Package ‘rsyntax’

October 14, 2022

Type Package

Title Extract Semantic Relations from Text by Querying and Reshaping
Syntax

Version 0.1.4

Date 2022-06-06

Author Kasper Welbers and Wouter van Atteveldt
Maintainer Kasper Welbers <kasperwelbers@gmail.com>
Depends R (>=3.2.0)

Imports igraph, tidyselect, methods, stringi, digest, rlang, magrittr,
tokenbrowser, base64enc, png, data.table (>=1.11.8)

Enhances spacyr
LazyData true
Encoding UTF-8

Description Various functions for querying and reshaping dependency trees,
as for instance created with the 'spacyr' or 'udpipe' packages.
This enables the automatic extraction of useful semantic relations from texts,
such as quotes (who said what) and clauses (who did what). Method proposed in
Van Atteveldt et al. (2017) <doi:10.1017/pan.2016.12>.

License GPL-3

RoxygenNote 7.1.2

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-07 04:30:05 UTC

R topics documented:

add_span_quoteso L. e e e e e
AND . . e e
annotate L e

https://doi.org/10.1017/pan.2016.12

Index

R topics documented:

annotate_nNodes e e e e 7
annotate_tQUETIES« . v v v vt e e e e e e e e e e e e e e e e 8
apply_queries 10
as_tokenindex e e e e 11
BREAK e e e 12
CaASE_LEXE .« v v v o e e e e e e e e e e 13
chop e 14
climb_tree e e e 15
copy_fill L 16
COpY_NOAES e e e e e e e e 17
custom_fill . . . oL oL 18
dutch e e 20
fill . . e e e e 21
get_branch_id 21
get_long ids. 22
get_nodes e 22
isolate_branch L 23
mutate_ nodes e e e e e e 24
nested_nodes e 25
NOT . . e e e 28
OR . . e e 28
PIOLLTEE o e e e e e 29
PrinttQueryo e 31
quote_punctuationo e e 32
remove_fill L 32
1emMOVe_NOAES o e e e e e e e e e 33
reselect_ nodes L 34
rsyntax_threads L. e e 35
selected_nodes L L L e, 35
select_ nodes e e 36
set_rsyntax_threads L. L 37
split_UD_comnj e e e e e e 38
subset_nodes e e 39
syntax_reader e 40
tokens_corenlp 41
tokens_dutchclauses e 41
tokens_dutchquotes L. 42
tokens_spacy e 42
EQUETY . o o o e e e e e e e e e 42
unselect_ nodes e e e 44

46

add_span_quotes 3

add_span_quotes Add span quotes to a source-quote annotations

Description

Quotes can span across sentences, which makes it impossible to find them based on dependency
tree quories. This function can be used as post-processing, AFTER using tqueries to find ’source’
and ’quote’ nodes, to add some of these quotes.

The quotes themselves are often easy to detect due to the use of quotation marks. There are two
common ways of indicating the sources.

Firstly, the source might be used before the start of the quote (Steve said: "hey a quote!". "I like
quotes!"). Secondly, the source might be implied in the sentence where the quotes starts, or the
sentence before that (Steve was mad. "What a stupid way of quoting me!").

In the first case, the source can be found with a tquery. If there is a source (source_val) in the
quote_col that is linked to a part of the quote (quote_val), this function will add the rest of the
quote.

In the second case, we can look for candidates near the beginning of the quote. The candidate
criteria can be specified as tqueries

Usage
add_span_quotes(
tokens,
text_col,
quote_col = "quotes”,
source_val = "source”,
quote_val = "quote”,

tqueries = NULL,

par_col = NULL,

space_col = NULL,
lag_sentences = 1,
add_quote_symbols = NULL,
quote_subset = NULL,

copy = TRUE
)
Arguments
tokens A tokenlIndex with rsyntax annotations for ’sources’ and ’quotes’
text_col The column with the text (often "token’ or *word’)
quote_col The column that contains the quote annotations
source_val The value in quote_col that indicates the source

quote_val The value in quote_col that indicates the quote

tqueries

par_col

space_col

lag_sentences

add_span_quotes

A list of tqueries, that will be performed to find source candidates. The order
of the queries determines which source candidates are preferred. It would make
sense to use the same value as in source_val in the ’label’ argument for the
tquery.

If available in the parser output, the column with the paragraph id. We can
assume that quotes do not span across paragraphs. By using this argument,
quotes that are not properly closed (uneven number of quotes) will stop at the
end of the paragraph

If par_col is not used, paragraphs will be identified based on hard enters in the
text_col. In some parsers, there is an additional "space" column that hold the
whitespace and linebreaks, which can be included here.

The max number of sentences looked backwards to find source candidates. De-
fault is 1, which means the source candidates have to occur in the sentence where
the quote begins (lag = 0) or the sentence before that (lag = 1)

add_quote_symbols

quote_subset

copy

Value

the tokenIndex

Examples

Optionally, add additional punctuation symbols for finding quotation marks. In
some contexts and languages it makes sense to add single quotes, but in that
case it is oftne necessary to also use the quote_subset argument. For instance, in
Spacy (and probably other UD based annotations), single quotes in posessives
(e.g., Bob’s, scholars’) have a PART POS tag, whereas quotation symbols have
PUNCT, NOUN, VERB, or ADJ (for some reason).

Optionally, an expression to be evaluated on the columns of "tokens’ for select-
ing/deselecting tokens that can/cant be quotation marks. For example, pos !=
"PART" can be used for the example mentioned in add_quote_symbols.

If TRUE, deep copy the data.table (use if output tokens do not overwrite input
tokens)

This function is best used after first annotating regular quotes
Here we first apply 3 tqueries for annotating quotes in spacy tokens

tokens = tokens_spacy[tokens_spacy$doc_id == 'text6',]

verbs = c("tell”, "show"”, "acknowledge"”, "admit", "affirm”, "allege",
"announce”, "assert”, "attest”, "avow”, "call"”, "claim"”, "comment",
"concede”, "confirm”, "declare"”, "deny"”, "exclaim”, "insist”, "mention”,
"note”, "post"”,"predict”, "proclaim”, "promise”, "reply", "remark",
"report”, "say", "speak", "state"”, "suggest”, "talk", "tell”, "think",
"warn”,"write", "add")

direct = tquery(lemma = verbs, label='verb',
children(req=FALSE, relation = c('npadvmod'), block=TRUE),

AND 5

children(relation=c('su', 'nsubj', 'agent', 'nmod:agent'), label='source'),
children(label="quote'))

nosrc = tquery(pos='VERBx',
children(relation= c('su', 'nsubj', 'agent', 'nmod:agent'), label='source'),
children(lemma = verbs, relation='xcomp', label='verb',

non

children(relation=c("ccomp”,"dep"”, "parataxis”,"dobj", "nsubjpass”,"advcl"), label="'quote')))

according = tquery(label="'quote',
children(relation="'nmod:according_to', label='source',
children(label="verb')))

tokens = annotate_tqueries(tokens, 'quote', dir=direct, nos=nosrc, acc=according)
tokens

now we add the span quotes. If a span quote is found, the algorithm will first
look for already annotated sources as source candidates. If there are none,

additional tqueries can be used to find candidates. Here we simply look for

the most recent PERSON entity

tokens = tokens_spacy[tokens_spacy$doc_id == 'text6',]
tokens = annotate_tqueries(tokens, 'quote', dir=direct, nos=nosrc, acc=according)

last_person = tquery(entity = 'PERSON*', label='source')

tokens = add_span_quotes(tokens, 'token',
quote_col = 'quote', source_val = 'source', quote_val = 'quote',
tqueries=last_person)

tokens

view as full text

syntax_reader (tokens, annotation = 'quote', value = 'source')
AND Use AND search in tquery
Description

Use AND search in tquery

Usage

AND(...)

