Package 'rspiro'

June 24, 2024

Type Package

Title Implementation of Spirometry Equations

Version 0.5

Date 2024-06-23

Author Theodore Lytras

Maintainer Theodore Lytras <thlytras@gmail.com>

Description Implementation of various spirometry equations in R, currently the GLI-2012 (Global Lung Initiative; Quanjer et al. 2012 <doi:10.1183/09031936.00080312>), the race-neutral GLI global 2022 (Global Lung Initiative; Bowerman et al. 2023 <doi:10.1164/rccm.202205-0963OC>), the NHANES3 (National Health and Nutrition Examination Survey; Hankinson et al. 1999 <doi:10.1164/ajrccm.159.1.9712108>) and the JRS 2014 (Japanese Respiratory Society; Kubota et al. 2014 <doi:10.1016/j.resinv.2014.03.003>) equations. Also the GLI-2017 diffusing capacity equations <doi:10.1183/13993003.00010-2017> are implemented. Contains user-friendly functions to calculate predicted and LLN (Lower Limit of Normal) values for different spirometric parameters such as FEV1 (Forced Expiratory Volume in 1 second), FVC (Forced Vital Capacity), etc, and to convert absolute spirometry measurements to percent (%) predicted and z-scores.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.1

Depends R (>= 2.10)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-06-23 22:30:03 UTC

Contents

rspiro-package	2
LLN_GLI	
LLN_GLIdiff	4
LLN_GLIgl	5
LLN_JRS	6
LLN_NHANES3	7
pctpred_GLI	8
pctpred_GLIdiff	9
pctpred_GLIgl	10
pctpred_JRS	11
pctpred_NHANES3	12
pred_GLI	14
pred_GLIdiff	15
pred_GLIgl	16
pred_JRS	17
pred_NHANES3	
raw_GLI	19
raw_GLIdiff	
raw_GLIgl	
raw_JRS	
zscore_GLI	
zscore_GLIdiff	
zscore_GLIgl	
zscore_JRS	
zscore_NHANES3	28
	20
	30

Index

rspiro-package

rspiro: Brief overview of the package

Description

R package **rspiro** implements multiple spirometry equations: currently the GLI-2012 (Quanjer), GLI global 2022, JRS-2014, NHANES III (Hankinson), as well as the GLI-2017 diffusing capacity equations (Stanojevic et al). More may be added later. It offers a convenient interface to calculate predicted or LLN (Lower Limit of Normal) values given demographic data, or to convert absolute values to percent (predicted or z-scores.

Details

To ensure a consistent interface, package functions are named with a prefix indicating the functionality and a suffix indicating the spirometric equations used, for example LLN_GLI calculates Lower Limits of Normal using the GLI-2012 equations. The suffix is currently one of 'GLI', 'GLIgI', 'JRS', 'NHANES3' or 'GLIdiff'. The prefix is one of 'LLN_', 'pred_', 'pctpred_' or 'zscore_'.

LLN_GLI

Functions prefixed 'LLN_' or 'pred_' accept as input demographic information (age, gender, height, ethnicity) and calculate the Lower Limit of Normal and the predicted value, respectively, for a given spirometry parameter (FEV1, FVC, etc). Functions prefixed 'pctpred_' or 'zscore_' accept absolute spirometry values (plus demographics) and convert those to percent (z-scores, respectively. Please note the difference between 'pred_' and 'pctpred_' above.

For detailed information, refer to the respective function documentations.

The development version of **rspiro** is available on GitHub https://github.com/thlytras/rspiro. To report problems and bugs, or to request a feature, please go there and open an issue. Alternatively, send an email to Theodore Lytras <thlytras@gmail.com>.

Author(s)

Theodore Lytras <thlytras@gmail.com>.

LLN_GLI

Calculate LLN of spirometry parameters using GLI-2012 equations

Description

This function calculates LLNs (Lower Limits of Normal) for the various spirometry parameters, using the GLI-2012 equations. It accepts as input age, height, gender and ethnicity.

Usage

```
LLN_GLI(age, height, gender = 1, ethnicity = 1, param = "FEV1")
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = NE Asian, 4 = SE Asian, 5 = Other/mixed). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "FEV1", "FVC", "FEV1FVC", "FEF2575", "FEF75", "FEV075", "FEV075FVC"

Details

Arguments age, height, gender and ethnicity are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

Examples

Find LLN of FEV1 and FVC for Caucasian women aged 20 to 70 and with a height of 1.70 meters. LLN_GLI(20:70, 1.7, 2, param=c("FEV1","FVC"))

LLN_GLIdiff	Calculate LLN of diffusing capacity parameters using GLI (2017)
	equations

Description

This function calculates LLNs (Lower Limits of Normal) for TLCO (transfer factor of the lung for carbon monoxide), KCO (transfer coefficient of the lung for carbon monoxide) and VA (alveolar volume) using the GLI (2017) equations. It accepts as input age, height, gender.

Usage

```
LLN_GLIdiff(age, height, gender = 1, param = "TLCO", SI = TRUE)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "TLCO", "KCO" or "VA"
SI	(default TRUE) Use SI (mmol/min/kPa) or traditional (ml/min/mmHg) units?

