = 8)
legend("topright”, legend = c(”PDE”, "Wwou”, "E”, "SO1", "S02",
"SO1vM", "S02vM"), 1lwd = 2, col =

= sigma)

0!

alpha,

t,
= 2)
b,
b,
= b,
b,

TRUE),

b’
= TRUE),

by
= TRUE),

TN
1:8)

dPsTpd
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# }, x0 = manipulate::slider(-pi, pi, step = 0.1, initial = -pi),
# alpha = manipulate::slider(@.1, 5, step = 0.1, initial = 1),

# sigma = manipulate::slider(@.1, 5, step = 0.1, initial = 1),

# t = manipulate::slider(@.1, 5, step = 0.1, initial = 1))

# 2D

grid <- seq(-pi, pi, 1 = 76)[-76]
alphal <- 2

alpha2 <- 1

alpha3 <- 0.5

sigl <- 1

sig2 <- 2

t <- 0.5

Xx01 <- pi/2

X02 <- -pi/2

# manipulate::manipulate({

alpha <- c(alphal, alpha2, alpha3)
sigma <- c(sigl, sig2)
X0 <- c(x01, x02)

# Drifts
b <- function(x) driftWn2D(x = x, A = alphaToA(alpha = alpha,
sigma = sigma),
mu = rep(@, 2), sigma = sigma)
jac.b <- function(x, h = 1e-4) {
1 <= nrow(x)
res <- driftWn2D(x

rbind(cbind(x[, 11 + h, x[, 21),
cbind(x[, 11 - h, x[, 2D),
cbind(x[, 11, x[, 21 + h),
cbind(x[, 11, x[, 21 - h)),
A = alphaToA(alpha = alpha, sigma = sigma),
mu = rep(@, 2), sigma = sigma)
cbind(res[1:1, 1 - res[(1 + 1):(2 % 1), 1,
resf2 * 1+ 1:1, J-res[2*x1+ (1 +1):(2*x1), 1)/ (2=*h)

}

# Squared diffusion

sigma2 <- function(x) matrix(sigma”2, nrow = length(x) / 2L, ncol = 2)

# Plot
old_par <- par(mfrow = c(3, 2))

plotSurface2D(grid, grid, z = dTpdPde2D(Mx = length(grid),
My = length(grid), x0 = x0o,
t = t, alpha = alpha,
mu = rep(@, 2), sigma = sigma),

levels = seq(@, 1, 1 = 20), main = "Exact")
plotSurface2D(grid, grid,
f = function(x) drop(dTpdWou2D(x = x,
X0 = repRow(x@, nrow(x)),
t = t, alpha = alpha,
mu = rep(Q, 2),
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sigma = sigma)),

levels = seq(@, 1, 1 = 20), fVect = TRUE, main = "WOU")

plotSurface2D(grid, grid,

f = function(x) dPsTpd(x = x, x@ = rbind(x@), t =
method = "E", b = b, jac.b
sigma2 = sigma2),

levels = seq(@, 1, 1 = 20), fVect = TRUE, main = "E")

plotSurface2D(grid, grid,

f = function(x) dPsTpd(x = x, x@ = rbind(x0), t = t,
method = "S0", b = b, jac.b = jac.b,
sigma2 = sigma2),

levels = seq(@, 1, 1 = 20), fVect = TRUE, main = "S0")

plotSurface2D(grid, grid,

f = function(x) dPsTpd(x = x, x@ = rbind(x0), t =
method = "E"”, b = b, jac.b = jac.b,
sigma2 = sigma2, vmApprox = TRUE),

levels = seq(@, 1, 1 = 20), fVect = TRUE, main = "EVM")

plotSurface2D(grid, grid,

f = function(x) dPsTpd(x = x, x@ = rbind(x@), t = t,
method = "S0", b = b, jac.b = jac.b,
sigma2 = sigma2, vmApprox = TRUE),

levels = seq(@, 1, 1 = 20), fVect = TRUE, main = "SOvM")

ty
= jac.b,

t,

par(old_par)

}, x01 = manipulate::slider(-pi, pi, step = 0.1, initial = -pi),
x02 = manipulate::slider(-pi, pi, step = 0.1, initial = -pi),
alphal = manipulate::slider(@.1, 5, step = 0.1, initial = 1),
alpha2 = manipulate::slider(@.1, 5, step = 0.1, initial = 1),

alpha3 = manipulate::slider(-5, 5, step = 0.1, initial = 0),
sigl = manipulate::slider(@.1, 5, step = 0.1, initial = 1),
sig2 = manipulate::slider(@.1, 5, step .1, initial = 1),

0
=0
t = manipulate::slider(@.01, 5, step = .01, initial = 1))

driftJp Drift for the JP diffusion

Description
Drift for the Langevin diffusion associated to the Jones and Pewsey (JP) family of circular distribu-
tions.

Usage
driftJp(x, alpha, mu, psi)

Arguments
X vector with the evaluation points for the drift.
alpha strength of the drift.
mu unconditional mean of the diffusion.

psi shape parameter, see details.
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Details

Particular interesting choices for the shape parameter are:

* psi = -1: gives the Wrapped Cauchy as stationary density.
e psi = 0: is the sinusoidal drift of the vM diffusion.

* psi =1: gives the Cardioid as stationary density.

See Section 2.2.3 in Garcia-Portugués et al. (2019) for details.

Value

A vector of the same length as x containing the drift.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

Jones, M. C. and Pewsey, A. (2005). A family of symmetric distributions on the circle. Journal of
the American Statistical Association, 100(472):1422—-1428. doi:10.1198/016214505000000286

Examples

x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "drift")
for (i in 0:20) {
lines(x, driftJp(x = x, alpha =1, mu =@, psi = -1 + 2 % i/ 20),
col = rainbow(21)[i + 11)

driftMixIndVm Drift for the mivM diffusion

Description
Drift for the Langevin diffusion associated to a mixture of m independent (multivariate) von Mises
(mivM) of dimension p.

Usage

driftMixIndVm(x, A, M, sigma, p, expTrc = 30)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1198/016214505000000286
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Arguments
X
A
M
sigma
p

expTrc

Details

driftMixIndVm

matrix of size c(n, p) with the evaluation points for the drift.
matrix of size c(m, p) giving the strengths of the drifts.
matrix of size c(m, p) giving the means.

diffusion coefficient.

vector of length m giving the proportions. Must add to one.

truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.

driftMixVmis more efficient for the circular case. The diffusion matrix is oI. See Section 2.2.4 in
Garcia-Portugués et al. (2019) for details.

Value

A matrix of the same size as x containing the drift.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
s1122201797902

Examples

# 1D

x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "drift")
for (i in 1:10) {
lines(x, driftMixIndVm(x = cbind(x), A = cbind(c(2, 2)),

}

# 2D

M = cbind(c(@, -pi + 2 * pi * i / 10)), sigma = 1, p = c(0.5, 0.5)),
col = rainbow(10)[i])

x <- seq(-pi, pi, 1 = 100)
plotSurface2D(x, x, f = function(x) sqrt(rowSums(driftMixIndVm(x = x,

A = rbind(c(1, 1), c(1, 1)), M = rbind(c(1, 1), c(-1, -1)),
sigma = 1, p = c(0.25, 0.75))*2)), fVect = TRUE)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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driftMixvm Drift for the mivM diffusion (circular case)

Description
Drift for the Langevin diffusion associated to a mixture of m independent von Mises (mivM) of
dimension one.

Usage

driftMixVm(x, alpha, mu, sigma, p, expTrc = 30)

Arguments
X vector with the evaluation points for the drift.
alpha vector of length m giving the strengths of the drifts.
mu vector of length m giving the means.
sigma diffusion coefficient.
p vector of length m giving the proportions. Must add to one.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Details

driftMixIndVm is more general, but less efficient for the circular case. See Section 2.2.4 in Garcia-
Portugués et al. (2019) for details.

Value

A vector of the same length as x containing the drift.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
s1122201797902

Examples

x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "drift")
for (i in 1:10) {
lines(x, driftMixVm(x = x, alpha = c(2, 2),
mu = c(@Q, -pi +2*pix*xi/10),
sigma =1, p = ¢c(0.5, 0.5)), col = rainbow(10)[il)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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driftMvm Drift for the MvM diffusion

Description

Drift for the Langevin diffusion associated to the Multivariate von Mises (MvM) in dimension p.

Usage

driftMvm(x, alpha, mu, A = Q)

Arguments
X matrix of size c(n, p) with the evaluation points for the drift.
alpha vector of length p with the strength of the drift in the diagonal (sin terms).
mu vector of length p with the unconditional mean of the diffusion.
A matrix of size c(p, p) with the strength of the drift in cross terms (cos-sin
terms). The diagonal has to be zero.
Details

See Section 2.2.1 in Garcia-Portugués et al. (2019) for details.

Value

A matrix of the same size as x containing the drift.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
s1122201797902

Examples

# 1D
x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "drift")
for (i in 0:20) {
lines(x, driftMvm(x = x, alpha =3 * i / 20, mu = 0, A = 0Q),
col = rainbow(21)[i + 11)

3

# 2D

x <- seq(-pi, pi, 1 = 100)

plotSurface2D(x, x, f = function(x) sqrt(rowSums(driftMvm(x = x,

alpha = c(2, 2), mu = c(-1, -1),
A = rbind(c(@, @), c(0, 0)))*2)),
fVect = TRUE)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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driftWn Drift for the WN diffusion

Description
Drift for the Langevin diffusion associated to the (multivariate) Wrapped Normal (WN) in dimen-
sion p.

Usage

driftWn(x, A, mu, Sigma, invSigmaA = NULL, maxK = 2, expTrc = 30)

Arguments
X matrix of size c(n, p) with the evaluation points for the drift.
A matrix of size c(p, p) giving the drift strength.
mu vector of length p with the unconditional mean of the diffusion.
Sigma diffusion matrix, of size c(p, p).
invSigmaA the matrix solve(Sigma) %*% A (optional).
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Details

See Section 2.2.2 in Garcia-Portugués et al. (2019) for details.

driftWn1D and driftWn2D are more efficient for the 1D and 2D cases.

Value

A matrix of the same size as x containing the drift.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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Examples

# 1D
x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "drift")
for (i in 1:20) {
lines(x, driftWn(x = cbind(x), A =1 * i / 20, mu = @, Sigma = 1),
col = rainbow(20)[i])
3

# 2D
x <- seq(-pi, pi, 1 = 100)
plotSurface2D(x, x, f = function(x) sqrt(rowSums(
driftWn(x = x, A = alphaToA(alpha = c(1, 1, 0.5),
sigma = c(1.5, 1.5)), mu = c(0, ),
Sigma = diag(c(1.5%2, 1.5%2)))*2)), fVect = TRUE)

driftWniD Drift of the WN diffusion in 1D

Description

Computes the drift of the WN diffusion in 1D in a vectorized way.

Usage

driftWn1D(x, alpha, mu, sigma, maxK = 2L, expTrc = 30)

Arguments
X a vector of length n containing angles. They all must be in [, 7) so that the
truncated wrapping by maxK windings is able to capture periodicity.
alpha drift parameter.
mu mean parameter. Must be in [, 7).
sigma diffusion coefficient.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.
Value

A vector of length n containing the drift evaluated at x.

Examples

driftWn1D(x = seq(@, pi, 1 = 10), alpha = 1, mu = @, sigma = 1, maxK = 2,
expTrc = 30)
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driftWn2D Drift of the WN diffusion in 2D

Description

Computes the drift of the WN diffusion in 2D in a vectorized way.

Usage

driftWn2D(x, A, mu, sigma, rho = @, maxK = 2L, expTrc = 30)

Arguments
X a matrix of dimension c(n, 2) containing angles. They all must be in [, 7) so
that the truncated wrapping by maxK windings is able to capture periodicity.
A drift matrix of size c(2, 2).
mu a vector of length 2 giving the mean.
sigma vector of length 2 containing the square root of the diagonal of 3., the diffusion
matrix.
rho correlation coefficient of 3.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Value

A matrix of size c(n, 2) containing the drift evaluated at x.

Examples

alpha <- 3:1

mu <- c(0, 0)

sigma <- 1:2

rho <- 0.5

Sigma <- diag(sigma*2)

Sigmal[1, 2] <- Sigma[2, 1] <- rho * prod(sigma)

A <- alphaToA(alpha = alpha, sigma = sigma, rho = rho)

x <= rbind(c(@, 1), c(1, 0.1), c(pi, pi), c(-pi, -pi), c(pi / 2, @))
driftWn2D(x = x, A = A, mu = mu, sigma = sigma, rho = rho)

driftWn(x = x, A = A, mu = c(@, @), Sigma = Sigma)
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dStatWn2D Stationary density of a WN diffusion (with diagonal diffusion matrix)
in 2D

Description

Stationary density of the WN diffusion.

