Package 'sanba'

May 23, 2025

Type Package

Title Fitting Shared Atoms Nested Models via MCMC or Variational Bayes

Version 0.0.1

Date 2025-05-15

Maintainer Francesco Denti <francescodenti.personal@gmail.com>

URL https://github.com/fradenti/sanba

BugReports https://github.com/fradenti/sanba/issues

Description An efficient tool for fitting nested mixture mod-

els based on a shared set of atoms via Markov Chain Monte Carlo and variational inference algorithms. Specifically, the package implements the common atoms model (Denti et al., 2023), its finite version (similar to D'Angelo et al., 2023), and a hybrid finite-

infinite model (D'Angelo and Denti, 2024).

All models implement univariate nested mixtures with Gaussian kernels equipped with a normalinverse gamma prior distribution on the parameters. Additional functions are provided to help analyze the results of the fitting procedure.

References:

Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, D'Angelo, Canale, Yu, Guindani (2023) <doi:10.1111/biom.13626>, D'Angelo, Denti (2024) <doi:10.1214/24-BA1458>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports Rcpp, matrixStats, salso

Depends scales, RColorBrewer

LinkingTo cpp11, Rcpp, RcppArmadillo, RcppProgress

Language en-US

NeedsCompilation yes

Author Francesco Denti [aut, cre, cph] (ORCID:

<https://orcid.org/0000-0001-5034-7414>),

Laura D'Angelo [aut] (ORCID: <https://orcid.org/0000-0003-2978-4702>)

Repository CRAN

Date/Publication 2025-05-23 18:00:02 UTC

Contents

estimate_G	•											•										•		•							2
fit_CAM																															3
fit_fiSAN	•																														7
fit_fSAN	•																														10
plot.SANmcmc	•			•			•	•		•	•									•		•									14
plot.SANvi	•	•	•	•		•	•	•	•	•	•							•		•	•	•	•		•			•	•		16
print.SANmcmc	•																				•	•	•								16
print.SANvi	•																				•		•								17
summary	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•		•		•	•	•		17
																															20

Index

estimate_G

Estimate the Atoms and Weights of the Discrete Mixing Distributions

Description

The function computes the posterior means of the atoms and weights characterizing the discrete mixing distributions. The function takes as input an object from fit_CAM, fit_fiSAN, or fit_fSAN, used with the est_method = "VI" argument, and returns an object of class SANvi_G.

Usage

```
estimate_G(object, ...)
## S3 method for class 'SANvi_G'
plot(x, DC_num = NULL, lim = 2, ...)
## S3 method for class 'SANvi_G'
print(x, thr = 0.01, ...)
```

object	An object of class SANvi.
	ignored.
x	an object of class SANvi_G (usually, the result of a call to estimate_G).
DC_num	an integer or a vector of integers indicating which distributional clusters to plot.
lim	optional value for the plot method to adjust the limits of the x-axis (the default is 2). The atoms are plotted on a range given by min(posterior means)-lim, max(posterior means)+lim.
thr	argument for the print method. It should be a small positive number, repre- senting a threshold. If the posterior weight of a specific shared atom is below the threshold, the atom is not reported.

fit_CAM

Value

The function estimate_G returns an object of class SANvi_G, which is a matrix comprising the posterior means, variances, and weights of each estimated DC (one mixture component for each row).

Examples

```
# Generate example data
set.seed(1232)
y <- c(rnorm(100),rnorm(100,5))
g <- rep(1:2,rep(100,2))
# Fitting fiSAN via variational inference
est <- fit_fiSAN(y,g)
# Estimate posterior atoms and weights
est <- estimate_G(est)
est
plot(est)
plot(est, DC_num = 1)</pre>
```

fit_CAM

Fit the Common Atoms Mixture Model

Description

fit_CAM fits the common atoms mixture model (CAM) of Denti et al. (2023) with Gaussian kernels and normal-inverse gamma priors on the unknown means and variances. The function returns an object of class SANmcmc or SANvi depending on the chosen computational approach (MCMC or VI).

