
Package ‘rugarch’
June 21, 2025

Type Package

Title Univariate GARCH Models

Version 1.5-4

Date 2025-06-20

Maintainer Alexios Galanos <alexios@4dscape.com>

Depends R (>= 3.5.0), methods, parallel

LinkingTo Rcpp (>= 0.10.6), RcppArmadillo (>= 0.2.34)

Imports Rsolnp, ks, numDeriv, spd, xts, zoo, chron, SkewHyperbolic,
Rcpp, graphics, fracdiff, stats, grDevices, utils, nloptr

Suggests knitr, rmarkdown

Description ARFIMA, in-mean, external regressors and various GARCH flavors, with meth-
ods for fit, forecast, simulation, inference and plotting.

Collate rugarch-imports.R rugarch-cwrappers.R rugarch-solvers.R
rugarch-lossfn.R rugarch-distributions.R rugarch-kappa.R
rugarch-helperfn.R rugarch-numderiv.R rugarch-series.R
rugarch-startpars.R rugarch-tests.R rugarch-armafor.R
rugarch-graphs.R rugarch-classes.R rugarch-sgarch.R
rugarch-figarch.R rugarch-csgarch.R rugarch-fgarch.R
rugarch-egarch.R rugarch-gjrgarch.R rugarch-aparch.R
rugarch-igarch.R rugarch-mcsgarch.R rugarch-realgarch.R
rugarch-multi.R rugarch-plots.R rugarch-rolling.R
rugarch-uncertainty.R rugarch-bootstrap.R rugarch-methods.R
rugarch-benchmarks.R arfima-classes.R arfima-multi.R
arfima-main.R arfima-methods.R rugarch-cv.R zzz.R

LazyLoad yes

URL https://github.com/alexiosg/rugarch

License GPL-3

NeedsCompilation yes

Author Alexios Galanos [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0000-9308-0457>),

Tobias Kley [ctb]

1

https://github.com/alexiosg/rugarch
https://orcid.org/0009-0000-9308-0457

2 Contents

Repository CRAN

Date/Publication 2025-06-21 04:40:02 UTC

Contents
rugarch-package . 4
ARFIMA-class . 6
arfimacv . 7
ARFIMAdistribution-class . 9
arfimadistribution-methods . 10
ARFIMAfilter-class . 11
arfimafilter-methods . 12
ARFIMAfit-class . 13
arfimafit-methods . 14
ARFIMAforecast-class . 15
arfimaforecast-methods . 16
ARFIMAmultifilter-class . 18
ARFIMAmultifit-class . 18
ARFIMAmultiforecast-class . 19
ARFIMAmultispec-class . 20
ARFIMApath-class . 20
arfimapath-methods . 21
ARFIMAroll-class . 22
arfimaroll-methods . 23
ARFIMAsim-class . 25
arfimasim-methods . 25
ARFIMAspec-class . 26
arfimaspec-methods . 27
autoarfima . 29
BerkowitzTest . 30
DACTest . 32
DateTimeUtilities . 34
dji30ret . 36
dmbp . 36
ESTest . 37
GARCHboot-class . 38
GARCHdistribution-class . 39
GARCHfilter-class . 40
GARCHfit-class . 40
GARCHforecast-class . 41
GARCHpath-class . 42
GARCHroll-class . 42
GARCHsim-class . 43
GARCHspec-class . 44
GARCHtests-class . 44
ghyptransform . 45
GMMTest . 46

Contents 3

HLTest . 47
mcsTest . 49
multifilter-methods . 50
multifit-methods . 51
multiforecast-methods . 52
multispec-methods . 53
qnig . 54
rGARCH-class . 55
rgarchdist . 55
sp500ret . 57
spyreal . 58
ugarchbench . 58
uGARCHboot-class . 59
ugarchboot-methods . 60
uGARCHdistribution-class . 63
ugarchdistribution-methods . 64
uGARCHfilter-class . 66
ugarchfilter-methods . 68
uGARCHfit-class . 69
ugarchfit-methods . 73
uGARCHforecast-class . 75
ugarchforecast-methods . 77
uGARCHmultifilter-class . 79
uGARCHmultifit-class . 79
uGARCHmultiforecast-class . 80
uGARCHmultispec-class . 81
uGARCHpath-class . 82
ugarchpath-methods . 83
uGARCHroll-class . 84
ugarchroll-methods . 86
uGARCHsim-class . 88
ugarchsim-methods . 89
uGARCHspec-class . 91
ugarchspec-methods . 92
VaRDurTest . 96
VaRloss . 98
VaRplot . 99
VaRTest . 99

Index 102

4 rugarch-package

rugarch-package The rugarch package

Description

The rugarch package aims to provide a flexible and rich univariate GARCH modelling and testing
environment. Modelling is a simple process of defining a specification and fitting the data. Infer-
ence can be made from summary, various tests and plot methods, while the forecasting, filtering and
simulation methods complete the modelling environment. Finally, specialized methods are imple-
mented for simulating parameter distributions and evaluating parameter consistency, and a bootstrap
forecast method which takes into account both parameter and predictive distribution uncertainty.
The testing environment is based on a rolling backtest function which considers the more general
context in which GARCH models are based, namely the conditional time varying estimation of
density parameters and the implication for their use in analytical risk management measures.
The mean equation allows for AR(FI)MA, arch-in-mean and external regressors, while the vari-
ance equation implements a wide variety of univariate GARCH models as well as the possibility
of including external regressors. Finally, a set of feature rich distributions are used for modelling
innovations and documented in the vignette.
This package is part of what used to be the rgarch package, which was split into univariate (rugarch)
and multivariate (rmgarch) models for easier maintenance and use, both of which are now hosted
on CRAN (stable) and bitbucket (development).

Details

While the package has implemented some safeguards, both during pre-estimation as well as the
estimation phase, there is no guarantee of convergence in the fitting procedure. As a result, the fit
method allows the user to input starting parameters as well as keep any parameters from the spec as
fixed (including the case of all parameters fixed).
The functionality of the packages is contained in the main methods for defining a specification
ugarchspec, fitting ugarchfit, forecasting ugarchforecast, simulation from fit object ugarchsim,
path simulation from specification object ugarchpath, parameter distribution by simulation ugarchdistribution,
bootstrap forecast ugarchboot and rolling estimation and forecast ugarchroll. There are also
some functions which enable multiple fitting of assets in an easy to use wrapper with the option
of multicore functionality, namely multispec, multifit, multifilter and multiforecast. Ex-
planations on the available methods for the returned classes can be found in the documentation for
those classes.
A separate subset of methods and classes has been included to calculate pure ARFIMA models with
constant variance. This subset includes similar functionality as with the GARCH methods, with the
exception that no plots are yet implemented, and neither is a forecast based on the bootstrap. These
may be added in the future. While there are limited examples in the documentation on the ARFIMA
methods, the interested user can search the rugarch.tests folder of the source installation for some
tests using ARFIMA models as well as equivalence to the base R arima methods (particularly repli-
cation of simulation). Finally, no representation is made about the adequacy of ARFIMA models,
particularly the statistical properties of parameters when using distributions which go beyond the
Gaussian.
The conditional distributions used in the package are also exposed for the benefit of the user through
the rgarchdist functions which contain methods for density, distribution, quantile, sampling and

rugarch-package 5

fitting. Additionally, ghyptransform function provides the necessary parameter transformation and
scaling methods for moving from the location scale invariant ‘rho-zeta’ parametrization with mean
and standard deviation, to the standard ‘alpha-beta-delta-mu’ parametrization of the Generalized
Hyperbolic Distribution family.
The type of data handled by the package is now completely based on the xts package, and only data
which can be coerced to such will be accepted by the package. For the estimation and filter routines,
some of the main extractors methods will now also return xts objects.
Some benchmarks (published and comparison with commercial package), are available through the
ugarchbench function. The ‘inst’ folder of the source distribution also contains various tests which
can be sourced and run by the user, also exposing some finer details of the functionality of the pack-
age. The user should really consult the examples supplied in this folder which are quite numerous
and instructive with some comments.
Since version 1.0-14, all parallel estimation is carried out through a user-supplied cluster object,
created from the parallel package, meaning that the user is now in control of managing the cluster
lifecycle. This greatly simplifies the parallel estimation process and adds a layer of flexibility to the
type of resources supported.
Finally, the global extractor functions sigma and fitted will now work with almost all returned
classes and the return the conditional sigma and mean values, whether these are from an estimated,
filtered, forecast, or simulated object (and their multi- function equivalents).

How to cite this package

Whenever using this package, please cite as

@Manual{Ghalanos_2014,
author = {Alexios Ghalanos},
title = {{rugarch}: Univariate GARCH models.},
year = {2014},
note = {R package version 1.4-0.},}

License

The releases of this package is licensed under GPL version 3.

Author(s)

Alexios Ghalanos

References

Baillie, R.T. and Bollerslev, T. and Mikkelsen,H.O. 1996, Fractionally integrated generalized au-
toregressive conditional heteroskedasticity, Journal of Econometrics, 3–30 .
Berkowitz, J. 2001, Testing density forecasts, with applications to risk management, Journal of
Business and Economic Statistics, 19(4), 465–474.
Bollerslev, T. 1986, Generalized Autoregressive Conditional Heteroskedasticity 1986, Journal of
Econometrics, 31, 307–327.
Ding, Z., Granger, C.W.J. and Engle, R.F. 1993, A Long Memory Property of Stock Market Returns
and a New Model, Journal of Empirical Finance, 1, 83–106.

6 ARFIMA-class

Engle, R.F. and Ng, V. K. 1993, Measuring and Testing the Impact of News on Volatility, Journal
of Finance, 48, 1749–1778.
Engle, R. F., and Sokalska, M. E. 2012, Forecasting intraday volatility in the US equity market.
Multiplicative component GARCH. Journal of Financial Econometrics, 10(1), 54–83.
Fisher, T. J., and Gallagher, C. M. 2012, New weighted portmanteau statistics for time series good-
ness of fit testing, Journal of the American Statistical Association, 107(498), 777–787.
Glosten, L.R., Jagannathan, R. and Runkle, D.E. 1993, On the Relation between the Expected Value
and the Volatility of the Nominal Excess Return on Stocks, Journal of Finance, 48(5), 1779–1801.
Hansen, B.E. 1990, Langrange Multiplier Tests for Parameter Instability in Non-Linear Models,
mimeo.
Hentschel, Ludger. 1995, All in the family Nesting symmetric and asymmetric GARCH models,
Journal of Financial Economics, 39(1), 71–104.
Nelson, D.B. 1991, Conditional Heteroskedasticity in Asset Returns: A New Approach, Economet-
rica, 59, 347–370.
Pascual, L., Romo, J. and Ruiz, E. 2004, Bootstrap predictive inference for ARIMA processes,
Journal of Time Series Analysis.
Pascual, L., Romo, J. and Ruiz, E. 2006, Bootstrap prediction for returns and volatilities in GARCH
models, Computational Statistics and Data Analysis.
Vlaar, P.J.G. and Palm, F.C. 1993, The Message in Weekly Exchange Rates in the European Mon-
etary System: Mean Reversion Conditional Heteroskedasticity and Jumps, Journal of Business and
Economic Statistics, 11, 351–360.

ARFIMA-class class: High Level ARFIMA class

Description

The virtual parent class of the ARFIMA subset.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "ARFIMA" in the signature.

Author(s)

Alexios Ghalanos

arfimacv 7

arfimacv ARFIMAX time series cross validation

Description

Implements a cross validation method for ARFIMAX models

Usage

arfimacv(data, indexin, indexout, ar.max = 2, ma.max = 2,
criterion = c("rmse","mae","berkowitzp"),berkowitz.significance = 0.05,
arfima = FALSE, include.mean = NULL, distribution.model = "norm",
cluster = NULL, external.regressors = NULL, solver = "solnp",
solver.control=list(), fit.control=list(), return.best=TRUE)

Arguments

data A univariate xts vector.

indexin A list of the training set indices

indexout A list of the testing set indices, the same list length as that of indexin. This
should be a numeric index of points immediately after those in the equivalent
indexin slot and contiguous (for time series cross validation).

ar.max Maximum AR order to test for.

ma.max Maximum MA order to test for.

criterion The cv criterion on which the forecasts will be tested against the realized values.
Currently “rmse”, “mae” and experimentally “berkowitzp” are implemented.
The latter is the Berkowitz test p-value (maximized) and should not be used
if your indexout set is very small.

berkowitz.significance

The significance level at which the Berkowitz test is evaluated at (this has no
value at the moment since we are only looking at the p-values, but may be used
in futures to instead aggregate across pass-fail).

arfima Can be TRUE, FALSE or NULL in which case it is tested.

include.mean Can be TRUE, FALSE or NULL in which case it is tested.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation.

external.regressors

An xts matrix object containing the pre-lagged external regressors to include in
the mean equation with the same indices as those of the data supplied.

distribution.model

The distribution density to use for the innovations (defaults to Normal).

solver One of either “nlminb”, “solnp”, “gosolnp” or “nloptr”.

solver.control Control arguments list passed to optimizer.

8 arfimacv

fit.control Control arguments passed to the fitting routine.

return.best On completion of the cross-validation, should the best model be re-estimated on
the complete dataset and returned (defaults to TRUE).

Details

The function evaluates all possible combinations of the ARFIMAX model for all the training and
testing sets supplied. For the ARMA orders, the orders are evaluated fully (e.g. for ar.max=2,
all possible combinations are evaluated including AR(0,0), AR(0,1), AR(0,2), AR(1,0), AR(2,0)
AR(1,2), AR(2,1), and AR(2,2)). For each training set in indexin, all model combinations are
evaluated and the 1-ahead rolling forecast for the indexout testing set is produced and compared
to the realized values under the 3 criteria listed. Once all training/testing is done on all model
combinations, the criteria are averaged across all the sets for each combination and the results
returned.

Value

A list with the following items:

bestmodel The best model based on the criterion chosen is re-estimated on the complete
data set and returned.

cv_matrix The model combinations and their average criteria statistics across the train-
ing/testing sets.

Note

Use a cluster...this is an expensive computation, particularly for large ar.max and ma.max orders.
The indexin and indexout lists are left to the user to decide how to implement.

Author(s)

Alexios Ghalanos

Examples

Not run:
require(xts)
require(parallel)
data(sp500ret)
spx = as.xts(sp500ret)
nn = nrow(spx)
nx = nn-round(0.9*nn,0)
if(nx
h = (nx/50)-1
indexin = lapply(1:h, function(j){ tail(seq(1,(nn-nx)+j*50, by=1),250) })
indexout = lapply(indexin, function(x){ (tail(x,1)+1):(tail(x,1)+50) })
cl = makePSOCKcluster(5)
mod = arfimacv(spx, indexin, indexout, ar.max = 2, ma.max = 2,
criterion = c("rmse","mae","berkowitzp")[1],
berkowitz.significance = 0.05, arfima = FALSE, include.mean = NULL,

ARFIMAdistribution-class 9

distribution.model = "norm", cluster = cl, external.regressors = NULL,
solver = "solnp")
stopCluster(cl)

End(Not run)

ARFIMAdistribution-class

class: ARFIMA Parameter Distribution Class

Description

Class for the ARFIMA Parameter Distribution, objects of which are created by calling function
arfimadistribution.

Slots

dist: Object of class "vector" Details of fitted parameters.

truecoef: Object of class "matrix" The actual coefficients.

model: Object of class "list" The model specification.

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

as.data.frame signature(x = "ARFIMAdistribution"): extracts various values from object (see
note).

show signature(object = "ARFIMAdistribution"): parameter distribution summary.

Note

The as.data.frame function takes optionally 2 additional arguments, namely window which indi-
cates the particular distribution window number for which data is required (is usually just 1 unless
the recursive option was used), and which indicating the type of data required. Valid values for
the latter are “rmse” for the root mean squared error between simulation fit and actual parameters,
“stats” for various statistics computed for the simulations such as log likelihood, persistence, un-
conditional variance and mean, “coef” for the estimated coefficients (i.e. the parameter distribution
and is the default choice), and “coefse” for the estimated robust standard errors of the coefficients
(i.e. the parameter standard error distribution).

Author(s)

Alexios Ghalanos

10 arfimadistribution-methods

arfimadistribution-methods

function: ARFIMA Parameter Distribution via Simulation

Description

Method for simulating and estimating the parameter distribution from an ARFIMA models as well
as the simulation based consistency of the estimators given the data size.

Usage

arfimadistribution(fitORspec, n.sim = 2000, n.start = 1, m.sim = 100,
recursive = FALSE, recursive.length = 6000, recursive.window = 1000,
prereturns = NA, preresiduals = NA, rseed = NA,
custom.dist = list(name = NA, distfit = NA, type = "z"), mexsimdata = NULL,
fit.control = list(), solver = "solnp", solver.control = list(),
cluster = NULL, ...)

Arguments

fitORspec Either an ARFIMA fit object of class ARFIMAfit or alternatively an ARFIMA
specification object of class ARFIMAspec with valid parameters supplied via the
fixed.pars argument in the specification.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

recursive Whether to perform a recursive simulation on an expanding window.
recursive.length

If recursive is TRUE, this indicates the final length of the simulation horizon,
with starting length n.sim.

recursive.window

If recursive is TRUE, this indicates the increment to the expanding window.
Together with recursive.length, it determines the total number of separate
and increasing length windows which will be simulated and fitted.

prereturns Allows the starting return data to be provided by the user.

preresiduals Allows the starting residuals to be provided by the user.

rseed Optional seeding value(s) for the random number generator.

custom.dist Optional density with fitted object from which to simulate.

mexsimdata Matrix of simulated external regressor-in-mean data. If the fit object contains
external regressors in the mean equation, this must be provided.

solver One of either “nlminb” or “solnp”.

solver.control Control arguments list passed to optimizer.

fit.control Control arguments passed to the fitting routine (as in the arfimafit method).

ARFIMAfilter-class 11

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation.

... .

Details

This method facilitates the simulation and evaluation of the uncertainty of ARFIMA model parame-
ters. The recursive option also allows the evaluation of the simulation based consistency (in terms of
sqrt(N)) of the parameters as the length (n.sim) of the data increases, in the sense of the root mean
square error (rmse) of the difference between the simulated and true (hypothesized) parameters.
This is an expensive function, particularly if using the recursive option, both on memory and
CPU resources, performing many re-fits of the simulated data in order to generate the parameter
distribution.

Value

A ARFIMAdistribution object containing details of the ARFIMA simulated parameters distribu-
tion.

Author(s)

Alexios Ghalanos

ARFIMAfilter-class class: ARFIMA Filter Class

Description

Class for the ARFIMA filter.

Slots

filter: Object of class "vector"

model: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

coef signature(object = "ARFIMAfilter"): Extracts the coefficients.

fitted signature(object = "ARFIMAfilter"): Extracts the filtered values.

infocriteria signature(object = "ARFIMAfilter"): Calculates and returns various information
criteria.

likelihood signature(object = "ARFIMAfilter"): Extracts the likelihood.

12 arfimafilter-methods

residuals signature(object = "ARFIMAfilter"): Extracts the residuals. Optional logical argu-
ment standardize (default is FALSE) allows to extract the standardized residuals.

show signature(object = "ARFIMAfilter"): Filter summary.

uncmean signature(object = "ARFIMAfilter"): Calculates and returns the unconditional mean.
Takes additional arguments ‘method’ with option for “analytical” or “simulation”, ‘n.sim’ for
the number of simulations (if that method was chosen, and defaults to 100000) and ‘rseed’
for the simulation random generator initialization seed. Note that the simulation method is
only available for a fitted object or specification with fixed parameters, and not for the filtered
object.

Author(s)

Alexios Ghalanos

Examples

showClass("ARFIMAfilter")

arfimafilter-methods function: ARFIMA Filtering

Description

Method for filtering an ARFIMA model.

Usage

arfimafilter(spec, data, out.sample = 0, n.old=NULL, ...)

Arguments

data A univariate data object. Can be a numeric vector, matrix, data.frame, zoo, xts,
timeSeries, ts or irts object.

spec An ARFIMA spec object of class ARFIMAspec with the fixed.pars argument hav-
ing the model parameters on which the filtering is to take place.

out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting (as in arfimafit function).

n.old For comparison with ARFIMA models using the out.sample argument, this is
the length of the original dataset (see details).

... .

ARFIMAfit-class 13

Details

The n.old argument is optional and indicates the length of the original data (in cases when this
represents a dataseries augmented by newer data). The reason for using this is so that the old and
new datasets agree since the original recursion uses the sum of the residuals to start the recursion and
therefore is influenced by new data. For a small augmentation the values converge after x periods,
but it is sometimes preferable to have this option so that there is no forward looking information
contaminating the study.

Value

A ARFIMAfilter object containing details of the ARFIMA filter.

Author(s)

Alexios Ghalanos

ARFIMAfit-class class: ARFIMA Fit Class

Description

Class for the ARFIMA fit.

Slots

fit: Object of class "vector"

model: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

coef signature(object = "ARFIMAfit"): Extracts the coefficients.

fitted signature(object = "ARFIMAfit"): Extracts the fitted values.

infocriteria signature(object = "ARFIMAfit"): Calculates and returns various information cri-
teria.

likelihood signature(object = "ARFIMAfit"): Extracts the likelihood.

residuals signature(object = "ARFIMAfit"): Extracts the residuals. Optional logical argument
standardize (default is FALSE) allows to extract the standardized residuals.

show signature(object = "ARFIMAfit"): Fit summary.

uncmean signature(object = "ARFIMAfit"): Calculates and returns the unconditional mean.
Takes additional arguments ‘method’ with option for “analytical” or “simulation”, ‘n.sim’ for
the number of simulations (if that method was chosen, and defaults to 100000) and ‘rseed’ for
the simulation random generator initialization seed.

14 arfimafit-methods

vcov signature(object = "ARFIMAfit"): Extracts the covariance matrix of the parameters. Ad-
ditional logical option of ‘robust’ indicates whether to extract the robust based covariance
matrix.

convergence signature(object = "ARFIMAfit"): Returns the solver convergence code for the
fitted object (zero denotes convergence).

reduce signature(object = "ARFIMAfit"): Zeros parameters (fixing to zero in rugarch is equiv-
alent to eliminating them in estimation) with p-values (optional argument “pvalue”) greater
than 0.1 (default), and re-estimates the model. Additional arguments are passed to arfimafit.An
additional option “use.robust” (default TRUE) asks whether to use the robust calculated p-
values.

getspec signature(object = "ARFIMAfit"): Extracts and returns the ARFIMA specification from
a fitted object.

Author(s)

Alexios Ghalanos

Examples

showClass("ARFIMAfit")

arfimafit-methods function: ARFIMA Fit

Description

Method for fitting an ARFIMA models.