Usage

dStatWn2D(x, alpha, mu, sigma, rho = @, maxK = 2L, expTrc = 30)

Arguments
X a matrix of dimension c(n, 2) containing angles. They all must be in [, 7) so
that the truncated wrapping by maxK windings is able to capture periodicity.
alpha vector of length 3 parametrizing the A matrix as in alphaToA.
mu a vector of length 2 giving the mean.
sigma vector of length 2 containing the square root of the diagonal of ¥, the diffusion
matrix.
rho correlation coefficient of 3.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Value

A vector of size n containing the stationary density evaluated at x.

Examples

set.seed(345567)
alpha <- c(2, 1, -1)
sigma <- c(1.5, 2)
Sigma <- diag(sigma*2)
A <- alphaToA(alpha = alpha, sigma = sigma)
mu <- c(pi, pi)
dStatWn2D(x = toPiInt(matrix(1:20, nrow = 10, ncol = 2)), mu = mu,
alpha = alpha, sigma = sigma)
dTpdWou(t = 10, x = toPiInt(matrix(1:20, nrow = 10, ncol = 2)), A = A,
mu = mu, Sigma = Sigma, x@ = mu)
xth <- seq(-pi, pi, 1 = 100)
contour(xth, xth, matrix(dStatWn2D(x = as.matrix(expand.grid(xth, xth)),
alpha = alpha, sigma = sigma, mu = mu),
nrow = length(xth), ncol = length(xth)), nlevels = 50)
points(rStatWn2D(n = 1000, mu = mu, alpha = alpha, sigma = sigma), col = 2)
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dTpdMou Transition probability density of the multivariate OU diffusion

Description

Transition probability density of the multivariate Ornstein—Uhlenbeck (OU) diffusion

dX; = A(p — Xy)dt + S2dWy, Xo = .

Usage

dTpdMou(x, x@, t, A, mu, Sigma, eigA = NULL, log = FALSE)
meantMou(t, x0, A, mu, eigA = NULL)

covtMou(t, A, Sigma, eigA = NULL)

Arguments

X matrix of with p columns containing the evaluation points.

X0 initial point.

t time between observations.

A the drift matrix, of size c(p, p).

mu unconditional mean of the diffusion.

Sigma square of the diffusion matrix, a matrix of size c(p, p).

eigA optional argument containing eigen(A) for reuse.

log flag to indicate whether to compute the logarithm of the density.
Details

The transition probability density is a multivariate normal with mean meantMou and covariance
covtMou. See dTpdOu for the univariate case (more efficient).

solve(A) %*% Sigma has to be a covariance matrix (symmetric and positive definite) in order to
have a proper transition density. For the bivariate case, this can be ensured with the alphaToA
function. In the multivariate case, it is ensured if Sigma is isotropic and A is a covariance matrix.

Value

A matrix of the same size as x containing the evaluation of the density.
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Examples

x <- seq(-4, 4, by = 0.1)
xx <- as.matrix(expand.grid(x, x))
isRStudio <- identical(.Platform$GUI, "RStudio")
if (isRStudio) {
manipulate: :manipulate(
image(x, x, matrix(dTpdMou(x
A

xx, x0 = c(1, 2), t = t,
alphaToA(alpha = c(1, 2, 0.5),
sigma = 1:2),
mu = c(@, @), Sigma = diag((1:2)"2)),
nrow = length(x), ncol = length(x)),
zlim = c(0@, 0.25)), t = manipulate::slider(@.1, 5, step = 0.1))

dTpdOu Transition probability density of the univariate OU diffusion

Description
Transition probability density of the univariate Ornstein—Uhlenbeck (OU) diffusion

dX; = a(p — X¢)dt + cdWe, Xo = xo.

Usage

dTpdOu(x, x@, t, alpha, mu, sigma, log = FALSE)
meantOu(x@, t, alpha, mu)
vartOu(t, alpha, sigma)

covstOu(s, t, alpha, sigma)

Arguments

X vector with the evaluation points.

x0 initial point.

t, s time between observations.

alpha strength of the drift.

mu unconditional mean of the diffusion.

sigma diffusion coefficient.

log flag to indicate whether to compute the logarithm of the density.
Details

The transition probability density is a normal density with mean meantOu and variance vartOu. See
dTpdMou for the multivariate case (less efficient for dimension one).
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Value

A vector of the same length as x containing the evaluation of the density.

Examples

x <- seq(-4, 4, by = 0.01)
plot(x, dTpdOu(x = x, x0 = 3, t = 0.1, alpha =1, mu = -1, sigma = 1),
type = "1", ylim = c(@, 1.5), xlab = "x", ylab = "Density”,
col = rainbow(20)[11)
for (i in 2:20) {
lines(x, dTpdOu(x = x, x0 =3, t =1 / 10, alpha =1, mu = -1, sigma = 1),
col = rainbow(20)[i])

dTpdPde1D Transition probability density in 1D by PDE solving

Description

Computation of the transition probability density (tpd) of the Wrapped Normal (WN) or von Mises
(vM) diffusion, by solving its associated Fokker—Planck Partial Differential Equation (PDE) in 1D.

Usage
dTpdPde1D(Mx = 500, x0@, t, alpha, mu, sigma, type = "WN",
Mt = ceiling(100 x t), sdInitial = 0.1, ...)
Arguments
Mx size of the equispaced spatial grid in [—, 7).
X0 point giving the mean of the initial circular density, a WN with standard devia-
tion equal to sdInitial.
t time separating x@ and the evaluation of the tpd.
alpha drift parameter.
mu mean parameter. Must be in [, 7).
sigma diffusion coefficient.
type either "WN" or "vM".
Mt size of the time grid in [0, ¢].
sdInitial the standard deviation of the concentrated WN giving the initial condition.

Further parameters passed to crankNicolson1D.

Details

A combination of small sdInitial and coarse space-time discretization (small Mx and Mt) is prone
to create numerical instabilities. See Sections 3.4.1, 2.2.1 and 2.2.2 in Garcia-Portugués et al.
(2019) for details.
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Value

A vector of length Mx with the tpd evaluated at seq(-pi, pi, 1 =Mx+1)[-(Mx +1)].

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

Examples

Mx <- 100
x <- seq(-pi, pi, 1 = Mx + 1)[-c(Mx + 1)]
X0 <- pi
t <- 0.5
alpha <- 1
mu <- 0
sigma <- 1
isRStudio <- identical(.Platform$GUI, "RStudio")
if (isRStudio) {
manipulate: :manipulate({
plot(x, dTpdPdelD(Mx = Mx, x@ = x@, t = t, alpha = alpha, mu = 0,
sigma = sigma), type = "1", ylab = "Density”,
xlab = "", ylim = c(0, 0.75))
lines(x, dTpdWoulD(x = x, x@ = rep(x@, Mx), t = t, alpha = alpha, mu
sigma = sigma), col = 2)
}, X0 = manipulate::slider(-pi, pi, step = 0.01, initial = 0),
alpha = manipulate::slider(0.01, 5, step = .01, initial = 1),
sigma = manipulate::slider(@.01, 5, step = 0.01, initial = 1),
t = manipulate::slider(@.01, 5, step = .01, initial = 1))

1l
[

dTpdPde2D Transition probability density in 2D by PDE solving

Description

Computation of the transition probability density (tpd) of the Wrapped Normal (WN) or Multi-
variate von Mises (MvM) diffusion, by solving its associated Fokker—Planck Partial Differential
Equation (PDE) in 2D.

Usage

dTpdPde2D(Mx = 50, My = 50, x@, t, alpha, mu, sigma, rho = 0,
type = "WN", Mt = ceiling(100 x t), sdInitial = 0.1, ...)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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Arguments

Mx, My
X0

alpha

mu

sigma

rho

type

Mt
sdInitial

Details
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sizes of the equispaced spatial grids in [—, 7r) for each component.

point giving the mean of the initial circular density, an isotropic WN with stan-
dard deviations equal to sdInitial.

time separating x@ and the evaluation of the tpd.

for "WN", a vector of length 3 parametrizing the A matrix as in alphaToA. For
"vM", a vector of length 3 containing c(alpha[1:2], A[1, 21), from the argu-
ments alpha and A in driftMvm.

vector of length 2 giving the mean.

for "WN", a vector of length 2 containing the square root of the diagonal of the
diffusion matrix. For "vM", the standard deviation giving the isotropic diffusion
matrix.

for "WN", the correlation of the diffusion matrix.

either "WN" or "vM".

size of the time grid in [0, ¢].

standard deviations of the concentrated WN giving the initial condition.

Further parameters passed to crankNicolson2D.

A combination of small sdInitial and coarse space-time discretization (small Mx and Mt) is prone
to create numerical instabilities. See Sections 3.4.2, 2.2.1 and 2.2.2 in Garcia-Portugués et al.
(2019) for details.

Value

A matrix of size c(Mx, My) with the tpd evaluated at the combinations of seq(-pi, pi, 1 =Mx +
1)[-(Mx +1)] and seq(-pi, pi, L=My +1)[-(My + 1)1

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

Examples

M <- 100

x <- seq(-pi, pi, 1 =M+ 1)[-c(M + 1)]
image(x, x, dTpdPde2D(Mx = M, My = M, x@ = c(0, pi), t =1,

zlim
x1lab

alpha = ¢(1, 1, 0.5), mu = c(pi / 2, @), sigma = 1:2),

c(0, 0.25), col = matlab.like.colorRamps(20),

nyn

X

, ylab = "y")


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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dTpdWou Conditional probability density of the WOU process

Description

Conditional probability density of the Wrapped Ornstein—Uhlenbeck (WOU) process.

Usage

dTpdWou(x, t, A, mu, Sigma, x@, maxK = 2, eigA = NULL, invASigma = NULL)

Arguments
X matrix of size c(n, p) with the evaluation points in [—, 7)P.
t a scalar containing the times separating x and x@.
A matrix of size c(p, p) giving the drift strength.
mu mean parameter. Must be in [, 7).
Sigma diffusion matrix, of size c(p, p).
X0 vector of length p with the initial point in [—, 7)?.
maxK maximum absolute value of the windings considered in the computation of the
WN.
eigA optional argument containing eigen(A) for reuse.
invASigma the matrix solve(Sigma) %*% A (optional).
Details

See Section 3.3 in Garcia-Portugués et al. (2019) for details. dTpdWou1D and dTpdWou2D are more
efficient implementations for the 1D and 2D cases, respectively.

Value

A vector of length n with the density evaluated at x.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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Examples

# 1D

t <- 0.5

alpha <- 1

mu <- @

sigma <- 1

X0 <- pi

x <- seq(-pi, pi, 1 = 10)

dTpdWou(x = cbind(x), x0 = x@0, t = t, A = alpha, mu = @, Sigma = sigma*2) -

dTpdWoulD(x = cbind(x), x@ = rep(x@, 10), t = t, alpha = alpha, mu = 9,
sigma = sigma)

# 2D

t <- 0.5

alpha <- c(2, 1, -1)

sigma <- c(1.5, 2)

rho <- 0.9

Sigma <- diag(sigma*2)

Sigma[1, 2] <- Sigma[2, 1] <- rho * prod(sigma)

A <- alphaToA(alpha = alpha, sigma = sigma, rho = rho)

mu <- c(pi, @)

X0 <- c(0, @)

x <- seq(-pi, pi, 1 =5)

X <- as.matrix(expand.grid(x, x))

dTpdWou(x = x, x0 = x0, t =t, A=A, mu = mu, Sigma = Sigma) -

dTpdWou2D(x = x, x@ = rbind(x@), t = t, alpha = alpha, mu = mu,
sigma = sigma, rho = rho)

dTpdWou1D Approximation of the transition probability density of the WN diffusion
in ID

Description

Computation of the transition probability density (tpd) for a WN diffusion.

Usage

dTpdWoulD(x, x@, t, alpha, mu, sigma, maxK = 2L, expTrc = 30,
vmApprox = 0L, kt = @, logConstKt = @)

Arguments
X a vector of length n containing angles. They all must be in [, 7) so that the
truncated wrapping by maxK windings is able to capture periodicity.
X0 a vector of length n containing the starting angles. They all must be in [, 7).
t a scalar containing the times separating x and x@.

alpha drift parameter.
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mu mean parameter. Must be in [, 7).
sigma diffusion coefficient.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.
VmApprox whether to use the von Mises approximation to a wrapped normal (1) or not (0,
default).
kt concentration for the von Mises, a suitable output from momentMatchWnVm (see
examples).
logConstKt the logarithm of the von Mises normalizing constant associated to the concen-
tration kt (see examples)
Details

See Section 3.3 in Garcia-Portugués et al. (2019) for details. See dTpdWou for the general case (less
efficient for 2D).

