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Abstract

We illustrate the use of the R-package rstiefel for matrix-variate

data analysis in the context of two examples. The first example con-

siders estimation of a reduced-rank mean matrix in the presence of

normally distributed noise. The second example considers the mod-

eling of a social network of friendships among teenagers. Bayesian

estimation for these models requires the ability to simulate from the

matrix-variate von Mises-Fisher distributions and the matrix-variate

Bingham distributions on the Stiefel manifold.

1 Exponential families on the Stiefel manifold

The set of m×R matrices U for which UTU = IR is called the m×R Stiefel

manifold and is denoted VR,m. The densities of a quadratic exponential

family on this manifold (with respect to the uniform measure) are given by

p(U|A,B,C) ∝ etr(CTU + BUTAU), (1)
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where C ∈ Rm×R, B is an R × R diagonal matrix and A is a symmetric

matrix. Since UTU = I, the density is unchanged under transformations

of the form A → A + aI or B → B + bI. Additionally, it is convenient

to restrict the diagonal entries of B to be in decreasing order. If B is not

ordered in this way, there exists a reparameterization (A, B̃, C̃) giving the

same distribution as (A,B,C) but where B̃ has ordered diagonal entries.

More details on the Stiefel manifold and these distributions can be found in

Chikuse (2003), Hoff (2009a), Hoff (2009b) and the references therein.

Distributions of this form were originally studied in the case R = 1, so

that the manifold was just the surface of the m-sphere. In this case, B

reduces to a scalar and can be absorbed into the matrix A. The quadratic

exponential family then has densities of the form

p(u|c,A) ∝ exp(cTu + uTAu). (2)

The case that A = 0 was studied by von Mises, Fisher and Langevin, and

so a distribution with density proportional to exp(cTu) is often called a von

Mises-Fisher or Langevin distribution on the sphere. The case that c = 0

and A 6= 0 was studied by Bingham (1974), and is called the Bingham

distribution. This distribution has “antipodal symmetry” in that p(u|A) =

p(−u|A), and so may be appropriate as a model for random axes, rather

than random directions.

In recognition of the work of the above mentioned authors, we refer

to distributions with densities given by (2) and (1) as vector-variate and

matrix-variate Bingham-von Mises-Fisher distributions, respectively. This

is a rather long name, however, so in this vignette I will refer to them as BMF

distributions. The case that A (or B) is the zero matrix will be referred to

as an MF distribution, and the case that C is zero will be referred to as a
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Bingham distribution. More descriptive names might be L, Q and LQ to

replace the names MF, Bingham, and BMF, respectively, the idea being that

the “L” and “Q” refer to the presence of linear and quadratic components of

the density.

2 Model-based SVD

It is often useful to model an m × n rectangular matrix-variate dataset Y

as being equal to some reduced rank matrix M plus i.i.d. noise, so that

Y = M + E, with the elements {εi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of E assumed

to be i.i.d. with zero mean and some unknown variance σ2. The singular

value decomposition states that any rank-R matrix M can be expressed as

M = UDVT , where U ∈ VR,m, V ∈ VR,n and D is an R × R diagonal

matrix. If we are willing to assume normality of the errors, the model can

then be written as

Y = UDVT + E

E = {εi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∼ i.i.d. normal(0, σ2).

Bayesian rank selection for this model was considered in Hoff (2007). In

this vignette we consider estimation for a specified rank R, in which case

the unknown parameters in the model are {U,D,V, σ2}. Given a suitable

prior distribution over these parameters, Bayesian inference can proceed

via construction of a Markov chain with stationary distribution equal to the

conditional distribution of the parameters given Y, i.e. the distribution with

density p(U,D,V, σ2|Y). In particular, conjugate prior distributions allow

the construction of a Markov chain via the Gibbs sampler, which iteratively

simulates each parameter from its full conditional distribution. If the prior
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distribution for U is uniform on VR,m, then its full conditional density is

given by

p(U|Y,D,V, σ2) ∝ p(Y|U,D,V, σ2)

∝ etr(−[Y −UDVT ]T [Y −UDVT ]/(2σ2))

∝ etr([YVD/σ2]TU),

which is the density of an MF(YVD/σ2) distribution. Similarly, the full con-

ditional distribution of V under a uniform prior is MF(YTUD/σ2). For this

vignette, we will use the following prior distributions for {d1, . . . , dR, σ2}:

{d1, . . . , dR|τ2} ∼ i.i.d. normal(0, τ2)

1/τ2 ∼ gamma(η0/2, η0τ
2
0 /2)

1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2.)