Usage

arfimafit(spec, data, out.sample = 0, solver = "solnp", solver.control = list(),
fit.control = list(fixed.se = 0, scale = 0), numderiv.control = list(grad.eps=1e-4,
grad.d=0.0001, grad.zero.tol=sqrt(.Machine$double.eps/7e-7), hess.eps=1e-4, hess.d=0.1,
hess.zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2), ...)

Arguments

data A univariate data object. Can be a numeric vector, matrix, data.frame, zoo, xts,
timeSeries, ts or irts object.

spec An ARFIMA spec object of class ARFIMAspec.

out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting (see details).

solver One of either “nlminb”, “solnp”, “gosolnp” or “nloptr”.

solver.control Control arguments list passed to optimizer.

ARFIMAforecast-class 15

fit.control Control arguments passed to the fitting routine. The fixed.se argument con-
trols whether standard errors should be calculated for those parameters which
were fixed (through the fixed.pars argument of the arfimaspec function).
The scale parameter controls whether the data should be scaled before
being submitted to the optimizer.

numderiv.control

Control arguments passed to the numerical routines for the calculation of the
standard errors. See the documentation in the numDeriv package for further
details. The arguments which start with ‘hess’ are passed to the hessian routine
while those with ‘grad’ to the jacobian routine.

... .

Details

The ARFIMA optimization routine first calculates a set of feasible starting points which are used to
initiate the ARFIMA Maximum Likelihood recursion. The main part of the likelihood calculation
is performed in C-code for speed.
The out.sample option is provided in order to carry out forecast performance testing against actual
data. A minimum of 5 data points are required for these tests. If the out.sample option is positive,
then the routine will fit only N - out.sample (where N is the total data length) data points, leav-
ing out.sample points for forecasting and testing using the forecast performance measures. In the
arfimaforecast routine the n.ahead may also be greater than the out.sample number resulting in a
combination of out of sample data points matched against actual data and some without, which the
forecast performance tests will ignore.
The “gosolnp” solver allows for the initialization of multiple restarts of the solnp solver with ran-
domly generated parameters (see documentation in the Rsolnp-package for details of the strat-
egy used). The solver.control list then accepts the following additional (to the solnp) arguments:
“n.restarts” is the number of solver restarts required (defaults to 1), “parallel” (logical), “pkg” (ei-
ther snowfall or multicore) and “cores” (the number of cores or workers to use) for use of parallel
functionality, “rseed” is the seed to initialize the random number generator, and “n.sim” is the num-
ber of simulated parameter vectors to generate per n.restarts.

Value

A ARFIMAfit object containing details of the ARFIMA fit.

Author(s)

Alexios Ghalanos

ARFIMAforecast-class class: ARFIMA Forecast Class

Description

Class for the ARFIMA forecast.

16 arfimaforecast-methods

Slots

forecast: Object of class "vector"

model: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

fitted signature(x = "ARFIMAforecast"): The n.ahead by n.roll+1 matrix of conditional mean
forecasts. The column names are the T[0] dates.

fpm signature(object = "ARFIMAforecast"): Forecast performance measures.

show signature(object = "ARFIMAforecast"): Forecast summary returning the 0-roll frame
only.

Note

Since versions 1.01-3, the fitted method has been introduced which extracts the n.ahead by
(n.roll+1) matrix of conditional mean forecasts, with column names the T[0] time index. This
is unlike the old data.frame which returned the T+1 etc dates. This method is the default extractor
in rugarch package for the conditional mean (whether from an estimated, filtered, forecast or sim-
ulated object) and the other method, namely as.data.frame is now deprecated with the exception
of a few classes where it is still used (ARFIMAdistribution and ARFIMAroll).
The fpm method returns the Mean Squared Error (MSE), Mean Absolute Error (MAE), Directional
Accuracy (DAC) and number of points used for the calculation (N), of forecast versus realized re-
turns, if the extra summary option is set to TRUE (default). This is a 4 x (n.roll+1) matrix, with row
headings the T[0] time index, and requires at least 5 points to calculate the summary measures else
will return NA. When n.ahead>1, this method calculates the measures on the n.ahead>1 uncondi-
tional forecast, but if n.ahead=1 with n.roll>4, it will calculate the measures on the rolling forecast
instead. Finally, when summary is set to FALSE, the method will return a list of length n.roll+1 of
xts objects with the loss functions (Squared Error and Absolute Error and Directional Hits).

Author(s)

Alexios Ghalanos

arfimaforecast-methods

function: ARFIMA Forecasting

Description

Method for forecasting from an ARFIMA model.

arfimaforecast-methods 17

Usage

arfimaforecast(fitORspec, data = NULL, n.ahead = 10, n.roll = 0, out.sample = 0,
external.forecasts = list(mregfor = NULL), ...)

Arguments

fitORspec Either an ARFIMA fit object of class ARFIMAfit or alternatively an ARFIMA
specification object of class ARFIMAspec with valid parameters supplied via the
fixed.pars argument in the specification.

data Required if a specification rather than a fit object is supplied.

n.ahead The forecast horizon.

n.roll The no. of rolling forecasts to create beyond the first one (see details).

out.sample Optional. If a specification object is supplied, indicates how many data points
to keep for out of sample testing.

external.forecasts

A list with a matrix of forecasts for the external regressors in the mean.

... .

Details

The forecast function has two dispatch methods allowing the user to call it with either a fitted object
(in which case the data argument is ignored), or a specification object (in which case the data is
required) with the parameters entered via the set.fixed<- methods on an ARFIMAspec object.
One step ahead forecasts are based on the value of the previous data, while n-step ahead (n>1) are
based on the unconditional mean of the model.
The ability to roll the forecast 1 step at a time is implemented with the n.roll argument which
controls how many times to roll the n.ahead forecast. The default argument of n.roll = 0 denotes
no rolling beyond the first forecast and returns the standard n.ahead forecast. Critically, since n.roll
depends on data being available from which to base the rolling forecast, the arfimafit function
needs to be called with the argument out.sample being at least as large as the n.roll argument, or
in the case of a specification being used instead of a fit object, the out.sample argument directly in
the forecast function.

Value

A ARFIMAforecast object containing details of the ARFIMA forecast. See the class for details on
the returned object and methods for accessing it and performing some tests.

Author(s)

Alexios Ghalanos

18 ARFIMAmultifit-class

ARFIMAmultifilter-class

class: ARFIMA Multiple Filter Class

Description

Class for the ARFIMA Multiple filter.

Slots

filter: Object of class "vector"

desc: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

fitted signature(object = "ARFIMAmultifilter"): Extracts the fitted values.

residuals signature(object = "ARFIMAmultifilter"): Extracts the residuals. Optional logical
argument standardize (default is FALSE) allows to extract the standardized residuals.

coef signature(object = "ARFIMAmultifilter"): Extracts the coefficients.

likelihood signature(object = "ARFIMAmultifilter"): Extracts the likelihood.

show signature(object = "ARFIMAmultifilter"): Filter summary.

Author(s)

Alexios Ghalanos

ARFIMAmultifit-class class: ARFIMA Multiple Fit Class

Description

Class for the ARFIMA Multiple fit.

Slots

fit: Object of class "vector"

desc: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

ARFIMAmultiforecast-class 19

Methods

coef signature(object = "ARFIMAmultifit"): Extracts the coefficients.

likelihood signature(object = "ARFIMAmultifit"): Extracts the likelihood.

fitted signature(object = "ARFIMAmultifit"): Extracts the fitted values.

residuals signature(object = "ARFIMAmultifit"): Extracts the residuals. Optional logical ar-
gument standardize (default is FALSE) allows to extract the standardized residuals.

show signature(object = "ARFIMAmultifit"): Fit summary.

Author(s)

Alexios Ghalanos

ARFIMAmultiforecast-class

class: ARFIMA Multiple Forecast Class

Description

Class for the ARFIMA Multiple forecast.

Slots

forecast: Object of class "vector"

desc: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

fitted signature(x = "ARFIMAmultiforecast"): Extracts the conditional mean forecast from the
object, and returns an array of the n.ahead by (n.roll+1) by n.assets.

show signature(object = "ARFIMAmultiforecast"): forecast summary.

Author(s)

Alexios Ghalanos

20 ARFIMApath-class

ARFIMAmultispec-class class: ARFIMA Multiple Specification Class

Description

Class for the ARFIMA Multiple specification.

Slots

spec: Object of class "vector"

type: Object of class "character"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

show signature(object = "ARFIMAmultispec"): specification summary.

Author(s)

Alexios Ghalanos

ARFIMApath-class class: ARFIMA Path Simulation Class

Description

Class for the ARFIMA Path simulation.

Slots

path: Object of class "vector"

model: Object of class "vector"

seed: Object of class "integer"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

fitted signature(x = "ARFIMApath"): Extracts the simulated path values as a matrix of dimension
n.sim by m.sim.

show signature(object = "ARFIMApath"): path simulation summary.

arfimapath-methods 21

Author(s)

Alexios Ghalanos

arfimapath-methods function: ARFIMA Path Simulation

Description

Method for simulating the path of an ARFIMA model. This is a convenience function which does
not require a fitted object (see note below).

Usage

arfimapath(spec, n.sim = 1000, n.start = 0, m.sim = 1, prereturns = NA,
preresiduals = NA, rseed = NA,
custom.dist=list(name = NA, distfit = NA, type = "z"), mexsimdata=NULL, ...)

Arguments

spec An ARFIMA object of class ARFIMAspec with the required parameters of the
model supplied via the fixed.pars list argument.

n.sim The simulation horizon.
n.start The burn-in sample.
m.sim The number of simulations.
prereturns Allows the starting return data to be provided by the user.
preresiduals Allows the starting residuals to be provided by the user.
rseed Optional seeding value(s) for the random number generator.
custom.dist Optional density with fitted object from which to simulate. The “type” argument

denotes whether the standardized innovations are passed (“z”) else the innova-
tions (anything other than “z”).

mexsimdata Matrix of simulated external regressor-in-mean data. If the fit object contains
external regressors in the mean equation, this must be provided.

... .

Details

This is a convenience method to allow path simulation of ARFIMA models without the need to
supply a fit object as in the arfimasim method. Instead, an arfima spec object is required with the
model parameters supplied via the setfixed<- argument to the spec.

Value

A ARFIMApath object containing details of the ARFIMA path simulation.

Author(s)

Alexios Ghalanos

22 ARFIMAroll-class

ARFIMAroll-class class: ARFIMA Rolling Forecast Class

Description

Class for the ARFIMA rolling forecast.

Slots

forecast: Object of class "vector"

model: Object of class "vector"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

as.data.frame signature(x = "ARFIMAroll"): extracts various values from object (see note).

resume signature(object = "ARFIMAroll"): Resumes a rolling backtest which has non-converged
windows using alternative solver and control parameters.

fpm signature(object = "ARFIMAroll"): Forecast performance measures.

coef signature(object = "ARFIMAroll"): Extracts the list of coefficients for each estimated
window in the rolling backtest.

report signature(object = "ARFIMAroll"): roll backtest reports (see note).

show signature(object = "ARFIMAroll"): Summary.

Note

The as.data.frame extractor method allows the extraction of either the conditional forecast den-
sity or the VaR. It takes additional argument which with valid values either “density” or “VaR”.
The coef method will return a list of the coefficients and their robust standard errors (assuming
the keep.coef argument was set to TRUE in the ugarchroll function), and the ending date of each
estimation window.
The report method takes the following additional arguments:
1.type for the report type. Valid values are “VaR” for the VaR report based on the unconditional and
conditional coverage tests for exceedances (discussed below) and “fpm” for forecast performance
measures.
2.VaR.alpha (for the VaR backtest report) is the tail probability and defaults to 0.01.
3.conf.level the confidence level upon which the conditional coverage hypothesis test will be based
on (defaults to 0.95).
Kupiec’s unconditional coverage test looks at whether the amount of expected versus actual ex-
ceedances given the tail probability of VaR actually occur as predicted, while the conditional cov-
erage test of Christoffersen is a joint test of the unconditional coverage and the independence of
the exceedances. Both the joint and the separate unconditional test are reported since it is always

arfimaroll-methods 23

possible that the joint test passes while failing either the independence or unconditional coverage
test. The fpm method (separately from report) takes additional logical argument summary, which
when TRUE will return the mean squared error (MSE), mean absolute error (MAE) and directional
accuracy of the forecast versus realized returns. When FALSE, it will return a data.frame of the
time series of squared (SE) errors, absolute errors (AE), directional hits (HITS), and a VaR Loss
function described in Gonzalez-Rivera, Lee, and Mishra (2004) for each coverage level where it
was calculated. This can then be compared, with the VaR loss of competing models using such tests
as the model confidence set (MCS) of Hansen, Lunde and Nason (2011).

Author(s)

Alexios Ghalanos

arfimaroll-methods function: ARFIMA Rolling Density Forecast and Backtesting

Description

Method for creating rolling density forecast from ARFIMA models with option for refitting every
n periods with parallel functionality.

Usage

arfimaroll(spec, data, n.ahead = 1, forecast.length = 500,
n.start = NULL, refit.every = 25, refit.window = c("recursive", "moving"),
window.size = NULL, solver = "hybrid", fit.control = list(),
solver.control = list(), calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.05),
cluster = NULL, keep.coef = TRUE, ...)

Arguments

spec A univariate ARFIMA specification object.

data A univariate dataset, ideally with time based index.

n.ahead The number of periods to forecast (only n.ahead=1 supported).
forecast.length

The length of the total forecast for which out of sample data from the dataset
will be used for testing.

n.start Instead of forecast.length, this determines the starting point in the dataset from
which to initialize the rolling forecast.

refit.every Determines every how many periods the model is re-estimated.

refit.window Whether the refit is done on an expanding window including all the previous
data or a moving window where all previous data is used for the first estimation
and then moved by a length equal to refit.every (unless the window.size option
is used instead).

window.size If not NULL, determines the size of the moving window in the rolling estima-
tion, which also determines the first point used.

24 arfimaroll-methods

solver The solver to use.

fit.control Control parameters parameters passed to the fitting function.

solver.control Control parameters passed to the solver.

calculate.VaR Whether to calculate forecast Value at Risk during the estimation.

VaR.alpha The Value at Risk tail level to calculate.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

keep.coef Whether to return the list of coefficients and their robust standard errors.

... .

Details

This is a wrapper function for creating rolling forecasts of the conditional ARFIMA density, and
optionally calculating the Value at Risk at specified levels. The argument refit.every determines
every how many periods the model is re-estimated. Given a dataset of length N, it is possible
to choose either how many periods from the end to use for out of sample forecasting (using the
forecast.length option), or the starting point for initializing the rolling forecast (and using all the
data after that for the out of sample forecast). Only rolling 1-ahead forecasts are supported spanning
the dataset, which should be useful for backtesting models. Anything more complicated should be
wrapped by the user by making use of the underlying functions in the package. The function
has 2 main methods for viewing the data, a standard plot method and a report methods (see class
ARFIMAroll for details on how to use these methods). In case of no-convergence in some of all
the windows, a new method called resume now allows to pass the returned (non-converged) object
with new solver and control parameters to be re-estimated (only the non-converged windows are
re-estimated). Parallel functionality is now based entirely on the parallel package, and it is up to the
user to pass a cluster object, and then stop it once the routine is completed.

Value

An object of class ARFIMAroll.

Author(s)

Alexios Ghalanos

Examples

Not run:
data(sp500ret)
spec = arfimaspec(distribution.model = "std")
mod = arfimaroll(spec, data = sp500ret, n.ahead = 1,
n.start = 1000, refit.every = 100, refit.window = "moving",
solver = "hybrid", fit.control = list(),
calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05),
keep.coef = TRUE)
report(sp500.bktest, type="VaR", VaR.alpha = 0.01, conf.level = 0.95)
report(sp500.bktest, type="fpm")

ARFIMAsim-class 25

End(Not run)

ARFIMAsim-class class: ARFIMA Simulation Class

Description

Class for the ARFIMA simulation.

Slots

simulation: Object of class "vector"

model: Object of class "vector"

seed: Object of class "integer"

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

fitted signature(x = "ARFIMAsim"): extracts the simulated values as a matrix of dimension n.sim
by m.sim.

show signature(object = "ARFIMAsim"): simulation summary.

Author(s)

Alexios Ghalanos

arfimasim-methods function: ARFIMA Simulation

Description

Method for simulation from ARFIMA models.

Usage

arfimasim(fit, n.sim = 1000, n.start = 0, m.sim = 1, startMethod =
c("unconditional", "sample"), prereturns = NA, preresiduals = NA,
rseed = NA, custom.dist = list(name = NA, distfit = NA, type = "z"),
mexsimdata = NULL, ...)

26 ARFIMAspec-class

Arguments

fit An ARFIMA fit object of class ARFIMAfit.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

startMethod Starting values for the simulation.

prereturns Allows the starting return data to be provided by the user.

preresiduals Allows the starting residuals to be provided by the user.

rseed Optional seeding value(s) for the random number generator.

custom.dist Optional density with fitted object from which to simulate. The “type” argument
denotes whether the standardized innovations are passed (“z”) else the innova-
tions (anything other than “z”). See notes below for details.

mexsimdata Matrix of simulated external regressor-in-mean data. If the fit object contains
external regressors in the mean equation, this can be provided else will be ig-
nored.

... .

Details

The custom.dist option allows for defining a custom density which exists in the users workspace
with methods for “r” (sampling, e.g. rnorm) and “d” (density e.g. dnorm). It must take a single
fit object as its second argument. Alternatively, custom.dist can take any name in the name slot
(e.g.“sample”) and a matrix in the fit slot with dimensions equal to m.sim (columns) and n.sim
(rows).

Value

A ARFIMAsim object containing details of the ARFIMA simulation.

Author(s)

Alexios Ghalanos

ARFIMAspec-class class: ARFIMA Specification Class

Description

Class for the ARFIMA specification.

Slots

model: Object of class "vector"

arfimaspec-methods 27

Extends

Class "ARFIMA", directly. Class "rGARCH", by class "ARFIMA", distance 2.

Methods

show signature(object = "ARFIMAspec"): Specification summary.

setfixed<- signature(object = "ARFIMAspec", value = "vector"): Sets the fixed parameters
(which must be supplied as a named list).

setstart<- signature(object = "ARFIMAspec", value = "vector"): Sets the starting parame-
ters (which must be supplied as a named list).

setbounds<- signature(object = "ARFIMAspec", value = "vector"): Sets the parameters lower
and upper bounds, which must be supplied as a named list with each parameter being a nu-
meric vector of length 2 i.e. "ar1"=c(-1,1)). If the vector is of length 1, then this is assumed to
be the lower bound, and the upper bound will be set to its default value prior to estimation.

uncmean signature(object = "ARFIMAspec"): Returns the unconditional mean of a specifica-
tion which has been assigned fixed parameters.

Author(s)

Alexios Ghalanos

arfimaspec-methods function: ARFIMA Specification

Description

Method for creating an ARFIMA specification object prior to fitting.

Usage

arfimaspec(mean.model = list(armaOrder = c(1, 1), include.mean = TRUE,
arfima = FALSE, external.regressors = NULL), distribution.model = "norm",
start.pars = list(), fixed.pars = list(), ...)

Arguments

mean.model List containing the mean model specification:
armaOrder The autoregressive (ar) and moving average (ma) orders (if any).
include.mean Whether to include the mean.
arfima Whether to include arfima (0<d<0.5).
external.regressors A matrix object containing the external regressors to
include in the mean equation with as many rows as will be included in the data
(which is passed in the fit function).

28 arfimaspec-methods

distribution.model

The distribution density to use for the innovations. Valid choices are “norm” for
the normal distibution, “snorm” for the skew-normal distribution, “std” for the
student-t, “sstd” for the skew-student-t, “ged” for the generalized error distri-
bution, “sged” for the skew-generalized error distribution, “nig” for the normal
inverse gaussian distribution, “ghyp” for the Generalized Hyperbolic, and “jsu”
for Johnson’s SU distribution. Note that some of the distributions are taken
from the fBasics package and implenented locally here for convenience. The
“jsu” distribution is the reparametrized version from the “gamlss” package.

start.pars List of staring parameters for the optimization routine. These are not usually
required unless the optimization has problems converging.

fixed.pars List of parameters which are to be kept fixed during the optimization. It is
possible that you designate all parameters as fixed so as to quickly recover just
the results of some previous work or published work. The optional argument
“fixed.se” in the arfimafit function indicates whether to calculate standard
errors for those parameters fixed during the post optimization stage.

... .

Details

The specification allows for flexibility in ARFIMA modelling.
In order to understand which parameters can be entered in the start.pars and fixed.pars optional
arguments, the list below exposes the names used for the parameters:(note that when a parameter is
followed by a number, this represents the order of the model. Just increment the number for higher
orders):
Mean Model:

constant mu
AR term ar1
MA term ma1
exogenous regressors mxreg1
arfima arfima

Distribution Model:

dlambda dlambda (for GHYP distribution)
skew skew
shape shape

Value

A ARFIMAspec object containing details of the ARFIMA specification.

autoarfima 29

Author(s)

Alexios Ghalanos

autoarfima Automatic Model Selection for ARFIMA models

Description

Select best fitting ARFIMA models based on information criteria.

Usage

autoarfima(data, ar.max = 2, ma.max = 2, criterion = c("AIC","BIC","SIC","HQIC"),
method = c("partial", "full"), arfima = FALSE, include.mean = NULL,
distribution.model = "norm", cluster = NULL, external.regressors = NULL,
solver = "solnp", solver.control=list(), fit.control=list(), return.all = FALSE)

Arguments

data A univariate data object. Can be a numeric vector, matrix, data.frame, zoo, xts,
timeSeries, ts or irts object.

ar.max Maximum AR order to test for.

ma.max Maximum MA order to test for.

criterion Information Criterion to use for selecting the best model.

method The partial method tests combinations of consecutive orders of AR and MA
i.e. 1:2, 1:3 etc, while the full method tests all possible combinations within the
consecutive orders thus enumerating the complete combination space of the MA
and AR orders. .

arfima Can be TRUE, FALSE or NULL in which case it is tested.

include.mean Can be TRUE, FALSE or NULL in which case it is tested.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation.

external.regressors

A matrix object containing the external regressors to include in the mean equa-
tion with as many rows as will be included in the data (which is passed in the fit
function).

distribution.model

The distribution density to use for the innovations (defaults to Normal).

solver One of either “nlminb”, “solnp”, “gosolnp” or “nloptr”.

solver.control Control arguments list passed to optimizer.

fit.control Control arguments passed to the fitting routine.

return.all Whether to return all the fitted models or only the best one.