Value

A vector of size n containing the tpd evaluated at x.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

Examples

t <- 0.5

alpha <- 1

mu <- @

sigma <- 1

X0 <- 0.1

dTpdWoulD(x = seq(-pi, pi, 1 = 10), x@ = rep(x0, 10), t = t, alpha = alpha,
mu = mu, sigma = sigma, vmApprox = @)

# von Mises approximation
kt <- scoreMatchWnVm(sigma2 = sigma*2 * (1 - exp(-2 * alpha x t)) / (2 * alpha))
dTpdWoulD(x = seq(-pi, pi, 1 = 10), x0 = rep(x0, 10), t = t, alpha = alpha,
mu = mu, sigma = sigma, vmApprox = 1, kt = kt,
logConstKt = -log(2 * pi * besselI(x = kt, nu = 0,
expon.scaled = TRUE)))


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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dTpdWou2D Approximation of the transition probability density of the WN diffusion
in 2D

Description

Computation of the transition probability density (tpd) for a WN diffusion (with diagonal diffusion
matrix)

Usage

dTpdWou2D(x, x@, t, alpha, mu, sigma, rho = @, maxK = 2L, expTrc = 30)

Arguments

X a matrix of dimension c(n, 2) containing angles. They all must be in |7, 7) so
that the truncated wrapping by maxK windings is able to capture periodicity.

X0 a matrix of dimension c(n, 2) containing the starting angles. They all must be
in [m, 7). If all x@ are the same, a matrix of dimension c(1, 2) can be passed
for better performance.

t a scalar containing the times separating x and x0.

alpha vector of length 3 parametrizing the A matrix as in alphaToA.

mu a vector of length 2 giving the mean.

sigma vector of length 2 containing the square root of the diagonal of ¥, the diffusion
matrix.

rho correlation coefficient of 3.

maxK maximum absolute value of the windings considered in the computation of the
WN.

expTrc truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.

Details

The function checks for positive definiteness. If violated, it resets A such that solve (A) %*% Sigma
is positive definite.

See Section 3.3 in Garcia-Portugués et al. (2019) for details. See dTpdWou for the general case (less
efficient for 1D).

Value

A vector of size n containing the tpd evaluated at x.
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References

dTpdWou2D

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions

on the torus: estimation and applications. Statistics and Computing, 29(2):1-22.
$1122201797902

Examples

set.seed(3455267)

alpha <- c(2, 1, -1)

sigma <- c(1.5, 2)

rho <- 0.9

Sigma <- diag(sigma*2)

Sigmal[1, 2] <- Sigmal[2, 1] <- rho * prod(sigma)

A <- alphaToA(alpha = alpha, sigma = sigma, rho = rho)

solve(A) %*% Sigma

mu <- c(pi, @)

x <- t(euler2D(x@ = matrix(c(@, @), nrow = 1), A = A, mu = mu,
sigma = sigma, N = 500, delta = 0.1)[1, , 1)

sum(sapply(1:49, function(i) log(dTpdWou(x = matrix(x[i + 1, 1, ncol = 2),
x0 = x[i, 1, t = 1.5, A = A,
Sigma = Sigma, mu = mu))))

sum(log(dTpdWou2D(x = matrix(x[2:50, ], ncol = 2),
X0 = matrix(x[1:49, 1, ncol = 2), t = 1.5, alpha = alpha,
mu = mu, sigma = sigma, rho = rho)))

lgrid <- 56
grid <- seq(-pi, pi, 1 = 1lgrid + 1)[-(lgrid + 1)]
image(grid, grid, matrix(dTpdWou(x = as.matrix(expand.grid(grid, grid)),
x0 = c(0, ), t = 0.5, A=A,
Sigma = Sigma, mu = mu),
nrow = 56, ncol = 56), zlim = c(@, 0.25),
main = "dTpdWou")
image(grid, grid, matrix(dTpdWou2D(x = as.matrix(expand.grid(grid, grid)),
x0 = matrix(@, nrow = 56*2, ncol = 2),
t = 0.5, alpha = alpha, sigma = sigma,
mu = mu),
nrow = 56, ncol = 56), zlim = c(@, 0.25),
main = "dTpdWou2D")

x <- seq(-pi, pi, 1 = 100)
t <-1
image(x, x, matrix(dTpdWou2D(x = as.matrix(expand.grid(x, x)),
x0 = matrix(rep(@, 100 * 2), nrow = 100 * 100,
ncol = 2),
t = t, alpha = alpha, mu = mu, sigma = sigma,
maxK = 2, expTrc = 30),
nrow = 100, ncol = 100),
zlim = c(@, 0.25))
points(stepAheadWn2D(x@ = rbind(c(@, @)), delta = t / 500,
A = alphaToA(alpha = alpha, sigma = sigma), mu = mu,

doi:10.1007/


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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sigma = sigma, N = 500, M = 1000, maxK = 2,
expTrc = 30))

dvm Density of the von Mises

Description

Computes the density of a von Mises in a numerically stable way.

Usage

dvm(x, mu, kappa)

Arguments
X evaluation angles, not necessary in [, 7).
mu circular mean.
kappa non-negative concentration parameter.
Value

A vector of the same length as x containing the density.

References

Jammalamadaka, S. R. and SenGupta, A. (2001) Topics in Circular Statistics. World Scientific,
Singapore. doi:10.1142/4031

Examples

x <- seq(-pi, pi, 1 = 200)
plot(x, x, type = "n", ylab = "Density”, ylim = c(0, 1))
for (i in 0:20) {
lines(x, dVm(x = x, mu = @, kappa = 5 * i / 20),
col = rainbow(21)[i + 11)


https://doi.org/10.1142/4031
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dWn1D

WN density in 1D

Description

Computation of the WN density in 1D.

Usage

dWn1D(x, mu, sigma, maxK = 2L, expTrc = 30, vmApprox = OL, kt = 0,

logConstKt =

Arguments

X

mu
sigma

maxK

expTrc

VMApPProx

kt

logConstKt

Value

)

a vector of length n containing angles. They all must be in [, 7) so that the
truncated wrapping by maxK windings is able to capture periodicity.

mean parameter. Must be in [, 7).
diffusion coefficient.

maximum absolute value of the windings considered in the computation of the
WN.

truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.

whether to use the von Mises approximation to a wrapped normal (1) or not (0,
default).

concentration for the von Mises, a suitable output from momentMatchWnVm (see
examples).

the logarithm of the von Mises normalizing constant associated to the concen-
tration kt (see examples)

A vector of size n containing the density evaluated at x.

Examples

mu <- @
sigma <- 1

dWn1D(x = seq(-pi, pi, 1 = 10), mu = mu, sigma = sigma, vmApprox = 0)

# von Mises approximation

kt <- scoreMatchWnVm(sigma2 = sigma*2)

dWn1D(x = seq(-pi, pi, 1 = 10), mu = mu, sigma = sigma, vmApprox = 1, kt = kt,
logConstKt = -log(2 * pi * besselI(x = kt, nu = @, expon.scaled = TRUE)))
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euler1D Simulation of trajectories of the WN or vM diffusion in 1D

Description

Simulation of the Wrapped Normal (WN) diffusion or von Mises (vM) diffusion by the Euler
method in 1D, for several starting values.

Usage

euler1D(x@, alpha, mu, sigma, N = 100L, delta = ©.01, type = 1L,
maxK = 2L, expTrc = 30)

Arguments
X0 vector of length nx@ giving the initial points.
alpha drift parameter.
mu mean parameter. Must be in [, 7).
sigma diffusion coefficient.
N number of discretization steps.
delta discretization step.
type integer giving the type of diffusion. Currently, only 1 for WN and 2 for vM are
supported.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.
Value

A matrix of size c(nx@, N+ 1) containing the nx@ discretized trajectories. The first column corre-
sponds to the vector x0.

Examples

N <- 100
nx0 <- 20
x0 <- seq(-pi, pi, 1 = nx@ + 1)[-(nx0 + 1)]
set.seed(12345678)
samp <- euler1D(x@ = x@, mu = @, alpha = 3, sigma = 1, N =N,
delta = 0.01, type = 2)
tt <- seq(@, 1, 1 =N+ 1)
plot(rep(@, nx@), x0, pch = 16, col = rainbow(nx@), xlim = c(@, 1))
for (i in 1:nx@) linesCirc(tt, samp[i, ], col = rainbow(nx@)[i])
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euler2D Simulation of trajectories of the WN or MvM diffusion in 2D

Description

Simulation of the Wrapped Normal (WN) diffusion or Multivariate von Mises (MvM) diffusion by
the Euler method in 2D, for several starting values.

Usage

euler2D(x@, A, mu, sigma, rho = @, N = 100L, delta = 0.01, type = 1L,
maxK = 2L, expTrc = 30)

Arguments
X0 matrix of size c(nx@, 2) giving the initial points.
A drift matrix of size c(2, 2).
mu a vector of length 2 giving the mean.
sigma vector of length 2 containing the square root of the diagonal of ¥, the diffusion
matrix.
rho correlation coefficient of 2.
N number of discretization steps.
delta discretization step.
type integer giving the type of diffusion. Currently, only 1 for WN and 2 for vM are
supported.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Value

An array of size c(nx@, 2, N+ 1) containing the nx@ discretized trajectories. The first slice corre-
sponds to the matrix x@.

Examples

N <- 100

nx0 <- 5

x0 <- seq(-pi, pi, 1 = nx0 + 1)[-(nx0 + 1)]

X0 <- as.matrix(expand.grid(x@, x0))

nx@ <- nx0"2

set.seed(12345678)

samp <- euler2D(x@ = x@, mu = c(@, @), A = rbind(c(3, 1), 1:2),
sigma = c(1, 1), N =N, delta = 0.01, type = 2)
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plot(xe[, 11, x@[, 2], xlim = c(-pi, pi), ylim = c(-pi, pi), pch = 16,
col = rainbow(nx@))
for (i in 1:nx@) linesTorus(samp[i, 1, 1, samp[i, 2, 1,
col = rainbow(nx@, alpha = @.5)[i])

linesCirc Lines and arrows with vertical wrapping

Description

Joins the corresponding points with line segments or arrows that exhibit wrapping in [—7, ) in the
vertical axis.

Usage
linesCirc(x = seq_along(y), vy, col =1, 1ty = 1, 1ltyCross = 1lty,
arrows = FALSE, ...)
Arguments
X vector with horizontal coordinates.
y vector with vertical coordinates, wrapped in [—, 7).
col color vector of length 1 or the same length of x and y.
1ty line type as in par.
1tyCross specific line type for crossing segments.
arrows flag for drawing arrows instead of line segments.

further graphical parameters passed to segments or arrows.

Details

y is wrapped to [—, 7) before plotting.

Value

Nothing. The functions are called for drawing wrapped lines.

Examples

x <- 1:100

y <= toPiInt(pi * cos(2 * pi *x x / 100) + 0.5 x runif(50, -pi, pi))
plot(x, y, ylim = c(-pi, pi))

linesCirc(x = x, y =y, col = rainbow(length(x)), 1ltyCross = 2)
plot(x, y, ylim = c(-pi, pi))

linesCirc(x = x, y =y, col = rainbow(length(x)), arrows = TRUE)
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linesTorus Lines and arrows with wrapping in the torus

Description

Joins the corresponding points with line segments or arrows that exhibit wrapping in [—7, 7) in the
horizontal and vertical axes.

Usage

linesTorus(x, y, col =1, 1ty = 1, 1ltyCross = 1lty, arrows = FALSE, ...)
Arguments

X vector with horizontal coordinates, wrapped in [—, 7).

y vector with vertical coordinates, wrapped in [—, ).

col color vector of length 1 or the same length of x and y.

1ty line type as in par.

1tyCross specific line type for crossing segments.

arrows flag for drawing arrows instead of line segments.

further graphical parameters passed to segments or arrows.

Details

x and y are wrapped to [—, 7) before plotting.

Value

Nothing. The functions are called for drawing wrapped lines.

Examples

X <= toPiInt(rnorm(5@, mean = seq(-pi, pi, 1 = 50), sd = 0.5))

y <- toPiInt(x + rnorm(5@, mean = seq(-pi, pi, 1 = 50), sd = 0.5))

plot(x, y, xlim = c(-pi, pi), ylim = c(-pi, pi), col = rainbow(length(x)),
pch = 19)

linesTorus(x = x, y =y, col = rainbow(length(x)), ltyCross = 2)

plot(x, y, xlim = c(-pi, pi), ylim = c(-pi, pi), col = rainbow(length(x)),
pch = 19)

linesTorus(x = x, y =y, col = rainbow(length(x)), arrows = TRUE)



linesTorus3d 43

linesTorus3d Lines and arrows with wrapping in the torus

Description

Joins the corresponding points with line segments or arrows that exhibit wrapping in [—7, 7) in the
horizontal and vertical axes.

Usage

linesTorus3d(x, y, z, col = 1, arrows = FALSE, ...)
Arguments

X,y vectors with horizontal coordinates, wrapped in [—, 7).

z vector with vertical coordinates, wrapped in [—, ).

col color vector of length 1 or the same length of x, y, and z.

arrows flag for drawing arrows instead of line segments.

further graphical parameters passed to segments or arrows.

Details

X, ¥y, and z are wrapped to [—m, ) before plotting. arrows = TRUE makes sequential calls to
arrow3d, and is substantially slower than arrows = FALSE.

Value

Nothing. The functions are called for drawing wrapped lines.