The corresponding full conditional distributions are

{dj |U,V,Y,d−j , σ2, τ2} ∼ normal(τ2uTj Yvj/[σ
2 + τ2], τ2σ2/[τ2 + σ2])

{1/τ2|U,D,V,Y, σ2} ∼ gamma([η0 +R]/2, [η0τ
2
0 +

∑
d2j ]/2)

{1/σ2|U,D,V,Y, τ2} ∼ gamma([ν0 +mn]/2, [ν0σ
2
0 + ||Y −UDVT ||2]/2).

2.1 Simulated data

We now randomly generate some parameters and data according to the

model above:

> library(rstiefel)

> set.seed(1)

> m<-60 ; n<-40 ; R0<-4

> U0<-rustiefel(m,R0)
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> V0<-rustiefel(n,R0)

> D0<-diag(sort(rexp(R0),decreasing=TRUE))*sqrt(m*n)

> M0<-U0%*%D0%*%t(V0)

> Y<-M0 + matrix(rnorm(n*m),m,n)

The only command from the rstiefel package used here is rustiefel, which

generates a uniformly distributed random orthonormal matrix. Note that

rustiefel(m,R) gives a matrix with m rows and R columns, and so the

arguments are in the reverse of their order in the symbolic representation of

the manifold VR,m.

2.2 Gibbs sampler

Now we try to recover the true values of the parameters {U0,V0,D0, σ
2}

from the observed data Y. Just for fun, let’s estimate these parameters with

a presumed rank R > R0 that is larger than the actual rank. Equivalently,

we can think of U0,V0,D0 as having dimension m×R, n×R and R ×R,

but with the last R−R0 diagonal entries of D0 being zero.

The prior distributions for U and V are uniform on their respective

manifolds. We set our hyperparameters for the other priors as follows:

> nu0<-1 ; s20<-1 #inverse-gamma prior for the error variance s2

> eta0<-1 ; t20<-1 #inverse-gamma prior for the variance t2 of the sing vals

Construction of a Gibbs sampler requires starting values for all (but one) of

the unknown parameters. An natural choice is the MLE:

> R<-6

> tmp<-svd(Y) ; U<-tmp$u[,1:R] ; V<-tmp$v[,1:R] ; D<-diag(tmp$d[1:R])

> s2<-var(c(Y-U%*%D%*%t(V)))

> t2<-mean(diag(D^2))
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Let’s compare the MLE of D to the true value:

> d.mle<-diag(D)

> d.mle

[1] 40.05172 25.00226 19.70827 13.43382 13.10381 12.64942

> diag(D0)

[1] 38.514216 24.015791 17.352783 1.169442

The values of the MLE are, as expected, larger than the true values, es-

pecially for the smaller values of D0. Now let’s see if the Bayes estimate

provides some shrinkage.

> MPS<-matrix(0,m,n) ; DPS<-NULL

> for(s in 1:2500)

+ {

+ U<-rmf.matrix(Y%*%V%*%D/s2)

+ V<-rmf.matrix(t(Y)%*%U%*%D/s2)

+

+ vd<-1/(1/s2+1/t2)

+ ed<-vd*(diag(t(U)%*%Y%*%V)/s2 )

+ D<-diag(rnorm(R,ed,sqrt(vd)))

+

+ s2<-1/rgamma(1, (nu0+m*n)/2 , (nu0*s20 + sum((Y-U%*%D%*%t(V))^2))/2 )

+ t2<-1/rgamma(1, (eta0+R)/2, (eta0*t20 + sum(D^2))/2)

+

+ ### save output

+ if(s%%5==0)
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+ {

+ DPS<-rbind(DPS,sort(diag(abs(D)),decreasing=TRUE))

+ M<-U%*%D%*%t(V)

+ MPS<-MPS+M

+ }

+ }

This generates a Gibbs sampler of 2500 iterations. Here, we save the values

of D every 5th iteration, resulting in a sample of D-values of size 500 with

which to estimate p(D|Y). Additionally, we can obtain a posterior mean

estimate of M0 = U0D0V
T
0 via the sample average of UDVT . Note that

this estimate is not of rank R, as the set matrices of less than full rank

is not convex. If we want a rank R estimate, we could take the rank-R

approximation of the posterior mean.