Arguments

name-value pairs for look-up terms. see ?query.

6 annotate

Value

A list, to be used as input to tquery

Examples

tquery(AND(lemma = 'walk', POS='Noun')) ## is also the default

annotate Annotate a tokenlist based on rsyntax queries

Description

This function has been renamed to annotate_tqueries.

Usage
annotate(
tokens,
column,
block = NULL,
fill = TRUE,

overwrite = FALSE,
block_fill = FALSE,

copy = TRUE,
verbose = FALSE
)
Arguments
tokens A tokenIndex data.table, or any data.frame coercible with as_tokenindex.
column The name of the column in which the annotations are added. The unique ids are
added as column_id
One or multiple tqueries, or a list of queries, as created with tquery. Queries
can be given a named by using a named argument, which will be used in the
annotation_id to keep track of which query was used.
block Optionally, specify ids (doc_id - sentence - token_id triples) that are blocked
from querying and filling (ignoring the id and recursive searches through the
id).
fill Logical. If TRUE (default) also assign the fill nodes (as specified in the tquery).
Otherwise these are ignored
overwrite If TRUE, existing column will be overwritten. Otherwise (default), the exsting

annotations in the column will be blocked, and new annotations will be added.
This is identical to using multiple queries.

annotate_nodes

block_fill

copy

verbose

Details

If TRUE (and overwrite is FALSE), the existing fill nodes will also be blocked.
In other words, the new annotations will only be added if the

If TRUE (default), the data.table is copied. Otherwise, it is changed by refer-
ence. Changing by reference is faster and more memory efficient, but is not
predictable R style, so is optional.

If TRUE, report progress (only usefull if multiple queries are given)

Apply queries to extract syntax patterns, and add the results as two columns to a tokenlist. One
column contains the ids for each hit. The other column contains the annotations. Only nodes that
are given a name in the tquery (using the ’label’ parameter) will be added as annotation.

Note that while queries only find 1 node for each labeld component of a pattern (e.g., quote queries
have 1 node for "source" and 1 node for "quote"), all children of these nodes can be annotated by
settting fill to TRUE. If a child has multiple ancestors, only the most direct ancestors are used (see
documentation for the fill argument).

Value

The tokenIndex with the annotation columns

Examples

spacy tokens for: Mary loves John, and Mary was loved by John
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate”,

children(relation = c("agent"”), label = "subject"))

active = tquery(pos = "VERB*", label = "predicate”,

children(relation = c("nsubj"”, "nsubjpass”), label = "subject”))

tokens = annotate_tqueries(tokens, "clause”, pas=passive, act=active)

tokens

if (interactive()) plot_tree(tokens, annotation='clause')

annotate_nodes

Annotate a tokenlist based on rsyntaxNodes

Description

Use rsyntaxNodes, as created with tquery and apply_queries, to annotate a tokenlist. Three columns
will be added: a unique id for the query match, the labels assigned in the tquery, and a column with
the fill level (O is direct match, 1 is child of match, 2 is grandchild, etc.).

8 annotate_tqueries

Usage

annotate_nodes(tokens, nodes, column)

Arguments
tokens A tokenIndex data.table, or any data.frame coercible with as_tokenindex.
nodes An rsyntaxNodes A data.table, as created with apply_queries. Can be a list of
multiple data.tables.
column The name of the column in which the annotations are added. The unique ids are
added as [column]_id, and the fill values are added as [column]_fill.
Details

Note that you can also directly use annotate.

Value

The tokenIndex data.table with the annotation columns added

Examples

spacy tokens for: Mary loves John, and Mary was loved by John
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("agent"”), label = "subject"”))
active = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("nsubj"”, "nsubjpass”), label = "subject”))

nodes = apply_queries(tokens, pas=passive, act=active)
annotate_nodes(tokens, nodes, 'clause')

annotate_tqueries Annotate a tokenlist based on rsyntax queries

Description

Apply queries to extract syntax patterns, and add the results as three columns to a tokenlist. The
first column contains the ids for each hit. The second column contains the annotation label. The
third column contains the fill level (which you probably won’t use, but is important for some func-
tionalities). Only nodes that are given a name in the tquery (using the ’label’ parameter) will be
added as annotation.

Note that while queries only find 1 node for each labeld component of a pattern (e.g., quote queries
have 1 node for "source" and 1 node for "quote"), all children of these nodes can be annotated by
settting fill to TRUE. If a child has multiple ancestors, only the most direct ancestors are used (see
documentation for the fill argument).

annotate_tqueries

Usage

annotate_tqueries(

tokens,
column,
block = NULL,
fill = TRUE,

overwrite = NA,
block_fill = FALSE,

copy = TRUE,

verbose = FALSE

Arguments

tokens

column

block

fill

overwrite

block_fill

copy

verbose

Value

A tokenIndex data.table, or any data.frame coercible with as_tokenindex.

The name of the column in which the annotations are added. The unique ids are
added as column_id

One or multiple tqueries, or a list of queries, as created with tquery. Queries

can be given a named by using a named argument, which will be used in the
annotation_id to keep track of which query was used.

Optionally, specify ids (doc_id - sentence - token_id triples) that are blocked

from querying and filling (ignoring the id and recursive searches through the
id).

Logical. If TRUE (default) also assign the fill nodes (as specified in the tquery).
Otherwise these are ignored

Applies if column already exists. If TRUE, existing column will be overwrit-
ten. If FALSE, the existing annotations in the column will be blocked, and new
annotations will be added. This is identical to using multiple queries.

If TRUE (and overwrite is FALSE), the existing fill nodes will also be blocked.
In other words, the new annotations will only be added if the

If TRUE (default), the data.table is copied. Otherwise, it is changed by refer-
ence. Changing by reference is faster and more memory efficient, but is not
predictable R style, so is optional.

If TRUE, report progress (only usefull if multiple queries are given)

The tokenIndex data.table with the annotation columns added

Examples

spacy tokens for: Mary loves John, and Mary was loved by John
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate”,

10 apply_queries

children(relation = c("agent"”), label = "subject"))
active = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("nsubj"”, "nsubjpass”), label = "subject”))

tokens = annotate_tqueries(tokens, "clause”, pas=passive, act=active)
tokens

if (interactive()) plot_tree(tokens, annotation='clause')

apply_queries Apply queries created with tquery

Description

Apply queries created with tquery

Usage

apply_queries(
tokens,
as_chain = FALSE,
block = NULL,
check = FALSE,

fill = TRUE,
return_wide = FALSE,
verbose = FALSE
)
Arguments
tokens A tokenIndex data.table, or any data.frame coercible with as_tokenindex.
tqueries, as created with tquery. Can also be a list with tquery functions. It is
recommended to use named arguments/lists, to name the tqueries.
as_chain If TRUE, Nodes that have already been assigned assigned earlier in the chain
will be ignored (see "block’ argument).
block Optionally, specify ids (doc_id - sentence - token_id triples) where find_nodes
will stop (ignoring the id and recursive searches through the id). Can also be
a data.table returned by (a previous) apply_queries, in which case all ids are
blocked.
check If TRUE, return a warning if nodes occur in multiple patterns, which could in-
dicate that the find_nodes query is not specific enough.
fill If TRUE (default) the fill nodes are added. Otherwise these are ignored, even if

return_wide

verbose

the queries include fill()
If TRUE, return nodes in wide format.

If TRUE, report progress (only useful if multiple queries are used)

as_tokenindex 11

Value

A data.table in which each row is a node for which all conditions are satisfied, and each column is
one of the linked nodes (parents / children) with names as specified in the label argument.