Usage

```
fit_CAM(y, group, est_method = c("VI", "MCMC"),
    prior_param = list(),
    vi_param = list(),
    mcmc_param = list())
```

У	Numerical vector of observations (required).
group	Numerical vector of the same length of y, indicating the group membership (required).
est_method	Character, specifying the preferred estimation method. It can be either "VI" or "MCMC".
prior_param	A list containing

	m0, tau0, lambda0, gamma0 Hyperparameters on $(\mu, \sigma^2) \sim NIG(m_0, \tau_0, \lambda_0, \gamma_0)$. The default is (0, 0.01, 3, 2).
	hyp_alpha1, hyp_alpha2 If a random α is used, (hyp_alpha1, hyp_alpha2) specify the hyperparameters. The default is (1,1). The prior is $\alpha \sim \text{Gamma(hyp_alpha1, hyp_alpha2)}$.
	alpha Distributional DP parameter if fixed (optional). The distribution is $\pi \sim GEM(\alpha)$.
	hyp_beta1, hyp_beta2 If a random β is used, (hyp_beta1, hyp_beta2) spec- ify the hyperparameters. The default is (1,1). The prior is $\beta \sim \text{Gamma}(\text{hyp_beta1}, \text{hyp_beta2}).$
	beta Observational DP parameter if fixed (optional). The distribution is $\omega_k \sim GEM(\beta)$.
vi_param	A list of variational inference-specific settings containing
	maxL, maxK Integers, the upper bounds for the observational and distributional clusters to fit, respectively. The default is (50, 20).
	epsilon The tolerance that drives the convergence criterion adopted as stop- ping rule.
	seed Random seed to control the initialization.
	maxSIM The maximum number of CAVI iterations to perform.
	warmstart Logical, if TRUE, the observational means of the cluster atoms are initialized with a k-means algorithm.
	verbose Logical, if TRUE the iterations are printed.
<pre>mcmc_param</pre>	A list of MCMC inference-specific settings containing
	nrep, burn Integers, the number of total MCMC iterations, and the number of discarded iterations, respectively.
	maxL, maxK Integers, the upper bounds for the observational and distributional clusters to fit, respectively. The default is (50, 20).
	seed Random seed to control the initialization.
	<pre>warmstart Logical, if TRUE, the observational means of the cluster atoms are initialized with a k-means algorithm. If FALSE, the starting points can be passed through the parameters nclus_start, mu_start, sigma2_start, M_start, S_start, alpha_start, beta_start</pre>

verbose Logical, if TRUE the iterations are printed.

Details

The common atoms mixture model is used to perform inference in nested settings, where the data are organized into J groups. The data should be continuous observations (Y_1, \ldots, Y_J) , where each $Y_j = (y_{1,j}, \ldots, y_{n_j,j})$ contains the n_j observations from group j, for $j = 1, \ldots, J$. The function takes as input the data as a numeric vector y in this concatenated form. Hence, y should be a vector of length $n_1 + \cdots + n_J$. The group parameter is a numeric vector of the same size as y, indicating the group membership for each individual observation. Notice that with this specification, the observations in the same group need not be contiguous as long as the correspondence between the variables y and group is maintained.

fit_CAM

The data are modeled using a Gaussian likelihood, where both the mean and the variance are observational cluster-specific, i.e.,

$$y_{i,j} \mid M_{i,j} = l \sim N(\mu_l, \sigma_l^2)$$

where $M_{i,j} \in \{1, 2, ...\}$ is the observational cluster indicator of observation *i* in group *j*. The prior on the model parameters is a normal-inverse gamma distribution $(\mu_l, \sigma_l^2) \sim NIG(m_0, \tau_0, \lambda_0, \gamma_0)$, i.e., $\mu_l \mid \sigma_l^2 \sim N(m_0, \sigma_l^2/\tau_0), 1/\sigma_l^2 \sim Gamma(\lambda_0, \gamma_0)$ (shape, rate).

Clustering

The model clusters both observations and groups. The clustering of groups (distributional clustering) is provided by the allocation variables $S_i \in \{1, 2, ...\}$, with

$$Pr(S_{i} = k \mid ...) = \pi_{k}$$
 for $k = 1, 2, ...$

The distribution of the probabilities is $\{\pi_k\}_{k=1}^{\infty} \sim GEM(\alpha)$, where GEM is the Griffiths-Engen-McCloskey distribution of parameter α , which characterizes the stick-breaking construction of the DP (Sethuraman, 1994).

The clustering of observations (observational clustering) is provided by the allocation variables $M_{i,j} \in \{1, 2, ...\}$, with

$$Pr(M_{i,j} = l \mid S_j = k, ...) = \omega_{l,k}$$
 for $k = 1, 2, ...; l = 1, 2, ...$

The distribution of the probabilities is $\{\omega_{l,k}\}_{l=1}^{\infty} \sim GEM(\beta)$ for all k = 1, 2, ...

Value

fit_CAM returns a list of class SANvi, if method = "VI", or SANmcmc, if method = "MCMC". The list contains the following elements:

model Name of the fitted model.

params List containing the data and the parameters used in the simulation. Details below.

sim List containing the optimized variational parameters or the simulated values. Details below. time Total computation time.