30 BerkowitzTest

Value

A list with the following items:

fit Either the best fitted model or all the fitted models if the option ‘return.all’ was
selected.

rank.matrix Either a sorted matrix of the models and their information criterion, else an
unsorted matrix of the models and their information criterion if the option ‘re-
turn.all’ was selected.

Author(s)

Alexios Ghalanos

Examples

Not run:
data(sp500ret)
fit = autoarfima(data = sp500ret[1:1000,], ar.max = 2, ma.max = 2,
criterion = "AIC", method = "full")

End(Not run)

BerkowitzTest Berkowitz Density Forecast Likelihood Ratio Test

Description

Implements the Berkowitz Density Forecast Likelihood Ratio Test.

Usage

BerkowitzTest(data, lags = 1, significance = 0.05, tail.test = FALSE, alpha = 0.05)

Arguments

data A univariate vector of standard normal transformed values (see details and ex-
ample).

lags The number of autoregressive lags (positive and greater than 0).

significance The level of significance at which the Null Hypothesis is evaluated.

tail.test Whether to use the tail test of Berkowitz using a censored likelihood.

alpha The quantile level for the tail.test cuttoff.

Details

See not below.

BerkowitzTest 31

Value

A list with the following items:

uLL The unconditional Log-Likelihood of the maximized values.

rLL The restricted Log-Likelihood with zero mean, unit variance and zero coeffi-
cients in the autoregressive lags.

LR The Likelihood Ratio Test Statistic.

LRp The LR test statistic p-value (distributed chisq with 2+lags d.o.f).

H0 The Null Hypothesis.

Test The test of the Null Hypothesis at the requested level of significance.

mu The estimated mean of the model.

sigma The estimated sd of the model.

rho The estimated autoregressive coefficients of the model (not calculated when
tail.test is used).

JB The Jarque-Bera Test of Normality Statistic (not calculated when tail.test is
used).

JBp The Jarque-Beta Test Statistic p-value (not calculated when tail.test is used).

Note

The data must first be transformed before being submitted to the function as described here. Given
a forecast density (d*) at time t, transform the actual(observed) realizations of the data by applying
the distribution function of the forecast density (p*). This will result in a set of uniform values (see
Rosenblatt (1952)). Transform those value into standard normal variates by applying the standard
normal quantile function (qnorm). The example below hopefully clarifies this. The function also
returns the Jarque Bera Normality Test statistic as an additional check of the normality assumption
which the test does not explicitly account for (see Dowd reference). When tail.test is used, the test
of the tail at the “alpha” quantile level is performed using a censored normal likelihood.

Author(s)

Alexios Ghalanos

References

Berkowitz, J. 2001, Testing density forecasts, with applications to risk management, Journal of
Business and Economic Statistics, 19(4), 465–474.
Dowd, K. 2004, A modified Berkowitz back-test, RISK Magazine, 17(4), 86–87.
Jarque, C.M. and Bera, A.K. 1987, A test for normality of observations and regression residuals,
International Statistical Review, 55(2), 163–172.
Rosenblatt, M. 1952, Remarks on a multivariate transformation, The Annals of Mathematical Statis-
tics, 23(3), 470–472.

32 DACTest

Examples

Not run:
A univariate GARCH model is used with rolling out of sample forecasts.
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(6,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "nig")
fit = ugarchfit(spec, data = dji30ret[, 1, drop = FALSE], out.sample = 1000)
pred = ugarchforecast(fit, n.ahead = 1, n.roll = 999)
dmatrix = cbind(as.numeric(fitted(pred)),as.numeric(sigma(pred)),
rep(coef(fit)["skew"],1000), rep(coef(fit)["shape"],1000))
colnames(dmatrix) = c("mu", "sigma", "skew", "shape")
Get Realized (Oberved) Data
obsx = tail(dji30ret[,1], 1000)
Transform to Uniform
uvector = apply(cbind(obsx,dmatrix), 1, FUN = function(x) pdist("nig", q = x[1],
mu = x[2], sigma = x[3], skew = x[4], shape = x[5]))

hist(uvector)
transform to N(0,1)
nvector = qnorm(uvector)
test1 = BerkowitzTest(data = nvector, lags = 1, significance = 0.05)
test2 = BerkowitzTest(data = nvector, alpha = 0.05, significance = 0.05,
tail.test=TRUE)
test3 = BerkowitzTest(data = nvector, alpha = 0.01, significance = 0.05,
tail.test=TRUE)

End(Not run)

DACTest Directional Accuracy Test

Description

Implements the Directional Accuracy Test of Pesaran and Timmerman and Excess Profitability Test
of Anatolyev and Gerko.

Usage

DACTest(forecast, actual, test = c("PT", "AG"), conf.level = 0.95)

Arguments

forecast A numeric vector of the forecasted values.

actual A numeric vector of the actual (realized) values.

test Choice of Pesaran and Timmermann (‘PT’) or Anatolyev and Gerko (‘AG’)
tests.

conf.level The confidence level at which the Null Hypothesis is evaluated.

DACTest 33

Details

See the references for details on the tests. The Null is effectively that of independence, and dis-
tributed as N(0,1).

Value

A list with the following items:

Test The type of test performed.

Stat The test statistic.

p-value The p-value of the test statistic.

H0 The Null Hypothesis.

Decision Whether to reject or not the Null given the conf.level.

DirAcc The directional accuracy of the forecast.

Author(s)

Alexios Ghalanos

References

Anatolyev, S. and Gerko, A. 2005, A trading approach to testing for predictability, Journal of Busi-
ness and Economic Statistics, 23(4), 455–461.
Pesaran, M.H. and Timmermann, A. 1992, A simple nonparametric test of predictive performance,
Journal of Business and Economic Statistics, 10(4), 461–465.

Examples

Not run:
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(6,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "nig")
fit = ugarchfit(spec, data = dji30ret[, 1, drop = FALSE], out.sample = 1000)
pred = ugarchforecast(fit, n.ahead = 1, n.roll = 999)
Get Realized (Oberved) Data
obsx = tail(dji30ret[,1], 1000)
forc = as.numeric(as.data.frame(pred,rollframe="all",align=FALSE,which="series"))
print(DACTest(forc, obsx, test = "PT", conf.level = 0.95))
print(DACTest(forc, obsx, test = "AG", conf.level = 0.95))

End(Not run)

34 DateTimeUtilities

DateTimeUtilities A small set of utilities to work with some time and date classes.

Description

These utilities will likely be useful for working with the forecast objects of the package which
have a rather complex structure. In addition, the ftseq function is of particular value in generating
intraday regularly spaced time and date sequences within a specific interval of times (e.g. 09:30 to
16:00).

Usage

move(index, by=1)
generatefwd(T0, length.out = 1, by = "days")
ftseq(T0, length.out, by, interval, exclude.weekends = TRUE)

Arguments

index A POSIXct, Date or numeric vector.

T0 A single POSIXct, Date or numeric value from which to generate forward values
(the returned vector will exclude this value). For the ftseq function, this must
be a Date AND Time object of class POSIXct.

by For the move function, the length by which to shift the index forward, truncating
the first values and extending the last by this amount. For the generatefwd or
ftseq function, either a character (see Date and Time classes for valid values),
numeric or difftime object (see details).

length.out The length of the forward generated indices (excluding T0 which is not re-
turned).

interval A character vector of the regularly sampled times which define the trading day
(see example).

exclude.weekends

Whether to exclude the weeekends.

Details

Every object returned by one of the main methods in rugarch (including ugarchfit, ugarchfilter,
ugarchforecast and ugarchsim) has a model slot attached which in turns hold details on the time in-
dex of the original dataset used (including a difftime object). In addition, extractors for the forecast
class, uGARCHforecast, will usually return a matrix with the (n.roll+1) columns having the T+0
dates, and the rows names represented as characters ‘T+1,...,T+n’ indicating the forecast periods
following the T+0 date.
For the rolling forecast, it is a simple matter to shift the T+0 date by 1 to obtain the actual fore-
cast date. Because rolling forecasts are made using the ‘out.sample’ switch, this means that there
is always an actual date attached to this forecast based on the realized out.sample data (with the
exception of the case when n.roll=out.sample in which case the last forecast is completely out of
the range of the dataset). One quick way of obtaining the actual T+1 rolling dates is to just pass the

DateTimeUtilities 35

vector of T+0 dates to the move function as shown in the examples.
For the n.ahead>1 unconditional forecasts, there may or may not be actual dates in the dataset cov-
ering the period, depending on whether out.sample was used, n.roll was also used, and how these
all come together to form a complex object of moving and unconditional forecasts (making this the
most complex of forecast cases). One way to quickly generate a sequence of dates is to use the
generatefwd function with the T+0 starting date, the ‘length’ as the n.ahead horizon and the ‘by’
the difftime object from the model slot, as shown in the examples.
Note that for both the move and generatefwd functions, weekends are excluded in order to try to
return a more realistic value.
Finally, when working with Date/Time objects remember to set your time zone with Sys.setenv(TZ=).

Value

A vector of Date/Time/Numeric indices of the same class as used in the input.

Author(s)

Alexios Ghalanos

Examples

Not run:
data(sp500ret)
spec = ugarchspec()
fit = ugarchfit(spec, sp500ret, out.sample=10)
forc = ugarchforecast(fit, n.ahead = 25, n.roll = 10)
f = fitted(forc)
this is a 25 x 11 matrix [n.ahead x (n.roll+1)]
colnames: T+0 date index
T0 = as.POSIXct(colnames(f))
rollT1 = move(T0, by=1)
rolling estimation
plot(xts(f["T+1",],rollT1))
unconditional estimates:
par(mfrow=c(3,4))
for(i in 1:11){
difftime is always in model$modeldata$period
D=generatefwd(T0[i], length.out = 25, by = forc@model$modeldata$period)
plot(xts(f[,i], D), main=paste("T+0:",as.character(T0[i]),sep=""), auto.grid=FALSE)
}
############################
Intraday Sequency Example
############################
T0 = as.POSIXct("2001-01-01 16:00:00")
remember to remove the backslash from the code below
interval = format(seq(as.POSIXct("2001-01-01 09:30:00"), as.POSIXct("2001-01-01 16:00:00"),
by="min"), "%H:%M:%S")
by = "mins"
length.out=1000
R = ftseq(T0, length.out, by, interval)

End(Not run)

36 dmbp

dji30ret data: Dow Jones 30 Constituents Closing Value Log Return

Description

Dow Jones 30 Constituents closing value log returns from 1987-03-16 to 2009-02-03 from Yahoo
Finance. Note that AIG was replaced by KFT (Kraft Foods) on September 22, 2008. This is not
reflected in this data set as that would bring the starting date of the data to 2001.

Usage

data(dji30ret)

Format

A data.frame containing 30x5521 observations.

Source

Yahoo Finance

dmbp data: Deutschemark/British pound Exchange Rate

Description

The Bollerslev-Ghysel benchmark dataset. The variables in the data set are:
1. The daily percentage nominal returns computed as 100 [ln(Pt) - ln(Pt-1)], where Pt is the bilat-
eral Deutschemark/British pound rate constructed from the corresponding U.S. dollar rates.
2. A dummy variable that takes the value of 1 on Mondays and other days following no trading in
the Deutschemark or British pound/ U.S. dollar market during regular European trading hours and
0 otherwise.

Usage

data(dmbp)

Format

A data.frame containing 2x1974 observations.

References

Bollerslev, T. and Ghysels, E. 1996, Periodic Autoregressive Conditional Heteroscedasticity , Jour-
nal of Business and Economic Statistics, 14, 139–151.

ESTest 37

ESTest Expected Shortfall Test.

Description

Implements the Expected Shortfall Test of McNeil and Frey.

Usage

ESTest(alpha = 0.05, actual, ES, VaR, conf.level = 0.95,
boot = FALSE, n.boot = 1000)

Arguments

alpha The quantile (coverage) used for the VaR.

actual A numeric vector of the actual (realized) values.

ES The numeric vector of the Expected Shortfall (ES).

VaR The numeric vector of VaR.

conf.level The confidence level at which the Null Hypothesis is evaluated.

boot Whether to bootstrap the test.

n.boot Number of bootstrap replications to use.

Details

The Null hypothesis is that the excess conditional shortfall (excess of the actual series when VaR is
violated), is i.i.d. and has zero mean. The test is a one sided t-test against the alternative that the
excess shortfall has mean greater than zero and thus that the conditional shortfall is systematically
underestimated. Using the bootstrap to obtain the p-value should alleviate any bias with respect to
assumptions about the underlying distribution of the excess shortfall.

Value

A list with the following items:

expected.exceed

The expected number of exceedances (length actual x coverage).

actual.exceed The actual number of exceedances.

H1 The Alternative Hypothesis of the one sided test (see details).

boot.p.value The bootstrapped p-value (if used).

p.value The p-value.

Decision The one-sided test Decision on H0 given the confidence level and p-value (not
the bootstrapped).

38 GARCHboot-class

Author(s)

Alexios Ghalanos

References

McNeil, A.J. and Frey, R. and Embrechts, P. (2000), Estimation of tail-related risk measures for
heteroscedastic financial time series: an extreme value approach, Journal of Empirical Finance,7,
271–300.

Examples

Not run:
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "sstd")
fit = ugarchfit(spec, data = dji30ret[1:1000, 1, drop = FALSE])
spec2 = spec
setfixed(spec2)<-as.list(coef(fit))
filt = ugarchfilter(spec2, dji30ret[1001:2500, 1, drop = FALSE], n.old = 1000)
actual = dji30ret[1001:2500,1]
location+scale invariance allows to use [mu + sigma*q(p,0,1,skew,shape)]
VaR = fitted(filt) + sigma(filt)*qdist("sstd", p=0.05, mu = 0, sigma = 1,
skew = coef(fit)["skew"], shape=coef(fit)["shape"])
calculate ES
f = function(x) qdist("sstd", p=x, mu = 0, sigma = 1,
skew = coef(fit)["skew"], shape=coef(fit)["shape"])
ES = fitted(filt) + sigma(filt)*integrate(f, 0, 0.05)$value/0.05
print(ESTest(0.05, actual, ES, VaR, boot = TRUE))

End(Not run)

GARCHboot-class class: GARCH Bootstrap Class

Description

High Level GARCH bootstrap class to hold the univariate and multivariate boot objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHboot" in the signature.

GARCHdistribution-class 39

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHboot")

GARCHdistribution-class

class: GARCH Parameter Distribution Class

Description

High Level GARCH parameter distribution class to hold the univariate and multivariate boot ob-
jects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHdistribution" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHdistribution")

40 GARCHfit-class

GARCHfilter-class class: GARCH Filter Class

Description

High Level GARCH filter class to hold the univariate and multivariate filter objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHfilter" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHfilter")

GARCHfit-class class: GARCH Fit Class

Description

High Level GARCH fit class to hold the univariate and multivariate fits objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHfit" in the signature.

GARCHforecast-class 41

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHfit")

GARCHforecast-class class: GARCH Forecast Class

Description

High Level GARCH forecast class to hold the univariate and multivariate forecast objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHforecast" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHforecast")

42 GARCHroll-class

GARCHpath-class class: GARCH Path Simulation Class

Description

High Level GARCH Path simulation class to hold the univariate and multivariate path simulation
objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHpath" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHpath")

GARCHroll-class class: GARCH Roll Class

Description

High Level GARCH roll class to hold the univariate and multivariate roll objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHroll" in the signature.

GARCHsim-class 43

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHroll")

GARCHsim-class class: GARCH Simulation Class

Description

High Level GARCH simulation class to hold the univariate and multivariate simulation objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHsim" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHsim")

44 GARCHtests-class

GARCHspec-class class: GARCH Spec Class

Description

High Level GARCH spec class to hold the univariate and multivariate spec objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHspec" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHspec")

GARCHtests-class class: GARCH Tests Class

Description

GARCH High level inference and other tests class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "rGARCH", directly.

Methods

No methods defined with class "GARCHtests" in the signature.

ghyptransform 45

Author(s)

Alexios Ghalanos

Examples

showClass("GARCHtests")

ghyptransform Distribution: Generalized Hyperbolic Transformation and Scaling

Description

The function scales the distributions from the (0, 1) zeta-rho GARCH parametrization to the alpha-
beta parametrization and performs the appropriate scaling to the parameters given the estimated
sigma and mu.

Usage

ghyptransform(mu = 0, sigma = 1, skew = 0, shape = 3, lambda = -0.5)

Arguments

mu Either the conditional time-varying (vector) or unconditional mean estimated
from the GARCH process.

sigma The conditional time-varying (vector) sigma estimated from the GARCH pro-
cess.

skew, shape, lambda
The conditional non-time varying skewness (rho) and shape (zeta) parameters
estimated from the GARCH process (zeta-rho), and the GHYP lambda parame-
ter (‘dlambda’ in the estimation).

Details

The GHYP transformation is taken from Rmetrics internal function and scaled as in Blaesild (see
references).

Value

A matrix of size nrows(sigma) x 4 of the scaled and transformed parameters to be used in the
alpha-beta parametrized GHYP distribution functions.

Author(s)

Diethelm Wuertz for the Rmetrics R-port of the nig transformation function.
Alexios Ghalanos for rugarch implementation.

46 GMMTest

References

Blaesild, P. 1981, The two-dimensional hyperbolic distribution and related distributions, with an
application to Johannsen’s bean data, Biometrika, 68, 251–263.
Eberlein, E. and Prauss, K. 2000, The Generalized Hyperbolic Model Financial Derivatives and
Risk Measures, Mathematical Finance Bachelier Congress, 245–267.

GMMTest The GMM Orthogonality Test of Hansen

Description

Implements the GMM Orthogonality Test of Hansen.

Usage

GMMTest(z, lags = 1, skew=0, kurt=3, conf.level = 0.95)

Arguments

z A numeric vector the standardized residuals.

lags The number of lags to test for.

skew The skewness of the standardized residuals (derived from the estimated model).
This can be either a scalar or numeric vector the same size as z.

kurt The kurtosis (not excess) of the standardized residuals (derived from the esti-
mated model). This can be either a scalar or numeric vector the same size as
z.

conf.level The confidence level at which the Null Hypothesis is evaluated.

Details

This is a mispecification test based on Hansen’s GMM procedure. Under a correctly specified
model, certain population moment conditions should be satisfied and hold in the sample using the
standardized residuals. The moment conditions can be tested both individually using a t-test or
jointly using a Wald test (the vignette gives more details). The test returns a matrix (moment.mat)
containing the first 4 moments statistics, their standard errors and t-values (2-sided t-test with al-
ternative hypothesis that the value is not equal to zero). The matrix of joint conditions (joint.mat)
contains the t-values and critical values of ‘Q2’, ‘Q3’ and ‘Q4’ representing the autocorrelation,
given the chosen lags in the second, third and fourth moments and distributed as chi-squared with
n.lag d.o.f, and the joint test (‘J’) for all moment conditions distributed chi-squared with 4+(n.lagx3)
d.o.f.

HLTest 47

Value

A list with the following items:

joint.mat The matrix of the joint tests.

moment.mat The matrix of the individual moment tests.

H0 The Null Hypothesis.

Decision Whether to reject or not the Null given the conf.level.

Author(s)

Alexios Ghalanos

References

Hansen, L. (1982), Large Sample Properties of Generalized Method of Moments Estimators, Econo-
metrica, 50(4), 1029–1054.

Examples

Not run:
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "sstd")
fit = ugarchfit(spec, data = dji30ret[, 1, drop = FALSE])
z = residuals(fit)\/sigma(fit)
skew = dskewness("sstd",skew = coef(fit)["skew"], shape= coef(fit)["shape"])
add back 3 since dkurtosis returns the excess kurtosis
kurt = 3+dkurtosis("sstd",skew = coef(fit)["skew"], shape= coef(fit)["shape"])
print(GMMTest(z, lags = 1, skew=skew, kurt=kurt))

End(Not run)

HLTest The Non-Parametric Density Test of Hong and Li

Description

Implements the Non-Parametric Density Test of Hong and Li.

Usage

HLTest(PIT, lags = 4, kernel = "quartic", conf.level = 0.95)

48 HLTest

Arguments

PIT This represents the actual data transformed into a U(0,1) series by applying the
distribution function of the estimated model conditional on the parameters.

lags The number of lags to use for testing the joint hypothesis.

kernel The kernel to use for the comparison against the PIT series (only the ‘quartic’
currently implemented).

conf.level The confidence level at which the Null Hypothesis is evaluated.

Details

A novel method to analyze how well a conditional density fits the underlying data is through the
probability integral transformation (PIT) discussed in Rosenblatt (1952) and used in the BerkowitzTest.
More recently, Hong and Li (2005) introduced a nonparametric portmanteau test, building on the
work of Ait-Sahalia (1996), which tests the joint hypothesis of i.i.d and uniformity for a series of
PIT transformed data. To achieve this, it tests for misspecification in the conditional moments of
the model transformed standardized residuals, and is distributed as N(0, 1) under the Null of a cor-
rectly specified model. These moment tests are reported as ‘M(1,1)’ to ‘M(4,4)’ in the output, with
‘M(1,2)’ related to ARCH-in-mean effects, and ‘M(2,1)’ to leverage, while ‘W’ is the Portmanteu
type test statistic for general misspecification (using p lags) and also distributed as N(0, 1) under
the Null of a correctly specified model. Only upper tail critical values are used in this test. The
interested reader is referred to the paper for more details.

Value

A list with the following items:

statistic The individual moment and joint test statistics.

Decision Whether to reject or not the Null given the conf.level.

Author(s)

Alexios Ghalanos

References

Ait-Sahalia, Y. (1996), Testing continuous-time models of the spot interest rate, Review of Financial
Studies, 9(2), 385–426.
Berkowitz, J. (2001), Testing density forecasts, with applications to risk management, Journal of
Business and Economic Statistics, 19(4), 465–474.
Hong, Y., and Li, H. (2005), Nonparametric specification testing for continuous-time models with
applications to term structure of interest rates, Review of Financial Studies, 18(1), 37–84.
Rosenblatt, M. (1952), Remarks on a multivariate transformation, The Annals of Mathematical
Statistics, 23(3), 470–472.

mcsTest 49

Examples

Not run:
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "sstd")
fit = ugarchfit(spec, data = dji30ret[, 1, drop = FALSE])
z = residuals(fit)/sigma(fit)
PIT = pdist("sstd",z, mu = 0, sigma = 1, skew = coef(fit)["skew"],
shape=coef(fit)["shape"])
print(HLTest(PIT, lags=4))

End(Not run)

mcsTest Model Confidence Set Test

Description

Implements the Model Confidence Set Test procedure of Hansen, Lunde and

Usage

mcsTest(losses, alpha, nboot = 100, nblock = 1, boot = c("stationary", "block"))

Arguments

losses A matrix of losses from competing models.

alpha The p-value used in the test.

nboot The number of bootstrap replications.

nblock The block length to use in the bootstrap.

boot A choice of either the stationary or block boostrap.