Examples

if (requireNamespace("rgl”)) {
n <- 20
x <= toPiInt(rnorm(n, mean = seq(-pi, pi, 1 = n), sd = 0.5))
y <= toPiInt(rnorm(n, mean = seq(-pi, pi, 1 = n), sd = 0.5))
z <= toPilnt(x + y + rnorm(n, mean = seq(-pi, pi, 1 = n), sd = 0.5))
rgl::plot3d(x, y, z, xlim = c(-pi, pi), ylim = c(-pi, pi),
zlim = c(-pi, pi), col = rainbow(n), size = 2,
box = FALSE, axes = FALSE)
linesTorus3d(x = x, y =y, z =z, col = rainbow(n), 1lwd = 2)
torusAxis3d()
rgl::plot3d(x, y, z, xlim = c(-pi, pi), ylim = c(-pi, pi),
zlim = c(-pi, pi), col = rainbow(n), size = 2,
box = FALSE, axes = FALSE)
linesTorus3d(x = x, y =y, z = z, col = rainbow(n), 1ltyCross = 2,
arrows = TRUE, theta = @.1 * pi / 180, barblen = 0.1)
torusAxis3d()
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logBesselI@Scaled Efficient computation of Bessel related functions

Description

Computation of log(Iy(x)) — « and the inverse of A; (k) = %

Usage
logBesselI@Scaled(x, splineApprox = TRUE)

alInv(x, splineApprox = TRUE)

Arguments

X evaluation vector. For logBesselI@Scaled, x must contain non-negative val-
ues. For a1Inv, x must be in [0, 1].

splineApprox whether to use a pre-computed spline approximation (faster) or not.

Details

Both functions may rely on pre-computed spline interpolations (logBesselI@ScaledSpline and
alInvSpline). Otherwise, a call to bessell is done for log(Iy(x)) — = and A, (k) = « is solved
numerically. The data in which the interpolation is based is given in the examples.

For x larger than 5e4, the asymptotic expansion of besselIasym is employed.

Value

A vector of the same length as x.

Examples

# Data employed for log bessell® scaled
x1 <- c(seq(@, 1, by = 1e-4), seq(l + 1e-2, 10, by = 1e-3),
seq(10 + le-1, 100, by = 1e-2), seq(100 + 1e0@, 1e3, by = 1e0),
seq(1000 + 1el, 5e4, by = 2el1))
logBesselI@ScaledEvalGrid <- log(besselI(x = x1, nu = 0,
expon.scaled = TRUE))
# save(list = "logBessell@ScaledEvalGrid”,
# file = "logBesselI@ScaledEvalGrid.rda”, compress = TRUE)

# Data employed for A1 inverse
x2 <- rev(c(seq(le-04, 0.9 - le-4, by = 1e-4),
seq(@.9, 1 - 1e-05, by = 1e-5)))
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allnvEvalGrid <- sapply(x2, function(k) {
uniroot(f = function(x) k - besselI(x, nu = 1, expon.scaled = TRUE) /

bessell
lower =

»

(x, nu = @, expon.scaled = TRUE),
1e-06, upper = 1e+05, tol = le-15)%$root

# save(list = "allnvEvalGrid”, file = "allnvEvalGrid.rda”, compress = TRUE)

# Accuracy logBesselI@Scaled
x <- seq(@, 1e3, 1 = 1e3)
summary (logBesselI@Scaled(x = x, splineApprox = TRUE) -

logBessel

# Accuracy allnv

I0Scaled(x = x, splineApprox = FALSE))

y <- seq(@, 1 - 1e-4, 1 = 1e3)

summary(allnv(x

y, splineApprox = TRUE) -

allnv(x =y, splineApprox = FALSE))
loglLikWouPairs Loglikelihood of WN in 2D when only the initial and final points are
observed
Description

Computation of the loglikelihood for a WN diffusion (with diagonal diffusion matrix) from a sample
of initial and final pairs of angles.

Usage

logLikWouPairs(x, t, alpha, mu, sigma, rho = @, maxK = 2L, expTrc = 30)

Arguments

X

alpha
mu

sigma

rho

maxK

expTrc

a matrix of dimension c(n, 4) of initial and final pairs of angles. Each row is
an observation containing (¢o, o, ¢+, ¥¢). They all must be in [, 7) so that the
truncated wrapping by maxK windings is able to capture periodicity.

either a scalar or a vector of length n containing the times the initial and final
dihedrals. If t is a scalar, a common time is assumed.

vector of length 3 parametrizing the A matrix as in alphaToA.
a vector of length 2 giving the mean.

vector of length 2 containing the square root of the diagonal of ¥, the diffusion
matrix.

correlation coefficient of 2.

maximum absolute value of the windings considered in the computation of the
WN.

truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.
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Details

A negative penalty is added if positive definiteness is violated. If the output value is Inf, -100 * N
is returned instead.

Value

A scalar giving the final loglikelihood, defined as the sum of the loglikelihood of the initial angles
according to the stationary density and the loglikelihood of the transitions from initial to final angles.

Examples

set.seed(345567)

X <= toPiInt(matrix(rnorm(20@, mean = pi), ncol = 4, nrow = 50))
alpha <- c(2, 1, -0.5)

mu <- c(9, pi)

sigma <- sqrt(c(2, 1))

# The same
loglikWouPairs(x = x, t = 0.5, alpha = alpha, mu = mu, sigma = sigma)
sum(

log(dStatWn2D(x = x[, 1:2]1, alpha = alpha, mu = mu, sigma = sigma)) +

log(dTpdWou2D(x = x[, 3:4], x0 = x[, 1:2], t = 0.5, alpha = alpha, mu = mu,
sigma = sigma))

)

# Different times
loglLikWouPairs(x = x, t = (1:50) / 50, alpha = alpha, mu = mu, sigma = sigma)

mleMou Maximum likelihood estimation of the multivariate OU diffusion

Description

Computation of the maximum likelihood estimator of the parameters of the multivariate Ornstein—
Uhlenbeck (OU) diffusion from a discretized trajectory { X a;} ;. The objective function to mini-
mize is

> logpa(XailXag-1))-
=2
Usage

mleMou(data, delta, alpha = rep(NA, 3), mu = rep(NA, 2), sigma = rep(NA,
2), start, lower = c(0.01, 0.01, -25, -pi, -pi, 0.01, 0.01),
upper = c(25, 25, 25, pi, pi, 25, 25), ...)
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Arguments

data
delta

alpha, mu, sigma

start

lower, upper

Details
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a matrix of size c(N, p) with the discretized trajectory of the diffusion.

time discretization step.

arguments to fix a parameter to a given value and perform the estimation on
the rest. Defaults to NA, meaning that the parameter is estimated. Note that
start, lower and upper must be changed accordingly if parameters are fixed,
see examples.

starting values, a matrix with p columns, with each entry representing a different
starting value.

bound for box constraints as in method "L-BFGS-B" of optim.

further arguments to be passed to mleOptimWrapper.

The first row in data is not taken into account for estimation. See mleOu for the univariate case

(more efficient).

mleMou only handles p = 2 currently. It imposes that Sigma is diagonal and handles the parametriza-
tion of A by alphaToA.

Value

Output from mleOptimWrapper.

Examples

set.seed(345678)

data <- rTrajMou(x@ = c(@, @), A = alphaToA(alpha = c(1, 1, 0.5),

sigma = 1:2), mu = c(1, 1),

Sigma = diag((1:2)*2), N = 200, delta = 0.5)

mleMou(data = data, delta = 0.5, start = c(1, 1, 0, 1, 1, 1, 2),

lower =

c(0.1, 0.1, -25, -10, -10, 0.1, 0.1),

upper = c(25, 25, 25, 10, 10, 25, 25), maxit = 500)

# Fixed sigma and mu
mleMou(data = data, delta = 0.5, mu = ¢c(1, 1), sigma = 1:2,
start = ¢c(1, 1, @), lower = c(0.1, @.1, -25), upper = c(25, 25, 25))

mleOptimWrapper

Optimization wrapper for likelihood-based procedures

Description

A convenient wrapper to perform local optimization of the likelihood function via n1lm and optim
including several practical utilities.
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Usage

mleOptimWrapper

mleOptimWrapper (minusLoglLik, region = function(pars) list(pars = pars,

penalty = 0),

penalty = 1e+10, optMethod = "Nelder-Mead", start,

lower = rep(-Inf, ncol(start)), upper = rep(Inf, ncol(start)),
selectSolution = "lowestlLocMin”, checkCircular = TRUE, maxit = 500,
tol = 1e-05, verbose = @, eigTol = 1e-04, condTol = 10000, ...)

Arguments

minusLoglik

region
penalty
optMethod

start

lower, upper

selectSolution

checkCircular

maxit
tol

verbose

eigTol, condTol

Details

function computing the minus log-likelihood function. Must have a single argu-
ment containing a vector of length p.

function to impose a feasibility region via a penalty. See details.
imposed penalty if value is not finite.

one of the following strings: "nlm”, "Nelder-Mead", "BFGS", "CG", "L-BFGS-B",
"SANN", or "Brent".

starting values, a matrix with p columns, with each entry representing a different
starting value.

bound for box constraints as in method "L-BFGS-B" of optim.

which criterion is used for selecting a solution among possible ones, either
"lowest”, "lowestConv" or "lowestLocMin”. "lowest" returns the solution
with lowest value in the minusLoglLik function. "lowestConv" restricts the
search of the best solution among the ones for which the optimizer has con-
verged. "lowestLocMin” in addition imposes that the solution is guaranteed to
be a local minimum by examining the Hessian matrix.

logical indicating whether to automatically treat the variables with lower and
upper entries equal to -pi and pi as circular. See details.

maximum number of iterations.
tolerance for convergence (passed to reltol, pgtol or gradtol).

an integer from @ to 2 if optMethod = "Nelder-Mead" or from @ to 4 otherwise
giving the amount of information displayed.

eigenvalue and condition number tolerance for the Hessian in order to guarantee
a local minimum. Used only if selectSolution = "lowestLocMin”.

further arguments passed to the optMethod selected. See options in nlm or
optim.

If checkCircular = TRUE, then the corresponding lower and upper entries of the circular param-
eters are set to —~Inf and Inf, respectively, and minusLoglLik is called with the principal value of
the circular argument.

If no solution is found satisfying the criterion in selectSolution, NAs are returned in the elements
of the main solution.

The Hessian is only computed if selectSolution = "lowestLocMin".
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Region feasibility can be imposed by a function with the same arguments as minusLogl ik that re-
sets pars in to the boundary of the feasibility region and adds a penalty proportional to the violation
of the feasibility region. Note that this is not the best procedure at all to solve the constrained opti-
mization problem, but just a relatively flexible and quick approach (for a more advanced treatment
of restrictions, see optimization-focused packages). The value must be a list with objects pars
and penalty. By default no region is imposed, i.e., region = function(pars) list("pars” =
pars, "penalty” = @). Note that the Hessian is computed from the unconstrained problem, hence
localMinimumGuaranteed might be FALSE even if a local minimum to the constrained problem
was found.

Value
A list containing the following elements:

* par: estimated minimizing parameters

¢ value: value of minusLogLik at the minimum.

* convergence: if the optimizer has converged or not.

* message: a character string giving any additional information returned by the optimizer.

* eigHessian: eigenvalues of the Hessian at the minimum. Recall that for the same solution
slightly different outputs may be obtained according to the different computations of the Hes-
sian of nlm and optim.

* localMinimumGuaranteed: tests if the Hessian is positive definite (all eigenvalues larger than
the tolerance eigTol and condition number smaller than condTol).

* solutionsOutput: alist containing the complete output of the selected method for the differ-
ent starting values. It includes the extra objects convergence and localMinimumGuaranteed.