Data and parameters: params is a list with the following components:

- y, group, Nj, J: Data, group labels, group frequencies, and number of groups.
- K, L: Number of distributional and observational mixture components.
- m0, tau0, lambda0, gamma0: Model hyperparameters.
- (hyp_alpha1, hyp_alpha2) or alpha: hyperparameters on α (if α random); or provided value for α (if fixed).
- (hyp_beta1, hyp_beta2) or beta: hyperparameters on β (if β random); or provided value for β (if fixed).
- seed: The random seed adopted to replicate the run.
- epsilon, n_runs: If method = "VI", the threshold controlling the convergence criterion and the number of iterations needed to reach convergence.
- nrep, burnin: If method = "MCMC", the number of total MCMC iterations, and the number of discarded ones.

Simulated values: depending on the algorithm, it returns a list with the optimized variational parameters or a list with the chains of the simulated values.

Variational inference: sim is a list with the following components:

- theta_1: Matrix of size (maxL, 4). Each row is a posterior variational estimate of the four normal-inverse gamma hyperparameters.
- XI: A list of length J. Each element is a matrix of size (N, maxL) containing the posterior variational probability of assignment of the i-th observation in the j-th group to the l-th OC, i.e., $\hat{\xi}_{i,j,l} = \hat{\mathbb{Q}}(M_{i,j} = l)$.
- RHO: Matrix of size (J, maxK). Each row is a posterior variational probability of assignment of the j-th group to the k-th DC, i.e., ρ̂_{j,k} = Q̂(S_j = k).
- a_tilde_k, b_tilde_k: Vector of updated variational parameters of the beta distributions governing the distributional stick-breaking process.
- a_bar_lk, b_bar_lk: Matrix of updated variational parameters of the beta distributions governing the observational stick-breaking process (arranged by column).
- conc_hyper: If the concentration parameters are chosen to be random, a vector with the four updated hyperparameters.
- Elbo_val: Vector containing the values of the ELBO.

MCMC inference: sim is a list with the following components:

- mu: Matrix of size (nrep, maxL). Each row is a posterior sample of the mean parameter for each observational cluster (μ₁,...μ_L).
- sigma2: Matrix of size (nrep, maxL). Each row is a posterior sample of the variance parameter for each observational cluster (σ₁²,...,σ_L²).
- obs_cluster: Matrix of size (nrep, n), with n = length(y). Each row is a posterior sample of the observational cluster allocation variables $(M_{1,1}, \ldots, M_{n_J,J})$.
- distr_cluster: Matrix of size (nrep, J), with J = length(unique(group)) Each row is a posterior sample of the distributional cluster allocation variables (S_1, \ldots, S_J) .
- pi: Matrix of size (nrep, maxK). Each row is a posterior sample of the distributional cluster probabilities (π₁,..., π_{maxK}).
- omega: 3-d array of size (maxL, maxK, nrep). Each slice is a posterior sample of the observational cluster probabilities. In each slice, each column k is a vector (of length maxL) observational cluster probabilities ($\omega_{1,k}, \ldots, \omega_{maxL,k}$) for distributional cluster k.
- alpha: Vector of length nrep of posterior samples of the parameter α .
- beta: Vector of length nrep of posterior samples of the parameter β .
- maxK: Vector of length nrep of the number of distributional DP components used by the slice sampler.
- maxL: Vector of length nrep of the number of observational DP components used by the slice sampler.

References

Denti, F., Camerlenghi, F., Guindani, M., and Mira, A. (2023). A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data. *Journal of the American Statistical Association*, 118(541), 405-416. DOI: 10.1080/01621459.2021.1933499

Sethuraman, A.J. (1994). A Constructive Definition of Dirichlet Priors, Statistica Sinica, 4, 639–650.

fit_fiSAN

Examples

fit_fiSAN

Fit the Finite-Infinite Shared Atoms Mixture Model

Description

fit_fiSAN fits the finite-infinite shared atoms nested (fiSAN) mixture model with Gaussian kernels and normal-inverse gamma priors on the unknown means and variances. The function returns an object of class SANmcmc or SANvi depending on the chosen computational approach (MCMC or VI).