Details

Calculates and returns the results of both the R (range) and SQ (semi-quadratic) statistics.

Value

A list with the following items:

includedR The models included based on the R statistic.

pvalsR The final p-values of each model under the R statistic.

excludedR The excluded models based on the R statistic.

includedSQ The models included based on the SQ statistic.

pvalsSQ The final p-values of each model under the SQ statistic.

excludedSQ The excluded models based on the SQ statistic.

50 multifilter-methods

Author(s)

Alexios Ghalanos

References

Hansen, P. R., Lunde, A., and Nason, J. M., 2011. The model confidence set. Econometrica, 79(2),
453–497.

multifilter-methods function: Univariate GARCH and ARFIMA Multiple Filtering

Description

Method for multiple filtering of a variety of univariate GARCH and ARFIMA models.

Usage

multifilter(multifitORspec, data = NULL, out.sample = 0, n.old = NULL,
rec.init = "all", cluster = NULL, ...)

Arguments

multifitORspec Either a univariate GARCH or ARFIMA multiple fit object of class uGARCHmultifit
and ARFIMAmultifit, or alternatively a univariate GARCH or ARFIMA multi-
ple specification object of class uGARCHmultispec and ARFIMAmultispec with
valid parameters supplied via the fixed.pars argument in the individual speci-
fications.

data Required if a multiple specification rather than a multiple fit object is supplied.
A multivariate data object. Can be a matrix or data.frame object, no other class
supported at present.

out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting (as in ugarchfit function).

n.old For comparison with uGARCHfit or ARFIMAfit models using the out.sample
argument, this is the length of the original dataset (see details).

rec.init Recursion initialization method (as in ugarchfit function), valid only for GARCH
models, and can be a vector of length equal to the number of assets being mod-
elled.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation.

... .

Value

A uGARCHmultifilter object containing details of the multiple GARCH filter. A ARFIMAmultifilter
object containing details of the multiple ARFIMA filter.

multifit-methods 51

Author(s)

Alexios Ghalanos

multifit-methods function: Univariate GARCH and ARFIMA Multiple Fitting

Description

Method for multiple fitting a variety of univariate GARCH and ARFIMA models.

Usage

multifit(multispec, data, out.sample = 0, solver = "solnp", solver.control = list(),
fit.control = list(stationarity = 1, fixed.se = 0, scale = 0, rec.init = "all"),
cluster = NULL, ...)

Arguments

multispec A multiple GARCH or ARFIMA spec object of class uGARCHmultispec and
ARFIMAmultispec.

out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting (see details).

data A multivariate data object of class xts or coercible to such.

solver One of either “nlminb” or “solnp”.

solver.control Control arguments list passed to optimizer.

fit.control Control arguments passed to the fitting routine. Stationarity (only for the GARCH
case) explicitly imposes the variance stationarity constraint during optimization.
The fixed.se argument controls whether standard errors should be calculated
for those parameters which were fixed (through the fixed.pars argument of the
ugarchspec or arfimaspec functions). The scale parameter controls whether
the data should be scaled before being submitted to the optimizer, while the
rec.init option controls the recursion initialization method and only valid for
GARCH models.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation.

... .

Value

A uGARCHmultifit or ARFIMAmultifit object containing details of the GARCH or ARFIMA fits.

Author(s)

Alexios Ghalanos

52 multiforecast-methods

Examples

Not run:
data(dji30ret)
spec = ugarchspec()
mspec = multispec(replicate(spec, n = 4))
fitlist = multifit(multispec = mspec, data = dji30ret[,1:4])

End(Not run)

multiforecast-methods function: Univariate GARCH and ARFIMA Multiple Forecasting

Description

Method for multiple forecasting from a variety of univariate GARCH and ARFIMA models.

Usage

multiforecast(multifitORspec, data = NULL, n.ahead = 1, n.roll = 0,
out.sample = 0, external.forecasts = list(mregfor = NULL, vregfor = NULL),
cluster = NULL, ...)

Arguments

multifitORspec Either a univariate GARCH or ARFIMA multiple fit object uGARCHmultifit
and ARFIMAmultifit, or alternatively a univariate GARCH or ARFIMA multi-
ple specification object of class uGARCHmultispec and ARFIMAmultispec with
valid parameters supplied via the setfixed<- function in the individual speci-
fications.

data Required if a multiple specification rather than a multiple fit object is supplied.
A multivariate data object. Can be a matrix or data.frame object, no other class
supported at present.

n.ahead The forecast horizon.

n.roll The no. of rolling forecasts to create beyond the first one.

out.sample Optional. If a specification object is supplied, indicates how many data points
to keep for out of sample testing. If this is not a vector equal to the column
dimension of the data, then it will be replicated to that dimension, else it must
be of same length as the data column dimension.

external.forecasts

A list with forecasts for the external regressors in the mean and/or variance
equations if specified.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

... .

multispec-methods 53

Value

A uGARCHmultiforecast or ARFIMAmultiforecast object containing details of the multiple GARCH
or ARFIMA forecasts. See the class for details.

Author(s)

Alexios Ghalanos

multispec-methods function: Univariate multiple GARCH Specification

Description

Method for creating a univariate multiple GARCH or ARFIMA specification object prior to fitting.

Usage

multispec(speclist)

Arguments

speclist A list with as many univariate GARCH or ARFIMA specifications of class
uGARCHspec and ARFIMAspec as there will be columns in the data object passed
to one of the other methods which uses a multiple specification object (fitting,
filtering and forecasting).

Value

A uGARCHmultispec or ARFIMAmultispec object containing details of the multiple GARCH or
ARFIMA specifications.

Author(s)

Alexios Ghalanos

Examples

how to make a list with 2 uGARCHspec objects of the same type
spec = ugarchspec()
mspec = multispec(replicate(2, spec))
note that replicate(spec, 2) does not work...be careful about the order
else explicity name 'n' (i.e. n = 2)

or simply combine disparate objects
spec1 = ugarchspec(distribution = "norm")
spec2 = ugarchspec(distribution = "std")
mspec = multispec(c(spec1, spec2))

54 qnig

qnig Functions exported for use in rmgarch

Description

Quantile for NIG and GH distributions in alpha, beta, delta, mu and lambda parametrizations.

Usage

qnig(p, alpha = 1, beta = 0, delta = 1, mu = 0)
qgh(p, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1)

Arguments

p Probabilities

alpha parameter in alpha, beta, delta, mu, lambda parametrization of the gh distribu-
tion.

beta parameter in alpha, beta, delta, mu, lambda parametrization of the gh distribu-
tion.

delta parameter in alpha, beta, delta, mu, lambda parametrization of the gh distribu-
tion.

mu parameter in alpha, beta, delta, mu, lambda parametrization of the gh distribu-
tion.

lambda parameter in alpha, beta, delta, mu, lambda parametrization of the gh distribu-
tion.

Details

For use internally by rmgarch.

Value

A vector

Author(s)

Alexios Galanos

rGARCH-class 55

rGARCH-class class: rGARCH Class

Description

Highest Level Virtual Package Class to which all other classes belong.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "rGARCH" in the signature.

Author(s)

Alexios Ghalanos

Examples

showClass("rGARCH")

rgarchdist Distribution: rugarch distribution functions

Description

Density, distribution function, quantile function, random generation and fitting from the univariate
distributions implemented in the rugarch package, with functions for skewness and excess kurtosis
given density skew and shape parameters.

rgarchdist rugarch univariate distributions,
fitdist MLE parameter fit for the rugarch univariate distributions,

Usage

ddist(distribution = "norm", y, mu = 0, sigma = 1, lambda = -0.5, skew = 1,
shape = 5)
pdist(distribution = "norm", q, mu = 0, sigma = 1, lambda = -0.5, skew = 1,
shape = 5)
qdist(distribution = "norm", p, mu = 0, sigma = 1, lambda = -0.5, skew = 1,
shape = 5)
rdist(distribution = "norm", n, mu = 0, sigma = 1, lambda = -0.5, skew = 1,
shape = 5)

56 rgarchdist

fitdist(distribution = "norm", x, control=list())
dskewness(distribution = "norm", skew = 1, shape = 5, lambda = -0.5)
dkurtosis(distribution = "norm", skew = 1, shape = 5, lambda = -0.5)
distplot(distribution = "snorm", skewbounds = NULL, shapebounds = NULL,
n.points = NULL)
skdomain(distribution = "nig", kurt.max = 30, n.points = 25, lambda = 1,
plot = TRUE, legend = NULL)

Arguments

distribution The distribution name. Valid choices are “norm”, “snorm”, “std”, “sstd”, “ged”,
“sged”, “nig”, “jsu”.

mu, sigma, skew, shape
location, scale and skewness and shape parameters (see details).

lambda The additional shape parameter for the Generalized Hyperbolic and NIG distri-
butions.

n The number of observations.

p A numeric vector of probabilities.

y, q A numeric vector of quantiles.

x A univariate dataset (for fitting routine).

control Control parameters passed to the solnp solver.

skewbounds The skewed distribution skew bounds for the plot. Leaving it NULL will use a
good set of defaults for display purposes.

shapebounds The shaped distribution shape bounds for the plot. Leaving it NULL will use a
good set of defaults for display purposes.

n.points The number of points between the lower and upper bounds of the skew and
shape parameters for which to evaluate the skewness and excess kurtosis. For the
skdomain function this determines the kurtosis interval (3-max.kurt) for which
to determine (using a solver) the maximum skewness.

kurt.max The maximum kurtosis for which to determine the bounds for the skewness-
kurtosis domain.

plot Whether to plot the results.

legend Whether to include a legend with the plot in the skdomain.

Details

For the “nig” and “ghyp” distributions, the shape, skew and lambda are transformed from the ‘zeta-
rho’ to the ‘alpha-beta’ parametrization and then scaled by the mean and standard deviation. The
fitting routines use the solnp solver and minimize the negative of the log-likelihood. The “dskew-
ness” and “dkurtosis” functions take as inputs the distribution name, skew and shape parameters
and return the skewneness and excess kurtosis of the distribution. The functions are not at present
vectorized. The distplot provides illustrative plots (or surfaces) of skewness and kurtosis for any of
the distributions supported (with the exception of the GH which has 2 shape and 1 skew parameters
and hence is impractical to represent).

sp500ret 57

Value

d* returns the density, p* returns the distribution function, q* returns the quantile function, and r*
generates random deviates,
all values are numeric vectors.

fitdist returns a list with the following components:

par The best set of parameters found.

value The likelihood values of the optimization (vector whose length represents the
number of major iterations).

convergence An integer code. 0 indicates successful convergence.

lagrange The lagrange multiplier value at convergence.

h The hessian at the solution.

xineq0 The value of the inequality constraint multiplier (NULL for the distribution fit
problems).

dskewness returns the skewness of the distribution. dkurtosis returns the excess kurtosis of the
distribution. skdomain returns the authorized domain of the distribution.

Author(s)

Diethelm Wuertz for the Rmetrics R-port of the “norm”, “snorm”, “std”, “sstd”, “ged”, “sged” and
“nig” distrbutions.
Rigby, R. A. and Stasinopoulos D. M for the JSU distribution in the gamlss package.
Alexios Ghalanos for rugarch implementation and higher moment distribution functions.

References

Johnson, N. L. 1954, Systems of frequency curves derived from the first law of Laplace, Trabajos
de Estadistica, 5, 283–291.
Barndorff-Nielsen, O. E. 1995, Normal inverse Gaussian processes and the modeling of stock re-
turns, mimeo: Univ.of Aarhus Denmark.
Fernandez C. and Steel, M.F.J. 1998, On Bayesian Modelling of Fat Tails and Skewness, Journal of
the American Statistical Association, 359–371.

sp500ret data: Standard and Poors 500 Closing Value Log Return

Description

The SP500 index closing value log return from 1987-03-10 to 2009-01-30 from yahoo finance.

Usage

data(sp500ret)

58 ugarchbench

Format

A data.frame containing 1x5523 observations.

Source

Yahoo Finance

spyreal data: SPDR Standard and Poors 500 Open-Close Daily Return and
Realized Kernel Volatility

Description

The SPDR SP500 index open-close return and the realized kernel volatility for the period 2002-
01-02 to 2008-08-29 from the paper of Hansen, Huang and Shek (2011). Used for illustrating the
implementation of the Realized GARCH model in rugarch.

Usage

data(spyreal)

Format

An xts object.

Source

Journal of Applied Econometrics Data Archive

References

Hansen, P. R., Huang, Z., and Shek, H. H. (2012). Realized GARCH: a joint model for returns and
realized measures of volatility. Journal of Applied Econometrics, 27(6), 877–906.

ugarchbench Benchmark: The Benchmark Test Suite

Description

Function for running the rugarch benchmark suite.

Usage

ugarchbench(benchmark = c("commercial", "published"))

uGARCHboot-class 59

Arguments

benchmark The type of benchmark to run against (see details).

Details

Currently, 2 benchmark suites are available. The “commercial” option runs the standard GARCH,
apARCH and gjrGARCH against a commercial based product and reports the results. The data for
this bechmarks is “AA” in the dji30ret dataset. The “published” option is based on the published
benchmark of Bollerslev and Ghysels for the standard and exponential GARCH models on the dmbp
data.

Author(s)

Alexios Ghalanos

Source

‘http://www.stanford.edu/~clint/bench/index.htm’

References

Brooks, C. 1997, GARCH Modelling in Finance: A review of the Software Options, Economic
Journal, 107(443), 1271–1276.

Examples

Not run:
ugarchbench(benchmark = "published")

End(Not run)

uGARCHboot-class class: Univariate GARCH Bootstrap Class

Description

Class for the univariate GARCH Bootstrap based Forecasts.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "GARCHboot", directly. Class "rGARCH", by class "GARCHboot", distance 2.

60 ugarchboot-methods

Methods

as.data.frame signature(x = "uGARCHboot"): extracts various values from object (see note).

plot signature(x = "uGARCHboot", y = "missing"): bootstrap forecast plots.

show signature(object = "uGARCHboot"): bootstrap forecast summary.

Note

The as.data.frame function takes optionally the arguments which, being either “sigma” or “se-
ries”, the argument type, with the options “raw” for the bootstrapped series, “summary” for sum-
mary statistics per n.ahead, and “q” for the quantiles of the n.ahead bootstrapped series, for which
the option qtile is then required and takes a numeric vector of quantiles (e.g. c(0.05, 0.95)).
The plot method provides for a Parameter Density Plots (only valid for the “full” method), and the
series and sigma forecast plots with quantile error lines from the bootstrapped n.ahead distribution.
The plot option which relates to either a numeric choice (1:3), an interactive choice (“ask” which is
the default) and an all plot choice (“all”) for which only plots 2 and 3 are included.

Author(s)

Alexios Ghalanos

References

Pascual, L., Romo, J. and Ruiz, E. 2004, Bootstrap predictive inference for ARIMA processes,
Journal of Time Series Analysis.
Pascual, L., Romo, J. and Ruiz, E. 2006, Bootstrap prediction for returns and volatilities in GARCH
models, Computational Statistics and Data Analysis.

See Also

Classes uGARCHforecast, uGARCHfit and uGARCHspec.

ugarchboot-methods function: Univariate GARCH Forecast via Bootstrap

Description

Method for forecasting the GARCH density based on a bootstrap procedures (see details and refer-
ences).

ugarchboot-methods 61

Usage

ugarchboot(fitORspec, data = NULL, method = c("Partial", "Full"),
sampling = c("raw", "kernel", "spd"), spd.options = list(upper = 0.9,
lower = 0.1, type = "pwm", kernel = "normal"), n.ahead = 10,
n.bootfit = 100, n.bootpred = 500, out.sample = 0, rseed = NA, solver = "solnp",
solver.control = list(), fit.control = list(),
external.forecasts = list(mregfor = NULL, vregfor = NULL), mexsimdata = NULL,
vexsimdata = NULL, cluster = NULL, verbose = FALSE)

Arguments

fitORspec Either a univariate GARCH fit object of class uGARCHfit or alternatively a uni-
variate GARCH specification object of class uGARCHspec with valid parameters
supplied via the setfixed<- function in the specification.

data Required if a specification rather than a fit object is supplied.
method Either the full or partial bootstrap (see note).
sampling Whether to sample from the raw residuals, the kernel-fitted distribution of the

residuals or the spd-fitted distribution of the residuals.
spd.options If sampling is from the SPD distribution, this controls the options for fitting this

distribution to the residuals (see spd package for details).
n.ahead The forecast horizon.
n.bootfit The number of simulation based re-fits used to generate the parameter distribu-

tion (i.e the parameter uncertainty). Not relevant for the “Partial” method.
n.bootpred The number of bootstrap replications per parameter distribution per n.ahead

forecasts used to generate the predictive density. If this is for the partial method,
simply the number of random samples from the empirical distribution to gener-
ate per n.ahead.

out.sample Optional. If a specification object is supplied, indicates how many data points
to keep for out of sample testing.

rseed A vector of seeds to initialize the random number generator for the resampling
with replacement method (if supplied should be equal to n.bootfit + n.bootpred).

solver One of either “nlminb” or “solnp”.
solver.control Control arguments list passed to optimizer.
fit.control Control arguments passed to the fitting routine (as in the ugarchfit method).
external.forecasts

A list with forecasts for the external regressors in the mean and/or variance
equations if specified.

mexsimdata List of matrices (size of list n.bootpred, with each matrix having n.ahead rows)
of simulated external regressor-in-mean data. If the fit object contains external
regressors in the mean equation, this must be provided else will be assumed
zero.

vexsimdata List of matrices (size of list n.bootpred, with each matrix having n.ahead rows)
of simulated external regressor-in-variance data. If the fit object contains exter-
nal regressors in the mean equation, this must be provided else will be assumed
zero.

62 ugarchboot-methods

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

verbose Whether to print out progress messages.

Details

There are two main sources of uncertainty about n.ahead forecasting from GARCH models, namely
that arising from the form of the predictive density and due to parameter estimation. The bootstrap
method considered here, is based on resampling innovations from the empirical distribution of the
fitted GARCH model to generate future realizations of the series and sigma. The “full” method,
based on the referenced paper by Pascual et al (2006), takes into account parameter uncertainty
by building a simulated distribution of the parameters through simulation and refitting. This pro-
cess, while more accurate, is very time consuming which is why choice of parallel computation via
a cluster (as in the ugarchdistribution is available and recommended). The “partial” method,
only considers distribution uncertainty and while faster, will not generate prediction intervals for
the sigma 1-ahead forecast for which only the parameter uncertainty is relevant in GARCH type
models.
If using external regressors, the routine requires both the forecast (of length n.ahead as in the
ugarchforecast routine) and a list of simulated forecasts as in the ugarchsim routine (else with be
assumed zero). Finally, it is possible to resample based on 3 schemes, namely the “raw” innovations
as in the original paper of Pascual et al (2006), “kernel” fits a Gaussian kernel to the innovations
from the ks package in order to then generate random samples, and the “spd” fits a semi-parametric
distribution to the innovations based on the spd package in order to generate the random samples,
for which an optional list (spd.options) may be further passed to the spd fitting routine.

Value

A uGARCHboot object containing details of the GARCH bootstrapped forecast density.

Author(s)

Alexios Ghalanos

References

Pascual, L., Romo, J. and Ruiz, E. 2004, Bootstrap predictive inference for ARIMA processes,
Journal of Time Series Analysis.
Pascual, L., Romo, J. and Ruiz, E. 2006, Bootstrap prediction for returns and volatilities in GARCH
models, Computational Statistics and Data Analysis.

See Also

For specification ugarchspec, fitting ugarchfit, filtering ugarchfilter, forecasting ugarchforecast,
simulation ugarchsim, rolling forecast and estimation ugarchroll, parameter distribution and un-
certainty ugarchdistribution.

uGARCHdistribution-class 63

Examples

Not run:
data(dji30ret)
spec = ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(1,1), arfima=FALSE, include.mean=TRUE,
archm = FALSE, archpow = 1), distribution.model="std")
ctrl = list(tol = 1e-7, delta = 1e-9)
fit = ugarchfit(data=dji30ret[, "BA", drop = FALSE], out.sample = 0,
spec = spec, solver = "solnp", solver.control = ctrl,
fit.control = list(scale = 1))
bootpred = ugarchboot(fit, method = "Partial", n.ahead = 120, n.bootpred = 2000)
bootpred
as.data.frame(bootpred, which = "sigma", type = "q", qtile = c(0.01, 0.05))

End(Not run)

uGARCHdistribution-class

class: Univariate GARCH Parameter Distribution Class

Description

Class for the univariate GARCH Parameter Distribution.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "GARCHdistribution", directly. Class "rGARCH", by class "GARCHdistribution", distance
2.

Methods

as.data.frame signature(x = "uGARCHdistribution"): Extracts various values from object (see
note).

plot signature(x = "uGARCHdistribution", y = "missing"): Parameter Distribution Plots.

show signature(object = "uGARCHdistribution"): Parameter Distribution Summary.

Note

The as.data.frame function takes optionally 2 additional arguments, namely window which indi-
cates the particular distribution window number for which data is required (is usually just 1 unless
the recursive option was used), and which indicating the type of data required. Valid values for
the latter are “rmse” for the root mean squared error between simulation fit and actual parameters,
“stats” for various statistics computed for the simulations such as log likelihood, persistence, un-
conditional variance and mean, “coef” for the estimated coefficients (i.e. the parameter distribution

64 ugarchdistribution-methods

and is the default choice), and “coefse” for the estimated robust standard errors of the coefficients
(i.e. the parameter standard error distribution).
The plot method offers 4 plot types, namely, Parameter Density Plots (take window as additional
argument), Bivariate Plots (take window as additional argument), Stats and RMSE (only when re-
cursive option used) Plots. The standard option for which is used, allowing for a numeric arguments
to one of the four plot types else interactive choice via “ask”.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHforecast, uGARCHfit and uGARCHspec.

Examples

Not run:
data(sp500ret)
spec = ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(1,1), arfima=FALSE, include.mean=TRUE,
archm = FALSE, archpow = 1), distribution.model="std")

fit = ugarchfit(data=sp500ret[, 1, drop = FALSE], out.sample = 0,
spec = spec, solver = "solnp")

dist = ugarchdistribution(fit, n.sim = 2000, n.start = 50, m.sim = 5)

End(Not run)

ugarchdistribution-methods

function: Univariate GARCH Parameter Distribution via Simulation

Description

Method for simulating and estimating the parameter distribution from a variety of univariate GARCH
models as well as the simulation based consistency of the estimators given the data size.