Examples

# No local minimum
head(mleOptimWrapper (minusLoglLik = function(x) -sum((x - 1:4)*2),
start = rbind(10:13, 1:2), selectSolution = "lowest"))
head(mleOptimWrapper (minusLoglLik = function(x) -sum((x - 1:4)*2),
start = rbind(10:13, 1:2),
selectSolution = "lowestConv"))
head(mleOptimWrapper (minusLoglLik = function(x) -sum((x - 1:4)*2),
start = rbind(10:13, 1:2),
selectSolution = "lowestLocMin"))

# Local minimum
head(mleOptimWrapper (minusLoglLik = function(x) sum((x - 1:4)%2),

start = rbind(10:13), optMethod = "BFGS"))
head(mleOptimWrapper (minusLoglLik = function(x) sum((x - 1:4)"2),

start = rbind(10:13), optMethod = "Nelder-Mead"))

# Function with several local minimum and a 'spurious' one
f <= function(x) ©.75 *x (x[1] - 1)*2 -
10 / (0.1 + 0.1 % ((x[1] - 15)*2 + (x[2] - 2)*2)) -
9.5/ (0.1 + 0.1 * ((x[1] - 15)*2 + (x[2] + 2)*2))
plotSurface2D(x = seq(@, 20, 1 = 100), y = seq(-3, 3, 1 = 100), f = f)
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head(mleOptimWrapper(minusLoglLik = f,
start = rbind(c(15, 2), c(15, -2), c(5, 0)),
selectSolution = "lowest"))
head(mleOptimWrapper (minusLoglLik = f,
start = rbind(c(15, 2), c(15, -2), c(5, 0)),
selectSolution = "lowestConv"))
head(mleOptimWrapper (minusLoglLik = f,
start = rbind(c(15, 2), c(15, -2), c(5, 0)),
selectSolution = "lowestLocMin”, eigTol = 0.01))

# With constraint region
head(mleOptimWrapper (minusLoglLik = function(x) sum((x - 1:2)"2),
start = rbind(10:11),
region = function(pars) {
x <- pars[1]
y <- pars[2]
if (y <= x*2) {
return(list("”pars” = pars, "penalty” = 0))
} else {
return(list("pars” = c(sqrt(y), vy),
"penalty” =y - x"2))
3
}, lower = c(0.5, 1), upper = c(Inf, Inf),
optMethod = "Nelder-Mead”, selectSolution = "lowest"))
head(mleOptimWrapper (minusLoglLik = function(x) sum((x - 1:2)"2),
start = rbind(10:11), lower = c(0.5, 1),
upper = c(Inf, Inf),optMethod = "Nelder-Mead"))

mleOu Maximum likelihood estimation of the OU diffusion

Description

Computation of the maximum likelihood estimator of the parameters of the univariate Ornstein—
Uhlenbeck (OU) diffusion from a discretized trajectory { Xa;}2¥ ;. The objective function to mini-

mize is
n
> logpa(XailXag-1))-
i=2
Usage
mleOu(data, delta, alpha = NA, mu = NA, sigma = NA, start,
lower = c(0.01, -5, 0.01), upper = c(25, 5, 25), ...)
Arguments
data a vector of size N with the discretized trajectory of the diffusion.

delta time discretization step.
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alpha, mu, sigma
arguments to fix a parameter to a given value and perform the estimation on
the rest. Defaults to NA, meaning that the parameter is estimated. Note that
start, lower and upper must be changed accordingly if parameters are fixed,
see examples.

start starting values, a matrix with p columns, with each entry representing a different
starting value.

lower, upper bound for box constraints as in method "L-BFGS-B" of optim.

further arguments to be passed to mleOptimWrapper.

Details

The first element in data is not taken into account for estimation. See mleMou for the multivariate
case (less efficient for dimension one).

Value

Output from mleOptimWrapper.

Examples

set.seed(345678)

data <- rTrajOu(x@ = @, alpha =1, mu = @, sigma = 1, N = 100, delta = 0.1)

mleOu(data = data, delta = 0.1, start = c(2, 1, 2), lower = c(0.1, -10, 0.1),
upper = c(25, 10, 25))

# Fixed sigma and mu
mleOu(data = data, delta = 0.1, mu = @, sigma = 1, start = 2, lower = 0.1,
upper = 25, optMethod = "nlm")

mlePdelD MLE for toroidal process via PDE solving in 1D

Description

Maximum Likelihood Estimation (MLE) for arbitrary diffusions, based on the transition probability
density (tpd) obtained as the numerical solution of the Fokker—Planck Partial Differential Equation
(PDE) in 1D.

Usage

mlePdelD(data, delta, b, sigma2, Mx = 500, Mt = ceiling(100 * delta),
sdInitial = @.1, linearBinning = FALSE, start, lower, upper, ...)
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Arguments
data a vector of size N with the discretized trajectory of the diffusion.
delta time discretization step.
b drift function. Must return a vector of the same size as its argument.
sigma2 function giving the squared diffusion coefficient. Must return a vector of the
same size as its argument.
Mx size of the equispaced spatial grid in [—, 7).
Mt size of the time grid in [0, ¢].
sdInitial the standard deviation of the concentrated WN giving the initial condition.
linearBinning flag to indicate whether linear binning should be applied for the initial values
of the tpd, instead of usual simple binning (cheaper). Linear binning is always
done in the evaluation of the tpd.
start starting values, a matrix with p columns, with each entry representing a different

lower, upper

Details

starting value.
bound for box constraints as in method "L-BFGS-B" of optim.

Further parameters passed to crankNicolson1D.

See Sections 3.4.1 and 3.4.4 in Garcia-Portugués et al. (2019) for details.

Value

Output from mleOptimWrapper.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/

s1122201797902

Examples

# Test in OU
alpha <- 2

mu <- 0

sigma <- 1
set.seed(234567)

traj <- rTrajOu(x@ = @, alpha = alpha, mu = mu, sigma = sigma, N = 500,

delta = 0.5)

b <- function(x, pars) pars[1] *x (pars[2] - x)
sigma2 <- function(x, pars) rep(pars[3]*2, length(x))

exactOu <- mleOu(traj, delta = 0.5, start = c(1, 1, 2),
lower = c(@.1, -pi, 0.1), upper = c(10, pi, 10))
pdeQu <- mlePdelD(data = traj, delta = 0.5, Mx = 100, Mt = 100, b = b,


https://doi.org/10.1007/s11222-017-9790-2
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sigma2 = sigma2, start = c(1, 1, 2),
lower = c(0.1, -pi, -10), upper = c(10, pi, 10),
verbose = 2)
pdeOuLin <- mlePdelD(data = traj, delta = 0.5, Mx = 100, Mt = 100, b = b,
sigma2 = sigma2, start = c(1, 1, 2),
lower = ¢c(0.1, -pi, -10), upper = c(10, pi, 10),
linearBinning = TRUE, verbose = 2)
head(exactOu)
head(pdeOu)
head (pdeQuLin)

# Test in WN diffusion
alpha <- 2

mu <- 0

sigma <- 1
set.seed(234567)

traj <- rTrajWniD(x@ = @, alpha = alpha, mu = mu, sigma = sigma, N = 500,
delta = 0.5)
exactOu <- mleQu(traj, delta = 0.5, start = c(1, 1, 2),

lower = c(@.1, -pi, 0.1), upper = c(10, pi, 10))
pdeWn <- mlePdelD(data = traj, delta = 0.5, Mx = 100, Mt = 100,
b = function(x, pars)
driftWn1D(x = x, alpha = pars[1], mu = pars[2],
sigma = pars[3]),

sigma2 = function(x, pars) rep(pars[3]%2, length(x)),

start = ¢c(1, 1, 2), lower = c(0.1, -pi, -10),
upper = c(10, pi, 10), verbose = 2)
pdeWnLin <- mlePdelD(data = traj, delta = 0.5, Mx = 100, Mt = 100,
b = function(x, pars)
driftWn1D(x = x, alpha = pars[1], mu = pars[2],

sigma = pars[3]),
sigma2 = function(x, pars) rep(pars[3]*2, length(x)),
start = c(1, 1, 2), lower = c(@.1, -pi, -10),

upper = c(10, pi, 10), linearBinning = TRUE,

verbose = 2)
head(exactOu)
head(pdeWn)
head(pdeWnLin)
mlePde2D MLE for toroidal process via PDE solving in 2D
Description

Maximum Likelihood Estimation (MLE) for arbitrary diffusions, based on the transition probability
density (tpd) obtained as the numerical solution of the Fokker—Planck Partial Differential Equation
(PDE) in 2D.
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Usage
mlePde2D(data, delta, b, sigma2, Mx = 50, My = 50, Mt = ceiling(100 *
delta), sdInitial = @.1, linearBinning = FALSE, start, lower, upper, ...)
Arguments
data a matrix of dimension c(n, p).
delta discretization step.
b drift function. Must return a vector of the same size as its argument.
sigma2 function giving the diagonal of the diffusion matrix. Must return a vector of the
same size as its argument.
Mx, My sizes of the equispaced spatial grids in [—, 7) for each component.
Mt size of the time grid in [0, ¢].
sdInitial standard deviations of the concentrated WN giving the initial condition.
linearBinning flag to indicate whether linear binning should be applied for the initial values
of the tpd, instead of usual simple binning (cheaper). Linear binning is always
done in the evaluation of the tpd.
start starting values, a matrix with p columns, with each entry representing a different

lower, upper

Details

See Sections 3.4.2

starting value.
bound for box constraints as in method "L-BFGS-B" of optim.

further parameters passed to mleOptimWrapper.

and 3.4.4 in Garcia-Portugués et al. (2019) for details. The function currently

includes the region function for imposing a feasibility region on the parameters of the bivariate

WN diffusion.

Value

Output from mleOptimWrapper.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/

s1122201797902

Examples

# Test in OU process
alpha <- c(1, 2, -0.5)

mu <- c(9, 0)

sigma <- c(0.5, 1)

set.seed(2334567)


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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data <- rTrajMou(x@ = c(@, @), A = alphaToA(alpha = alpha, sigma = sigma),
mu = mu, Sigma = diag(sigma*2), N = 500, delta = 0.5)
b <- function(x, pars) sweep(-x, 2, pars[4:5], "+") %*%
t(alphaToA(alpha = pars[1:3], sigma = sigma))
sigma2 <- function(x, pars) repRow(sigma”2, nrow(x))

exactOu <- mleMou(data = data, delta = 0.5, sigma = sigma,
start = c(1, 1, 0, 2, 2),
lower = c(0.1, 0.1, -25, -10, -10),
upper = c(25, 25, 25, 10, 10))

head(exactOu, 2)

pdeOu <- mlePde2D(data = data, delta = 0.5, b = b, sigma2 = sigma2,
Mx = 10, My = 10, Mt = 10,
start = rbind(c(1, 1, 0, 2, 2)),

lower = c(0.1, 0.1, -25, -10, -10),
upper = c(25, 25, 25, 10, 10), verbose = 2)
head(pdeOu, 2)
pdeQuLin <- mlePde2D(data = data, delta =
Mx = 10, My = 10, Mt
start = rbind(c(1, 1, 0, 2, 2)),
lower = c(0.1, 0.1, -25, -10, -10),
upper = c(25, 25, 25, 10, 10), verbose = 2,
linearBinning = TRUE)

0.5, b = b, sigma2 = sigma2,
=1

head(pdeOuLin, 2)

# Test in WN diffusion
alpha <- c(1, 0.5, 0.25)
mu <- c(0, 0)
sigma <- c(2, 1)
set.seed(234567)
data <- rTrajWn2D(x@ = c(@, @), alpha = alpha, mu = mu, sigma = sigma,
N = 200, delta = 0.5)
b <- function(x, pars) driftWn2D(x = x, A = alphaToA(alpha = pars[1:3],
sigma = sigma),
mu = pars[4:5], sigma = sigma)
sigma2 <- function(x, pars) repRow(sigma*2, nrow(x))

exactOu <- mleMou(data = data, delta = 0.5, sigma = sigma,
start = c(1, 1, 0, 1, 1),
lower = c(0.1, 0.1, -25, -25, -25),
upper = c(25, 25, 25, 25, 25), optMethod = "nlm")
pdeWn <- mlePde2D(data = data, delta = 0.5, b = b, sigma2 = sigma2,
Mx = 20, My = 20, Mt = 10, start = rbind(c(1, 1, 0, 1, 1)),
lower = c(0.1, 0.1, -25, -25, -25),
upper = c(25, 25, 25, 25, 25), verbose = 2,
optMethod = "nlm")
pdeWnLin <- mlePde2D(data = data, delta = s
Mx = 20, My = 20, Mt 0,
start = rbind(c(1, 1, 0, 1, 1)),
lower = c(0.1, 0.1, -25, -25, -25),
upper = c(25, 25, 25, 25, 25), verbose = 2,
linearBinning = TRUE)

0.5, b = b, sigma2 = sigma2,
=1
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head(exactOu)
head(pdeOu)
head(pdeOuLin)

periodicTrapRulelD Quadrature rules in 1D, 2D and 3D

Description

Quadrature rules for definite integrals over intervals in 1D, f;f f(x)dx, rectangles in 2D,

f;f ;’12 f(x,y)dydz and cubes in 3D, f;f yylz f;f f(x,y, z)dzdydz. The trapezoidal rules assume
that the function is periodic, whereas the Simpson rules work for arbitrary functions.

Usage

periodicTrapRulel1D(fx, endsMatch = FALSE, na.rm = TRUE,
lengthInterval = 2 x pi)

periodicTrapRule2D(fxy, endsMatch = FALSE, na.rm = TRUE,
lengthInterval = rep(2 * pi, 2))

periodicTrapRule3D(fxyz, endsMatch = FALSE, na.rm = TRUE,
lengthInterval = rep(2 * pi, 3))

integrateSimp1D(fx, lengthInterval = 2 * pi, na.rm = TRUE)
integrateSimp2D(fxy, lengthInterval = rep(2 * pi, 2), na.rm = TRUE)

integrateSimp3D(fxyz, lengthInterval = rep(2 * pi, 3), na.rm = TRUE)

Arguments
fx vector containing the evaluation of the function to integrate over a uniform grid
in [SC 1, IQ] .
endsMatch flag to indicate whether the values of the last entries of fx, fxy or fxyz are
the ones in the first entries (elements, rows, columns, slices). See examples for
usage.
na.rm logical. Should missing values (including NaN) be removed?

lengthInterval vector containing the lengths of the intervals of integration.

fxy matrix containing the evaluation of the function to integrate over a uniform grid
in [.13173,‘2] X [yla y2]

fxyz three dimensional array containing the evaluation of the function to integrate
over a uniform grid in [z, x2] X [y1, y2] X [21, 22].
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Details

The simple trapezoidal rule has a very good performance for periodic functions in 1D and 2D(order
of error ). The higher dimensional extensions are obtained by iterative usage of the 1D rules.