Details

Arguments age, height and gender are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

Examples

Find LLN of TLCO and VA for women aged 20 to 70 and with a height of 1.70 meters. LLN_GLIdiff(20:70, 1.7, 2, param=c("TLCO","VA")) LLN_GLIgl

Description

This function calculates LLNs (Lower Limits of Normal) for the various spirometry parameters, using the GLI global (2022) equations. It accepts as input age, height, gender.

Usage

LLN_GLIgl(age, height, gender = 1, param = "FEV1")

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "FEV1", "FVC", "FEV1FVC"

Details

Arguments age, height and gender are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find LLN of FEV1 and FVC for women aged 20 to 70 and with a height of 1.70 meters.
LLN_GLIgl(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

LLN_JRS

Description

This function calculates LLNs (Lower Limits of Normal) for the various spirometry parameters, using the JRS (Japanese Respiratory Society 2014) equations. It accepts as input age, height, gender.

Usage

LLN_JRS(age, height, gender = 1, param = "FEV1")

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "FEV1", "FVC", "VC", "FEV1FVC"

Details

Arguments age, height and gender are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find LLN of FEV1 and FVC for Japanese women aged 20 to 70 and with a height of 1.70 meters.
LLN_JRS(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

LLN_NHANES3

Calculate predicted values of spirometry parameters using NHANES III equations

Description

This function calculates LLNs (Lower Limits of Normal) for the various spirometry parameters, using the NHANES III equations. It accepts as input age, height, gender and ethnicity.

Usage

```
LLN_NHANES3(age, height, gender = 1, ethnicity = 1, param = "FEV1")
```

Arguments

age	Age in years
height	Height in meters
gender	Gender ($1 = male$, $2 = female$) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = Mexican-American). Default is 1.
param	A character vector, containing one of more of the following parameters (case in- sensitive): "FEV1", "FVC", "FEV1FVC", "PEF", "FEF2575", "FEV6", "FEV1FEV6"

Details

Arguments age, height, gender and ethnicity are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find LLN of FEV1 and FVC for Caucasian women aged 20 to 70 and with a height of 1.70 meters.
LLN_NHANES3(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

pctpred_GLI

Description

This function takes absolute spirometry measurements (FEV1, FVC, etc) in lt plus demographic data (age, height, gender and ethnicity) and converts them to percent (%) predicted based on the GLI-2012 equations.

Usage

```
pctpred_GLI(
    age,
    height,
    gender = 1,
    ethnicity = 1,
    FEV1 = NULL,
    FVC = NULL,
    FEV1FVC = NULL,
    FEF75 = NULL,
    FEV075 = NULL,
    FEV075FVC = NULL
)
```

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = NE Asian, 4 = SE Asian, 5 = Other/mixed). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
FEV1FVC	FEV1 / FVC ratio
FEF2575	Forced Expiratory Flow between 25% and 75% of FVC (lt/s)
FEF75	Forced Expiratory Flow at 75% of FVC (lt/s)
FEV075	Forced Expiratory Volume in 0.75 sec (lt)
FEV075FVC	FEV0.75 / FVC ratio

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height, gender and ethnicity must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (FEV1)
pctpred_GLI(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
      gender=c(2,1,2,1), FEV1=c(3.5, 4, 3.6, 3.9))
```

pctpred_GLIdiff	Convert diffusing capacity values to % predicted using GLI (2017)
	equations

Description

This function takes absolute diffusing capacity measurements (TLCO, KCO and VA) plus demographic data (age, height, gender) and converts them to percent (%) predicted based on the GLI (2017) equations.

Usage

```
pctpred_GLIdiff(
   age,
   height,
   gender = 1,
   TLCO = NULL,
   KCO = NULL,
   VA = NULL,
   SI = TRUE
)
```

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.

TLCO	Transfer factor of the lung for carbon monoxide (in mmol/min/kPa if SI=TRUE or ml/min/mmHg if SI=FALSE)
КСО	Transfer coefficient of the lung for carbon monoxide (in mmol/min/kPa/lt if SI=TRUE or ml/min/mmHg/lt if SI=FALSE)
VA	Alveolar volume (in lt)
SI	(default TRUE) Use SI (mmol/min/kPa) or traditional (ml/min/mmHg) units?

At least one of the diffusing capacity measurement arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the diffusing capacity measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one diffusing capacity argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (TLCO)
pctpred_GLIdiff(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), TLCO=c(7.8, 8.8, 7.5, 8.5))
```

pctpred_GLIgl	Convert spirometric values to % predicted using GLI global (2022)
	equations

Description

This function takes absolute spirometry measurements (FEV1, FVC or FEV1FVC) in lt plus demographic data (age, height, gender) and converts them to percent (%) predicted based on the GLI global (2022) equations.