Examples

spacy tokens for: Mary loves John, and Mary was loved by John
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("agent"”), label = "subject"))
active = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("nsubj"”, "nsubjpass”), label = "subject”))

nodes = apply_queries(tokens, pas=passive, act=active)
nodes

as_tokenindex Prepare a tokenIndex

Description

Creates a tokenIndex data.table. Accepts any data.frame given that the required columns (doc_id,
sentence, token_id, parent, relation) are present. The names of these columns must be one of the
values specified in the respective arguments.

The data in the data.frame will not be changed, with three exceptions. First, the columnnames will
be changed if the default values are not used. Second, if a token has itself as its parent (which in
some parsers is used to indicate the root), the parent is set to NA (as used in other parsers) to prevent
infinite cycles. Third, the data will be sorted by doc_id, sentence, token_id.

Usage
as_tokenindex(
tokens,
doc_id = c("doc_id", "document_id"),
sentence = c("sentence”, "sentence_id"),
token_id = c("token_id"),
parent = c("parent”, "head_token_id"),
relation = c("relation”, "dep_rel”),
paragraph = NULL
)
Arguments
tokens A data.frame, data.table, or tokenindex.

doc_id candidate names for the document id columns

12

sentence

token_id

parent
relation

paragraph

Value

a tokenIndex

Examples

BREAK

candidate names for sentence (id/index) column

candidate names for the token id column. Has to be numeric (Some parsers
return token_id’s as numbers with a prefix (t_1, w_1))

candidate names for the parent id column. Has to be numeric
candidate names for the relation column

Optionally, the name of a column with paragraph ids. This is only necessary if
sentences are numbered per paragraph, and therefore not unique within docu-
ments. If given, sentences are re-indexed to be unique within documents.

as_tokenindex(tokens_corenlp)

BREAK

A special NOT condition if depth > 1

Description

If depth > 1 in the children, parents or fill function, the children/parents will be retrieved recursively
(i.e. children, children of children, etc.). If the look-up conditions (e.g., relation = "nsubj’) are not
satisfied, a node will not be matched by the query, but the search will still continue for it’s par-
ents/children. The special BREAK look-up function allows you to specify a condition for breaking
the recursive loop (lending it’s name from the ‘break‘ in a for loop). An example is that you might
want to stop the recursive loop in a custom_fill() once it encounters a nested sentence, such as a
relative clause: custom_fill(BREAK(relation = ’relcl’)).

Usage
BREAK(...)

Arguments

Value

name-value pairs for look-up terms. see ?query.

A list, to be used as input to tquery

Examples

tquery (NOT(POS="'Noun'))

cast_text 13

cast_text Cast annotations to text

Description

Cast labeled tokens to sentences.

Usage
cast_text(tokens, annotation, ..., text_col = "token”, na.rm = T)
Arguments
tokens A tokenIndex
annotation The name of annotations (the "column" argument in annotate_tqueries)
Optionally, group annotations together. Named arguments can be given where
the name is the new group, and the value is a character vector with values in the
annotation column. For example, text = c('verb’, predicate’) would group the
verb’ and ’predicate’ nodes together under the name ’text’.
text_col The name of the column in tokens with the text. Usually this is "token", but
some parsers use alternatives such as word’.
na.rm If true (default), drop tokens where annotation id is NA (i.e. tokens without
labels)
Value
a data.table
Examples
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

two simple example tqueries
passive = tquery(pos = "VERB*", label = "verb”, fill=FALSE,
children(relation = "agent”,
children(label="subject")),
children(relation = "nsubjpass”, label="object"))
active = tquery(pos = "VERB*", label = "verb”, fill=FALSE,
children(relation = c("nsubj"”, "nsubjpass”), label = "subject”),
children(relation = "dobj", label="object"))

tokens = annotate_tqueries(tokens, "clause”, pas=passive, act=active, overwrite=T)
cast_text(tokens, 'clause')

group annotations
cast_text(tokens, 'clause', text = c('verb', 'object'))

14 chop

use grouping to sort

cast_text(tokens, 'clause', subject = 'subject',
verb = 'verb', object = 'object')
chop Chop of a branch of the tree
Description

Using the query language for tquery, chop of the branch down from the node that is found

Usage
chop(.tokens, ...)
Arguments
.tokens A tokenIndex
Arguments passed to tquery. For instance, relation = *punct’ cuts off all punctu-
ation dependencies (in universal dependencies)
Value

A tokenIndex with the rows of the nodes in the selected branches removed

Examples

spacy_conjunctions <- function(tokens) {
no_fill = c('compound*', 'case', 'relcl')
tq = tquery(label="'target', NOT(relation = 'conj'),
rsyntax: :fill(NOT(relation = no_fill), max_window = c(Inf,0)),
children(relation = 'conj', label='origin',
rsyntax::fill(NOT(relation = no_fill), max_window=c(@,Inf))))
tokens = climb_tree(tokens, tq)
chop(tokens, relation = 'cc')

}

spacy tokens for "Bob and John ate bread and drank wine”
tokens = tokens_spacy[tokens_spacy$doc_id == 'text5',]

tokens = spacy_conjunctions(tokens)
tokens

if (interactive()) plot_tree(tokens)

climb_tree 15

climb_tree Have a node adopt its parent’s position

Description

given a tquery that identfies a node labeled "origin", that has a parent labeled "target", recursively
have child adopt the parent’s position (parent and relation column) and adopt parents fill nodes.
only_new restricts adding fill nodes to relations that child does not already have. This seems to be
a good heuristic for dealing with argument drop

Usage

climb_tree(
.tokens,
tq,
unpack = TRUE,
isolate = TRUE,
take_fill = TRUE,
give_fill = TRUE,

only_new = "relation”,
max_iter = 200
)
Arguments
.tokens A tokenIndex
tq A tquery. Needs to have a node labeled "origin" that has a parent labeled "target"
unpack If TRUE (default), create separate branches for the parent and the node that
inherits the parent position
isolate If unpack is TRUE and isolate is TRUE (default is FALSE), isolate the new
branch by recursively unpacking
take_fill If TRUE (default), give the node that will inherit the parent position a copy of the
parent children (but only if it does not already have children with this relation;
see only_new)
give_fill If TRUE (default), copy the children of the node that will inherit the parent
position to the parent (but only if it does not already have children with this
relation; see only_new)
only_new A characetr vector giving one or multiple column names that need to be unique
for take_fill and give_fill
max_iter The climb tree function repeatedly resolves the first conjunction it encounters in

a sentence. This can lead to many iterations for sentences with many (nested)
conjunctions. It could be the case that in unforseen cases or with certain parsers
an infinite loop is reached, which is why we use a max_iter argument that breaks
the loop and sends a warning if the max is reached.