Value

The value of the integral.

References

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1996). Numerical Recipes in
Fortran 77: The Art of Scientific Computing (Vol. 1 of Fortran Numerical Recipes). Cambridge
University Press, Cambridge.

Examples

# In 1D. True value: 3.55099937

N <= 21

grid <- seq(-pi, pi, 1 = N)

fx <- sin(grid)*2 * exp(cos(grid))
periodicTrapRulel1D(fx = fx, endsMatch = TRUE)
periodicTrapRulelD(fx = fx[-N], endsMatch = FALSE)
integrateSimp1D(fx = fx, lengthlInterval = 2 * pi)
integrateSimp1D(fx = fx[-N]) # Worse, of course

# In 2D. True value: 22.31159

fxy <- outer(grid, grid, function(x, y) (sin(x)*2 * exp(cos(x)) +
sin(y)*2 * exp(cos(y))) / 2)

periodicTrapRule2D(fxy = fxy, endsMatch = TRUE)

periodicTrapRule2D(fxy = fxy[-N, -N], endsMatch = FALSE)

periodicTrapRulel1D(apply(fxy[-N, -NJ], 1, periodicTrapRulelD))

integrateSimp2D(fxy = fxy)

integrateSimp1D(apply(fxy, 1, integrateSimp1D))

# In 3D. True value: 140.1878

fxyz <- array(fxy, dim = c(N, N, N))

for (i in 1:N) fxyz[i, , ] <- fxy
periodicTrapRule3D(fxyz = fxyz, endsMatch = TRUE)
integrateSimp3D(fxyz = fxyz)

psMle Maximum  pseudo-likelihood estimation by wrapped pseudo-
likelihoods

Description

Maximum pseudo-likelihood using the Euler and Shoji—Ozaki pseudo-likelihoods.
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Usage
psMle(data, delta, method = c("E", "SO0", "S02"), b, jac.b, sigma2, b1, b2,
start, lower, upper, circular = TRUE, maxK = 2, vmApprox = FALSE, ...)
Arguments
data a matrix of dimension c(n, p).
delta discretization step.
method a string for choosing "E" (Euler), "S0" (Shoji—Ozaki) or "S02" (Shoji—Ozaki
with Ito’s expansion in the drift) method.
b drift function. Must return a matrix of the same size as x.
jac.b jacobian of the drift function.
sigma2 diagonal of the diffusion matrix (if univariate, this is the square of the diffusion
coefficient). Must return an object of the same size as x.
b1 first derivative of the drift function (univariate). Must return a vector of the same
length as x.
b2 second derivative of the drift function (univariate). Must return a vector of the
same length as x.
start starting values, a matrix with p columns, with each entry representing a different

lower, upper
circular
maxK

VMApPProx

Details

starting value.

bound for box constraints as in method "L-BFGS-B" of optim.
flag to indicate circular data.

maximum absolute winding number used if circular = TRUE.

flag to indicate von Mises approximation to wrapped normal. See
momentMatchWnVm and scoreMatchWnBvm.

further parameters passed to mleOptimWrapper.

See Section 3.2 in Garcia-Portugués et al. (2019) for details. "S02" implements Shoji and Ozai
(1998)’s expansion with for p = 1. "S0" is the same expansion, for arbitrary p, but considering null

second derivatives.

Value

Output from mleOptimWrapper.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/

s1122201797902

Shoji, I. and Ozaki, T. (1998) A statistical method of estimation and simulation for systems of
stochastic differential equations. Biometrika, 85(1):240-243. doi:10.1093/biomet/85.1.240


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1093/biomet/85.1.240

psMle

Examples

# Example in 1D

delta <- 0.5
pars <- c(0.25, 0, 2)
set.seed(12345678)
samp <- rTrajWniD(x@ = @, alpha = pars[1], mu
N = 100, delta = delta)
b <- function(x, pars) driftWn1D(x = x, alpha = pars[1], mu = pars[2],
sigma = pars[3], maxK = 2, expTrc = 30)
b1 <- function(x, pars, h = 1e-4) {
1 <- length(x)
res <- b(x = c(x + h, x - h), pars = pars)
drop(res[1:1] - res[(1 + 1):(2 * 1)]1)/(2 * h)
3
b2 <- function(x, pars, h = 1e-4) {
1 <- length(x)
res <- b(x = ¢(x + h, x, x - h), pars = pars)
drop(res[1:1]1 - 2 *x res[(1 + 1):(2 * 1)] + res[(2 * 1 + 1):(3 * 1)1)/(h*2)
3
sigma2 <- function(x, pars) rep(pars[3]1%2, length(x))
lower <- c(@.1, -pi, 0.1)
upper <- c(10, pi, 10)
psMle(data = samp, delta = delta, method = "E", b
start = pars, lower = lower, upper = upper)
psMle(data = samp, delta = delta, method = "E", b = b, sigma2 = sigma2,
start = pars, lower = lower, upper = upper, vmApprox = TRUE)
psMle(data = samp, delta = delta, method = "S02", b = b, bl = b1,
b2 = b2, sigma2 = sigma2, start = pars, lower = lower, upper = upper)
psMle(data = samp, delta = delta, method = "S02", b = b, bl = b1,
b2 = b2, sigma2 = sigma2, start = pars, lower = lower,
upper = upper, vmApprox = TRUE)
psMle(data = samp, delta = delta, method = "S0", b = b, bl b1,
lower = lower, upper = upper, sigma2 = sigma2, start = pars)
approxMleWniD(data = samp, delta = delta, start = pars)
mlePdelD(data = samp, delta = delta, b = b, sigma2 = sigma2,
start = pars, lower = lower, upper = upper)

pars[2], sigma = pars[3],

b, sigma2 = sigma2,

# Example in 2D

delta <- 0.5

pars <- c(1, 0.5, 0, 0, o, 1, 2)

set.seed(12345678)

samp <- rTrajWn2D(x@ = c(@, @), alpha = pars[1:3], mu = pars[4:5],

sigma = pars[6:7], N = 100, delta = delta)
b <- function(x, pars) driftWn2D(x = x, A = alphaToA(alpha = pars[1:3],
sigma = pars[6:7]),

mu = pars[4:5], sigma = pars[6:7], maxK = 2,
expTrc = 30)

jac.b <- function(x, pars, h = 1e-4) {

1 <= nrow(x)
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res <- b(x = rbind(cbind(x[, 11 + h, x[, 21),
cbind(x[, 11 - h, x[, 21),
cbind(x[, 11, x[, 21 + h),
cbind(x[, 11, x[, 2] - h)), pars = pars)
cbind(res[1:1, 1 - res[(1 + 1):(2 x 1), 1,
resf2 x 1+ 1:1, 1] -res[2*1+ (1+1):(2*1), 1)/ (2=*h)
}
sigma2 <- function(x, pars) matrix(pars[6:7]*2, nrow = length(x) / 2L,
ncol = 2)
lower <- c(0.01, 0.01, -25, -pi, -pi, 0.01, 0.01)
upper <- c(25, 25, 25, pi, pi, 25, 25)
psMle(data = samp, delta = delta, method = "E", b = b, sigma2 = sigma2,
start = pars, lower = lower, upper = upper)
psMle(data = samp, delta = delta, method = "E", b = b, sigma2 = sigma2,
start = pars, lower = lower, upper = upper, vmApprox = TRUE)
psMle(data = samp, delta = delta, method = "SO0", b = b, jac.b = jac.b,
sigma2 = sigma2, start = pars, lower = lower, upper = upper)
approxMleWn2D(data = samp, delta = delta, start = c(pars, 0))
# Set maxit = 5 to test and avoid a very long evaluation
mlePde2D(data = samp, delta = delta, b = b, sigma2 = sigma2, start = pars,
lower = lower, upper = upper, maxit = 5)

rStatWn2D Simulation from the stationary density of a WN diffusion in 2D

Description

Simulates from the stationary density of the WN diffusion in 2D.

Usage

rStatWn2D(n, mu, alpha, sigma, rho = 0)

Arguments
n sample size.
mu a vector of length 2 giving the mean.
alpha vector of length 3 parametrizing the A matrix as in alphaToA.
sigma vector of length 2 containing the square root of the diagonal of ¥, the diffusion
matrix.
rho correlation coefficient of X..
Value

A matrix of dimension c(n, 2) containing the samples from the stationary distribution.
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Examples

set.seed(345567)

alpha <- c(2, 1, -1)

sigma <- c(1.5, 2)

Sigma <- diag(sigma*2)

A <- alphaToA(alpha = alpha, sigma = sigma)

mu <- c(pi, pi)

plot(rStatWn2D(n = 1000, mu = mu, alpha = alpha, sigma = sigma))

points(toPiInt(mvtnorm::rmvnorm(n = 1000, mean = mu,
sigma = solve(A) %x% Sigma / 2,
method = "chol”)), col = 2)

rTpdWn2D Simulation from the approximated transition distribution of a WN dif-
fusion in 2D

Description

Simulates from the approximate transition density of the WN diffusion in 2D.

Usage

rTpdWn2D(n, x@, t, mu, alpha, sigma, rho = @, maxK = 2L, expTrc = 30)

Arguments
n sample size.
X0 a matrix of dimension c(nx@, 2) giving the starting values.
t vector of length nx@ containing the times between observations.
mu a vector of length 2 giving the mean.
alpha vector of length 3 parametrizing the A matrix as in alphaToA.
sigma vector of length 2 containing the square root of the diagonal of ¥, the diffusion
matrix.
rho correlation coefficient of 3.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Value

An array of dimension c(n, 2, nx@) containing the n samples of the transition distribution, condi-
tioned on that the process was at x@ at t instants ago. The samples are all in [, ).
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Examples

rTrajLangevin

alpha <- c¢(3, 2, -1)
sigma <- c(0.5, 1)

mu <- c(pi, pi)
x <- seq(-pi, pi,
t <- 0.5

1 = 100)

image(x, x, matrix(dTpdWou2D(x = as.matrix(expand.grid(x, x)),

zlim = c(0,
points(rTpdWn2D(n

X0 = matrix(rep(@, 100 * 2),
nrow = 100 * 100, ncol = 2),
t = t, mu = mu, alpha = alpha, sigma = sigma,
maxK = 2, expTrc = 30), nrow = 100, ncol = 100),
0.5))

= 500, x@ = rbind(c(@, @)), t = t, mu = mu, alpha = alpha,

sigma = sigma)[, , 11, col = 3)
points(stepAheadWn2D(x@ = rbind(c(@, @)), delta = t / 500,

A = alphaToA(alpha = alpha, sigma = sigma),
mu = mu, sigma = sigma, N = 500, M = 500, maxK
expTrc = 30), col = 4)

1l
N

rTrajLangevin

Simulation of trajectories of a Langevin diffusion

Description

Simulation of an arbitrary Langevin diffusion in dimension p by subsampling a fine trajectory ob-

tained by the Euler

Usage

discretization.

rTrajLangevin(x@, drift, SigDif, N = 100, delta = .01, NFine = ceiling(N
* delta/deltaFine), deltaFine = min(delta/10@, ©.001), circular = TRUE,

>

Arguments

x0
drift
SigDhif

N

delta
NFine
deltaFine

circular

vector of length p giving the initial point.
drift for the diffusion.

matrix of size c(p, p) giving the infinitesimal (constant) covariance matrix of
the diffusion.

number of discretization steps in the resulting trajectory.

discretization step.

number of discretization steps for the fine trajectory. Must be larger than N.
discretization step for the fine trajectory. Must be smaller than delta.
whether to wrap the resulting trajectory to [—m, m)P.

parameters to be passed to drift.
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Details

The fine trajectory is subsampled using the indexes seq(1, NFine + 1, by =NFine / N).

Value

A vector of length N + 1 containing x in the first entry and the discretized trajectory.