Usage

```
pctpred_GLIg1(age, height, gender = 1, FEV1 = NULL, FVC = NULL, FEV1FVC = NULL)
```

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.

FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
FEV1FVC	FEV1 / FVC ratio

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (FEV1)
pctpred_GLIgl(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
            gender=c(2,1,2,1), FEV1=c(3.5, 4, 3.6, 3.9))
```

pctpred_JRS	Convert spirometric values to % predicted using JRS (2014) equations
petpica_sits	Converti spirometrie values to 70 predicted asing SRS (2014) equations

Description

This function takes absolute spirometry measurements (FEV1, FVC, VC or FEV1FVC) in lt plus demographic data (age, height, gender) and converts them to percent (%) predicted based on the JRS (Japanese Respiratory Society 2014) equations.

Usage

```
pctpred_JRS(
    age,
    height,
    gender = 1,
    FEV1 = NULL,
    FVC = NULL,
    VC = NULL,
    FEV1FVC = NULL
)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
VC	Vital Capacity (lt)
FEV1FVC	FEV1 / FVC ratio

Details

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (FEV1)
pctpred_JRS(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
            gender=c(2,1,2,1), FEV1=c(3.5, 4, 3.6, 3.9))
```

pctpred_NHANES3	Convert spirometric values to % predicted using NHANES III equa-
	tions

Description

This function takes absolute spirometry measurements (FEV1, FVC, etc) in lt plus demographic data (age, height, gender and ethnicity) and converts them to percent (%) predicted based on the NHANES III equations.

Usage

```
pctpred_NHANES3(
    age,
    height,
    gender = 1,
    ethnicity = 1,
    FEV1 = NULL,
    FVC = NULL,
    FEV1FVC = NULL,
    PEF = NULL,
    FEF2575 = NULL,
    FEV6 = NULL,
    FEV1FEV6 = NULL
}
```

)

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = Mexican-American). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
FEV1FVC	FEV1 / FVC ratio
PEF	Peak Expiratory Flow (lt)
FEF2575	Forced Expiratory Flow between 25% and 75% of FVC (lt/s)
FEV6	Forced Expiratory Volume in 6 seconds (lt)
FEV1FEV6	FEV1 / FEV6 ratio

Details

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height, gender and ethnicity must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (FEV1)
pctpred_NHANES3(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), FEV1=c(3.5, 4, 3.6, 3.9))
```

pred_GLI	Calculate predicted values of spirometry parameters using GLI-2012
	equations

Description

This function calculates the mean normal (predicted) values for the various spirometry parameters, using the GLI-2012 equations. It accepts as input age, height, gender and ethnicity.

Usage

```
pred_GLI(age, height, gender = 1, ethnicity = 1, param = "FEV1")
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = NE Asian, 4 = SE Asian, 5 = Other/mixed). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "FEV1", "FVC", "FEV1FVC", "FEF2575", "FEF75", "FEV075", "FEV075", "FEV075FVC"

Details

Arguments age, height, gender and ethnicity are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

Examples

```
# Find predicted FEV1 and FVC for Caucasian women aged 20 to 70 and with a height of 1.70 meters.
pred_GLI(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

14

pred_GLIdiff

Description

This function calculates the mean normal (predicted) values for TLCO (transfer factor of the lung for carbon monoxide), KCO (transfer coefficient of the lung for carbon monoxide) and VA (alveolar volume) using the GLI (2017) equations. It accepts as input age, height and gender.

Usage

```
pred_GLIdiff(age, height, gender = 1, param = "TLCO", SI = TRUE)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "TLCO", "KCO" or "VA"
SI	(default TRUE) Use SI (mmol/min/kPa) or traditional (ml/min/mmHg) units?

Details

Arguments age, height and gender are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find predicted TLCO and VA for women aged 20 to 70 and with a height of 1.70 meters.
pred_GLIdiff(20:70, 1.7, 2, param=c("TLCO","VA"))
```

pred_GLIgl

Description

This function calculates the mean normal (predicted) values for the various spirometry parameters, using the GLI global (2022) equations. It accepts as input age, height and gender.