16 copy._fill

Value

The reshaped tokenIndex

Examples

spacy_conjunctions <- function(tokens) {
no_fill = c('compound*', 'case', 'relcl')
tq = tquery(label="target', NOT(relation = 'conj'),
rsyntax::fill(NOT(relation = no_fill), max_window = c(Inf,®@)),
children(relation = 'conj', label='origin',
rsyntax: :fill(NOT(relation = no_fill), max_window=c(@,Inf))))
tokens = climb_tree(tokens, tq)
chop(tokens, relation = 'cc')

}

spacy tokens for "Bob and John ate bread and drank wine”
tokens = tokens_spacy[tokens_spacy$doc_id == 'text5',]

tokens = spacy_conjunctions(tokens)
tokens

if (interactive()) plot_tree(tokens)

copy_fill Copy nodes

Description

Copy nodes

Usage

copy_fill(
.tokens,
from_node,
to_node,
subset = NULL,
subset_fill = NULL,
only_new = NULL

Arguments

.tokens A tokenIndex in which nodes are selected with select_nodes.

from_node The name of the node from which fill is copied

copy_nodes 17

to_node The name of the node to which fill is copied

subset A subset expression (that evaluates to a logical vector). The token column for
each labeled node in the tquery can be referred to as label$column.

subset_fill A subset on the fill nodes. Can only directly use token column. For example,
use pos == "VERB’ to copy only verbs

only_new If TRUE, direct fill children will only be copied to to_node if it does not already
have nodes of this relation. This is a good heuristic for dealing with argument
drop.
Value

A tokenIndex with a .nodes attribute

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'textl1',]
tq = tquery(label="object', relation='dobj")

tokens2 = select_nodes(tokens, tq)
selected_nodes(tokens2)

tokens3 = copy_nodes(tokens2, 'object', 'new_object')
copy_fill(tokens3, 'object', 'new_object')

copy_nodes Copy nodes

Description

Copy nodes

Usage

copy_nodes(
.tokens,
node,
new,
subset = NULL,
keep_relation = TRUE,
copy_fill = FALSE,
subset_fill = NULL,
only_new = NULL

18 custom_fill

Arguments
.tokens A tokenIndex in which nodes are selected with select_nodes.
node The name of the node that is to be copied
new The name given to the copy
subset A subset expression (that evaluates to a logical vector). The token column for

each labeled node in the tquery can be referred to as label$column.

keep_relation If FALSE, remove relation (making node a root)

copy_fill If TRUE, also copy the fill
subset_fill A subset on the fill nodes. Can only directly use token column. For example,
use pos == "VERB’ to copy only verbs
only_new If TRUE, direct fill children will only be copied to to_node if it does not already
have nodes of this relation. This is a good heuristic for dealing with argument
drop.
Value

A tokenIndex with a .nodes attribute

Examples
tokens = tokens_spacy[tokens_spacy$doc_id == 'textl',]
tq = tquery(label="object', relation='dobj"')

tokens2 = select_nodes(tokens, tq)
selected_nodes(tokens2)

copy_nodes(tokens2, 'object', 'new_object')

tokens3 = copy_nodes(tokens2, 'object', 'new_object', copy_fill=TRUE)

if (interactive()) plot_tree(tokens3, token, pos)

custom_fill Specify custom fill behavior

Description

If a tquery(), parents() or children() function has set a label, all children of the matched node (that
are not matched by another query) will also be given this label. This is called the ’fill’ heuristic.
The custom_fill() function can be used to give more specific conditions for which children need to
be labeled.

The function can be used almost identically to the children() function. The specification of the
look-up conditions works in the same way. NOTE that custom_fill, just like the children() function,

custom_fill

19

should be passed as an unnamed argument, and NOT to the ’fill’ argument (which is the boolean
argument for whether fill should be used)

For the custom_fill function, the special BREAK() look-up function is particularly powerful. cus-
tom_fill will recursively search for children, children of children, etc. The look-up conditions in
custom_fill determine which of all these direct and indirect children to label. Often, however, you
would want to the recursive loop to *break’ when certain conditions are met. For instance, to ignore
children in a relative clause: custom_fill(BREAK(relation = ’relcl’))

Usage

custom_fill(

g_id = NULL,
depth = Inf,
connected = FALSE,

max_window
min_window

Arguments

g_id

depth

connected

c(Inf, Inf),
c(o, 9

Accepts two types of arguments: name-value pairs for finding nodes (i.e. rows),
and functions to look for parents/children of these nodes.

The name in the name-value pairs need to match a column in the data.table, and
the value needs to be a vector of the same data type as the column. By default,
search uses case sensitive matching, with the option of using common wildcards
(* for any number of characters, and ? for a single character). Alternatively, flags
can be used to to change this behavior to ’fixed” (__F), ’igoring case’ (__I) or
‘regex’ (__R). See details for more information.

If multiple name-value pairs are given, they are considered as AND statements,
but see details for syntax on using OR statements, and combinations.

To look for parents and children of the nodes that are found, you can use the par-
ents and children functions as (named or unnamed) arguments. These functions
have the same query arguments as tquery, but with some additional arguments.

Find nodes by global id, which is the combination of the doc_id, sentence and
token_id. Passed as a data.frame or data.table with 3 columns: (1) doc_id, (2)
sentence and (3) token_id.

A positive integer, determining how deep parents/children are sought. 1 means
that only direct parents and children of the node are retrieved. 2 means children
and grandchildren, etc. All parents/children must meet the filtering conditions
(... or g_id)

Controls behavior if depth > 1 and filters are used. If FALSE, all parents/children
to the given depth are retrieved, and then filtered. This way, grandchildren that
satisfy the filter conditions are retrieved even if their parents do not satisfy the
conditions. If TRUE, the filter is applied at each level of depth, so that only fully
connected branches of nodes that satisfy the conditions are retrieved.

20 dutch
max_window Set the max token distance of the children/parents to the node. Has to be either a
numerical vector of length 1 for distance in both directions, or a vector of length
2, where the first value is the max distance to the left, and the second value the
max distance to the right. Default is c(Inf, Inf) meaning that no max distance is
used.
min_window Like max_window, but for the min distance. Default is ¢(0,0) meaning that no
min is used.
Value
Should not be used outside of tquery
Examples
tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]
custom fill rule that ignores relative clauses
no_relcl_fill = custom_fill(BREAK(relation='relcl'))
add custom fill as argument in children(). NOTE that it should be
passed as an unnamed argument (and not to the fill boolean argument)
tq = tquery(label = 'verb', pos='VERB', fill=FALSE,
children(label = 'subject', relation = 'nsubj', no_relcl_fill),
children(label = 'object', relation = 'dobj', no_relcl_fill))
tokens = annotate_tqueries(tokens, "clause”, tq)
tokens
dutch Dutch lemma
Description
Various categories of lemma, for use in syntax queries
Usage
data(dutch)
Format

list

fill 21

fill Specify custom fill behavior

Description
This is soft deprecated, with the new preferred function being custom_fill to avoid namespace con-
flicts with tidyr::fill() and data.table::fill()

Usage
fill(...)

Arguments

passes to custom_fill

Value

Should not be used outside of tquery

get_branch_id Add the branch id as a column to the tokenindex

Description

After splitting trees into branches

Usage

get_branch_id(tokens)

Arguments

tokens A tokenindex

Value

the tokenindex

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]
tokens = as_tokenindex(tokens)

tokens2 = isolate_branch(tokens, relation = 'relcl', copy_parent = TRUE)
get_branch_id(tokens?2)

22

get_nodes

get_long_ids

Get ids in various forms to extract token_ids

Description

Get ids in various forms to extract token_ids

Usage
get_long_ids(..., select = NULL, with_fill = FALSE)
Arguments
Either a data.table with the columns doc_id, sentence and token_id, or the output
of apply_queries
select If not null, a character vector for selecting column names
with_fill If TRUE, include the ids of the fill nodes
Value

A data.table with the columns doc_id, sentence and token_id

get_nodes

Transform the nodes to long format and match with token data

Description

Transform the nodes to long format and match with token data

Usage

get_nodes(tokens, nodes, use = NULL, token_cols = c("token"))

Arguments

tokens
nodes

use

token_cols

A tokenIndex data.table, or any data.frame coercible with as_tokenindex.
A data.table, as created with apply_queries. Can be a list of multiple data.tables.

Optionally, specify which columns from nodes to add. Other than convenient,
this is slighly different from subsetting the columns in 'nodes’ beforehand if fill
is TRUE. When the children are collected, the ids from the not-used columns
are still blocked (see "block’)

A character vector, specifying which columns from tokens to include in the out-
put

isolate_branch 23

Value

A data.table with the nodes in long format, and the specified token_cols attached

Examples

spacy tokens for: Mary loves John, and Mary was loved by John
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("agent"”), label = "subject"))
active = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("nsubj"”, "nsubjpass”), label = "subject”))

nodes = apply_queries(tokens, pas=passive, act=active)
get_nodes(tokens, nodes)

isolate_branch Isolate a branch in a dependency tree

Description

cuts of a branch at the nodes that match the lookup arguents (...). A "tree_parent" column is added
to the tokenindex, that indicates for the new roots which node the parent was.