Usage

У	Numerical vector of observations (required).
group	Numerical vector of the same length of y, indicating the group membership (required).
est_method	Character, specifying the preferred estimation method. It can be either "VI" or "MCMC".
prior_param	A list containing:
	m0, tau0, lambda0, gamma0 Hyperparameters on $(\mu, \sigma^2) \sim NIG(m_0, \tau_0, \lambda_0, \gamma_0)$. The default is $(0, 0.01, 3, 2)$.
	hyp_alpha1, hyp_alpha2 If a random α is used, (hyp_alpha1, hyp_alpha2) specify the hyperparameters. The default is (1,1). The prior is $\alpha \sim \text{Gamma}(\text{hyp}_alpha1, \text{hyp}_alpha2).$
	alpha Distributional DP parameter if fixed (optional). The distribution is $\pi \sim \text{GEM}(\alpha)$.

	b_dirichlet The hyperparameter of the symmetric observational Dirichlet dis- tribution. The default is 1/maxL.				
vi_param	A list of variational inference-specific settings containing:				
	maxL, maxK Integers, the upper bounds for the observational and distributional clusters to fit, respectively. The default is (50, 20).				
	epsilon The tolerance that drives the convergence criterion adopted as stop- ping rule.				
	seed Random seed to control the initialization.				
	maxSIM The maximum number of CAVI iterations to perform.				
	warmstart Logical, if TRUE, the observational means of the cluster atoms are initialized with a k-means algorithm.				
	verbose Logical, if TRUE the iterations are printed.				
mcmc_param	A list of MCMC inference-specific settings containing:				
	nrep, burn Integers, the number of total MCMC iterations, and the number of discarded iterations, respectively.				
	maxL, maxK Integers, the upper bounds for the observational and distributional clusters to fit, respectively. The default is (50, 20).				
	seed Random seed to control the initialization.				
	<pre>warmstart Logical, if TRUE, the observational means of the cluster atoms are initialized with a k-means algorithm. If FALSE, the starting points can be passed through the parameters nclus_start, mu_start, sigma2_start, M_start, S_start, alpha_start.</pre>				
	verbose Logical, if TRUE the iterations are printed.				

Details

Data structure

The finite-infinite common atoms mixture model is used to perform inference in nested settings, where the data are organized into J groups. The data should be continuous observations (Y_1, \ldots, Y_J) , where each $Y_j = (y_{1,j}, \ldots, y_{n_j,j})$ contains the n_j observations from group j, for $j = 1, \ldots, J$. The function takes as input the data as a numeric vector y in this concatenated form. Hence, y should be a vector of length $n_1 + \cdots + n_J$. The group parameter is a numeric vector of the same size as y, indicating the group membership for each individual observation. Notice that with this specification, the observations in the same group need not be contiguous as long as the correspondence between the variables y and group is maintained.

Model

The data are modeled using a Gaussian likelihood, where both the mean and the variance are observational-cluster-specific:

$$y_{i,j} \mid M_{i,j} = l \sim N(\mu_l, \sigma_l^2)$$

where $M_{i,j} \in \{1, \ldots, L\}$ is the observational cluster indicator of observation *i* in group *j*. The prior on the model parameters is a normal-inverse gamma distribution $(\mu_l, \sigma_l^2) \sim NIG(m_0, \tau_0, \lambda_0, \gamma_0)$, i.e., $\mu_l \mid \sigma_l^2 \sim N(m_0, \sigma_l^2/\tau_0), 1/\sigma_l^2 \sim \text{Gamma}(\lambda_0, \gamma_0)$ (shape, rate).

Clustering

The model clusters both observations and groups. The clustering of groups (distributional clustering) is provided by the allocation variables $S_i \in \{1, 2, ...\}$, with:

$$Pr(S_{i} = k \mid ...) = \pi_{k}$$
 for $k = 1, 2, ...$

The distribution of the probabilities is $\{\pi_k\}_{k=1}^{\infty} \sim GEM(\alpha)$, where GEM is the Griffiths-Engen-McCloskey distribution of parameter α , which characterizes the stick-breaking construction of the DP (Sethuraman, 1994).

The clustering of observations (observational clustering) is provided by the allocation variables $M_{i,j} \in \{1, \ldots, L\}$, with:

$$Pr(M_{i,j} = l \mid S_j = k, ...) = \omega_{l,k}$$
 for $k = 1, 2, ...; l = 1, ..., L$

The distribution of the probabilities is $(\omega_{1,k}, \ldots, \omega_{L,k}) \sim \text{Dirichlet}_L(b, \ldots, b)$ for all $k = 1, 2, \ldots$. Here, the dimension L is fixed.

Value

fit_fiSAN returns a list of class SANvi, if method = "VI", or SANmcmc, if method = "MCMC". The list contains the following elements:

model Name of the fitted model.

params List containing the data and the parameters used in the simulation. Details below.

sim List containing the optimized variational parameters or the simulated values. Details below. time Total computation time.