Usage

ugarchdistribution(fitORspec, n.sim = 2000, n.start = 1,
m.sim = 100, recursive = FALSE, recursive.length = 6000, recursive.window = 1000,
presigma = NA, prereturns = NA, preresiduals = NA, rseed = NA,
custom.dist = list(name = NA, distfit = NA), mexsimdata = NULL, vexsimdata = NULL,
fit.control = list(), solver = "solnp", solver.control = list(), cluster = NULL, ...)

ugarchdistribution-methods 65

Arguments

fitORspec Either a univariate GARCH fit object of class uGARCHfit or alternatively a uni-
variate GARCH specification object of class uGARCHspec with valid parameters
supplied via the setfixed<- function in the specification.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

recursive Whether to perform a recursive simulation on an expanding window.
recursive.length

If recursive is TRUE, this indicates the final length of the simulation horizon,
with starting length n.sim.

recursive.window

If recursive is TRUE, this indicates the increment to the expanding window.
Together with recursive.length, it determines the total number of separate
and increasing length windows which will be simulated and fitted.

presigma Allows the starting sigma values to be provided by the user.

prereturns Allows the starting return data to be provided by the user.

preresiduals Allows the starting residuals to be provided by the user.

rseed Optional seeding value(s) for the random number generator.

custom.dist Optional density with fitted object from which to simulate.

mexsimdata Matrix of simulated external regressor-in-mean data. If the fit object contains
external regressors in the mean equation, this must be provided.

vexsimdata Matrix of simulated external regressor-in-variance data. If the fit object contains
external regressors in the variance equation, this must be provided.

solver One of either “nlminb” or “solnp”.

solver.control Control arguments list passed to optimizer.

fit.control Control arguments passed to the fitting routine (as in the ugarchfit method).

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

... .

Details

This method facilitates the simulation and evaluation of the uncertainty of GARCH model parame-
ters. The recursive option also allows the evaluation of the simulation based consistency (in terms of
sqrt(N)) of the parameters as the length (n.sim) of the data increases, in the sense of the root mean
square error (rmse) of the difference between the simulated and true (hypothesized) parameters.
This is a very expensive function, particularly if using the recursive option, both on memory and
cpu resources, performing many re-fits of the simulated data in order to generate the parameter dis-
tribution and it is therefore suggested that, if available, the parallel functionality should be used (in
a system with ideally many cores and at least 4GB of RAM for the recursion option...).

66 uGARCHfilter-class

Value

A uGARCHdistribution object containing details of the GARCH simulated parameters distribu-
tion.

Author(s)

Alexios Ghalanos

See Also

For specification ugarchspec, fitting ugarchfit, filtering ugarchfilter, forecasting ugarchforecast,
simulation ugarchsim, rolling forecast and estimation ugarchroll, bootstrap forecast ugarchboot.

uGARCHfilter-class class: Univariate GARCH Filter Class

Description

Class for the univariate GARCH filter.

Extends

Class "GARCHfilter", directly. Class "rGARCH", by class "GARCHfilter", distance 2.

Methods

fitted signature(object = "uGARCHfilter"): Extracts the fitted values.

residuals signature(object = "uGARCHfilter"): Extracts the residuals. Optional logical argu-
ment standardize (default is FALSE) allows to extract the standardized residuals.

sigma signature(object = "uGARCHfilter"): Extracts the conditional sigma values.

coef signature(object = "uGARCHfilter"): Extracts the coefficients.

infocriteria signature(object = "uGARCHfilter"): Calculates and returns various information
criteria.

newsimpact signature(object = "uGARCHfilter"): Calculates and returns the news impact
curve.

likelihood signature(object = "uGARCHfilter"): Extracts the likelihood.

signbias signature(object = "uGARCHfilter"): Calculates and returns the sign bias test of En-
gle and Ng (1993).

gof signature(object = "uGARCHfilter", groups = "numeric"): Calculates and returns the ad-
justed goodness of fit statistic and p-values for the fitted distribution based on the Vlaar and
Palm paper (1993). Groups is a numeric vector of bin sizes.

persistence signature(object = "uGARCHfilter", pars = "missing",distribution = "missing",
model = "missing", submodel = "missing"): Calculates and returns the persistence of the
garch filter model.

uGARCHfilter-class 67

halflife signature(object = "uGARCHfilter", pars = "missing",distribution = "missing",
model = "missing"): Calculates and returns the halflife of the garch fit variance given a
uGARCHfilter object.

uncmean signature(object = "uGARCHfilter"): Calculates and returns the unconditional mean
of the conditional mean equation (constant, ARMAX, arch-in-mean).

uncvariance signature(object = "uGARCHfilter", pars = "missing",distribution = "missing",
model = "missing", submodel = "missing"): Calculates and returns the long run uncondi-
tional variance of the garch filter given a uGARCHfilter object.

quantile signature(x = "uGARCHfilter"): Calculates and returns, given a vector of probabilities
(additional argument “probs”), the conditional quantiles of the filtered object (x).

pit signature(object = "uGARCHfilter"): Calculates and returns the conditional probability
integral transform given the data and estimated density.

plot signature(x = "uGARCHfilter", y = "missing"): Filter plots

show signature(object = "uGARCHfilter"): Filter summary.

Note

The uGARCHfilter class contains almost all the methods available with the uGARCHfit with the
exception of those requiring the scores of the likelihood (i.e the optimization process) such as the
nyblom test.

Author(s)

Alexios Ghalanos

Examples

Not run:
data(dji30ret)
ctrl = list(rho = 1, delta = 1e-8, outer.iter = 100, inner.iter = 650,
tol = 1e-6)
spec = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
distribution.model = "std")
sgarch.fit = ugarchfit(data = dji30ret[,"AA",drop=FALSE], spec = spec,
solver = "solnp", solver.control = ctrl)

spec = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
distribution.model = "std", fixed.pars = as.list(coef(sgarch.fit)))
sgarch.filter = ugarchfilter(data = dji30ret[,"AA",drop=FALSE], spec = spec)

c(likelihood(sgarch.filter), likelihood(sgarch.fit))
c(uncmean(sgarch.filter), uncmean(sgarch.fit))
c(uncvariance(sgarch.filter), uncvariance(sgarch.fit))

End(Not run)

68 ugarchfilter-methods

ugarchfilter-methods function: Univariate GARCH Filtering

Description

Method for filtering a variety of univariate GARCH models.

Usage

ugarchfilter(spec, data, out.sample = 0, n.old=NULL, rec.init = 'all',
trunclag = 1000, ...)

Arguments

data A univariate data object. Can be a numeric vector, matrix, data.frame, zoo, xts,
timeSeries, ts or irts object.

spec A univariate GARCH spec object of class uGARCHspec with the fixed.pars argu-
ment having the model parameters on which the filtering is to take place.

out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting (as in ugarchfit function).

n.old For comparison with uGARCHfit models using the out.sample argument, this is
the length of the original dataset (see details).

rec.init The recursion initialization method (see ugarchfit for explanation).

trunclag The truncation lags for the binomial expansion in the FIGARCH model.

... For the multiplicative component sGARCH model (mcsGARCH), the additional
argument ‘DailyVar’ is required and should be an xts object of the daily fore-
casted variance to use with the intraday data.

Details

The n.old argument is optional and indicates the length of the original data (in cases when this
represents a series augmented by newer data). The reason for using this is so that the old and new
datasets agree since the original recursion uses the sum of the residuals to start the recursion and
therefore is influenced by new data. For a small augmentation the values converge after x periods,
but it is sometimes preferable to have this option so that there is no forward looking information
contaminating the study.

Value

A uGARCHfilter object containing details of the GARCH filter.

Author(s)

Alexios Ghalanos

uGARCHfit-class 69

See Also

For specification ugarchspec, fitting ugarchfit, forecasting ugarchforecast, simulation ugarchsim,
rolling forecast and estimation ugarchroll, parameter distribution and uncertainty ugarchdistribution,
bootstrap forecast ugarchboot.

Examples

Not run:
data(sp500ret)
ctrl = list(RHO = 1,DELTA = 1e-8,MAJIT = 100,MINIT = 650,TOL = 1e-6)
spec = ugarchspec(variance.model = list(model = "eGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
distribution.model = "std")
egarch.fit = ugarchfit(data = sp500ret[,1,drop=FALSE], spec = spec,
solver = "solnp", solver.control = ctrl)

spec = ugarchspec(variance.model = list(model = "eGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
distribution.model = "std", fixed.pars = as.list(coef(egarch.fit)))
egarch.filter = ugarchfilter(data = sp500ret[,1,drop=FALSE], spec = spec)

End(Not run)

uGARCHfit-class class: Univariate GARCH Fit Class

Description

Class for the univariate GARCH fit.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class GARCHfit, directly. Class rGARCH, by class GARCHfit, distance 2.

Slots

fit: Object of class "vector" Holds data on the fitted model.

model: Object of class "vector" The model specification common to all objects.

70 uGARCHfit-class

Methods

coef signature(object = "uGARCHfit"): Extracts the coefficients.

cofint signature(object = "uGARCHfit"): Similar to the stats S3 method confint, extracts co-
efficient confidence intervals taking additional optional arguments parm and level, as well
as robust (default: FALSE) indicating whether to use the robust covariance matrix for the
calculations.

vcov signature(object = "uGARCHfit"): Extracts the covariance matrix of the parameters. Ad-
ditional logical option of ‘robust’ indicates whether to extract the robust based covariance
matrix.

infocriteria signature(object = "uGARCHfit"): Calculates and returns various information cri-
teria.

nyblom signature(object = "uGARCHfit"): Calculates and returns the Hansen-Nyblom stabil-
ity test (1990).

gof signature(object = "uGARCHfit", groups = "numeric"): Calculates and returns the ad-
justed goodness of fit statistic and p-values for the fitted distribution based on the Vlaar and
Palm paper (1993). Groups is a numeric vector of bin sizes.

newsimpact signature(object = "uGARCHfit"): Calculates and returns the news impact curve.

signbias signature(object = "uGARCHfit"): Calculates and returns the sign bias test of Engle
and Ng (1993).

likelihood signature(object = "uGARCHfit"): Extracts the likelihood.

sigma signature(object = "uGARCHfit"): Extracts the conditional sigma values.

fitted signature(object = "uGARCHfit"): Extracts the fitted values.

residuals signature(object = "uGARCHfit"): Extracts the residuals. Optional logical argument
standardize (default is FALSE) allows to extract the standardized residuals.

getspec signature(object = "uGARCHfit"): Extracts and returns the GARCH specification from
a fit object.

uncvariance signature(object = "uGARCHfit", pars = "missing",distribution="missing",
model = "missing", vexdata = "missing"): Calculates and returns the long run uncondi-
tional variance of the GARCH fit given a uGARCHfit object.

uncvariance signature(object = "missing", pars = "numeric",distribution = "character",
model = "character", submodel = "ANY",vexdata = "ANY"): Calculates and returns the long
run unconditional variance of the GARCH fit given a named parameter vector as returned by
the fit, a distribution model name and a GARCH model name with a submodel included if the
model is of the nested type such as fGARCH and any external regressor data.

uncmean signature(object = "uGARCHfit"): Calculates and returns the unconditional mean of
the conditional mean equation (constant, ARMAX, arch-in-mean).

persistence signature(object = "uGARCHfit", pars = "missing",distribution = "missing",
model = "missing"): Calculates and returns the persistence of the GARCH fit model given a
uGARCHfit object.

persistence signature(object = "missing", pars = "numeric",distribution = "character",
model = "character"): Calculates and returns the persistence of the GARCH fit model given
a named parameter vector as returned by the fit, a distribution model name and a GARCH
model name with a submodel included if the model is of the nested type such as fGARCH.

uGARCHfit-class 71

halflife signature(object = "uGARCHfit", pars = "missing",distribution = "missing", model
= "missing"): Calculates and returns the halflife of the GARCH fit variance given a uGARCHfit
object.

halflife signature(object = "missing", pars = "numeric",distribution = "character", model
= "character"): Calculates and returns the halflife of the GARCH fit variance given a named
parameter vector as returned by the fit, a distribution model name and a GARCH model name
with a submodel included if the model is of the nested type such as fGARCH.

convergence signature(object = "uGARCHfit"): Returns the solver convergence code for the
fitted object (zero denotes convergence).

quantile signature(x = "uGARCHfit"): Calculates and returns, given a vector of probabilities
(additional argument “probs”), the conditional quantiles of the fitted object (x).

pit signature(object = "uGARCHfit"): Calculates and returns the conditional probability inte-
gral transform given the data and estimated density.

reduce signature(object = "uGARCHfit"): Zeros parameters (fixing to zero in rugarch is equiv-
alent to eliminating them in estimation) with p-values (optional argument “pvalue”) greater
than 0.1 (default), and re-estimates the model. Additional arguments are passed to ugarchfit.An
additional option “use.robust” (default TRUE) asks whether to use the robust calculated p-
values.

plot signature(x = "uGARCHfit", y = "missing"): Fit plots.

show signature(object = "uGARCHfit"): Fit summary.

Note

Methods for coef, likelihood, fitted, sigma and residuals provide extractor functions for those val-
ues.
Method for show gives detailed summary of GARCH fit with various tests.
Method for plot provides for interactive choice of plots, option of choosing a particular plot (option
“which” equal to a valid plot number) or a grand plot including all subplots on one page (option
“which”=“all”).
The infocriteria method calculates and returns the information criteria (AIC, BIC etc) of the GARCH
fit.
The nyblom method calculates and returns the Hansen-Nyblom joint and individual coefficient sta-
bility test statistic and critical values.
The gof methods calculates and returns the adjusted goodness of fit statistic and p-values for the
fitted distribution. The groups parameter is a numeric vector of grouped bin sizes for the test. See
the references in the package introduction for the original paper by Vlaar and Palm explaining the
test.
The signbias methods calculates and returns the sign bias test of Engle and Ng (see the references
in the package introduction).
Methods for calculating and extracting persistence, unconditional variance and half-life of the
GARCH shocks exist and take either the GARCH fit object as a single value otherwise you may
provide a named parameter vector (see uGARCHspec section for parameter names of the various
GARCH models), a distribution name and the GARCH model (with submodel argument for the
fGARCH model).
Unconditional mean and variance of the model may be extracted by means of the uncmean and
uncvariance methods. The uncvariance may take either a fit object or a named parameter list, dis-
tribution and GARCH model name. The uncmean will only take a fit object due to the complexity

72 uGARCHfit-class

of the calculation requiring much more information than the uncoditional variance.
The news impact method returns a list with the calculated values (zx, zy) and the expression (xexpr,
yexpr) which can be used to illustrate the plot.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHforecast, uGARCHsim and uGARCHspec.

Examples

Not run:
Basic GARCH(1,1) Spec
Sys.setenv(TZ = "UTC")
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
fit
object fit:
slotNames(fit)
sublist fit@fit
names(fit@fit)
coef(fit)
infocriteria(fit)
likelihood(fit)
nyblom(fit)
signbias(fit)
head(sigma(fit))
head(residuals(fit))
head(fitted(fit))
gof(fit,c(20,30,40,50))
uncmean(fit)
uncvariance(fit)
#plot(fit,which="all")
news impact example
spec = ugarchspec(variance.model=list(model="apARCH"))
fit = ugarchfit(data = dmbp[,1], spec = spec)
note that newsimpact does not require the residuals (z) as it
will discover the relevant range to plot against by using the min/max
of the fitted residuals.
ni=newsimpact(z = NULL, fit)
#plot(nizx, nizy, ylab=ni$yexpr, xlab=ni$xexpr, type="l", main = "News Impact Curve")

End(Not run)

ugarchfit-methods 73

ugarchfit-methods function: Univariate GARCH Fitting

Description

Method for fitting a variety of univariate GARCH models.

Usage

ugarchfit(spec, data, out.sample = 0, solver = "solnp", solver.control = list(),
fit.control = list(stationarity = 1, fixed.se = 0, scale = 0, rec.init = 'all',
trunclag = 1000),
numderiv.control = list(grad.eps=1e-4, grad.d=0.0001,
grad.zero.tol=sqrt(.Machine$double.eps/7e-7), hess.eps=1e-4, hess.d=0.1,
hess.zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2),...)

Arguments

data A univariate data object. Can be a numeric vector, matrix, data.frame, zoo, xts,
timeSeries, ts or irts object.

spec A univariate GARCH spec object of class uGARCHspec.
out.sample A positive integer indicating the number of periods before the last to keep for

out of sample forecasting (see details).
solver One of either “nlminb”, “solnp”, “lbfgs”, “gosolnp”, “nloptr” or “hybrid” (see

notes).
solver.control Control arguments list passed to optimizer.
fit.control Control arguments passed to the fitting routine. Stationarity explicitly imposes

the variance stationarity constraint during optimization. For the FIGARCH
model this imposes the positivity constraint. The fixed.se argument controls
whether standard errors should be calculated for those parameters which were
fixed (through the fixed.pars argument of the ugarchspec function). The scale
parameter controls whether the data should be scaled before being submitted to
the optimizer. The rec.init option determines the type of initialization for the
variance recursion. Valid options are ‘all’ which uses all the values for the un-
conditional variance calculation, an integer greater than or equal to 1 denoting
the number of data points to use for the calculation, or a positive numeric value
less than one which determines the weighting for use in an exponential smooth-
ing backcast. The trunclag is the truncation lags for the binomial expansion in
the FIGARCH model.

numderiv.control

Control arguments passed to the numerical routines for the calculation of the
standard errors. See the documentation in the numDeriv package for further
details. The arguments which start with ‘hess’ are passed to the hessian routine
while those with ‘grad’ to the jacobian routine.

... For the multiplicative component sGARCH model (mcsGARCH), the additional
argument ‘DailyVar’ is required and should be an xts object of the daily fore-
casted variance to use with the intraday data.

74 ugarchfit-methods

Details

The GARCH optimization routine first calculates a set of feasible starting points which are used to
initiate the GARCH recursion. The main part of the likelihood calculation is performed in C-code
for speed.
The out.sample option is provided in order to carry out forecast performance testing against actual
data. A minimum of 5 data points are required for these tests. If the out.sample option is positive,
then the routine will fit only N - out.sample (where N is the total data length) data points, leav-
ing out.sample points for forecasting and testing using the forecast performance measures. In the
ugarchforecast routine the n.ahead may also be greater than the out.sample number resulting in a
combination of out of sample data points matched against actual data and some without, which the
forecast performance tests will ignore.
The “gosolnp” solver allows for the initialization of multiple restarts of the solnp solver with ran-
domly generated parameters (see documentation in the Rsolnp-package for details of the strat-
egy used). The solver.control list then accepts the following additional (to the solnp) arguments:
“n.restarts” is the number of solver restarts required (defaults to 1), “parallel” (logical), “pkg” (ei-
ther snowfall or multicore) and “cores” (the number of cores or workers to use) for use of parallel
functionality, “rseed” is the seed to initialize the random number generator, and “n.sim” is the num-
ber of simulated parameter vectors to generate per n.restarts.
The “hybrid” strategy solver first tries the “solnp” solver, in failing to converge then tries then
“nlminb”, the “gosolnp” and finally the “nloptr” solvers. Solver control parameters can be passed
for all the solvers in the solver.control list as one long list which will be filtered for each solver’s
specific options as and when that solver is called during the hybrid strategy optimization. It is
still possible that the Hessian at the optimal found cannot be inverted, in which case a warning
is printed and there will not be any standard errors. In this case it is suggested that the problem
is re-run with different solver parameters. It is also possible that the solution, while still ‘almost’
optimal may be at a saddle-point very near the global optimum in which case the Hessian may
still be invertible but one eigenvalue is negative. The uGARCHfit object has a value in the fit slot
called condH (object@fit$condH) which indicates the approximate number of decimal places lost
to roundoff/numerical estimation error. When this is NaN, this indicates the case just described of
one negative eigenvalue/saddlepoint (this previously flagged a warning but is now silenced and it is
upto to the user to decide whether it is worth investigating further).

Value

A uGARCHfit object containing details of the GARCH fit.

Note

The nloptr solver takes the following options in the solver.control list:

ftol_rel function value relative tolerance default: 1e-8
xtol_rel parameter value relative tolerance default: 1e-6
maxeval maximum function evaluations default: 25000
print_level trace level default: 1
solver the nloptr solver to use default: 1 (‘SBPLX’).

uGARCHforecast-class 75

The solver option for nloptr has 10 different choices (1:10), which are 1:‘COBYLA’, 2:‘BOBYQA’,
3:‘PRAXIS’, 4:‘NELDERMEAD’, 5:‘SBPLX’, 6:‘AUGLAG’+‘COBYLA’, 7:‘AUGLAG’+‘BOBYQA’,
8:‘AUGLAG’+‘PRAXIS’, 9:‘AUGLAG’+‘NELDERMEAD’ and 10:‘AUGLAG’+‘SBPLX’. As al-
ways, your mileage will vary and care should be taken on the choice of solver, tuning parameters
etc. If you do use this solver try 9 or 10 first.

Author(s)

Alexios Ghalanos

See Also

For specification ugarchspec,filtering ugarchfilter, forecasting ugarchforecast, simulation
ugarchsim, rolling forecast and estimation ugarchroll, parameter distribution and uncertainty
ugarchdistribution, bootstrap forecast ugarchboot.

Examples

Basic GARCH(1,1) Spec
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
fit
coef(fit)
head(sigma(fit))
#plot(fit,which="all")
in order to use fpm (forecast performance measure function)
you need to select a subsample of the data:
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec, out.sample=100)
forc = ugarchforecast(fit, n.ahead=100)
this means that 100 data points are left from the end with which to
make inference on the forecasts
fpm(forc)

uGARCHforecast-class class: Univariate GARCH Forecast Class

Description

Class for the univariate GARCH forecast.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class GARCHforecast, directly. Class rGARCH, by class GARCHforecast, distance 2.

76 uGARCHforecast-class

Methods

sigma signature(x = "uGARCHforecast"): The n.ahead by n.roll+1 matrix of conditional sigma
forecasts. The column names are the T[0] dates.

fitted signature(x = "uGARCHforecast"): The n.ahead by n.roll+1 matrix of conditional mean
forecasts. The column names are the T[0] dates.

quantile signature(x = "uGARCHforecast"): Calculates and returns, given a scalar for the prob-
ability (additional argument “probs”), the conditional quantile of the forecast object as an
n.ahead by n.roll+1 matrix (with the same type of headings as the sigma and fitted methods).

plot signature(x = "uGARCHforecast", y = "missing"): Forecast plots with n.roll optional
argument indicating the rolling sequence to plot.

fpm signature(object = "uGARCHforecast"): Forecast performance measures.

show signature(object = "uGARCHforecast"): Forecast summary returning the 0-roll frame
only.