Usage

isolate_branch(tokens, ..., copy_parent = TRUE, copy_parent_fill = TRUE)
Arguments

tokens A tokenindex

lookup arguments to find the node to split. For example, isolate_branch(tokens,
relation="relcl’) isolates branches of which the top node (the new root) has the
relation "relcl".

copy_parent If TRUE (default) copy the parent of the branch and include it in the isolated
branch

copy_parent_fill
If TRUE, also copy the parents fill nodes

Value

the tokenindex

24 mutate_nodes

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]
tokens = as_tokenindex(tokens)

tokens2 = isolate_branch(tokens, relation = 'relcl', copy_parent = TRUE)
tokens2

if (interactive()) plot_tree(tokens2)

mutate_nodes Mutate nodes

Description

Mutate nodes

Usage
mutate_nodes(.tokens, node, ..., subset = NULL)
Arguments
.tokens A tokenIndex in which nodes are selected with select_nodes.
node The name of the node that is to be mutated
named arguments. The name should be a column in tokens
subset A subset expression (that evaluates to a logical vector). The token column for
each labeled node in the tquery can be referred to as label$column.
Value

A tokenIndex with a .nodes attribute
Examples
tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]

use a tquery to label the nodes that you want to manipulate
tq = tquery(relation = "relcl”, label = "relative_clause")

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

as an example, we make the parent of the relative_clause
nodes NA, effectively cutting of the relcl from the tree

tokens2 = mutate_nodes(tokens2, "relative_clause”, parent=NA)

tokens2

nested_nodes 25

nested_nodes Search for parents or children in tquery

Description

Enables searching for parents or children. Should only be used inside of the tquery function, or
within other children/parents functions. Look-up conditions are specified in the same way as in the
tquery function.

Multiple children() or parents() functions can be nested side by side. This works as an AND con-
dition: the node must have all these parents/children (unless the req [required] argument is set to
FALSE).

The custom_fill() function is used to include the children of a ’labeled’ node. It can only be nested
in a query if the label argument is not NULL, and by default will include all children of the node
that have not been assigned to another node. If two nodes have a shared child, the child will be
assigned to the closest node.

Usage
children(

g_id = NULL,

label = NA,

req = TRUE,

depth = 1,
connected = FALSE,
fill = TRUE,

block = FALSE,
max_window = c(Inf, Inf),
min_window = c(@, @)

)

not_children(

g_id = NULL,

depth = 1,

connected = FALSE,
max_window = c(Inf, Inf),
min_window = c(0, @)

)

parents(
g_id = NULL,
label = NA,
req = TRUE,

depth = 1,

26

nested_nodes

connected = FALSE,
fill = TRUE,
block = FALSE,

max_window
min_window

)

not_parents(

g_id = NULL,

depth = 1,

c(Inf, Inf),
c(0, 0)

connected = FALSE,

max_window
min_window

Arguments

g_id

label

req

depth

connected

c(Inf, Inf),
c(e, o)

Accepts two types of arguments: name-value pairs for finding nodes (i.e. rows),
and functions to look for parents/children of these nodes.

The name in the name-value pairs need to match a column in the data.table, and
the value needs to be a vector of the same data type as the column. By default,
search uses case sensitive matching, with the option of using common wildcards
(* for any number of characters, and ? for a single character). Alternatively, flags
can be used to to change this behavior to ’fixed” (__F), ’igoring case’ (__I) or
regex’ (__R). See details for more information.

If multiple name-value pairs are given, they are considered as AND statements,
but see details for syntax on using OR statements, and combinations.

To look for parents and children of the nodes that are found, you can use the par-
ents and children functions as (named or unnamed) arguments. These functions
have the same query arguments as tquery, but with some additional arguments.

Find nodes by global id, which is the combination of the doc_id, sentence and
token_id. Passed as a data.frame or data.table with 3 columns: (1) doc_id, (2)
sentence and (3) token_id.

A character vector, specifying the column name under which the selected tokens
are returned. If NA, the column is not returned.

Can be set to false to not make a node 'required’. This can be used to include
optional nodes in queries. For instance, in a query for finding subject - verb -
object triples, make the object optional.

A positive integer, determining how deep parents/children are sought. 1 means
that only direct parents and children of the node are retrieved. 2 means children
and grandchildren, etc. All parents/children must meet the filtering conditions
(... or g_id)

Controls behavior if depth > 1 and filters are used. If FALSE, all parents/children
to the given depth are retrieved, and then filtered. This way, grandchildren that
satisfy the filter conditions are retrieved even if their parents do not satisfy the

nested_nodes 27

conditions. If TRUE, the filter is applied at each level of depth, so that only fully
connected branches of nodes that satisfy the conditions are retrieved.

fill Logical. If TRUE (default), the default custom_fill() will be used. To more
specifically control fill, you can nest the custom_fill function (a special version
of the children function).

block Logical. If TRUE, the node will be blocked from being assigned (labeld). This
is mainly usefull if you have a node that you do not want to be assigned by fill,
but also don’t want to ’label’ it. Essentially, block is shorthand for using label
and then removing the node afterwards. If block is TRUE, label has to be NA.

max_window Set the max token distance of the children/parents to the node. Has to be either a
numerical vector of length 1 for distance in both directions, or a vector of length
2, where the first value is the max distance to the left, and the second value the
max distance to the right. Default is c(Inf, Inf) meaning that no max distance is
used.

min_window Like max_window, but for the min distance. Default is ¢(0,0) meaning that no
min is used.

Details

Having nested queries can be confusing, so we tried to develop the find_nodes function and the
accompanying functions in a way that clearly shows the different levels. As shown in the examples,
the idea is that each line is a node, and to look for parents or children, we put them on the next line
with indentation (in RStudio, it should automatically align correctly when you press enter inside of
the children() or parents() functions).

There are several flags that can be used to change search condition. To specify flags, add a double
underscore and the flag character to the name in the name value pairs (...). By adding the suffix
__R, query terms are considered to be regular expressions, and the suffix __I uses case insensitive
search (for normal or regex search). If the suffix __F is used, only exact matches are valid (case
sensitive, and no wildcards). Multiple flags can be combined, such as lemma__RI, or lemma__IR
(order of flags is irrelevant)

The not_children and not_parents functions will make the matched children/parents a NOT con-
dition. Note that this is different from using the NOT() look-up function. NOT operates at the
node level, so you specify that a node should NOT be matched if certain conditions are met. the
not_parents and not_children functions operate at the pattern level, so you can specify that a pattern
is invalid if these parents/children are matched.

Next to the OR, AND, and NOT functions, children/parents functions can have the special BREAK
function for cases where depth > 1. If depth > 1 in the children, parents or fill function, the chil-
dren/parents will be retrieved recursively (i.e. children, children of children, etc.). If the look-up
conditions (e.g., relation = ’nsubj’) are not satisfied, a node will not be matched by the query, but
the search will still continue for it’s parents/children. The special BREAK look-up function allows
you to specify a condition for breaking the recursive loop (lending it’s name from the ‘break‘ in a
for loop). An example is that you might want to stop the recursive loop in a custom_fill() once it
encounters a nested sentence, such as a relative clause: custom_fill(BREAK(relation = ’relcl’)).

Value

Should not be used outside of tquery

28

OR

NOT Use NOT search in tquery

Description

Use NOT search in tquery

Usage
NOT(...)