Data and parameters: params is a list with the following components:

- y, group, Nj, J: Data, group labels, group frequencies, and number of groups.
- K, L: Number of distributional and observational mixture components.
- m0, tau0, lambda0, gamma0: Model hyperparameters.
- (hyp_alpha1, hyp_alpha2) or alpha: Hyperparameters on α (if α random); or provided value for α (if fixed).
- b_dirichlet: Provided value for b.
- seed: The random seed adopted to replicate the run.
- epsilon, n_runs: If method = "VI", the threshold controlling the convergence criterion and the number of iterations needed to reach convergence.
- nrep, burnin: If method = "MCMC", the number of total MCMC iterations, and the number of discarded ones.

Simulated values: Depending on the algorithm, it returns a list with the optimized variational parameters or a list with the chains of the simulated values.

Variational inference: sim is a list with the following components:

- theta_1: Matrix of size (maxL, 4). Each row is a posterior variational estimate of the four normal-inverse gamma hyperparameters.
- XI: A list of length J. Each element is a matrix of size (N, maxL), the posterior variational assignment probabilities
 ^Q(M_{i,j} = l).

- RHO: Matrix of size (J, maxK), with the posterior variational assignment probabilities $\hat{\mathbb{Q}}(S_j = k)$.
- a_tilde_k, b_tilde_k: Vector of updated variational parameters of the beta distributions governing the distributional stick-breaking process.
- conc_hyper: If the concentration parameter is random, this contains its updated hyperparameters.
- b_dirichlet_lk: Matrix of updated variational parameters of the Dirichlet distributions governing observational clustering.
- Elbo_val: Vector containing the values of the ELBO.

MCMC inference: sim is a list with the following components:

- mu: Matrix of size (nrep, maxL) with samples of the observational cluster means.
- sigma2: Matrix of size (nrep, maxL) with samples of the observational cluster variances.
- obs_cluster: Matrix of size (nrep, n) with posterior samples of the observational cluster allocations.
- distr_cluster: Matrix of size (nrep, J) with posterior samples of the distributional cluster allocations.
- pi: Matrix of size (nrep, maxK) with posterior samples of the distributional cluster weights.
- omega: Array of size (maxL, maxK, nrep) with observational cluster weights.
- alpha: Vector of length nrep with posterior samples of α .
- maxK: Vector of length nrep with number of active distributional components.

Examples

fit_fSAN

Fit the Finite Shared Atoms Mixture Model

Description

fit_fSAN fits the finite shared atoms nested (fSAN) mixture model with Gaussian kernels and normal-inverse gamma priors on the unknown means and variances. The function returns an object of class SANmcmc or SANvi depending on the chosen computational approach (MCMC or VI).

fit_fSAN

Usage

```
fit_fSAN(y, group, est_method = c("VI", "MCMC"),
    prior_param = list(),
    vi_param = list(),
    mcmc_param = list())
```

У	Numerical vector of observations (required).
group	Numerical vector of the same length of y, indicating the group membership (required).
est_method	Character, specifying the preferred estimation method. It can be either "VI" or "MCMC".
prior_param	A list containing
	m0, tau0, lambda0, gamma0 Hyperparameters on $(\mu, \sigma^2) \sim NIG(m_0, \tau_0, \lambda_0, \gamma_0)$. The default is (0, 0.01, 3, 2).
	a_dirichlet The hyperparameter of the symmetric distributional Dirichlet dis- tribution. The default is 1/maxK.
	b_dirichlet The hyperparameter of the symmetric observational Dirichlet dis- tribution. The default is 1/maxL.
vi_param	A list of variational inference-specific settings, containing
	maxL, maxK Integers, the upper bounds for the observational and distributional clusters to fit, respectively. The default is (50, 20).
	epsilon The tolerance that drives the convergence criterion adopted as stop- ping rule.
	seed Random seed to control the initialization.
	maxSIM The maximum number of CAVI iteration to perform.
	warmstart Logical, if TRUE, the observational means of the cluster atoms are initialized with a k-means algorithm.
	verbose Logical, if TRUE the iterations are printed.
<pre>mcmc_param</pre>	A list of MCMC inference-specific settings, containing
	nrep, burn Integers, the number of total MCMC iterations, and the number of discarded iterations, respectively.
	maxL, maxK Integers, the upper bounds for the observational and distributional clusters to fit, respectively. The default is (50, 20).
	seed Random seed to control the initialization.
	<pre>warmstart Logical, if TRUE, the observational means of the cluster atoms are initialized with a k-means algorithm. If FALSE, the starting points can be passed through the parameters nclus_start, mu_start, sigma2_start, M_start, S_start</pre>
	verbose Logical, if TRUE the iterations are printed.