Note

Since versions 1.01-3, a sigma and fitted methods have been introduced which extract the n.ahead
by (n.roll+1) matrix of conditional sigma and mean forecasts respectively, with column names the
T[0] time index. This is unlike the old data.frame which returned the T+1 etc dates. These two
methods are the default extractors in rugarch (used on estimated, filtered, forecast and simulation
class objects) and the other methods, namely as.data.frame is now deprecated with the exception
of a few classes where it is still used (uGARCHdistribution, uGARCHboot and uGARCHroll).
The plot method takes additional arguments which and n.roll indicating which roll frame to plot.
The fpm method returns the Mean Squared Error (MSE), Mean Absolute Error (MAE), Directional
Accuracy (DAC) and number of points used for the calculation (N), of forecast versus realized re-
turns, if the extra summary option is set to TRUE (default). This is a 4 x (n.roll+1) matrix, with row
headings the T[0] time index, and requires at least 5 points to calculate the summary measures else
will return NA. When n.ahead>1, this method calculates the measures on the n.ahead>1 uncondi-
tional forecast, but if n.ahead=1 with n.roll>4, it will calculate the measures on the rolling forecast
instead. Finally, when summary is set to FALSE, the method will return a list of length n.roll+1 of
xts objects with the loss functions (Squared Error and Absolute Error and Directional Hits).

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHfit, uGARCHsim and uGARCHspec.

Examples

Not run:
Basic GARCH(1,1) Spec
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec, out.sample = 100)
forc1 = ugarchforecast(fit, n.ahead=100, n.roll = 100)

ugarchforecast-methods 77

forc
#plot(forc, which = "all")

End(Not run)

ugarchforecast-methods

function: Univariate GARCH Forecasting

Description

Method for forecasting from a variety of univariate GARCH models.

Usage

ugarchforecast(fitORspec, data = NULL, n.ahead = 10, n.roll = 0, out.sample = 0,
external.forecasts = list(mregfor = NULL, vregfor = NULL),
trunclag = 1000, ...)

Arguments

fitORspec Either a univariate GARCH fit object of class uGARCHfit or alternatively a uni-
variate GARCH specification object of class uGARCHspec with valid fixed pa-
rameters.

data Required if a specification rather than a fit object is supplied.

n.ahead The forecast horizon.

n.roll The no. of rolling forecasts to create beyond the first one (see details).

out.sample Optional. If a specification object is supplied, indicates how many data points
to keep for out of sample testing.

external.forecasts

A list with forecasts for the external regressors in the mean and/or variance
equations if specified.

trunclag The truncation lag for the binomial expansion in the FIGARCH model. Only
used when the dispatch is based on a uGARCHspec object, otherwise will be read
from the already defined value in the fitted object.

... For the multiplicative component sGARCH model (mcsGARCH), the additional
argument ‘DailyVar’ is required and should be an xts object of the daily fore-
casted variance for the period under consideration to be used with the intraday
data.
For the realized GARCH model (realGARCH), the additional argument ‘Re-
alizedVol’, an xts object, is required when using a specification object for fi-
tORspec. Additionally, the optional argument ‘n.sim’ denotes the number of
simulations required for n.ahead>1 forecast (see vignette for this model’s rep-
resentation), whilst ‘returnDistribution’ is a logical argument (default TRUE)
denoting whether to return the simulated distribution of the sigma and realized
forecast values.

78 ugarchforecast-methods

Details

The forecast function has two dispatch methods allowing the user to call it with either a fitted object
(in which case the data argument is ignored), or a specification object (in which case the data is
required) with fixed parameters.
The forecast is based on the expected value of the innovations and hence the density chosen. One
step ahead forecasts are based on the value of the previous data, while n-step ahead (n>1) are based
on the unconditional expectation of the models.
The ability to roll the forecast 1 step at a time is implemented with the n.roll argument which
controls how many times to roll the n.ahead forecast. The default argument of n.roll = 0 denotes
no rolling and returns the standard n.ahead forecast. Critically, since n.roll depends on data being
available from which to base the rolling forecast, the ugarchfit function needs to be called with the
argument out.sample being at least as large as the n.roll argument, or in the case of a specification
being used instead of a fit object, the out.sample argument directly in the forecast function.

Value

A uGARCHforecast object containing details of the GARCH forecast. See the class for details on
the returned object and methods for accessing it and performing some tests.

Author(s)

Alexios Ghalanos

See Also

For filtering ugarchfilter,simulation ugarchsim, rolling forecast and estimation ugarchroll,
parameter distribution and uncertainty ugarchdistribution, bootstrap forecast ugarchboot.

Examples

Not run:
Basic GARCH(1,1) Spec
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
forc = ugarchforecast(fit, n.ahead=20)
forc
head(sigma(forc))
head(fitted(forc))
#plot(forc,which="all")

End(Not run)

uGARCHmultifilter-class 79

uGARCHmultifilter-class

class: Univariate GARCH Multiple Filter Class

Description

Class for the univariate GARCH Multiple filter.

Extends

Class "GARCHfilter", directly. Class "rGARCH", by class "GARCHfilter", distance 3.

Methods

fitted signature(object = "uGARCHmultifilter"): Extracts the fitted values.

residuals signature(object = "uGARCHmultifilter"): Extracts the residuals. Optional logical
argument standardize (default is FALSE) allows to extract the standardized residuals.

sigma signature(object = "uGARCHmultifilter"): Extracts the conditional sigma values.

coef signature(object = "uGARCHmultifilter"): Extracts the coefficients.

likelihood signature(object = "uGARCHmultifilter"): Extracts the likelihood.

show signature(object = "uGARCHmultifilter"): Filter summary.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHmultiforecast, uGARCHmultifit and uGARCHmultispec.

uGARCHmultifit-class class: Univariate GARCH Multiple Fit Class

Description

Class for the univariate GARCH Multiple fit.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class GARCHfit, directly. Class rGARCH, by class GARCHfit, distance 3.

80 uGARCHmultiforecast-class

Methods

coef signature(object = "uGARCHmultifit"): Extracts the coefficients.

likelihood signature(object = "uGARCHmultifit"): Extracts the likelihood.

sigma signature(object = "uGARCHmultifit"): Extracts the conditional sigma values.

fitted signature(object = "uGARCHmultifit"): Extracts the fitted values.

residuals signature(object = "uGARCHmultifit"): Extracts the residuals. Optional logical ar-
gument standardize (default is FALSE) allows to extract the standardized residuals.

show signature(object = "uGARCHmultifit"): Fit summary.

Note

Methods for coef, likelihood, fitted, sigma and residuals provide extractor functions for those values.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHmultiforecast, uGARCHmultispec and uGARCHmultifilter.

uGARCHmultiforecast-class

class: Univariate GARCH Multiple Forecast Class

Description

Class for the univariate GARCH Multiple forecast.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class GARCHforecast, directly. Class rGARCH, by class GARCHforecast, distance 3.

Methods

sigma signature(x = "uGARCHmultiforecast"): extracts the n.ahead by (n.roll+1) by n.assets
array of conditional sigma forecasts.

fitted signature(x = "uGARCHforecast"): extracts the n.ahead by (n.roll+1) by n.assets array of
conditional mean forecasts.

show signature(object = "uGARCHforecast"): forecast summary.

uGARCHmultispec-class 81

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHmultifilter, uGARCHmultifit and uGARCHmultispec.

uGARCHmultispec-class class: Univariate GARCH Multiple Specification Class

Description

Class for the univariate GARCH Multiple specification.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "GARCHspec", directly. Class "rGARCH", by class "GARCHspec", distance 3.

Methods

show signature(object = "uGARCHmultispec"): specification summary.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHmultiforecast, uGARCHmultifit and uGARCHmultifilter.

82 uGARCHpath-class

uGARCHpath-class class: Univariate GARCH Path Simulation Class

Description

Class for the univariate GARCH Path simulation.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "uGARCHpath", directly. Class "rGARCH", by class "GARCHpath", distance 2.

Methods

sigma signature(object = "uGARCHpath"): Extracts the conditional sigma simulated values as
a matrix of size n.sim x m.sim.

fitted signature(object = "uGARCHpath"): Extracts the conditional mean simulated values as a
matrix of size n.sim x m.sim.

quantile signature(x = "uGARCHpath"): Calculates and returns, given a scalar for the probability
(additional argument “probs”), the conditional quantile of the simulated object as an n.sim by
m.sim matrix (with the same type of headings as the sigma and fitted methods).

plot signature(x = "uGARCHpath", y = "missing"): path simulation plots.

show signature(object = "uGARCHpath"): path simulation summary.

Note

The sigma and fitted methods are used to extract the matrix of simulated conditional sigma and
mean values. The as.data.frame method is globally deprecated as an extractor method in rugarch
with the exception of a few classes which still makes sense to use them.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHsim, uGARCHfit and uGARCHspec.

ugarchpath-methods 83

ugarchpath-methods function: Univariate GARCH Path Simulation

Description

Method for simulating the path of a GARCH model from a variety of univariate GARCH models.
This is a convenience function which does not require a fitted object (see note below).

Usage

ugarchpath(spec, n.sim=1000, n.start=0, m.sim=1, presigma=NA, prereturns=NA,
preresiduals=NA, rseed=NA, custom.dist=list(name=NA,distfit=NA), mexsimdata=NULL,
vexsimdata=NULL, trunclag=1000, ...)

Arguments

spec A univariate GARCH spec object of class uGARCHspec with the required pa-
rameters of the model supplied via the fixed.pars list argument or setfixed<-
method.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

presigma Allows the starting sigma values to be provided by the user.

prereturns Allows the starting return data to be provided by the user.

preresiduals Allows the starting residuals to be provided by the user.

rseed Optional seeding value(s) for the random number generator. For m.sim>1, it
is possible to provide either a single seed to initialize all values, or one seed
per separate simulation (i.e. m.sim seeds). However, in the latter case this may
result in some slight overhead depending on how large m.sim is. It is now rec-
ommended not to provide a value (i.e., keep the default of rseed == NA) and
to call set.seed only once in the beginning of the session, which will ensure
reproducibility.

custom.dist Optional density with fitted object from which to simulate. See notes below for
details.

mexsimdata List of matrices (size of list m.sim, with each matrix having n.sim rows) of
simulated external regressor-in-mean data. If the fit object contains external
regressors in the mean equation, this must be provided else will be assumed
zero.

vexsimdata List of matrices (size of list m.sim, with each matrix having n.sim rows) of
simulated external regressor-in-variance data. If the fit object contains external
regressors in the variance equation, this must be provided else will be assumed
zero.

trunclag This is the truncation lags for the binomial expansion in the FIGARCH model

84 uGARCHroll-class

... If the model is the “csGARCH”, then preq can be used to denote the previous
value of the permanent component of the variance model (q, e.g. tail(fit@fit$q,1))
so that the ugarchpath method with all pre-values included will evaluate to the
same result as the ugarchsim method with method equal to “sample” (assuming
the same random seeding values are used).

Details

This is a convenience method to allow path simulation of various GARCH models without the
need to supply a fit object as in the ugarchsim method. Instead, a GARCH spec object is required
with the fixed model parameters. The mcsGARCH model is not supported for the path method-use
ugarchsim instead.

Value

A uGARCHpath object containing details of the GARCH path simulation.

Author(s)

Alexios Ghalanos

See Also

For specification ugarchspec, fitting ugarchfit, filtering ugarchfilter, forecasting ugarchforecast,
simulation ugarchsim, rolling forecast and estimation ugarchroll, parameter distribution and un-
certainty ugarchdistribution, bootstrap forecast ugarchboot.

Examples

Not run:
create a basic sGARCH(1,1) spec:
spec=ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0), include.mean=TRUE, garchInMean =
FALSE, inMeanType = 2), distribution.model="sstd",
fixed.pars=list(mu=0.001,omega=0.00001, alpha1=0.05, beta1=0.90,
shape=4,skew=2))
simulate the path
path.sgarch = ugarchpath(spec, n.sim=3000, n.start=1, m.sim=1)

End(Not run)

uGARCHroll-class class: Univariate GARCH Rolling Forecast Class

Description

Class for the univariate GARCH rolling forecast.

uGARCHroll-class 85

Slots

forecast: Object of class "vector"

model: Object of class "vector"

Extends

Class "GARCHroll", directly. Class "rGARCH", by class "GARCHroll", distance 2.

Methods

as.data.frame signature(x = "uGARCHroll"): Extracts various values from object (see note).

plot signature(x = "uGARCHroll", y = "missing"): Roll result backtest plots (see note).

report signature(object = "uGARCHroll"): Roll backtest reports (see note).

resume signature(object = "uGARCHroll"): Resumes a rolling backtest which has non-converged
windows using alternative solver and control parameters.

fpm signature(object = "uGARCHroll"): Forecast performance measures.

coef signature(object = "uGARCHroll"): Extracts the list of coefficients for each estimated
window in the rolling backtest.

quantile signature(x = "uGARCHroll"): Calculates and returns, given a vector of probabilities
(additional argument “probs”), the conditional quantiles of the rolling object as an xts matrix.

pit signature(object = "uGARCHroll"): Calculates and returns the conditional probability inte-
gral transform given the realized data and forecast density.

convergence signature(object = "uGARCHroll"): Returns the convergence code for the estima-
tion windows, with 0 indicating that all have converged and 1 that there were non-converged
windows. In the latter case the ‘nonconverged’ attribute is also printed of those windows
which failed to converge.

show signature(object = "uGARCHroll"): Summary.

Note

The as.data.frame extractor method allows the extraction of either the conditional forecast den-
sity or the VaR. It takes additional argument which with valid values either “density” or “VaR”.
The coef method will return a list of the coefficients and their robust standard errors (assuming
the keep.coef argument was set to TRUE in the ugarchroll function), and the ending date of each
estimation window.
The plot method takes the following additional arguments:
1.which allows for either a numeric value of 1:4, else will default to “ask” for interactive printing
of the options in the command windows. Additionally, the value of “all” wil create a 2x2 chart with
all plots.
2.VaR.alpha for the Value at Risk backtest plot, this is the tail probability and defaults to 0.01.
3.density.support the support for the time varying density plot density, defaults to c(-0.15, 0.15) but
you should change this to something more appropriate for your data and period under consideration.
The report method takes the following additional arguments:
1.type for the report type. Valid values are “VaR” for the VaR report based on the unconditional and
conditional coverage tests for exceedances (discussed below) and “fpm” for forecast performance

86 ugarchroll-methods

measures.
2.VaR.alpha (for the VaR backtest report) is the tail probability and defaults to 0.01.
3.conf.level the confidence level upon which the conditional coverage hypothesis test will be based
on (defaults to 0.95).
Kupiec’s unconditional coverage test looks at whether the amount of expected versus actual ex-
ceedances given the tail probability of VaR actually occur as predicted, while the conditional cov-
erage test of Christoffersen is a joint test of the unconditional coverage and the independence of
the exceedances. Both the joint and the separate unconditional test are reported since it is always
possible that the joint test passes while failing either the independence or unconditional coverage
test. The fpm method (separately from report) takes additional logical argument summary, which
when TRUE will return the mean squared error (MSE), mean absolute error (MAE) and directional
accuracy of the forecast versus realized returns. When FALSE, it will return a data.frame of the
time series of squared (SE) errors, absolute errors (AE), directional hits (HITS), and a VaR Loss
function described in Gonzalez-Rivera, Lee, and Mishra (2004) for each coverage level where it
was calculated. This can then be compared, with the VaR loss of competing models using such tests
as the model confidence set (MCS) of Hansen, Lunde and Nason (2011).

Author(s)

Alexios Ghalanos

ugarchroll-methods function: Univariate GARCH Rolling Density Forecast and Backtest-
ing

Description

Method for creating rolling density forecast from ARMA-GARCH models with option for refitting
every n periods with parallel functionality.

Usage

ugarchroll(spec, data, n.ahead = 1, forecast.length = 500,
n.start = NULL, refit.every = 25, refit.window = c("recursive", "moving"),
window.size = NULL, solver = "hybrid", fit.control = list(),
solver.control = list(), calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.05),
cluster = NULL, keep.coef = TRUE, ...)

Arguments

spec A univariate GARCH specification object.

data A univariate dataset, ideally with time based index.

n.ahead The number of periods to forecast (only n.ahead=1 supported).
forecast.length

The length of the total forecast for which out of sample data from the dataset
will be used for testing.

ugarchroll-methods 87

n.start Instead of forecast.length, this determines the starting point in the dataset from
which to initialize the rolling forecast.

refit.every Determines every how many periods the model is re-estimated.
refit.window Whether the refit is done on an expanding window including all the previous

data or a moving window where all previous data is used for the first estimation
and then moved by a length equal to refit.every (unless the window.size option
is used instead).

window.size If not NULL, determines the size of the moving window in the rolling estima-
tion, which also determines the first point used.

solver The solver to use.
fit.control Control parameters parameters passed to the fitting function.
solver.control Control parameters passed to the solver.
calculate.VaR Whether to calculate forecast Value at Risk during the estimation.
VaR.alpha The Value at Risk tail level to calculate.
cluster A cluster object created by calling makeCluster from the parallel package. If it

is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

keep.coef Whether to return the list of coefficients and their robust standard errors.
... In the case of the realized GARCH (realGARCH) model, the ‘realizedVol’ is

required (an xts object), and optionally the ‘n.sim’ argument indicates the sam-
ples to generate for the realized vol forecast (does not affect the 1-ahead sigma
forecast).

Details

This is a wrapper function for creating rolling forecasts of the conditional GARCH density, and
optionally calculating the Value at Risk at specified levels. The argument refit.every determines
every how many periods the model is re-estimated. Given a dataset of length N, it is possible
to choose either how many periods from the end to use for out of sample forecasting (using the
forecast.length option), or the starting point for initializing the rolling forecast (and using all the
data after that for the out of sample forecast). Only rolling 1-ahead forecasts are supported spanning
the dataset, which should be useful for backtesting models. Anything more complicated should be
wrapped by the user by making use of the underlying functions in the package. The function
has 2 main methods for viewing the data, a standard plot method and a report methods (see class
uGARCHroll for details on how to use these methods). In case of no-convergence in some of all
the windows, a new method called resume now allows to pass the returned (non-converged) object
with new solver and control parameters to be re-estimated (only the non-converged windows are
re-estimated). Non-convergence here implies both a failure of the solver to converge to a solution
(global failure) OR a failure to invert the resulting Hessian (local failure). The convergence method
can be used on an object (aside from the printed warning) to print out the number of the non-
converged estimation windows.
Parallel functionality is now based entirely on the parallel package, and it is up to the user to pass a
cluster object, and then stop it once the routine is completed.

Value

An object of class uGARCHroll.

88 uGARCHsim-class

Author(s)

Alexios Ghalanos

See Also

For specification ugarchspec, fitting ugarchfit, filtering ugarchfilter, forecasting ugarchforecast,
simulation ugarchsim, parameter distribution and uncertainty ugarchdistribution, bootstrap
forecast ugarchboot.

Examples

Not run:
data(sp500ret)
spec = ugarchspec(distribution.model = "std")
mod = ugarchroll(spec, data = sp500ret, n.ahead = 1,
n.start = 1000, refit.every = 500, refit.window = "recursive",
solver = "hybrid", fit.control = list(),
calculate.VaR = TRUE, VaR.alpha = c(0.01, 0.025, 0.05),
keep.coef = TRUE)
report(mod, type="VaR", VaR.alpha = 0.01, conf.level = 0.95)
report(mod, type="fpm")

End(Not run)

uGARCHsim-class class: Univariate GARCH Simulation Class

Description

Class for the univariate GARCH simulation.

Extends

Class "GARCHsim", directly. Class "rGARCH", by class "GARCHsim", distance 2.

Slots

simulation: Object of class "vector" Holds data on the simulation.

model: Object of class "vector" The model specification common to all objects.

seed: Object of class "integer" The random seed used.

Methods

sigma signature(object = "uGARCHsim"): Extracts the conditional sigma simulated values as a
matrix of size n.sim x m.sim.

fitted signature(object = "uGARCHsim"): Extracts the conditional mean simulated values as a
matrix of size n.sim x m.sim.

ugarchsim-methods 89

quantile signature(object = "uGARCHsim", probs="numeric"): Calculates and returns, given
a scalar for the probability (additional argument “probs”), the conditional quantile of the sim-
ulated object as an n.sim by m.sim matrix (with the same type of headings as the sigma and
fitted methods).

plot signature(x = "uGARCHsim", y = "missing"): Simulation plots.

show signature(object = "uGARCHsim"): Simulation summary.

Note

The sigma and fitted methods are used to extract the matrix of simulated conditional sigma and
mean values. The as.data.frame method is globally deprecated as an extractor method in rugarch
with the exception of a few classes which still makes sense to use them.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHforecast, uGARCHfit and uGARCHspec.

Examples

Not run:
Basic GARCH(1,1) Spec
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
sim = ugarchsim(fit,n.sim=1000, n.start=1, m.sim=1, startMethod="sample")
sim
head(sigma(sim))

End(Not run)

ugarchsim-methods function: Univariate GARCH Simulation

Description

Method for simulation from a variety of univariate GARCH models.

Usage

ugarchsim(fit, n.sim = 1000, n.start = 0, m.sim = 1,
startMethod = c("unconditional", "sample"), presigma = NA, prereturns = NA,
preresiduals = NA, rseed = NA, custom.dist = list(name = NA, distfit = NA),
mexsimdata = NULL, vexsimdata = NULL, ...)

90 ugarchsim-methods

Arguments

fit A univariate GARCH fit object of class uGARCHfit.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

startMethod Starting values for the simulation. Valid methods are “unconditional” for the
expected values given the density, and “sample” for the ending values of the
actual data from the fit object.

presigma Allows the starting sigma values to be provided by the user.

prereturns Allows the starting return data to be provided by the user.

preresiduals Allows the starting residuals to be provided by the user.

rseed Optional seeding value(s) for the random number generator. For m.sim>1, it
is possible to provide either a single seed to initialize all values, or one seed
per separate simulation (i.e. m.sim seeds). However, in the latter case this may
result in some slight overhead depending on how large m.sim is. It is now rec-
ommended not to provide a value (i.e., keep the default of rseed == NA) and
to call set.seed only once in the beginning of the session, which will ensure
reproducibility.

custom.dist Optional density with fitted object from which to simulate. See notes below for
details.

mexsimdata List of matrices (size of list m.sim, with each matrix having n.sim rows) of
simulated external regressor-in-mean data. If the fit object contains external
regressors in the mean equation, this must be provided else will be assumed
zero.

vexsimdata List of matrices (size of list m.sim, with each matrix having n.sim rows) of
simulated external regressor-in-variance data. If the fit object contains external
regressors in the mean equation, this must be provided else will be assumed
zero.