Arguments

name-value pairs for look-up terms. see ?query.

Value

A list, to be used as input to tquery

Examples

tquery(NOT(POS="'Noun'))

OR Use OR search in tquery

Description

Use OR search in tquery

Usage
OR(...)

Arguments

name-value pairs for look-up terms. see ?query.

Value

A list, to be used as input to tquery

Examples

tquery(OR(lemma = 'walk', POS='Noun'))

plot_tree 29

plot_tree Create an igraph tree from a sentence

Description

Create an igraph tree from a token_index (as_tokenindex) or a data.frame that can be coerced to a
tokenindex.

By default, all columns in the data are included as labels. This can be changes by using the ...
argument.

Usage

plot_tree(
tokens,
sentence_i = 1,
doc_id = NULL,
sentence = NULL,
annotation = NULL,
only_annotation = FALSE,
pdf_file = NULL,
allign_text = TRUE,
ignore_rel = NULL,
all_lower = FALSE,

all_abbrev = NULL,
textsize = 1,
spacing = 1,
use_color = TRUE,
max_curve = 0.3,

palette = grDevices::terrain.colors,
rel_on_edge = F,

pdf_viewer = FALSE,

viewer_mode = TRUE,

viewer_size = c(100, 100)

Arguments

tokens A tokenIndex data.table, or any data.frame coercible with as_tokenindex. Can
also be a corpustools tCorpus.

Optionally, select which columns to include as labels and how to present them.
Can be quoted or unquoted names and expressions, using columns in the to-
kenIndex. For example, plot_tree(tokens, token, pos) will use the $token and
$pos columns in tokens. You can also use expressions for easy controll of vi-
sulizations. For example: plot_tree(tokens, tolower(token), abbreviate(pos,1)).
(note that abbreviate() is really usefull here)

30

sentence_i

doc_id

sentence

annotation

only_annotation

pdf_file
allign_text

ignore_rel

all_lower
all_abbrev

textsize

spacing

use_color

max_curve

palette

rel_on_edge

pdf_viewer

viewer_mode

viewer_size

Value

plot_tree

By default, plot_tree uses the first sentence (sentence_i = 1) in the data. sen-
tence_i can be changed to select other sentences by position (the i-th unique
sentence in the data). Note that sentence_i does not refer to the values in the
sentence column (for this use the sentence argument together with doc_id)

Optionally, the document id can be specified. If so, sentence_i refers to the i-th
sentence within the given document.

Optionally, the sentence id can be specified (note that sentence_i refers to the
position). If sentence is given, doc_id has to be given as well.

Optionally, a column with an rsyntax annotation, to add boxes around the anno-
tated nodes.

If annotation is given, only_annotation = TRUE will print only the nodes with
annotations.

Directly save the plot as a pdf file

If TRUE (default) allign text (the columns specified in ...) in a single horizontal
line at the bottom, instead of following the different levels in the tree

Optionally, a character vector with relation names that will not be shown in the
tree

If TRUE, make all text lowercase

If an integer, abbreviate all text, with the number being the target number of
characters.

A number to manually change the textsize. The function tries to set a suitable
textsize for the plotting device, but if this goes wrong and now everything is
broken and sad, you can multiply the textsize with the given number.

A number for scaling the distance between words (between 0 and infinity)
If true, use colors
A number for controlling the allowed amount of curve in the edges.

A function for creating a vector of n contiguous colors. See ?terrain.colors for
standard functions and documentation

If TRUE, print relation label on edge instead of above the node

If TRUE, view the plot as a pdf. If no pdf_file is specified, the pdf will be saved
to the temp folder

By default, the plot is saved as a PNG embedded in a HTML and opened in the
viewer. This hack makes it independent of the size of the plotting device and
enables scrolling. By setting viewer_mode to False, the current plotting device
is used.

A vector of length 2, that multiplies the width (first value) and height (second
value) of the viewer_mode PNG

plots a dependency tree.

print.tQuery

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]

if (interactive()) plot_tree(tokens, token, pos)

plot with annotations
direct = tquery(label = 'verb', pos = 'VERB', fill=FALSE,
children(label = 'subject', relation = 'nsubj'),
children(label = 'object', relation = 'dobj'))
passive = tquery(label = 'verb', pos = 'VERB', fill=FALSE,
children(label = 'subject', relation = 'agent'),
children(label = 'object', relation = 'nsubjpass'))

if (interactive()) {

tokens %>%
annotate_tqueries('clause', pas=passive, dir=direct) %>%
plot_tree(token, pos, annotation='clause')

print.tQuery S3 print for tQuery class

Description

S3 print for tQuery class

Usage
S3 method for class 'tQuery'
print(x, ...)
Arguments
X a tQuery
not used
Examples

g = tquery(label="quote"',
children(relation="nmod:according_to', label='source',
children(label="verb')))

32 remove_fill

quote_punctuation Quote punctuation

Description

Punctuation used in quotes, for use in syntax queries

Usage

data(quote_punctuation)

Format

character()

remove_fill Remove fill

Description

Like remove_nodes, but only removing the fill nodes

Usage

remove_fill(
.tokens,
node,
rm_subset_fill = NULL,
rm_subset = NULL,
keep_shared = FALSE

)

Arguments
.tokens A tokenIndex in which nodes are selected with select_nodes.
node The name of the node that is to be mutated

rm_subset_fill A subset on the fill nodes. Can only directly use token column. For example,
use pos == 'VERB’ to remove only verbs

rm_subset A subset expression (that evaluates to a logical vector) to more specifically spec-
ify which nodes to remove. The token column for each labeled node in the
tquery can be referred to as label$column.

keep_shared If there is another node that has the same fill nodes, should the fill nodes that are
shared also be removed?

remove_nodes 33

Value
A tokenIndex with a .nodes attribute
Examples
tokens = tokens_spacy[tokens_spacy$doc_id == 'textl',]
use a tquery to label the nodes that you want to manipulate
tq = tquery(pos = 'VERB',

children(label = 'object', relation="dobj'))

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

remove_fill(tokens2, 'object')

remove_nodes Remove nodes

Description

Remove nodes

Usage

remove_nodes(
.tokens,
node,
rm_subset = NULL,
with_fill = TRUE,
rm_subset_fill = NULL,
keep_shared = FALSE

)
Arguments
.tokens A tokenIndex in which nodes are selected with select_nodes.
node The name of the node that is to be mutated
rm_subset A subset expression (that evaluates to a logical vector) to more specifically spec-

ify which nodes to remove. The token column for each labeled node in the
tquery can be referred to as label$column.

with_fill If TRUE, also remove the fill nodes

rm_subset_fill A subset on the fill nodes. Can only directly use token column. For example,
use pos == "VERB’ to remove only verbs

keep_shared If there is another node that has the same fill nodes, should the fill nodes that are
shared also be removed?

34

Value

A tokenIndex with a .nodes attribute

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'textl',]

use a tquery to label the nodes that you want to manipulate
tq = tquery(pos = 'VERB',
children(label = 'object', relation="dobj'))

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

remove_nodes(tokens2, 'object')
remove_nodes(tokens2, 'object', with_fill=FALSE)

reselect_nodes

reselect_nodes Within a chain of reshape operations, reapply the tquery

Description

Within a chain of reshape operations, reapply the tquery

Usage

reselect_nodes(.tokens)

Arguments

.tokens A tokenIndex in which nodes are selected with select_nodes.

Value

A tokenIndex with a .nodes attribute

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]

use a tquery to label the nodes that you want to manipulate
tq = tquery(relation = "relcl”, label = "relative_clause")

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

reuses the tq, that is stored in tokens2
this makes it easy to make the selection anew after a transformation
tokens2 = reselect_nodes(tokens2)

rsyntax_threads 35

rsyntax_threads Get the number of threads to be used by rsyntax functions

Description

rsyntax relies heavily on the data.table package, which supports multithreading. By default, the
number of threads set by data.table are used, as you can see with getDTthreads. With set_rsyntax_threads
you can set the number of threads for rsyntax functions, without affecting the data.table settings.