Examples

isRStudio <- identical(.Platform$GUI, "RStudio")
if (isRStudio) {
# 1D
manipulate::manipulate({
x <- seq(@, N * delta, by = delta)
plot(x, x, ylim = c(-pi, pi), type = "n",
ylab = expression(X[t]), xlab = "t")
linesCirc(x, rTrajLangevin(x@ = @, drift = driftJp, SigDif = sigma,
alpha = alpha, mu = @, psi = psi, N =N,
delta = 0.01))
}, delta = manipulate::slider(0.01, 5.01, step = 0.1),
N = manipulate::slider(10, 500, step = 10, initial = 200),
alpha = manipulate::slider(@.01, 5, step = 0.1, initial = 1),
psi = manipulate::slider(-2, 2, step = 0.1, initial = 1),
sigma = manipulate::slider(@.01, 5, step = 0.1, initial = 1))

n = -

# 2D
samp <- rTrajLangevin(x@ = c(@, @), drift = driftMvm, alpha = c(1, 1),
mu = c(2, -1), A = diag(rep(@, 2)),
SigDif = diag(rep(1, 2)), N = 1000, delta = 0.1)
plot(samp, xlim = c(-pi, pi), ylim = c(-pi, pi), pch = 19, cex = 0.25,
xlab = expression(X[t]), ylab = expression(Y[t]), col = rainbow(1000))
linesTorus(samp[, 1], samp[, 2], col = rainbow(1000))

rTrajMou Simulation of trajectories for the multivariate OU diffusion

Description

Simulation of trajectories of the multivariate Ornstein—Uhlenbeck (OU) diffusion
dX, = A(p — X,)dt + £2dW,, Xo = 20
using the exact transition probability density.

Usage

rTrajMou(x@, A, mu, Sigma, N = 100, delta = 0.001)
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Arguments
X0 a vector of length p containing initial point.
A the drift matrix, of size c(p, p).
mu unconditional mean of the diffusion, a vector of length p.
Sigma square of the diffusion matrix, a matrix of size c(p, p).
N number of discretization steps in the resulting trajectory.
delta time discretization step.

Details

The law of the discretized trajectory at each time step is a multivariate normal with mean meantMou
and covariance matrix covtMou. See rTrajoOu for the univariate case (more efficient).

solve(A) %*% Sigma has to be a covariance matrix (symmetric and positive definite) in order to
have a proper transition density. For the bivariate case, this can be ensured with the alphaToA
function. In the multivariate case, it is ensured if Sigma is isotropic and A is a covariance matrix.

Value

A matrix of size c(N + 1, p) containing x@ in the first row and the exact discretized trajectory on
the remaining rows.

Examples

set.seed(987658)
data <- rTrajMou(x@ = c(@, @), A = alphaToA(alpha = c(1, 2, 0.5),
sigma = 1:2), mu = c(1, 1), Sigma = diag((1:2)*2),
N = 200, delta = 0.1)
plot(data, pch = 19, col = rainbow(201), cex = 0.25)
arrows(x@ = data[-201, 1], y@ = data[-201, 2], x1 = datal[-1, 1],
y1 = data[-1, 2], col = rainbow(201), angle = 10, length = 0.1)

rTrajou Simulation of trajectories for the univariate OU diffusion

Description

Simulation of trajectories of the univariate Ornstein—Uhlenbeck (OU) diffusion
dX: = a(p — Xi)dt + odWy, Xo = g
using the exact transition probability density.

Usage

rTrajOu(x@, alpha, mu, sigma, N = 100, delta = 0.001)
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Arguments
X0 initial point.
alpha strength of the drift.
mu unconditional mean of the diffusion.
sigma diffusion coefficient.
N number of discretization steps in the resulting trajectory.
delta time discretization step.
Details

The law of the discretized trajectory is a multivariate normal with mean meantOu and covariance
matrix covstOu. See rTrajMou for the multivariate case (less efficient for dimension one).

Value

A vector of length N + 1 containing x0 in the first entry and the exact discretized trajectory on the
remaining elements.

Examples

isRStudio <- identical(.Platform$GUI, "RStudio")
if (isRStudio) {
manipulate: :manipulate({
set.seed(345678);
plot(seq(@, N x delta, by = delta), rTrajOu(x@ = @, alpha = alpha, mu = 0,
sigma = sigma, N = N, delta = delta), ylim = c(-4, 4), type = "1",
ylab = expression(X[t]), xlab = "t")
}, delta = manipulate::slider(@.01, 5.01, step = 0.1),
N = manipulate::slider(10, 500, step = 10, initial = 200),
alpha = manipulate::slider(0.01, 5, step = 0.1, initial = 1),
sigma = manipulate::slider(@.01, 5, step = 0.1, initial = 1))

rTrajWniD Simulation of trajectories for the WN diffusion in 1D

Description

Simulation of the Wrapped Normal (WN) diffusion in 1D by subsampling a fine trajectory obtained
by the Euler discretization.

Usage

rTrajWniD(x@, alpha, mu, sigma, N = 100, delta = 0.01, NFine = ceiling(N
* delta/deltaFine), deltaFine = min(delta/100, 0.001))
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Arguments

x0 initial point.

alpha drift parameter.

mu mean parameter. Must be in [, 7).

sigma diffusion coefficient.

N number of discretization steps in the resulting trajectory.

delta discretization step.

NFine number of discretization steps for the fine trajectory. Must be larger than N.

deltaFine discretization step for the fine trajectory. Must be smaller than delta.
Details

The fine trajectory is subsampled using the indexes seq(1, NFine + 1, by = NFine / N).

Value

A vector of length N + 1 containing x in the first entry and the discretized trajectory.

Examples

isRStudio <- identical(.Platform$GUI, "RStudio")
if (isRStudio) {
manipulate: :manipulate({
x <- seq(@, N * delta, by = delta)
plot(x, x, ylim = c(-pi, pi), type = "n",
ylab = expression(X[t]), xlab = "t")
linesCirc(x, rTrajWniD(x@ = @, alpha = alpha, mu = @, sigma = sigma,
N = N, delta = 0.01))
}, delta = slider(0.01, 5.01, step = 0.1),
N = manipulate::slider(10, 500, step = 10, initial = 200),
alpha = manipulate::slider(@.01, 5, step = 0.1, initial = 1),
sigma = manipulate::slider(@.01, 5, step = 0.1, initial = 1))

rTrajwn2D Simulation of trajectories for the WN diffusion in 2D

Description

Simulation of the Wrapped Normal (WN) diffusion in 2D by subsampling a fine trajectory obtained
by the Euler discretization.

Usage

rTrajWn2D(x@, alpha, mu, sigma, rho = @, N = 100, delta = 9.01,
NFine = ceiling(N * delta/deltaFine), deltaFine = min(delta/100, 0.001))
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Arguments

X0 vector of length 2 giving the initial point.

alpha vector of length 3 parametrizing the A matrix as in alphaToA.

mu a vector of length 2 giving the mean.

sigma vector of length 2 containing the square root of the diagonal of ¥, the diffusion

matrix.

rho correlation coefficient of 2.

N number of discretization steps in the resulting trajectory.

delta discretization step.

NFine number of discretization steps for the fine trajectory. Must be larger than N.

deltaFine discretization step for the fine trajectory. Must be smaller than delta.
Details

The fine trajectory is subsampled using the indexes seq(1, NFine + 1, by =NFine / N).

Value

A matrix of size c(N + 1, 2) containing x@ in the first entry and the discretized trajectory.

Examples

samp <- rTrajWn2D(x@ = c(@, @), alpha = c(1, 1, -0.5), mu = c(pi, pi),
sigma = c(1, 1), N = 1000, delta = 0.01)
plot(samp, xlim = c(-pi, pi), ylim = c(-pi, pi), pch = 19, cex = 0.25,
xlab = expression(X[t]), ylab = expression(Y[t]), col = rainbow(1000))
linesTorus(samp[, 11, samp[, 2], col = rainbow(1000))

safeSoftMax Safe softmax function for computing weights
Description
Computes the weights w; = % from p;, i = 1,..., k in a safe way to avoid overflows and to

j=1
truncate automatically to zero low values of w;.

Usage

safeSoftMax(logs, expTrc = 30)

Arguments
logs matrix of logarithms where each row contains a set of p1, . . ., px to compute the
weights from.
expTrc truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to

30.
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Details

The logs argument must be always a matrix.

Value

A matrix of the size as logs containing the weights for each row.

Examples

# A matrix
safeSoftMax(rbind(1:10, 20:11))
rbind(exp(1:10) / sum(exp(1:10)), exp(20:11) / sum(exp(20:11)))

# A row-matrix
safeSoftMax(rbind(-100:100), expTrc = 30)
exp(-100:100) / sum(exp(-100:100))

scoreMatchWnBvm Score and moment matching of a univariate or bivariate wrapped nor-
mal by a von Mises

Description

Given a wrapped normal density, find the parameters of a von Mises that matches it according to
two characteristics: moments and scores. Score matching estimators are available for univariate and
bivariate cases and moment matching only for the former.

Usage

scoreMatchWnBvm(Sigma = NULL, invSigma)
scoreMatchWnVm(sigma, sigma2 = NULL)

momentMatchWnVm(sigma, sigma2 = NULL)

Arguments

Sigma, invSigma
covariance or precision matrix of the bivariate wrapped normal.

sigma, sigma2  standard deviation or variance of the wrapped normal.

Details
If the precision matrix is singular or if there are no solutions for the score matching estimator, c(@,
@, 0) is returned.

Value

Vector of parameters (k1, k2, ), where (k1, k2, 2)) is a suitable input for kappa in dBvm.
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References

Mardia, K. V., Kent, J. T., and Laha, A. K. (2016). Score matching estimators for directional
distributions. arXiv:1604.0847. https://arxiv.org/abs/1604.08470

Examples

# Univariate WN approximation
sigma <- 0.5

curve(dWniD(x = x, mu = @, sigma = sigma), from = -pi, to = pi,
ylab = "Density”, ylim = c(0, 1))

curve(dvVm(x = x, mu = @, kappa = momentMatchWnVm(sigma = sigma)), from = -pi,
to = pi, col = "red”, add = TRUE)

curve(dvVm(x = x, mu = @, kappa = scoreMatchWnVm(sigma = sigma)), from = -pi,

to = pi, col = "green”, add = TRUE)
# Bivariate WN approximation

# WN

alpha <- c(2, 1, 1)

sigma <- c(1, 1)

mu <- c(pi / 2, pi / 2)

x <- seq(-pi, pi, 1 = 101)[-101]

plotSurface2D(x, x, f = function(x) dStatWn2D(x = x, alpha = alpha, mu = mu,
sigma = sigma), fVect = TRUE)

A <- alphaToA(alpha = alpha, sigma = sigma)

S <- 0.5 * solve(A) %x% diag(sigma)

# Score matching
kappa <- scoreMatchWnBvm(Sigma = S)

# dBvm uses lambda / 2 in the exponent
plotSurface2D(x, x, f = function(x) dBvm(x = x, mu = mu,
kappa = c(kappal1:2], 2 * kappal3])),
fVect = TRUE)

# With singular Sigma

invSigma <- matrix(c(1, sqrt(@.999), sqrt(@.999), 1), nrow = 2, ncol = 2)
scoreMatchWnBvm(invSigma = invSigma)

invSigma <- matrix(1, nrow = 2, ncol = 2)

scoreMatchWnBvm(invSigma = invSigma)

sdetorus sdetorus - Statistical Tools for Toroidal Diffusions

Description

Implementation of statistical methods for the estimation of toroidal diffusions. Several diffusive
models are provided, most of them belonging to the Langevin family of diffusions on the torus.
Specifically, the wrapped normal and von Mises processes are included, which can be seen as


https://arxiv.org/abs/1604.08470

70 sigmaDiff

toroidal analogues of the Ornstein—Uhlenbeck diffusion. A collection of methods for approximate
maximum likelihood estimation, organized in four blocks, is given: (i) based on the exact transition
probability density, obtained as the numerical solution to the Fokker-Plank equation; (ii) based on
wrapped pseudo-likelihoods; (iii) based on specific analytic approximations by wrapped processes;
(iv) based on maximum likelihood of the stationary densities. The package allows the replicability
of the results in Garcia-Portugués et al. (2019) <doi:10.1007/s11222-017-9790-2>.

Author(s)

Eduardo Garcia-Portugués.

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

sigmaDiff High-frequency estimate of the diffusion matrix

Description

Estimation of the ¥ in the multivariate diffusion
dX; = b(Xy)dt + ZdW;
by the high-frequency estimate

N
1 T
3= N—ZX Xi_1)(X; — Xi1)

Usage

sigmaDiff(data, delta, circular = TRUE, diagonal = FALSE,
isotropic = FALSE)

Arguments
data vector or matrix of size c(N, p) containing the discretized process.
delta discretization step.
circular whether the process is circular or not.

diagonal, isotropic
enforce different constraints for the diffusion matrix.

Details

See Section 3.1 in Garcia-Portugués et al. (2019) for details.


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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Value

The estimated diffusion matrix of size c(p, p).