... For the multiplicative component sGARCH model (mcsGARCH), the additional
argument ‘DailyVar’ is required and should be an xts object of length floor(n.sim/increments-
per-day) by m.sim of the the daily simulated variance to use with the intraday
data. In the case of the realized GARCH (realGARCH) model, the optional
argument ‘prerealized’ allows to pass starting values of the realized volatility
(should be of length q as was set in the ‘garchOrder(q,p)’ in the specification)

Details

The custom.dist option allows for defining a custom density which exists in the users workspace
with methods for “r” (sampling, e.g. rnorm) and “d” (density e.g. dnorm). It must take a single
fit object as its second argument. Alternatively, custom.dist can take any name in the name slot
(e.g.“sample”) and a matrix in the fit slot with dimensions equal to m.sim (columns) and n.sim
(rows). It is understood that what is supplied are the standardized (0,1) innovations and not the
unstandardized residuals. The usefulness of this becomes apparent when one is considering the
copula-GARCH approach or the bootstrap method.

uGARCHspec-class 91

Value

A uGARCHsim object containing details of the GARCH simulation.

Author(s)

Alexios Ghalanos

See Also

For specification ugarchspec, fitting ugarchfit, filtering ugarchfilter, forecasting ugarchforecast,
rolling forecast and estimation ugarchroll, parameter distribution and uncertainty ugarchdistribution,
bootstrap forecast ugarchboot.

Examples

Not run:
Basic GARCH(1,1) Spec
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
sim = ugarchsim(fit,n.sim=1000, n.start=1, m.sim=1, startMethod="sample")
sim
head(sigma(sim))

End(Not run)

uGARCHspec-class class: Univariate GARCH Specification Class

Description

Class for the univariate GARCH specification.

Extends

Class "GARCHspec", directly. Class "rGARCH", by class "GARCHspec", distance 2.

Slots

model: Object of class "vector" The model specification common to all objects.

Methods

show signature(object = "uGARCHspec"): Specification summary.

setfixed<- signature(object = "uGARCHspec", value = "vector"): Sets the fixed parameters
(which must be supplied as a named list).

setstart<- signature(object = "uGARCHspec", value = "vector"): Sets the starting parame-
ters (which must be supplied as a named list).

92 ugarchspec-methods

setbounds<- signature(object = "uGARCHspec", value = "vector"): Sets the parameters lower
and upper bounds, which must be supplied as a named list with each parameter being a nu-
meric vector of length 2 i.e. "alpha1"=c(0,1)). If the vector is of length 1, then this is assumed
to be the lower bound, and the upper bound will be set to its default value prior to estimation.
Some of the parameters in the fGARCH model are not allowed to take on custom bounds
(since they determine the class of the model) nor the beta parameter(s) in the iGARCH model.

uncmean signature(object = "uGARCHspec"): Unconditional mean of model for a specification
with fixed.pars list.

uncvariance signature(object = "uGARCHspec"): Unconditional variance of model for a spec-
ification with fixed.pars list.

uncvariance signature(object = "uGARCHspec", pars = "missing", distribution = "missing",
model = "missing", submodel = "missing", vexdata = "missing"): Calculates and returns
the long run unconditional variance of the GARCH fit given a uGARCHfit object.

halflife signature(object = "uGARCHspec", pars = "missing",distribution = "missing", model
= "missing"): Calculates and returns the halflife of the GARCH fit variance given a uGARCHspec
object with fixed parameters.

persistence signature(object = "uGARCHfit", pars = "missing",distribution = "missing",
model = "missing"): Calculates and returns the persistence of the GARCH fit model given a
uGARCHspec object with fixed parameters.

Author(s)

Alexios Ghalanos

See Also

Classes uGARCHfit, uGARCHsim and uGARCHforecast.

Examples

Basic GARCH(1,1) Spec
spec = ugarchspec()
spec

ugarchspec-methods function: Univariate GARCH Specification

Description

Method for creating a univariate GARCH specification object prior to fitting.

Usage

ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1),
submodel = NULL, external.regressors = NULL, variance.targeting = FALSE),
mean.model = list(armaOrder = c(1, 1), include.mean = TRUE, archm = FALSE,
archpow = 1, arfima = FALSE, external.regressors = NULL, archex = FALSE),
distribution.model = "norm", start.pars = list(), fixed.pars = list(), ...)

ugarchspec-methods 93

Arguments

variance.model List containing the variance model specification:
model Valid models (currently implemented) are “sGARCH”, “fGARCH”, “eGARCH”,
“gjrGARCH”, “apARCH” and “iGARCH” and “csGARCH”.
garchOrder The ARCH (q) and GARCH (p) orders.
submodel If the model is “fGARCH”, valid submodels are “GARCH”, “TGARCH”,
“AVGARCH”, “NGARCH”, “NAGARCH”, “APARCH”,“GJRGARCH” and “ALL-
GARCH”.
external.regressors A matrix object containing the external regressors to
include in the variance equation with as many rows as will be included in the
data (which is passed in the fit function). variance.targeting (Logical or Nu-
meric) If logical, indicates whether to use variance targeting for the conditional
variance intercept “omega”, else if numeric, the value provided is used instead
of the unconditional variance for the calculation of the intercept (in combination
with the persistence value). Care should be taken if using the numeric option for
apARCH and fGARCH models since the intercept is not the variance but sigma
raised to the power of some positive value. Finally, if scaling is used (from the
fit.control option in ugarchfit), the value provided is adjusted accordingly by
the routine.

mean.model List containing the mean model specification:
armaOrder The autoregressive (ar) and moving average (ma) orders (if any).
include.mean Whether to include the mean.
archm Whether to include ARCH volatility in the mean regression.
archpow Indicates whether to use st.deviation (1) or variance (2) in the ARCH
in mean regression.
arfima Whether to fractional differencing in the ARMA regression.
external.regressors A matrix object containing the external regressors to
include in the mean equation with as many rows as will be included in the data
(which is passed in the fit function).
archex (integer) Whether to multiply the last ’archex’ external regressors by the
conditional standard deviation.

distribution.model

The conditional density to use for the innovations. Valid choices are “norm”
for the normal distibution, “snorm” for the skew-normal distribution, “std” for
the student-t, “sstd” for the skew-student, “ged” for the generalized error distri-
bution, “sged” for the skew-generalized error distribution, “nig” for the normal
inverse gaussian distribution, “ghyp” for the Generalized Hyperbolic, and “jsu”
for Johnson’s SU distribution. Note that some of the distributions are taken
from the fBasics package and implenented locally here for convenience. The
“jsu” distribution is the reparametrized version from the “gamlss” package.

start.pars List of staring parameters for the optimization routine. These are not usually
required unless the optimization has problems converging.

fixed.pars List of parameters which are to be kept fixed during the optimization. It is
possible that you designate all parameters as fixed so as to quickly recover just
the results of some previous work or published work. The optional argument
“fixed.se” in the ugarchfit function indicates whether to calculate standard
errors for those parameters fixed during the post optimization stage.

94 ugarchspec-methods

... .

Details

The specification allows for a wide choice in univariate GARCH models, distributions, and mean
equation modelling. For the “fGARCH” model, this represents Hentschel’s omnibus model which
subsumes many others.
For the mean equation, ARFIMAX is fully supported in fitting, forecasting and simulation. There is
also an option to multiply the external regressors by the conditional standard deviation, which may
be of use for example in calculating the correlation coefficient in a CAPM type setting.
The “iGARCH” implements the integrated GARCH model. For the “EWMA” model just set
“omega” to zero in the fixed parameters list.
The asymmetry term in the rugarch package, for all implemented models, follows the order of the
arch parameter alpha.
Variance targeting, referred to in Engle and Mezrich (1996), replaces the intercept “omega” in the
variance equation by 1 minus the persistence multiplied by the unconditional variance which is
calculated by its sample counterpart in the squared residuals during estimation. In the presence of
external regressors in the variance equation, the sample average of the external regresssors is mul-
tiplied by their coefficient and subtracted from the variance target.
In order to understand which parameters can be entered in the start.pars and fixed.pars optional ar-
guments, the list below exposes the names used for the parameters across the various models:(note
that when a parameter is followed by a number, this represents the order of the model. Just in-
crement the number for higher orders, with the exception of the component sGARCH permanent
component parameters which are fixed to have a lag-1 autoregressive structure.):

• Mean Model

– constant: mu

– AR term: ar1

– MA term: ma1

– ARCH-in-mean: archm

– exogenous regressors: mxreg1

– arfima: arfima

• Distribution Model

– skew: skew

– shape: shape

– ghlambda: lambda (for GHYP distribution)

ugarchspec-methods 95

• Variance Model (common specs)

– constant: omega

– ARCH term: alpha1

– GARCH term: beta1

– exogenous regressors: vxreg1

• Variance Model (GJR, EGARCH)

– assymetry term: gamma1

• Variance Model (APARCH)

– assymetry term: gamma1

– power term: delta

• Variance Model (FGARCH)

– assymetry term1 (rotation): eta11

– assymetry term2 (shift): eta21

– power term1(shock): delta

– power term2(variance): lambda

• Variance Model (csGARCH)

– permanent component autoregressive term (rho): eta11

– permanent component shock term (phi): eta21

– permanent component intercept: omega

– transitory component ARCH term: alpha1

– transitory component GARCH term: beta1

The terms defined above are better explained in the vignette which provides each model’s specifica-
tion and exact representation. For instance, in the eGARCH model, both alpha and gamma jointly
determine the assymetry, and relate to the magnitude and sign of the standardized innovations.

96 VaRDurTest

Value

A uGARCHspec object containing details of the GARCH specification.

Author(s)

Alexios Ghalanos

Examples

a standard specification
spec1 = ugarchspec()
spec1
an example which keep the ar1 and ma1 coefficients fixed:
spec2 = ugarchspec(mean.model=list(armaOrder=c(2,2),
fixed.pars=list(ar1=0.3,ma1=0.3)))
spec2
an example of the EWMA Model
spec3 = ugarchspec(variance.model=list(model="iGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0), include.mean=TRUE),
distribution.model="norm", fixed.pars=list(omega=0))

VaRDurTest VaR Duration Test

Description

Implements the VaR Duration Test of Christoffersen and Pelletier.

Usage

VaRDurTest(alpha, actual, VaR, conf.level = 0.95)

Arguments

alpha The quantile (coverage) used for the VaR.

actual A numeric vector of the actual (realized) values.

VaR The numeric vector of VaR.

conf.level The confidence level at which the Null Hypothesis is evaluated.

Details

The duration of time between VaR violations (no-hits) should ideally be independent and not clus-
ter. Under the null hypothesis of a correctly specified risk model, the no-hit duration should have
no memory. Since the only continuous distribution which is memory free is the exponential, the
test can conducted on any distribution which embeds the exponential as a restricted case, and a
likelihood ratio test then conducted to see whether the restriction holds. Following Christoffersen
and Pelletier (2004), the Weibull distribution is used with parameter ‘b=1’ representing the case of

VaRDurTest 97

the exponential. A future release will include the choice of using a bootstrap method to evaluate
the p-value, and until then care should be taken when evaluating series of length less than 1000 as a
rule of thumb.

Value

A list with the following items:

b The estimated Weibull parameter which when restricted to the value of 1 results
in the Exponential distribution.

uLL The unrestricted Log-Likelihood value.

rLL The restricted Log-Likelihood value.

LRp The Likelihood Ratio Test Statistic.

H0 The Null Hypothesis.

Decision The on H0 given the confidence level

Author(s)

Alexios Ghalanos

References

Christoffersen, P. and Pelletier, D. 2004, Backtesting value-at-risk: A duration-based approach,
Journal of Financial Econometrics, 2(1), 84–108.

Examples

Not run:
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "sstd")
fit = ugarchfit(spec, data = dji30ret[1:1000, 1, drop = FALSE])
spec2 = spec
setfixed(spec2)<-as.list(coef(fit))
filt = ugarchfilter(spec2, dji30ret[1001:2500, 1, drop = FALSE], n.old = 1000)
actual = dji30ret[1001:2500,1]
location+scale invariance allows to use [mu + sigma*q(p,0,1,skew,shape)]
VaR = fitted(filt) + sigma(filt)*qdist("sstd", p=0.05, mu = 0, sigma = 1,
skew = coef(fit)["skew"], shape=coef(fit)["shape"])
print(VaRDurTest(0.05, actual, VaR))

Try with the Normal Distribution (it fails)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "norm")
fit = ugarchfit(spec, data = dji30ret[1:1000, 1, drop = FALSE])
spec2 = spec
setfixed(spec2)<-as.list(coef(fit))
filt = ugarchfilter(spec2, dji30ret[1001:2500, 1, drop = FALSE], n.old = 1000)
actual = dji30ret[1001:2500,1]

98 VaRloss

location+scale invariance allows to use [mu + sigma*q(p,0,1,skew,shape)]
VaR = fitted(filt) + sigma(filt)*qdist("norm", p=0.05, mu = 0, sigma = 1)
print(VaRDurTest(0.05, actual, VaR))

End(Not run)

VaRloss Value at Risk loss function of Gonzalez-Rivera, Lee, and Mishra
(2004)

Description

Returns the VaR loss function described in Gonzalez-Rivera, Lee, and Mishra (2004) which is an
appropriate function on which to compare models using such methods as the Model Confidence Set
(MCS).

Usage

VaRloss(alpha, actual, VaR)

Arguments

alpha The quantile (coverage) used for the VaR.

actual A numeric vector of the actual (realized) values.

VaR The numeric vector of VaR.

Author(s)

Alexios Ghalanos

References

Gonzalez-Rivera, G., Lee, T. H., and Mishra, S. 2004, Forecasting volatility: A reality check based
on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of
Forecasting, 20(4), 629–645.

VaRplot 99

VaRplot Value at Risk Exceedances plot

Description

Plot the VaR at a given coverage rate against the realized returns for the same period, highlighting
the exceedances.

Usage

VaRplot(alpha, actual, VaR, title = paste("Daily Returns and Value-at-Risk
Exceedances\n","(alpha=", alpha,")",sep=""), ylab = "Daily Log Returns",
xlab = "Time")

Arguments

alpha The quantile (coverage) used for the VaR.

actual An xts object of the realized returns.

VaR An xts object of the forecast VaR, at the given coverage rate p, with the same
index as the actual.

title Plot title.

xlab Plot x-axis label.

ylab Plot y-axis label.

Author(s)

Alexios Ghalanos

VaRTest Value at Risk Exceedances Test

Description

Implements the unconditional and conditional coverage Value at Risk Exceedances Test.

Usage

VaRTest(alpha = 0.05, actual, VaR, conf.level = 0.95)

Arguments

alpha The quantile (coverage) used for the VaR.

actual A numeric vector of the actual (realized) values.

VaR The numeric vector of VaR.

conf.level The confidence level at which the Null Hypothesis is evaluated.

100 VaRTest

Details

The test implements both the unconditional (Kupiec) and conditional(Christoffersen) coverage tests
for the correct number of exceedances. See the references for further details.

Value

A list with the following items:

expected.exceed

The expected number of exceedances (length actual x coverage).

actual.exceed The actual number of exceedances.

uc.H0 The unconditional coverage test Null Hypothesis.

uc.LRstat The unconditional coverage test Likelihood Ratio statistic.

uc.critical The unconditional coverage test critical value.

uc.LRp The unconditional coverage test p-value.

uc.H0 The unconditional coverage test Null Hypothesis.

uc.Decision The unconditional coverage test Decision on H0 given the confidence level.

cc.H0 The conditional coverage test Null Hypothesis.

cc.LRstat The conditional coverage test Likelihood Ratio statistic.

cc.critical The conditional coverage test critical value.

cc.LRp The conditional coverage test p-value.

cc.H0 The conditional coverage test Null Hypothesis.

cc.Decision The conditional coverage test Decision on H0 given the confidence level.

Author(s)

Alexios Ghalanos

References

Christoffersen, P. (1998), Evaluating Interval Forecasts, International Economic Review, 39, 841–
862.
Christoffersen, P., Hahn,J. and Inoue, A. (2001), Testing and Comparing Value-at-Risk Measures,
Journal of Empirical Finance, 8, 325–342.

Examples

Not run:
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "sstd")
fit = ugarchfit(spec, data = dji30ret[1:1000, 1, drop = FALSE])
spec2 = spec
setfixed(spec2)<-as.list(coef(fit))
filt = ugarchfilter(spec2, dji30ret[1001:2500, 1, drop = FALSE], n.old = 1000)

VaRTest 101

actual = dji30ret[1001:2500,1]
location+scale invariance allows to use [mu + sigma*q(p,0,1,skew,shape)]
VaR = fitted(filt) + sigma(filt)*qdist("sstd", p=0.05, mu = 0, sigma = 1,
skew = coef(fit)["skew"], shape=coef(fit)["shape"])
print(VaRTest(0.05, as.numeric(actual), as.numeric(VaR)))

End(Not run)

Index

∗ classes
ARFIMA-class, 6
ARFIMAdistribution-class, 9
ARFIMAfilter-class, 11
ARFIMAfit-class, 13
ARFIMAforecast-class, 15
ARFIMAmultifilter-class, 18
ARFIMAmultifit-class, 18
ARFIMAmultiforecast-class, 19
ARFIMAmultispec-class, 20
ARFIMApath-class, 20
ARFIMAroll-class, 22
ARFIMAsim-class, 25
ARFIMAspec-class, 26
GARCHboot-class, 38
GARCHdistribution-class, 39
GARCHfilter-class, 40
GARCHfit-class, 40
GARCHforecast-class, 41
GARCHpath-class, 42
GARCHroll-class, 42
GARCHsim-class, 43
GARCHspec-class, 44
GARCHtests-class, 44
rGARCH-class, 55
uGARCHboot-class, 59
uGARCHdistribution-class, 63
uGARCHfilter-class, 66
uGARCHfit-class, 69
uGARCHforecast-class, 75
uGARCHmultifilter-class, 79
uGARCHmultifit-class, 79
uGARCHmultiforecast-class, 80
uGARCHmultispec-class, 81
uGARCHpath-class, 82
uGARCHroll-class, 84
uGARCHsim-class, 88
uGARCHspec-class, 91

∗ datasets

dji30ret, 36
dmbp, 36
sp500ret, 57
spyreal, 58

∗ methods
arfimadistribution-methods, 10
arfimafilter-methods, 12
arfimafit-methods, 14
arfimaforecast-methods, 16
arfimapath-methods, 21
arfimaroll-methods, 23
arfimasim-methods, 25
arfimaspec-methods, 27
multifit-methods, 51
multiforecast-methods, 52
multispec-methods, 53
ugarchboot-methods, 60
ugarchdistribution-methods, 64
ugarchfit-methods, 73
ugarchforecast-methods, 77
ugarchpath-methods, 83
ugarchroll-methods, 86
ugarchsim-methods, 89
ugarchspec-methods, 92

ARFIMA, 9, 11, 13, 16, 18–20, 22, 25, 27
ARFIMA-class, 6
arfimacv, 7
ARFIMAdistribution, 11, 16
arfimadistribution, 9
arfimadistribution

(arfimadistribution-methods),
10

arfimadistribution,ANY-method
(arfimadistribution-methods),
10

arfimadistribution,ARFIMAfit-method
(arfimadistribution-methods),
10

102

INDEX 103

arfimadistribution,ARFIMAspec-method
(arfimadistribution-methods),
10

ARFIMAdistribution-class, 9
arfimadistribution-methods, 10
ARFIMAfilter, 13
arfimafilter (arfimafilter-methods), 12
arfimafilter,ANY-method

(arfimafilter-methods), 12
arfimafilter,ARFIMAspec-method

(arfimafilter-methods), 12
ARFIMAfilter-class, 11
arfimafilter-methods, 12
ARFIMAfit, 10, 15, 17, 26
arfimafit, 12, 14, 17, 28
arfimafit (arfimafit-methods), 14
arfimafit,ANY-method

(arfimafit-methods), 14
arfimafit,ARFIMAspec-method

(arfimafit-methods), 14
ARFIMAfit-class, 13
arfimafit-methods, 14
ARFIMAforecast, 17
arfimaforecast, 15
arfimaforecast

(arfimaforecast-methods), 16
arfimaforecast,ANY-method

(arfimaforecast-methods), 16
arfimaforecast,ARFIMAfit-method

(arfimaforecast-methods), 16
arfimaforecast,ARFIMAspec-method

(arfimaforecast-methods), 16
ARFIMAforecast-class, 15
arfimaforecast-methods, 16
ARFIMAmultifilter, 50
ARFIMAmultifilter-class, 18
ARFIMAmultifit, 50–52
ARFIMAmultifit-class, 18
ARFIMAmultiforecast, 53
ARFIMAmultiforecast-class, 19
ARFIMAmultispec, 50–53
ARFIMAmultispec-class, 20
ARFIMApath, 21
arfimapath (arfimapath-methods), 21
arfimapath,ANY-method

(arfimapath-methods), 21
arfimapath,ARFIMAspec-method

(arfimapath-methods), 21

ARFIMApath-class, 20
arfimapath-methods, 21
ARFIMAroll, 16, 24
arfimaroll (arfimaroll-methods), 23
arfimaroll,ANY-method

(arfimaroll-methods), 23
arfimaroll,ARFIMAspec-method

(arfimaroll-methods), 23
ARFIMAroll-class, 22
arfimaroll-methods, 23
ARFIMAsim, 26
arfimasim, 21
arfimasim (arfimasim-methods), 25
arfimasim,ANY-method

(arfimasim-methods), 25
arfimasim,ARFIMAfit-method

(arfimasim-methods), 25
ARFIMAsim-class, 25
arfimasim-methods, 25
ARFIMAspec, 10, 12, 14, 17, 21, 28, 53
arfimaspec, 15, 51
arfimaspec (arfimaspec-methods), 27
arfimaspec,ANY-method

(arfimaspec-methods), 27
ARFIMAspec-class, 26
arfimaspec-methods, 27
as.data.frame,ARFIMAdistribution-method