Let’s look at the squared error for the MLE, the posterior expectation

of M0, and the rank-R approximation to the posterior expectation:

> tmp<-svd(Y) ; M.ml<-tmp$u[,1:R]%*%diag(tmp$d[1:R])%*%t(tmp$v[,1:R])

> M.b1<-MPS/dim(DPS)[1]

> tmp<-svd(M.b1) ; M.b2<-tmp$u[,1:R]%*%diag(tmp$d[1:R])%*%t(tmp$v[,1:R])

> mean( (M0-M.ml)^2 )

[1] 0.3563462

> mean( (M0-M.b1)^2 )

[1] 0.1310905

> mean( (M0-M.b2)^2 )
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Figure 1: Some output of the Gibbs sampler.

[1] 0.1307826

Not surprisingly, the MLE has a much larger loss than the Bayes estimates.

The squared error for the two Bayes estimates are nearly identical. This is

because although the posterior mean has full rank m ∧ n, it is very close to

its rank-R approximation.

Finally, let’s make some plots based on the output of the Gibbs sampler.

The left-most plot of Figure 1 gives simulated values of D, with the values

of D0 given in thick lines. The mixing of the Markov chain looks pretty

reasonable. The center plot gives M0 versus its posterior expectation, ap-

proximated from the MCMC sample average of UDVT . The right plot gives

the MLEs of D0 in pink, the posterior expectations of D0 in light blue, and

the true values in thin black lines. The posterior estimates are very accurate

for the large singular values of D0, but are overestimates for the smallest

values (the last R−R0 of which are zero). However, these Bayes estimates

are much better than the unregularized MLEs.
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3 Network analysis

In this section we analyze a dataset on the social network and some health

behaviors of a group of n = 50 Scottish teenage girls. These data were de-

rived from the data available at http://www.stats.ox.ac.uk/~snijders/

siena/s50_data.htm and described in Michell and Amos (1997).

3.1 An eigenmodel for symmetric networks

Let Y be the n× n symmetric adjacency matrix corresponding to this net-

work, with off-diagonal entry yi,j equal to the binary indicator of a friendship

between actors i and j, as reported by one or both actors. In this vignette

we will derive a model-based representation of these data using the following

reduced-rank probit model:

zi,j = θ + uTi Λuj + εi,j (3)

yi,j = 1(0,∞)(zi,j),

where {εi,j = εj,i} ∼ i.i.d. normal(0, 1), Λ = diag(λ1, λ2) and the matrix U

with row vectors u1, . . . ,un lies in the Stiefel manifold VR,n. This model

is a type of two-way latent factor model in which the relationship between

actors i and j is modeled in terms of their unobserved latent factors ui and

uj . This model and its relationship to other latent variable network models

are described more fully in Hoff (2008).

Convenient prior distributions for {U,Λ, θ} are as follows:

θ ∼ normal(0, τ2θ )

(λ1, λ2) ∼ i.i.d. normal(0, τ2λ)

U ∼ uniform(VR,n)
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Conditional on the observed network Y, posterior inference can proceed via

a Gibbs sampling scheme for the unknown quantities {Z,U,Λ, θ}. Under

model (3), observing yi,j = 0 or 1 implies that zi,j is less than or greater

than zero, respectively. Thus conditional on {Y,U,Λ, θ}, the distribution of

Z is that of a random symmetric normal matrix with mean θ + UΛUT and

independent entries that are constrained to be positive or negative depending

on the entries of Y. Given Z, the full conditional distributions of {U,Λ, θ}

do not depend on Y, and can be obtained from the corresponding prior

distributions and the density for the matrix Z, given by

p(Z|U,Λ) ∝ etr(−[Z− θ11T −UΛUT ]T [Z− θ11T −UΛUT ]/4)

= etr(−ETE/4)× etr(ΛUTEU/2)× etr(−Λ2/4), (4)

where E = Z− θ11T has mean UΛUT and off-diagonal variances of 1. The

diagonal elements of E (and Z) have variance 2, but do not correspond to any

observed data as the diagonal of Y is undefined. These diagonal elements

are integrated over in the Markov chain Monte Carlo estimation scheme

described below. From (4), the full conditional distribution of U is easily

seen to be a Bingham(E/2,Λ) distribution. Full conditional distributions for

the other quantities are available via standard calculations, and are given in

Hoff (2009a) and in the code below.