Details

Data structure

The finite common atoms mixture model is used to perform inference in nested settings, where the data are organized into J groups. The data should be continuous observations (Y_1, \ldots, Y_J) , where each $Y_j = (y_{1,j}, \ldots, y_{n_j,j})$ contains the n_j observations from group j, for $j = 1, \ldots, J$. The function takes as input the data as a numeric vector y in this concatenated form. Hence y should be a vector of length $n_1 + \cdots + n_J$. The group parameter is a numeric vector of the same size as y indicating the group membership for each individual observation. Notice that with this specification the observations in the same group need not be contiguous as long as the correspondence between the variables y and group is maintained.

Model

The data are modeled using a Gaussian likelihood, where both the mean and the variance are observational-cluster-specific, i.e.,

$$y_{i,j} \mid M_{i,j} = l \sim N(\mu_l, \sigma_l^2)$$

where $M_{i,j} \in \{1, \ldots, L\}$ is the observational cluster indicator of observation *i* in group *j*. The prior on the model parameters is a normal-inverse gamma distribution $(\mu_l, \sigma_l^2) \sim NIG(m_0, \tau_0, \lambda_0, \gamma_0)$, i.e., $\mu_l \mid \sigma_l^2 \sim N(m_0, \sigma_l^2/\tau_0), 1/\sigma_l^2 \sim Gamma(\lambda_0, \gamma_0)$ (shape, rate).

Clustering

The model performs a clustering of both observations and groups. The clustering of groups (distributional clustering) is provided by the allocation variables $S_j \in \{1, ..., K\}$, with

$$Pr(S_i = k \mid \dots) = \pi_k \quad \text{for } k = 1, \dots, K.$$

The distribution of the probabilities is $(\pi_1, \ldots, \pi_K) \sim Dirichlet_K(a, \ldots, a)$. Here, the dimension K is fixed.

The clustering of observations (observational clustering) is provided by the allocation variables $M_{i,j} \in \{1, \ldots, L\}$, with

$$Pr(M_{i,j} = l \mid S_j = k, ...) = \omega_{l,k}$$
 for $k = 1, ..., K; l = 1, ..., L$.

The distribution of the probabilities is $(\omega_{1,k}, \ldots, \omega_{L,k}) \sim Dirichlet_L(b, \ldots, b)$ for all $k = 1, \ldots, K$. Here, the dimension L is fixed.

Value

fit_fSAN returns a list of class SANvi, if method = "VI", or SANmcmc, if method = "MCMC". The list contains the following elements:

model Name of the fitted model.

params List containing the data and the parameters used in the simulation. Details below.

sim List containing the optimized variational parameters or the simulated values. Details below.

time Total computation time.

Data and parameters: params is a list with the following components:

• y, group, Nj, J: Data, group labels, group frequencies, and number of groups.

- K, L: Number of distributional and observational mixture components.
- m0, tau0, lambda0, gamma0: Model hyperparameters.
- a_dirichlet: Provided value for *a*.
- b_dirichlet: Provided value for b.
- seed: The random seed adopted to replicate the run.
- epsilon, n_runs: If method = "VI", the threshold controlling the convergence criterion and the number of iterations needed to reach convergence.
- nrep, burnin: If method = "MCMC", the number of total MCMC iterations, and the number of discarded ones.

Simulated values: depending on the algorithm, it returns a list with the optimized variational parameters or a list with the chains of the simulated values.

Variational inference: sim is a list with the following components:

- theta_1: Matrix of size (maxL, 4). Each row is a posterior variational estimate of the four normal-inverse gamma hyperparameters.
- XI : A list of length J. Each element is a matrix of size (N, maxL) posterior variational probability of assignment of assignment of the i-th observation in the j-th group to the l-th OC, i.e., $\hat{\xi}_{i,j,l} = \hat{\mathbb{Q}}(M_{i,j} = l)$.
- RH0: Matrix of size (J, maxK). Each row is a posterior variational probability of assignment of the j-th group to the k-th DC, i.e., p̂_{j,k} = Q̂(S_j = k).
- a_dirichlet_k: Vector of updated variational parameters of the Dirichlet distribution governing the distributional clustering.
- b_dirichlet_lk: Matrix of updated variational parameters of the Dirichlet distributions governing the observational clustering (arranged by column).
- Elbo_val: Vector containing the values of the ELBO.