Usage

rsyntax_threads()

Value

the setting for the number of threads used by rsyntax

Examples

rsyntax_threads()

selected_nodes If select_nodes() is used, the selected nodes can be extracted with se-
lected_nodes(). This is mainly for internal use, but it can also be use-
full for debugging, and to controll loops of reshape operation (e.g.
break if no selected nodes left)

Description

If select_nodes() is used, the selected nodes can be extracted with selected_nodes(). This is mainly
for internal use, but it can also be usefull for debugging, and to controll loops of reshape operation
(e.g. break if no selected nodes left)

Usage

selected_nodes(.tokens)

Arguments

.tokens A tokenIndex in which nodes are selected with select_nodes.

Value

A tokenIndex with a .nodes attribute

36 select_nodes

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]

use a tquery to label the nodes that you want to manipulate
tq = tquery(relation = "relcl”, label = "relative_clause”)

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

Get selected nodes from tokenindex
selected_nodes(tokens2)

select_nodes Apply tquery to initiate reshape operations

Description

Apply tquery to initiate reshape operations

Usage

select_nodes(
tokens,
tquery,
fill = TRUE,
fill_only_first = TRUE,
.one_per_sentence = FALSE,

.order =1
)
Arguments
tokens A tokenIndex data.table, or any data.frame coercible with as_tokenindex.
tquery A tquery that selects and labels the nodes that are used in the reshape operations
fill Logical, should fill be used?

fill_only_first
Logical, should a node only be filled once, with the nearest (first) labeled node?
.one_per_sentence
If true, only one match per sentence is used, giving priority to paterns closest to
the root (or fartest from the root if .order = -1). This is sometimes necessary to
deal with recursion.
.order If .one_per_sentence is used, .order determines whether the paterns closest to
(1) or farthest away (-1) are used.

Value

A tokenIndex with a .nodes attribute, that enables the use of reshape operations on the selected
nodes

set_rsyntax_threads 37

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]

use a tquery to label the nodes that you want to manipulate
tq = tquery(relation = "relcl”, label = "relative_clause”)

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

as an example, we make the parent of the relative_clause
nodes NA, effectively cutting of the relcl from the tree
tokens2 = mutate_nodes(tokens2, "relative_clause”, parent=NA)

tokens?2

if (interactive()) plot_tree(tokens2)

this is designed to work nicely with magrittr piping
if (interactive()) {
tokens %>%
select_nodes(tq) %>%
mutate_nodes("relative_clause”, parent=NA) %>%
plot_tree()
}

set_rsyntax_threads Set number of threads to be used by rsyntax functions

Description

rsyntax relies heavily on the data.table package, which supports multithreading. By default, the
number of threads set by data.table are used, as you can see with getDTthreads. Here you can set
the number of threads for rsyntax functions, without affecting the data.table settings.

Usage

set_rsyntax_threads(threads = NULL)

Arguments
threads The number of threads to use. Cannot be higher than number of threads used by
data.table, which you can change with setDTthreads. If left empty (NULL),
all data.table threads are used
Value

Does not return a value. Sets the global 'rsyntax_threads’ option.

38

Examples

current_threads =

split_UD_conj

rsyntax_threads()

set_rsyntax_threads(2)

undo change (necessary for CRAN checks)
set_rsyntax_threads(current_threads)

split_UD_conj

Split conjunctions for dependency trees in Universal Dependencies

Description

Split conjunctions for dependency trees in Universal Dependencies

Usage

split_UD_conj(
tokens,

conj_rel = "conj",
cc_rel = c("cc", "cc:preconj"),

unpack =T,

no_fill = NULL,

min_dist = 0,

max_dist = Inf,
right_fill_dist =T,

compound_rel = c("compoundx”, "flat"),
)
Arguments

tokens atokenIndex based on texts parsed with spacy_parse (with dependency=TRUE)

conj_rel The dependency relation for conjunctions. By default conj

cc_rel The dependency relation for the coordinating conjunction. By default cc. This
will be removed.

unpack If TRUE (default), create separate branches for the parent and the node that
inherits the parent position

no_fill Optionally, a character vector with relation types that will be excluded from fill

min_dist Optionally, a minimal distance between the conj node and its parent

max_dist Optionally, a maximum distance between the conj node and its parent

right_fill_dist

compound_rel

Should fill to the right of the conjunction be used?
The relation types indicating compounds

specify conditions for the conjunction token. For instance, using *pos ="VERB"’
to only split VERB conjunctions. This is especially usefull to use different
no_fill conditions.

subset_nodes 39

Value

A tokenindex

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text5',]

if (interactive()) {

tokens %>%
split_UD_conj() %>%
plot_tree()

subset_nodes Subset a select_nodes selection

Description

Enables more control in reshape operations

Usage

subset_nodes(.tokens, subset, copy = TRUE)

Arguments
.tokens A tokenIndex in which nodes are selected with select_nodes.
subset A subset expression (that evaluates to a logical vector). The token column for
each labeled node in the tquery can be referred to as label$column.
copy If TRUE, make a deep copy of .tokens. Use if output does not overwrite .tokens
Value

A tokenIndex with a .nodes attribute

Examples

tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]

use a tquery to label the nodes that you want to manipulate
tq = tquery(label='verb', children(relation="'nsubj'))

apply query to select nodes
tokens2 = select_nodes(tokens, tq)

selected_nodes(tokens2)$nodes
tokens2 = subset_nodes(tokens2, verb$relation == 'ROOT')
selected_nodes(tokens2)$nodes

40

syntax_reader

syntax_reader

Create a full text browser with highlighted rsyntax annotations

Description

Create a full text browser with highlighted rsyntax annotations

Usage
syntax_reader(
tokens,
annotation,
value = NULL,
value2 = NULL,
meta = NULL,
token_col = "token",
filename = NULL,
view = TRUE,
random_seed = NA,
)
Arguments
tokens A tokenIndex
annotation The name of the column that contains the rsyntax annotation
value Optionally, a character vector with values in annotation. If used, only these
values are fully colored, and the other (non NA) values only have border colors.
value? Optionally, a character vector with values in annotation other than those speci-
fied in ’value’. If used, only these values have border colors.
meta Optionally, a data.frame with document meta data. Has to have a column named
doc_id of which the values match with the doc_id column in tokens
token_col The name of the column in tokens with the token text
filename Optionally, a filename to directly save the file. If not specified, a temporary file
is created
view If TRUE, the browser will immediatly be viewed in the viewer panel

random_seed

Value

The url for the file

If a number is given, it is used as a seed to randomize the order of documents.
This is usefull for validations purposes, because the doc_id in the tokenindex is
sorted.

Arguments passed to create_browser

tokens_corenlp 41

Examples

tokens = tokens_spacy

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("agent"), label = "subject"))
active = tquery(pos = "VERB*", label = "predicate”,
children(relation = c("nsubj"”, "nsubjpass”), label = "subject"))

tokens = annotate_tqueries(tokens, 'clause', pas=passive, act=active)

syntax_reader(tokens, annotation = 'clause', value = 'subject')
tokens_corenlp Example tokens for coreNLP English
Description

Example tokens for coreNLP English

Usage

data(tokens_corenlp)

Format

data.frame

tokens_dutchclauses Example tokens for Dutch clauses

Description

Example tokens for Dutch clauses

Usage

data(tokens_dutchclauses)

Format

data.frame

42 tquery

tokens_dutchquotes Example tokens for Dutch quotes

Description

Example tokens for Dutch quotes

Usage

data(tokens_dutchquotes)

Format

data.frame

tokens_spacy Example tokens for spacy English

Description

Example tokens for spacy English

Usage

data(tokens_spacy)

Format

data.frame

tquery Create a query for dependency based parse trees in a data.table
(CoNLL-U or similar format).

tquery 43

Description

To find nodes you can use named arguments, where the names are column names (in the data.table
on which the queries will be used) and the values are vectors with look-up values.