3.2 Gibbs sampler

The data for this example are stored as a list:

> YX_scots<-dget("YX_scots") ; Y<-YX_scots$Y ; X<-YX_scots$X

The n × 2 matrix X provides a binary indicator of drug use and smoking

behavior for each actor during the period of the study. Understanding the
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relationship between these health behaviors and the social network can be

facilitated by examining the relationship between X and the latent factors

U that represent the network via the model given in (3).

We specify the dimension of the latent factors and the values of the

hyperparameters as follows:

> ## priors

> R<-2 ; t2.lambda<-dim(Y)[1] ; t2.theta<-100

A value of τ2λ = n allows the prior magnitude of the latent factor effects to

increase with n, but not as fast as the residual variance: Letting U1 be the

first column of U, we have E[||λ1U1U
T
1 ||2] = E[λ21] = n. On the other hand,

letting E be the matrix of residuals {εi,j} , we have E[||E||2] = (n+ 1)n.

For brevity, we consider simple, naive starting values for the unknown

parameters:

> ## starting values

> theta<-qnorm(mean(c(Y),na.rm=TRUE))

> L<-diag(0,R)

> set.seed(1)

> U<-rustiefel(dim(Y)[1],R)

Better starting values could be obtained from a few iterations of an EM or

block coordinate descent algorithm, although these naive starting values are

adequate for this example.

We are now ready to run the Gibbs sampler. We will store simulated

values of Λ and θ in the objects LPS and TPS, respectively. Instead of saving

values of U, we will just compute the sum of UΛUT across iterations of the

Markov chain. Dividing by the number of iterations, this sum provides an
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approximation to the posterior mean of UΛUT . A rank-R eigendecomposi-

tion of the posterior mean can be used to provide an estimate of U.

> ## MCMC

> LPS<-TPS<-NULL ; MPS<-matrix(0,dim(Y),dim(Y))

> for(s in 1:10000)

+ {

+

+ Z<-rZ_fc(Y,theta+U%*%L%*%t(U))

+

+ E<-Z-U%*%L%*%t(U)

+ v.theta<-1/(1/t2.theta + choose(dim(Y)[1],2))

+ e.theta<-v.theta*sum(E[upper.tri(E)])

+ theta<-rnorm(1,e.theta,sqrt(v.theta))

+

+ E<-Z-theta

+ v.lambda<-2*t2.lambda/(2+t2.lambda)

+ e.lambda<-v.lambda*diag(t(U)%*%E%*%U/2)

+ L<-diag(rnorm(R,e.lambda,sqrt(v.lambda)))

+

+ U<-rbing.matrix.gibbs(E/2,L,U)

+

+ ## output

+ if(s>100 & s%%10==0)

+ {

+ LPS<-rbind(LPS,sort(diag(L))) ; TPS<-c(TPS,theta) ; MPS<-MPS+U%*%L%*%t(U)

+ }
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+ }

Note that this code uses a function rZ_fc, which simulates from the full

conditional distribution of Z given {Y,U,Λ, θ}, which is that of independent

constrained normal random variables. The code for this function can be

obtained from the LATEX source file for this document.

A summary of the posterior distribution is provided in Figure 2. The first

panel plots the posterior density of θ, and the second plots the (marginal)

posterior densities of the ordered values of (λ1, λ2). This plot strongly sug-

gests that the values of λ1 and λ2 are both positive. Since the probability of

a friendship between i and j is increasing in uTi Λuj , the results posit that

friendships are more likely between individuals with similar values for their

latent factors (this effect is sometimes referred to as homophily). The third

panel plots the observed network with the node positions obtained from the

estimates of u1, . . . ,un based on the rank-2 approximation of the posterior

mean of UΛUT . The plotting colors and characters for the nodes are de-

termined by the drug and smoking behaviors: Non-smokers are plotted in

green and smokers in red, non-drug users are plotted as circles and drug

users as triangles. The plot indicates a separation between students with no

drug or tobacco use (green circles) from the other students in terms of their

latent factors, suggesting a relationship between these health behaviors and

the social network.
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Figure 2: Some output of the Gibbs sampler.
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