References

Garcia-Portugués, E., Sgrensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions
on the torus: estimation and applications. Statistics and Computing, 29(2):1-22. doi:10.1007/
$1122201797902

Examples

# 1D

x <- drop(euleriD(x@ = @, alpha = 1, mu = @, sigma = 1, N = 1000,
delta = 0.01))

sigmaDiff(x, delta = 0.01)

# 2D
x <- t(euler2D(x@ = rbind(c(pi, pi)), A = rbind(c(2, 1), c(1, 2)),
mu = c(pi, pi), sigma = c(1, 1), N = 1000,
delta = 0.01)[1, , D
sigmaDiff(x, delta = 0.01)
sigmaDiff(x, delta = 0.01, circular = FALSE)
0.
0.

sigmaDiff(x, delta 01, diagonal = TRUE)
sigmaDiff(x, delta 01, isotropic = TRUE)

solveTridiag Thomas algorithm for solving tridiagonal matrix systems, with op-
tional presaving of LU decomposition

Description

Implementation of the Thomas algorithm to solve efficiently the tridiagonal matrix system
bix1 + cixe + a1z, = di

aor1 + baxo + cox3z = do

Gp—1Tn—2 + bn—lxn—l + Cn—1Tn = dn—l
Cn®1 + GnTp—1 + bnwn = dn

with a1 = ¢, = 0 (usual tridiagonal matrix). If a; # 0 or ¢, # 0 (circulant tridiagonal matrix),
then the Sherman—Morrison formula is employed.


https://doi.org/10.1007/s11222-017-9790-2
https://doi.org/10.1007/s11222-017-9790-2
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Usage

solveTridiag(a, b, c, d, LU = 0L)

solveTridiagMatConsts(a, b, ¢, d, LU = QL)

solvePeriodicTridiag(a, b, c, d, LU = QL)

forwardSweepTridiag(a, b, c¢)

forwardSweepPeriodicTridiag(a, b, c)

Arguments
a, b, c subdiagonal (below main diagonal), diagonal and superdiagonal (above main
diagonal), respectively. They all are vectors of length n.
d vector of constant terms, of length n. For solveTridiagMatConsts, it can be a
matrix with n rows.
LU flag denoting if the forward sweep encoding the LU decomposition is supplied
in vectors b and c. See details and examples.
Details

The Thomas algorithm is stable if the matrix is diagonally dominant.

For the periodic case, two non-periodic tridiagonal systems with different constant terms (but same
coefficients) are solved using solveTridiagMatConsts. These two solutions are combined by the
Sherman—Motrrison formula to obtain the solution to the periodic system.

Note that the output of solveTridiag and solveTridiagMatConsts are independent from the
values of a[1] and c[n], but solvePeriodicTridiag is not.

If LU is TRUE, then b and ¢ must be precomputed with forwardSweepTridiag or
forwardSweepPeriodicTridiag for its use in the call of the appropriate solver, which will be
slightly faster.

Value

* solve= functions: the solution, a vector of length n and a matrix with n rows for
solveTridiagMatConsts.

» forward= functions: the matrix cbind(b, c) creating the suitable b and ¢ arguments for
calling solvex when LU is TRUE.

References

Thomas, J. W. (1995). Numerical Partial Differential Equations: Finite Difference Methods. Springer,
New York. doi:10.1007/9781489972781

Conte, S. D. and de Boor, C. (1980). Elementary Numerical Analysis: An Algorithmic Approach.
Third edition. McGraw-Hill, New York. doi:10.1137/1.9781611975208


https://doi.org/10.1007/978-1-4899-7278-1
https://doi.org/10.1137/1.9781611975208

stepAheadWn1D

Examples

Tridiagonal matrix
<- 10
<- rnorm(n, 3, 1)
rnorm(n, 10, 1)
<- rnorm(n, @, 1)
<- rnorm(n, @, 1)
A <- matrix(@, nrow = n, ncol = n)
diag(A) <- b
for (i in 1:(n - 1)) {
Ali + 1, i] <= a[i + 1]
Ali, 1 + 1] <- c[i]
}
A

o 0 T o S H
N
1

# Same solutions

drop(solveTridiag(a = a, b=b, c=c¢, d =d))

solve(a = A, b = d)

# Presaving the forward sweep (encodes the LU factorization)

LU <- forwardSweepTridiag(a = a, b = b, ¢

c)

drop(solveTridiag(a = a, b = LU[, 1], ¢ = LU[, 2], d =d, LU = 1))

# With equal coefficient matrix

solveTridiagMatConsts(a = a, b = b, ¢ =
chbind(solve(a = A, b = d), solve(a = A,
LU <- forwardSweepTridiag(a = a, b = b
solveTridiagMatConsts(a = a, b = LU[, 11,

c,
b
C

’

# Periodic matrix
A[1, n] <= a[1]
Aln, 11 <= c[n]

A

# Same solutions
drop(solvePeriodicTridiag(a = a, b = b, ¢
solve(a = A, b = d)

C

= cbind(d, d + 1))

d+ 1)

c)

= LU[, 2], d = cbind(d, d + 1), LU = 1)

c, d=d)

# Presaving the forward sweep (encodes the LU factorization)
LU <- forwardSweepPeriodicTridiag(a = a, b = b, ¢ = ¢)
drop(solvePeriodicTridiag(a = a, b = LU[, 1], ¢ = LU[, 2], d =d, LU = 1))
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stepAheadWn1D Multiple simulation of trajectory ends of the WN or vM diffusion in 1D

Description

Simulates M trajectories starting from different initial values x@ of the WN or vM diffusion in 1D,

by the Euler method, and returns their ends.
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Usage

stepAheadWn1D(x@, alpha, mu, sigma, M, N = 100L, delta = 0.01, type = 1L,
maxK = 2L, expTrc = 30)

Arguments
X0 vector of length nx@ giving the initial points.
alpha drift parameter.
mu mean parameter. Must be in [, 7).
sigma diffusion coefficient.
M number of Monte Carlo replicates.
N number of discretization steps.
delta discretization step.
type integer giving the type of diffusion. Currently, only 1 for WN and 2 for vM are
supported.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= -expTrc is set to zero. Defaults to
30.
Value

A matrix of size c(nx@, M) containing the M trajectory ends for each starting value x@.

Examples

N <- 100

nx0Q <- 20

x0 <- seq(-pi, pi, 1 = nx@ + 1)[-(nx0 + 1)]

set.seed(12345678)

sampl <- euler1D(x@ = x@, mu = @, alpha = 3, sigma = 1, N = N,
delta = 0.01, type = 2)

tt <- seq(@, 1, 1 =N+ 1)

plot(rep(@, nx@), x0, pch = 16, col = rainbow(nx@), xlim = c(@, 1))

for (i in 1:nx@) linesCirc(tt, samp1[i, ], col = rainbow(nx@)[i])

set.seed(12345678)

samp2 <- stepAheadWn1D(x@ = x@, mu = @, alpha = 3, sigma =1, M =1,

N = N, delta = 0.01, type = 2)

points(rep(1, nx@), samp2[, 11, pch = 16, col = rainbow(nx@))

samp1[, N + 1]

samp2[, 1]
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stepAheadWn2D Multiple simulation of trajectory ends of the WN or MvM diffusion in
2D

Description
Simulates M trajectories starting from different initial values x@ of the WN or MvM diffusion in 2D,
by the Euler method, and returns their ends.

Usage

stepAheadWn2D(x@, mu, A, sigma, rho = @, M = 100L, N = 100L,
delta = 0.01, type = 1L, maxK = 2L, expTrc = 30)

Arguments
X0 matrix of size c(nx@, 2) giving the initial points.
mu a vector of length 2 giving the mean.
A drift matrix of size c(2, 2).
sigma vector of length 2 containing the square root of the diagonal of Y., the diffusion
matrix.
rho correlation coefficient of 3.
M number of Monte Carlo replicates.
N number of discretization steps.
delta discretization step.
type integer giving the type of diffusion. Currently, only 1 for WN and 2 for vM are
supported.
maxK maximum absolute value of the windings considered in the computation of the
WN.
expTrc truncation for exponential: exp(x) with x <= —expTrc is set to zero. Defaults to
30.
Value

An array of size c(nx@, 2, M) containing the M trajectory ends for each starting value x0.

Examples

N <- 100

nx0 <- 3

X0 <- seq(-pi, pi, 1 = nx@ + 1)[-(nx0 + 1)]

X0 <- as.matrix(expand.grid(x@, x@))

nxo0 <- nx0*2

set.seed(12345678)

sampl <- euler2D(x@ = x@0, mu = c(@, @), A = rbind(c(3, 1), 1:2),



76 toPilnt

sigma = c(1, 1), N =N, delta = 0.01, type = 2)
plot(xe[, 11, xo[, 2], xlim = c(-pi, pi), ylim = c(-pi, pi), pch = 16,
col = rainbow(nx@))
for (i in 1:nx@) linesTorus(samp1[i, 1, ], sampl[i, 2, ],
col = rainbow(nx@, alpha = 0.75)[i])

set.seed(12345678)

samp2 <- stepAheadWn2D(x@ = x@, mu = c(@, @), A = rbind(c(3, 1), 1:2),
sigma = c(1, 1), M =2, N =N, delta = 0.01,
type = 2)

points(samp2[, 1, 1], samp2[, 2, 1], pch = 16, col = rainbow(nx@))

samp1[, , N + 1]

samp2[, , 1]

toPilnt Wrapping of radians to its principal values

Description

Utilities for transforming a reals into [—, 7), [0, 27) or [a, ).

Usage

toPiInt(x)
to2PiInt(x)

toInt(x, a, b)

Arguments
X a vector, matrix or object for whom Arithmetic is defined.
a, b the lower and upper limits of [a, b).

Details

Note that b is excluded from the result, see examples.

Value

The wrapped vector in the chosen interval.

Examples

# Wrapping of angles

x <- seq(-3 * pi, 5 % pi, 1 = 100)
toPiInt(x)

to2PiInt(x)

# Transformation to [1, 5)
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x <- 1:10
toInt(x, 1, 5)
toInt(x + 1, 1, 5)

# Transformation to [1, 5]
toInt(x, 1, 6)
toInt(x + 1, 1, 6)

torusAxis Draws pretty axis labels for circular variables

Description

Wrapper for drawing pretty axis labels for circular variables. To be invoked after plot with axes =
FALSE has been called.

Usage
torusAxis(sides = 1:2, twoPi = FALSE, ...)
Arguments
sides an integer vector specifying which side of the plot the axes are to be drawn on.
The axes are placed as follows: 1 = below, 2 = left, 3 = above, and 4 = right.
twoPi flag indicating that [0, 27) is the support, instead of [—7, ).
further parameters passed to axis.
Details

The function calls box.

Value

This function is usually invoked for its side effect, which is to add axes to an already existing plot.

Examples

grid <- seq(-pi, pi, 1 = 100)

plotSurface2D(grid, grid, f = function(x) sin(x[1]) * cos(x[2]),
nLev = 20, axes = FALSE)

torusAxis()



78 torusAxis3d

torusAxis3d Draws pretty axis labels for circular variables

Description

Wrapper for drawing pretty axis labels for circular variables. To be invoked after plot3d with axes
= FALSE and box = FALSE has been called.

Usage
torusAxis3d(sides = 1:3, twoPi = FALSE, ...)
Arguments
sides an integer vector specifying which side of the plot the axes are to be drawn on.
The axes are placed as follows: 1=x,2=y, 3=z
twoPi flag indicating that [0, 27) is the support, instead of [—7, ).
further parameters passed to axis3d.
Details

The function calls box3d.

Value

This function is usually invoked for its side effect, which is to add axes to an already existing plot.

Examples

if (requireNamespace("rgl”)) {
n <- 50
x <= toPiInt(rnorm(n, mean = seq(-pi, pi, 1 = n), sd = 0.5))
y <- toPilInt(rnorm(n, mean = seq(-pi, pi, 1 =n), sd = 0.5))
z <- toPiInt(x + y + rnorm(n, mean = seq(-pi, pi, 1 = n), sd = 0.5))
rgl::plot3d(x, y, z, xlim = c(-pi, pi), ylim = c(-pi, pi),
zlim = c(-pi, pi), col = rainbow(n), size = 2,
box = FALSE, axes = FALSE)
torusAxis3d()
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unwrapCircSeries Unwrapping of circular time series

Description

Completes a circular time series to a linear one by computing the closest wind numbers. Useful for
plotting circular trajectories with crossing of boundaries.

Usage

unwrapCircSeries(x)
Arguments

X wrapped angles. Must be a vector or a matrix, see details.
Details

If x is a matrix then the unwrapping is carried out row-wise, on each column separately.

Value

A vector or matrix containing a choice of unwrapped angles of x that maximizes linear continuity.

Examples

# Vectors

x <- c(-pi, -pi/2, pi - 0.1, -pi + 0.2)
u <- unwrapCircSeries(x)

max (abs(toPiInt(u) - x))
plot(toPiInt(x), ylim = c(-pi, pi))
for(k in -1:1) lines(u + 2 * k * pi)

# Matrices
N <- 100
set.seed(234567)
x <- t(euler2D(x@ = rbind(c(@, 0)), A = diag(c(1, 1)), sigma = rep(1, 2),

mu = c(pi, pi), N =N, delta = 1, type = 2)[1, , D
u <- unwrapCircSeries(x)
max(abs(toPiInt(u) - x))
plot(x, xlim = c(-pi, pi), ylim = c(-pi, pi))
for(kl in -3:3) for(k2 in -3:3) lines(u[, 11 + 2 * k1 * pi,

ul, 2] + 2 *x k2 * pi, col = gray(0.5))
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