(ARFIMAdistribution-class), 9
as.data.frame,ARFIMAroll-method

(ARFIMAroll-class), 22
as.data.frame,uGARCHboot-method

(uGARCHboot-class), 59
as.data.frame,uGARCHdistribution-method

(uGARCHdistribution-class), 63
as.data.frame,uGARCHroll-method

(uGARCHroll-class), 84
autoarfima, 29

BerkowitzTest, 30, 48

coef,ARFIMAfilter-method
(ARFIMAfilter-class), 11

coef,ARFIMAfit-method
(ARFIMAfit-class), 13

coef,ARFIMAmultifilter-method
(ARFIMAmultifilter-class), 18

coef,ARFIMAmultifit-method
(ARFIMAmultifit-class), 18

104 INDEX

coef,ARFIMAroll-method
(ARFIMAroll-class), 22

coef,uGARCHfilter-method
(uGARCHfilter-class), 66

coef,uGARCHfit-method
(uGARCHfit-class), 69

coef,uGARCHmultifilter-method
(uGARCHmultifilter-class), 79

coef,uGARCHmultifit-method
(uGARCHmultifit-class), 79

coef,uGARCHroll-method
(uGARCHroll-class), 84

confint, 70
confint,uGARCHfit-method

(uGARCHfit-class), 69
convergence (uGARCHfit-class), 69
convergence,ANY-method

(uGARCHfit-class), 69
convergence,ARFIMAfit-method

(ARFIMAfit-class), 13
convergence,uGARCHfit-method

(uGARCHfit-class), 69
convergence,uGARCHroll-method

(uGARCHroll-class), 84

DACTest, 32
DateTimeUtilities, 34
ddist (rgarchdist), 55
distplot (rgarchdist), 55
dji30ret, 36
dkurtosis (rgarchdist), 55
dmbp, 36
dskewness (rgarchdist), 55

ESTest, 37

fitdist (rgarchdist), 55
fitted,ARFIMAfilter-method

(ARFIMAfilter-class), 11
fitted,ARFIMAfit-method

(ARFIMAfit-class), 13
fitted,ARFIMAforecast-method

(ARFIMAforecast-class), 15
fitted,ARFIMAmultifilter-method

(ARFIMAmultifilter-class), 18
fitted,ARFIMAmultifit-method

(ARFIMAmultifit-class), 18
fitted,ARFIMAmultiforecast-method

(ARFIMAmultiforecast-class), 19

fitted,ARFIMApath-method
(ARFIMApath-class), 20

fitted,ARFIMAsim-method
(ARFIMAsim-class), 25

fitted,uGARCHfilter-method
(uGARCHfilter-class), 66

fitted,uGARCHfit-method
(uGARCHfit-class), 69

fitted,uGARCHforecast-method
(uGARCHforecast-class), 75

fitted,uGARCHmultifilter-method
(uGARCHmultifilter-class), 79

fitted,uGARCHmultifit-method
(uGARCHmultifit-class), 79

fitted,uGARCHmultiforecast-method
(uGARCHmultiforecast-class), 80

fitted,uGARCHpath-method
(uGARCHpath-class), 82

fitted,uGARCHsim-method
(uGARCHsim-class), 88

fpm (uGARCHforecast-class), 75
fpm,ANY-method (uGARCHforecast-class),

75
fpm,ARFIMAforecast-method

(ARFIMAforecast-class), 15
fpm,ARFIMAroll-method

(ARFIMAroll-class), 22
fpm,uGARCHforecast-method

(uGARCHforecast-class), 75
fpm,uGARCHroll-method

(uGARCHroll-class), 84
ftseq (DateTimeUtilities), 34

GARCHboot, 59
GARCHboot-class, 38
GARCHdistribution, 63
GARCHdistribution-class, 39
GARCHfilter, 66, 79
GARCHfilter-class, 40
GARCHfit, 69, 79
GARCHfit-class, 40
GARCHforecast, 75, 80
GARCHforecast-class, 41
GARCHpath-class, 42
GARCHroll, 85
GARCHroll-class, 42
GARCHsim, 88
GARCHsim-class, 43
GARCHspec, 81, 91

INDEX 105

GARCHspec-class, 44
GARCHtests-class, 44
generatefwd (DateTimeUtilities), 34
getspec (uGARCHfit-class), 69
getspec,ANY-method (uGARCHfit-class), 69
getspec,ARFIMAfit-method

(ARFIMAfit-class), 13
getspec,uGARCHfit-method

(uGARCHfit-class), 69
ghyptransform, 5, 45
GMMTest, 46
gof (uGARCHfit-class), 69
gof,ANY,ANY-method (uGARCHfit-class), 69
gof,uGARCHfilter,numeric-method

(uGARCHfilter-class), 66
gof,uGARCHfit,numeric-method

(uGARCHfit-class), 69

halflife (uGARCHfit-class), 69
halflife,ANY,ANY,ANY,ANY,ANY-method

(uGARCHfit-class), 69
halflife,missing,numeric,character,character,ANY-method

(uGARCHfit-class), 69
halflife,uGARCHfilter,missing,missing,missing,missing-method

(uGARCHfilter-class), 66
halflife,uGARCHfit,missing,missing,missing,missing-method

(uGARCHfit-class), 69
halflife,uGARCHspec,missing,missing,missing,missing-method

(uGARCHspec-class), 91
HLTest, 47

infocriteria (uGARCHfit-class), 69
infocriteria,ANY-method

(uGARCHfit-class), 69
infocriteria,ARFIMAfilter-method

(ARFIMAfilter-class), 11
infocriteria,ARFIMAfit-method

(ARFIMAfit-class), 13
infocriteria,uGARCHfilter-method

(uGARCHfilter-class), 66
infocriteria,uGARCHfit-method

(uGARCHfit-class), 69

likelihood (uGARCHfit-class), 69
likelihood,ANY-method

(uGARCHfit-class), 69
likelihood,ARFIMAfilter-method

(ARFIMAfilter-class), 11

likelihood,ARFIMAfit-method
(ARFIMAfit-class), 13

likelihood,ARFIMAmultifilter-method
(ARFIMAmultifilter-class), 18

likelihood,ARFIMAmultifit-method
(ARFIMAmultifit-class), 18

likelihood,uGARCHfilter-method
(uGARCHfilter-class), 66

likelihood,uGARCHfit-method
(uGARCHfit-class), 69

likelihood,uGARCHmultifilter-method
(uGARCHmultifilter-class), 79

likelihood,uGARCHmultifit-method
(uGARCHmultifit-class), 79

mcsTest, 49
move (DateTimeUtilities), 34
multifilter, 4
multifilter (multifilter-methods), 50
multifilter,ANY-method

(multifilter-methods), 50
multifilter,ARFIMAmultifit-method

(multifilter-methods), 50
multifilter,ARFIMAmultispec-method

(multifilter-methods), 50
multifilter,uGARCHmultifit-method

(multifilter-methods), 50
multifilter,uGARCHmultispec-method

(multifilter-methods), 50
multifilter-methods, 50
multifit, 4
multifit (multifit-methods), 51
multifit,ANY-method (multifit-methods),

51
multifit,ARFIMAmultispec-method

(multifit-methods), 51
multifit,uGARCHmultispec-method

(multifit-methods), 51
multifit-methods, 51
multiforecast, 4
multiforecast (multiforecast-methods),

52
multiforecast,ANY-method

(multiforecast-methods), 52
multiforecast,ARFIMAmultifit-method

(multiforecast-methods), 52
multiforecast,ARFIMAmultispec-method

(multiforecast-methods), 52

106 INDEX

multiforecast,uGARCHmultifit-method
(multiforecast-methods), 52

multiforecast,uGARCHmultispec-method
(multiforecast-methods), 52

multiforecast-methods, 52
multispec, 4
multispec (multispec-methods), 53
multispec,ANY-method

(multispec-methods), 53
multispec,vector-method

(multispec-methods), 53
multispec-methods, 53

newsimpact (uGARCHfit-class), 69
newsimpact,ANY-method

(uGARCHfit-class), 69
newsimpact,uGARCHfilter-method

(uGARCHfilter-class), 66
newsimpact,uGARCHfit-method

(uGARCHfit-class), 69
nyblom (uGARCHfit-class), 69
nyblom,ANY-method (uGARCHfit-class), 69
nyblom,uGARCHfit-method

(uGARCHfit-class), 69

pdist (rgarchdist), 55
persistence (uGARCHfit-class), 69
persistence,ANY,ANY,ANY,ANY,ANY-method

(uGARCHfit-class), 69
persistence,missing,numeric,character,character,ANY-method

(uGARCHfit-class), 69
persistence,uGARCHfilter,missing,missing,missing,missing-method

(uGARCHfilter-class), 66
persistence,uGARCHfit,missing,missing,missing,missing-method

(uGARCHfit-class), 69
persistence,uGARCHspec,missing,missing,missing,missing-method

(uGARCHspec-class), 91
pit (uGARCHfit-class), 69
pit,ANY-method (uGARCHfit-class), 69
pit,uGARCHfilter-method

(uGARCHfilter-class), 66
pit,uGARCHfit-method (uGARCHfit-class),

69
pit,uGARCHroll-method

(uGARCHroll-class), 84
plot,uGARCHboot,missing-method

(uGARCHboot-class), 59
plot,uGARCHdistribution,missing-method

(uGARCHdistribution-class), 63

plot,uGARCHfilter,missing-method
(uGARCHfilter-class), 66

plot,uGARCHfit,missing-method
(uGARCHfit-class), 69

plot,uGARCHforecast,missing-method
(uGARCHforecast-class), 75

plot,uGARCHpath,missing-method
(uGARCHpath-class), 82

plot,uGARCHroll,missing-method
(uGARCHroll-class), 84

plot,uGARCHsim,missing-method
(uGARCHsim-class), 88

qdist (rgarchdist), 55
qgh (qnig), 54
qnig, 54
quantile,uGARCHfilter-method

(uGARCHfilter-class), 66
quantile,uGARCHfit-method

(uGARCHfit-class), 69
quantile,uGARCHforecast-method

(uGARCHforecast-class), 75
quantile,uGARCHpath-method

(uGARCHpath-class), 82
quantile,uGARCHroll-method

(uGARCHroll-class), 84
quantile,uGARCHsim-method

(uGARCHsim-class), 88

rdist (rgarchdist), 55
reduce (uGARCHfit-class), 69
reduce,ANY-method (uGARCHfit-class), 69
reduce,ARFIMAfit-method

(ARFIMAfit-class), 13
reduce,uGARCHfit-method

(uGARCHfit-class), 69
report (uGARCHroll-class), 84
report,ANY-method (uGARCHroll-class), 84
report,ARFIMAroll-method

(ARFIMAroll-class), 22
report,uGARCHroll-method

(uGARCHroll-class), 84
residuals,ARFIMAfilter-method

(ARFIMAfilter-class), 11
residuals,ARFIMAfit-method

(ARFIMAfit-class), 13
residuals,ARFIMAmultifilter-method

(ARFIMAmultifilter-class), 18

INDEX 107

residuals,ARFIMAmultifit-method
(ARFIMAmultifit-class), 18

residuals,uGARCHfilter-method
(uGARCHfilter-class), 66

residuals,uGARCHfit-method
(uGARCHfit-class), 69

residuals,uGARCHmultifilter-method
(uGARCHmultifilter-class), 79

residuals,uGARCHmultifit-method
(uGARCHmultifit-class), 79

resume, 24, 87
resume (uGARCHroll-class), 84
resume,ANY-method (uGARCHroll-class), 84
resume,ARFIMAroll-method

(ARFIMAroll-class), 22
resume,uGARCHroll-method

(uGARCHroll-class), 84
rGARCH, 6, 9, 11, 13, 16, 18–20, 22, 25, 27,

38–44, 59, 63, 66, 69, 75, 79–82, 85,
88, 91

rGARCH-class, 55
rgarchdist, 4, 55
rugarch (rugarch-package), 4
rugarch-package, 4

setbounds<- (uGARCHspec-class), 91
setbounds<-,ANY,ANY-method

(uGARCHspec-class), 91
setbounds<-,ARFIMAspec,vector-method

(ARFIMAspec-class), 26
setbounds<-,uGARCHspec,vector-method

(uGARCHspec-class), 91
setfixed<- (uGARCHspec-class), 91
setfixed<-,ANY,ANY-method

(uGARCHspec-class), 91
setfixed<-,ARFIMAspec,vector-method

(ARFIMAspec-class), 26
setfixed<-,uGARCHspec,vector-method

(uGARCHspec-class), 91
setstart<- (uGARCHspec-class), 91
setstart<-,ANY,ANY-method

(uGARCHspec-class), 91
setstart<-,ARFIMAspec,vector-method

(ARFIMAspec-class), 26
setstart<-,uGARCHspec,vector-method

(uGARCHspec-class), 91
show,ARFIMAdistribution-method

(ARFIMAdistribution-class), 9

show,ARFIMAfilter-method
(ARFIMAfilter-class), 11

show,ARFIMAfit-method
(ARFIMAfit-class), 13

show,ARFIMAforecast-method
(ARFIMAforecast-class), 15

show,ARFIMAmultifilter-method
(ARFIMAmultifilter-class), 18

show,ARFIMAmultifit-method
(ARFIMAmultifit-class), 18

show,ARFIMAmultiforecast-method
(ARFIMAmultiforecast-class), 19

show,ARFIMAmultispec-method
(ARFIMAmultispec-class), 20

show,ARFIMApath-method
(ARFIMApath-class), 20

show,ARFIMAroll-method
(ARFIMAroll-class), 22

show,ARFIMAsim-method
(ARFIMAsim-class), 25

show,ARFIMAspec-method
(ARFIMAspec-class), 26

show,uGARCHboot-method
(uGARCHboot-class), 59

show,uGARCHdistribution-method
(uGARCHdistribution-class), 63

show,uGARCHfilter-method
(uGARCHfilter-class), 66

show,uGARCHfit-method
(uGARCHfit-class), 69

show,uGARCHforecast-method
(uGARCHforecast-class), 75

show,uGARCHmultifilter-method
(uGARCHmultifilter-class), 79

show,uGARCHmultifit-method
(uGARCHmultifit-class), 79

show,uGARCHmultiforecast-method
(uGARCHmultiforecast-class), 80

show,uGARCHmultispec-method
(uGARCHmultispec-class), 81

show,uGARCHpath-method
(uGARCHpath-class), 82

show,uGARCHroll-method
(uGARCHroll-class), 84

show,uGARCHsim-method
(uGARCHsim-class), 88

show,uGARCHspec-method
(uGARCHspec-class), 91

108 INDEX

sigma (uGARCHfit-class), 69
sigma,ANY-method (uGARCHfit-class), 69
sigma,uGARCHfilter-method

(uGARCHfilter-class), 66
sigma,uGARCHfit-method

(uGARCHfit-class), 69
sigma,uGARCHforecast-method

(uGARCHforecast-class), 75
sigma,uGARCHmultifilter-method

(uGARCHmultifilter-class), 79
sigma,uGARCHmultifit-method

(uGARCHmultifit-class), 79
sigma,uGARCHmultiforecast-method

(uGARCHmultiforecast-class), 80
sigma,uGARCHpath-method

(uGARCHpath-class), 82
sigma,uGARCHsim-method

(uGARCHsim-class), 88
signbias (uGARCHfit-class), 69
signbias,ANY-method (uGARCHfit-class),

69
signbias,uGARCHfilter-method

(uGARCHfilter-class), 66
signbias,uGARCHfit-method

(uGARCHfit-class), 69
signbias-methods (uGARCHfit-class), 69
skdomain (rgarchdist), 55
sp500ret, 57
spyreal, 58

ugarchbench, 5, 58
uGARCHboot, 62, 76
ugarchboot, 4, 66, 69, 75, 78, 84, 88, 91
ugarchboot (ugarchboot-methods), 60
ugarchboot,ANY-method

(ugarchboot-methods), 60
ugarchboot,uGARCHfit-method

(ugarchboot-methods), 60
ugarchboot,uGARCHspec-method

(ugarchboot-methods), 60
uGARCHboot-class, 59
ugarchboot-methods, 60
uGARCHdistribution, 66, 76
ugarchdistribution, 4, 62, 69, 75, 78, 84,

88, 91
ugarchdistribution

(ugarchdistribution-methods),
64

ugarchdistribution,ANY-method
(ugarchdistribution-methods),
64

ugarchdistribution,uGARCHfit-method
(ugarchdistribution-methods),
64

ugarchdistribution,uGARCHspec-method
(ugarchdistribution-methods),
64

uGARCHdistribution-class, 63
ugarchdistribution-methods, 64
uGARCHfilter, 67, 68
ugarchfilter, 62, 66, 75, 78, 84, 88, 91
ugarchfilter (ugarchfilter-methods), 68
ugarchfilter,ANY-method

(ugarchfilter-methods), 68
ugarchfilter,uGARCHspec-method

(ugarchfilter-methods), 68
uGARCHfilter-class, 66
ugarchfilter-methods, 68
uGARCHfit, 60, 61, 64, 65, 67, 70, 71, 74, 76,

77, 82, 89, 90, 92
ugarchfit, 4, 50, 62, 66, 68, 69, 71, 78, 84,

88, 91, 93
ugarchfit (ugarchfit-methods), 73
ugarchfit,ANY-method

(ugarchfit-methods), 73
ugarchfit,uGARCHspec-method

(ugarchfit-methods), 73
uGARCHfit-class, 69
ugarchfit-methods, 73
uGARCHforecast, 60, 64, 72, 78, 89, 92
ugarchforecast, 4, 62, 66, 69, 74, 75, 84, 88,

91
ugarchforecast

(ugarchforecast-methods), 77
ugarchforecast,ANY-method

(ugarchforecast-methods), 77
ugarchforecast,uGARCHfit-method

(ugarchforecast-methods), 77
ugarchforecast,uGARCHspec-method

(ugarchforecast-methods), 77
uGARCHforecast-class, 75
ugarchforecast-methods, 77
uGARCHmultifilter, 50, 80, 81
uGARCHmultifilter-class, 79
uGARCHmultifit, 50–52, 79, 81
uGARCHmultifit-class, 79

INDEX 109

uGARCHmultiforecast, 53, 79–81
uGARCHmultiforecast-class, 80
uGARCHmultispec, 50–53, 79–81
uGARCHmultispec-class, 81
uGARCHpath, 82, 84
ugarchpath, 4
ugarchpath (ugarchpath-methods), 83
ugarchpath,ANY-method

(ugarchpath-methods), 83
ugarchpath,uGARCHspec-method

(ugarchpath-methods), 83
uGARCHpath-class, 82
ugarchpath-methods, 83
uGARCHroll, 76, 87
ugarchroll, 4, 62, 66, 69, 75, 78, 84, 91
ugarchroll (ugarchroll-methods), 86
ugarchroll,ANY-method

(ugarchroll-methods), 86
ugarchroll,uGARCHspec-method

(ugarchroll-methods), 86
uGARCHroll-class, 84
ugarchroll-methods, 86
uGARCHsim, 72, 76, 82, 91, 92
ugarchsim, 4, 62, 66, 69, 75, 78, 84, 88
ugarchsim (ugarchsim-methods), 89
ugarchsim,ANY-method

(ugarchsim-methods), 89
ugarchsim,uGARCHfit-method

(ugarchsim-methods), 89
uGARCHsim-class, 88
ugarchsim-methods, 89
uGARCHspec, 53, 60, 61, 64, 65, 68, 71–73, 76,

77, 82, 83, 89, 92, 96
ugarchspec, 4, 51, 62, 66, 69, 73, 75, 84, 88,

91
ugarchspec (ugarchspec-methods), 92
ugarchspec,ANY-method

(ugarchspec-methods), 92
uGARCHspec-class, 91
ugarchspec-methods, 92
uncmean (uGARCHfit-class), 69
uncmean,ANY-method (uGARCHfit-class), 69
uncmean,ARFIMAfilter-method

(ARFIMAfilter-class), 11
uncmean,ARFIMAfit-method

(ARFIMAfit-class), 13
uncmean,ARFIMAspec-method

(ARFIMAspec-class), 26

uncmean,uGARCHfilter-method
(uGARCHfilter-class), 66

uncmean,uGARCHfit-method
(uGARCHfit-class), 69

uncmean,uGARCHspec-method
(uGARCHspec-class), 91

uncvariance (uGARCHfit-class), 69
uncvariance,ANY,ANY,ANY,ANY,ANY,ANY-method

(uGARCHfit-class), 69
uncvariance,missing,numeric,character,character,ANY,ANY-method

(uGARCHfit-class), 69
uncvariance,uGARCHfilter,missing,missing,missing,missing,missing-method

(uGARCHfilter-class), 66
uncvariance,uGARCHfit,missing,missing,missing,missing,missing-method

(uGARCHfit-class), 69
uncvariance,uGARCHspec,missing,missing,missing,missing,missing-method

(uGARCHspec-class), 91

VaRDurTest, 96
VaRloss, 98
VaRplot, 99
VaRTest, 99
vcov,ARFIMAfit-method

(ARFIMAfit-class), 13
vcov,uGARCHfit-method

(uGARCHfit-class), 69

	rugarch-package
	ARFIMA-class
	arfimacv
	ARFIMAdistribution-class
	arfimadistribution-methods
	ARFIMAfilter-class
	arfimafilter-methods
	ARFIMAfit-class
	arfimafit-methods
	ARFIMAforecast-class
	arfimaforecast-methods
	ARFIMAmultifilter-class
	ARFIMAmultifit-class
	ARFIMAmultiforecast-class
	ARFIMAmultispec-class
	ARFIMApath-class
	arfimapath-methods
	ARFIMAroll-class
	arfimaroll-methods
	ARFIMAsim-class
	arfimasim-methods
	ARFIMAspec-class
	arfimaspec-methods
	autoarfima
	BerkowitzTest
	DACTest
	DateTimeUtilities
	dji30ret
	dmbp
	ESTest
	GARCHboot-class
	GARCHdistribution-class
	GARCHfilter-class
	GARCHfit-class
	GARCHforecast-class
	GARCHpath-class
	GARCHroll-class
	GARCHsim-class
	GARCHspec-class
	GARCHtests-class
	ghyptransform
	GMMTest
	HLTest
	mcsTest
	multifilter-methods
	multifit-methods
	multiforecast-methods
	multispec-methods
	qnig
	rGARCH-class
	rgarchdist
	sp500ret
	spyreal
	ugarchbench
	uGARCHboot-class
	ugarchboot-methods
	uGARCHdistribution-class
	ugarchdistribution-methods
	uGARCHfilter-class
	ugarchfilter-methods
	uGARCHfit-class
	ugarchfit-methods
	uGARCHforecast-class
	ugarchforecast-methods
	uGARCHmultifilter-class
	uGARCHmultifit-class
	uGARCHmultiforecast-class
	uGARCHmultispec-class
	uGARCHpath-class
	ugarchpath-methods
	uGARCHroll-class
	ugarchroll-methods
	uGARCHsim-class
	ugarchsim-methods
	uGARCHspec-class
	ugarchspec-methods
	VaRDurTest
	VaRloss
	VaRplot
	VaRTest
	Index