MCMC inference: sim is a list with the following components:

- mu: Matrix of size (nrep, maxL). Each row is a posterior sample of the mean parameter of each observational cluster (μ₁,...μ_L).
- sigma2: Matrix of size (nrep, maxL). Each row is a posterior sample of the variance parameter of each observational cluster $(\sigma_1^2, \ldots, \sigma_L^2)$.
- obs_cluster: Matrix of size (nrep, n), with n = length(y). Each row is a posterior sample of the observational cluster allocation variables $(M_{1,1}, \ldots, M_{n_J,J})$.
- distr_cluster: Matrix of size (nrep, J), with J = length(unique(group)). Each row is a posterior sample of the distributional cluster allocation variables (S_1, \ldots, S_J) .
- pi: Matrix of size (nrep, maxK). Each row is a posterior sample of the distributional cluster probabilities (π₁,..., π_{maxK}).
- omega: 3-d array of size (maxL, maxK, nrep). Each slice is a posterior sample of the observational cluster probabilities. In each slice, each column k is a vector (of length maxL) observational cluster probabilities (ω_{1,k},..., ω_{maxL,k}) for distributional cluster k.

Examples

plot.SANmcmc

Visual check of convergence of the MCMC output

Description

Plot method for objects of class SANmcmc. Check the convergence of the MCMC through visual inspection of the chains.

Usage

```
## S3 method for class 'SANmcmc'
plot(
    x,
    param = c("mu", "sigma2", "pi", "num_clust", "alpha", "beta"),
    show_density = TRUE,
    add_burnin = 0,
    show_convergence = TRUE,
    trunc_plot = 2,
    ...
)
```

Arguments

x	Object of class SANmcmc (usually, the result of a call to fit_CAM, fit_fiSAN, or fit_fSAN, used with the est_method = "MCMC" argument).
param	String with the names of the parameters to check. It can be one of "mu", "sigma2", "pi", "num_clust", "alpha", "beta".
show_density	Logical (default TRUE). Should a kernel estimate of the density be plotted?
add_burnin	Integer (default = 0). Additional number of observations to discard in the burn- in.

14

plot.SANmcmc

show_convergence						
	Logical (default TRUE). Should a superimposed red line of the cumulative mean be plotted?					
trunc_plot	Integer (default = 10). For multidimensional parameters, the maximum number of components to be plotted.					
	Ignored.					

Value

The function displays the traceplots and posterior density estimates of the parameters sampled in the MCMC algorithm.

Note

The function is not available for the observational weights ω .

Examples

```
set.seed(123)
y <- c(rnorm(40,0,0.3), rnorm(20,5,0.3))
g <- c(rep(1,30), rep(2, 30))
out <- fit_fiSAN(y = y, group = g, "MCMC", mcmc_param = list(nrep = 500, burn = 200))</pre>
plot(out, param = "mu", trunc_plot = 2)
plot(out, param = "sigma2", trunc_plot = 2)
plot(out, param = "alpha", trunc_plot = 1)
plot(out, param = "alpha", add_burnin = 100)
plot(out, param = "pi", trunc_plot = 4, show_density = FALSE)
out <- fit_CAM(y = y, group = g, "MCMC",</pre>
mcmc_param = list(nrep = 500, burn = 200, seed= 1234))
plot(out, param = "mu", trunc_plot = 2)
plot(out, param = "sigma2", trunc_plot = 2)
plot(out, param = "alpha")
plot(out, param = "pi", trunc_plot = 2)
plot(out, param = "pi", trunc_plot = 5)
plot(out, param = "num_clust", trunc_plot = 5)
plot(out, param = "beta", trunc_plot = 2)
out <- fit_fSAN(y = y, group = g, "MCMC", mcmc_param = list(nrep = 500, burn = 200))</pre>
plot(out, param = "mu", trunc_plot = 2)
plot(out, param = "sigma2", trunc_plot = 2)
plot(out, param = "pi", trunc_plot = 4,
     show_convergence = FALSE, show_density = FALSE)
```

plot.SANvi

Description

Plot method for objects of class SANvi. The function displays two graphs. The left plot shows the progression of all the ELBO values as a function of the iterations. The right plots shows the ELBO increments between successive iterations of the best run on a log scale (note: increments should always be positive).

Usage

S3 method for class 'SANvi'
plot(x, ...)

Arguments

х	Object of class SANvi (usually, the result of a call to fit_CAM, fit_fiSAN, or
	fit_fSAN, used with the est_method = "VI" argument).
	Ignored.

Value

The function plots the path followed by the ELBO and its subsequent differences.