Children or parents of nodes can be queried by passing the children or parents function as (named
or unnamed) arguments. These functions use the same query format as the tquery function, and
children and parents can be nested recursively to find children of children etc.

The custom_fill() function (also see fill argument) can be nested to customize which children of a
’labeled’ node need to be matched. It can only be nested in a query if the label argument is not
NULL, and by default will include all children of the node that have not been assigned to another
node. If two nodes have a shared child, the child will be assigned to the closest node.

Please look at the examples below for a recommended syntactic style for using the find_nodes
function and these nested functions.

Usage

tquery(..., g_id = NULL, label = NA, fill = TRUE, block = FALSE)

Arguments

Accepts two types of arguments: name-value pairs for finding nodes (i.e. rows),
and functions to look for parents/children of these nodes.

The name in the name-value pairs need to match a column in the data.table, and
the value needs to be a vector of the same data type as the column. By default,
search uses case sensitive matching, with the option of using common wildcards
(* for any number of characters, and ? for a single character). Alternatively, flags
can be used to to change this behavior to ’fixed” (__F), ’igoring case’ (__I) or
regex’ (__R). See details for more information.

If multiple name-value pairs are given, they are considered as AND statements,
but see details for syntax on using OR statements, and combinations.

To look for parents and children of the nodes that are found, you can use the par-
ents and children functions as (named or unnamed) arguments. These functions
have the same query arguments as tquery, but with some additional arguments.

g_id Find nodes by global id, which is the combination of the doc_id, sentence and
token_id. Passed as a data.frame or data.table with 3 columns: (1) doc_id, (2)
sentence and (3) token_id.

label A character vector, specifying the column name under which the selected tokens
are returned. If NA, the column is not returned.

fill Logical. If TRUE (default), the default custom_fill() will be used. To more
specifically control fill, you can nest the custom_fill function (a special version
of the children function).

block Logical. If TRUE, the node will be blocked from being assigned (labeled). This
is mainly useful if you have a node that you do not want to be assigned by fill,
but also don’t want to ’label’ it. Essentially, block is shorthand for using label
and then removing the node afterwards. If block is TRUE, label has to be NA.

44 unselect_nodes

Details

Multiple values in a name-value pair operate as OR conditions. For example, tquery(relation =
c(’nsubj’,’dobj’)) means that the relation column should have the value 'nsubj’ OR ’dobj’.

If multiple named arguments are given they operate as AND conditions. For example, tquery(relation
= 'nsubj’, pos = 'PROPN’) means that the relation should be ’nsubj” AND the pos should be
"PROPN’.

This easily combines for the most common use case, which is to select on multiple conditions
(relation AND pos), but allowing different (similar) values CPROPN’ OR "NOUN”). For example:
tquery(relation = "nsubj’, pos = ¢cCPROPN’,NOUN’)) means that the node should have the 'nsubj’
relation, but pos can be either 'PROPN’ or 'NOUN’.

For more specific behavior, the AND(), OR() and NOT() functions can be used for boolean style
conditions.

There are several flags that can be used to change search condition. To specify flags, add a double
underscore and the flag character to the name in the name value pairs (...). By adding the suffix
__R, query terms are considered to be regular expressions, and the suffix __I uses case insensitive
search (for normal or regex search). If the suffix __F is used, only exact matches are valid (case
sensitive, and no wildcards). Multiple flags can be combined, such as lemma__RI, or lemma_IR
(order of flags is irrelevant)

Value

A tQuery object, that can be used with the apply_queries function.

Examples

it is convenient to first prepare vectors with relevant words/pos-tags/relations
.SAY_VERBS = c("tell”, "show","say", "speak") ## etc.

.QUOTE_RELS= c("ccomp”, "dep", "parataxis”, "dobj", "nsubjpass”, "advcl")
.SUBJECT_RELS = c('su', 'nsubj', 'agent', 'nmod:agent')

quotes_direct = tquery(lemma = .SAY_VERBS,
children(label = 'source', p_rel = .SUBJECT_RELS),
children(label = 'quote', p_rel = .QUOTE_RELS))
quotes_direct

unselect_nodes Undo select_nodes

Description

Not strictly required. Only available for elegance and minor memory efficiency

Usage

unselect_nodes(.tokens)

unselect_nodes

Arguments

.tokens A tokenIndex in which nodes are selected with select_nodes.

Value

A tokenIndex (without a .nodes attribute)

Examples
tokens = tokens_spacy[tokens_spacy$doc_id == 'text4',]
tq = tquery(relation = "relcl”, label = "relative_clause”)

tokens = select_nodes(tokens, tq)
selected_nodes(tokens)

tokens = unselect_nodes(tokens)

is.null(attr(tokens, '.nodes'))

45

Index

+ datasets
dutch, 20
quote_punctuation, 32
tokens_corenlp, 41
tokens_dutchclauses, 41
tokens_dutchquotes, 42
tokens_spacy, 42

add_span_quotes, 3

AND, 5

annotate, 6, 8

annotate_nodes, 7
annotate_tqueries, 8
apply_queries, 7, 8, 10, 22, 44
as_tokenindex, 6, 8-10, 11, 22, 29, 36

BREAK, 12

cast_text, 13
children, 19, 26, 43
children (nested_nodes), 25
chop, 14

climb_tree, 15
copy_fill, 16
copy_nodes, 17
create_browser, 40
custom_fill, 18, 27,43

dutch, 20
fill, 21

get_branch_id, 21
get_long_ids, 22
get_nodes, 22
getDTthreads, 35, 37

isolate_branch, 23
mutate_nodes, 24

nested_nodes, 25

46

NOT, 28
not_children (nested_nodes), 25
not_parents (nested_nodes), 25

OR, 28

parents, 19, 26, 43

parents (nested_nodes), 25
plot_tree, 29
print.tQuery, 31

quote_punctuation, 32

remove_fill, 32
remove_nodes, 33
reselect_nodes, 34
rsyntax_threads, 35

select_nodes, 16, 18, 24, 32-35, 36, 39, 45
selected_nodes, 35
set_rsyntax_threads, 35, 37
setDTthreads, 37

spacy_parse, 38

split_UD_conj, 38

subset_nodes, 39

syntax_reader, 40

tokens_corenlp, 41

tokens_dutchclauses, 41

tokens_dutchquotes, 42

tokens_spacy, 42

tquery, 6, 7,9, 10, 12, 20, 21, 25, 27, 28, 36,
42

unselect_nodes, 44

	add_span_quotes
	AND
	annotate
	annotate_nodes
	annotate_tqueries
	apply_queries
	as_tokenindex
	BREAK
	cast_text
	chop
	climb_tree
	copy_fill
	copy_nodes
	custom_fill
	dutch
	fill
	get_branch_id
	get_long_ids
	get_nodes
	isolate_branch
	mutate_nodes
	nested_nodes
	NOT
	OR
	plot_tree
	print.tQuery
	quote_punctuation
	remove_fill
	remove_nodes
	reselect_nodes
	rsyntax_threads
	selected_nodes
	select_nodes
	set_rsyntax_threads
	split_UD_conj
	subset_nodes
	syntax_reader
	tokens_corenlp
	tokens_dutchclauses
	tokens_dutchquotes
	tokens_spacy
	tquery
	unselect_nodes
	Index