Examples

```
set.seed(123)
y <- c(rnorm(200,0,0.3), rnorm(100,5,0.3))
g <- c(rep(1,150), rep(2, 150))
out <- fit_fSAN(y = y, group = g, "VI", vi_param = list(n_runs = 2))
plot(out)</pre>
```

print.SANmcmc Print the MCMC output

Description

Print method for objects of class SANmcmc.

Usage

```
## S3 method for class 'SANmcmc'
print(x, ...)
```

print.SANvi

Arguments

x	Object of class SANmcmc.
	Ignored.

Value

The function prints a summary of the fitted model.

print.SANvi

Print the variational inference output

Description

Print method for objects of class SANvi.

Usage

S3 method for class 'SANvi'
print(x, ...)

Arguments

х	Object of class SANvi.
	Further arguments passed to or from other methods.

Value

The function prints a summary of the fitted model.

summary

Summarize the estimated observational and distributional partition

Description

Given the output of a sanba model-fitting function, estimate the observational and distributional partitions using salso::salso() for MCMC, and the maximum a posteriori estimate for VI.

summary

Usage

```
## S3 method for class 'SANvi'
summary(object, ordered = TRUE, ...)
## S3 method for class 'SANmcmc'
summary(object, ordered = TRUE, add_burnin = 0, ncores = 0, ...)
## S3 method for class 'summary_mcmc'
print(x, ...)
## S3 method for class 'summary_vi'
print(x, ...)
## S3 method for class 'summary_mcmc'
plot(
  х,
  DC_num = NULL,
  type = c("ecdf", "boxplot", "scatter"),
  alt_palette = FALSE,
  . . .
)
## S3 method for class 'summary_vi'
plot(
  х,
  DC_num = NULL,
  type = c("ecdf", "boxplot", "scatter"),
  alt_palette = FALSE,
  . . .
)
```

Arguments

object	Object of class SANmcmc (usually, the result of a call to fit_fiSAN, fit_fSAN, or fit_CAM with method = "MCMC") or SANvi (the result of a call to fit_fiSAN, fit_fSAN, or fit_CAM with method = "VI").
ordered	Logical, if TRUE (default), the function sorts the distributional cluster labels re- flecting the increasing values of medians of the data assigned to each DC.
	Additional graphical parameters to be passed to the plot function.
add_burnin	Integer (default = 0). Number of observations to discard as additional burn-in (only for SANmcmc objects).
ncores	A parameter to pass to the salso::salso() function (only for SANmcmc objects). The number of CPU cores to use for parallel computing; a value of zero indicates the use of all cores on the system.
x	The result of a call to summary.
DC_num	An integer or a vector of integers indicating which distributional clusters to plot.

18

summary

Value

A list of class summary_vi or summary_mcmc containing

- obs_level: a data frame containing the data values, their group indexes, and the observational and distributional clustering assignments for each observation.
- dis_level: a vector with the distributional clustering assignment for each unit.

See Also

salso::salso(), print.SANmcmc, plot.SANmcmc

Examples

```
set.seed(123)
y <- c(rnorm(40,0,0.3), rnorm(20,5,0.3))</pre>
g <- c(rep(1:6, each = 10))
out <- fit_fSAN(y = y, group = g, "VI", vi_param = list(n_runs = 10))</pre>
plot(out)
clust <- summary(out)</pre>
clust
plot(clust, lwd = 2, alt_palette = TRUE)
plot(clust, type = "scatter", alt_palette = FALSE, cex = 2)
set.seed(123)
y <- c(rnorm(40,0,0.3), rnorm(20,5,0.3))</pre>
g <- c(rep(1:6, each = 10))
out <- fit_fSAN(y = y, group = g, "MCMC", mcmc_param=list(nrep=500,burn=200))</pre>
plot(out)
clust <- summary(out)</pre>
clust
plot(clust, lwd = 2)
plot(clust, type = "boxplot", alt_palette = TRUE)
plot(clust, type = "scatter", alt_palette = TRUE, cex = 2, pch = 4)
```

Index

 $\texttt{estimate}_{\texttt{G}}, 2$

fit_CAM, 3, *18* fit_fiSAN, 7, *18* fit_fSAN, 10, *18*

```
plot.SANmcmc, 14, 19
plot.SANvi, 16
plot.SANvi_G (estimate_G), 2
plot.summary_mcmc (summary), 17
plot.summary_vi (summary), 17
print.SANmcmc, 16, 19
print.SANvi, 17
print.SANvi_G (estimate_G), 2
print.summary_mcmc (summary), 17
print.summary_vi (summary), 17
```

salso::salso(), 17, 19
summary, 17, 18