Usage

pred_GLIgl(age, height, gender = 1, param = "FEV1")

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "FEV1", "FVC", "FEV1FVC"

Details

Arguments age, height and gender are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find predicted FEV1 and FVC for women aged 20 to 70 and with a height of 1.70 meters.
pred_GLIg1(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

pred_JRS

Description

This function calculates the mean normal (predicted) values for the various spirometry parameters, using the JRS (Japanese Respiratory Society 2014) equations. It accepts as input age, height and gender.

Usage

pred_JRS(age, height, gender = 1, param = "FEV1")

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
param	A character vector, containing one of more of the following parameters (case insensitive): "FEV1", "FVC", "VC", "FEV1FVC"

Details

Arguments age, height and gender are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find predicted FEV1 and FVC for women aged 20 to 70 and with a height of 1.70 meters.
pred_JRS(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

pred_NHANES3

Description

This function calculates the mean normal (predicted) values for the various spirometry parameters, using the NHANES III equations. It accepts as input age, height, gender and ethnicity.

Usage

```
pred_NHANES3(age, height, gender = 1, ethnicity = 1, param = "FEV1")
```

Arguments

age	Age in years
height	Height in meters
gender	Gender $(1 = male, 2 = female)$ or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = Mexican-American). Default is 1.
param	A character vector, containing one of more of the following parameters (case in- sensitive): "FEV1", "FVC", "FEV1FVC", "PEF", "FEF2575", "FEV6", "FEV1FEV6"

Details

Arguments age, height, gender and ethnicity are vectors of equal length, or of length one, in which case the value is recycled; if the four vectors are not of equal length, the function stops with an error.

Value

If param has length one, the function returns a numeric vector. If param has length >1, it returns a data.frame with length(param) columns.

```
# Find predicted FEV1 and FVC for Caucasian women aged 20 to 70 and with a height of 1.70 meters.
pred_NHANES3(20:70, 1.7, 2, param=c("FEV1","FVC"))
```

raw_GLI

Description

This function takes z-scores based on the GLI-2012 equations, plus demographic data (age, height, gender and ethnicity), and converts them back into absolute spirometry measurements (FEV1, FVC, etc) in lt.

Usage

```
raw_GLI(
    age,
    height,
    gender = 1,
    ethnicity = 1,
    FEV1 = NULL,
    FVC = NULL,
    FEY1FVC = NULL,
    FEF2575 = NULL,
    FEF75 = NULL,
    FEV075 = NULL,
    FEV075FVC = NULL
)
```

```
)
```

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = NE Asian, 4 = SE Asian, 5 = Other/mixed). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (z-score)
FVC	Forced Vital Capacity (z-score)
FEV1FVC	FEV1 / FVC (as z-score)
FEF2575	Forced Expiratory Flow between 25% and 75% of FVC (z-score)
FEF75	Forced Expiratory Flow at 75% of FVC (z-score)
FEV075	Forced Expiratory Volume in 0.75 sec (z-score)
FEV075FVC	FEV0.75 / FVC (as z-score)

At least one of the spirometric z-score arguments must be set (i.e. be non-NULL). Arguments age, height, gender and ethnicity must be vectors of length equal to the length of the z-score vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry z-score argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

raw_GLIdiff	Convert z-scores	back to	raw	diffusing	capacity	values	using	GLI
	(2017) equations							

Description

This function takes z-scores based on the GLI (2017) equations, plus demographic data (age, height and gender), and converts them back into absolute diffusing capacity measurements (TLCO, KCO and VA).

Usage

```
raw_GLIdiff(
   age,
   height,
   gender = 1,
   TLCO = NULL,
   KCO = NULL,
   VA = NULL,
   SI = TRUE
)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.

20

TLC0	Transfer factor of the lung for carbon monoxide (z-score)
KC0	Transfer coefficient of the lung for carbon monoxide (z-score)
VA	Alveolar volume (z-score)
SI	(default TRUE) Use SI (mmol/min/kPa) or traditional (ml/min/mmHg) units?

At least one of the diffusing capacity z-score arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the z-score vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one diffusing capacity z-score argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one z-score parameter supplied (TLCO)
raw_GLIdiff(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), TLCO=c(-1.2, -1.9, 0, 0.5))
```

raw_GLIgl	Convert z-scores	back to	raw	spirometric	values	using	GLI	global
	(2022) equations							

Description

This function takes z-scores based on the GLI global (2022) equations, plus demographic data (age, height and gender), and converts them back into absolute spirometry measurements (FEV1, FVC, or FEV1FVC) in lt.

Usage

```
raw_GLIg1(age, height, gender = 1, FEV1 = NULL, FVC = NULL, FEV1FVC = NULL)
```

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (z-score)
FVC	Forced Vital Capacity (z-score)
FEV1FVC	FEV1 / FVC (as z-score)

At least one of the spirometric z-score arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the z-score vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry z-score argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one z-score parameter supplied (FEV1)
raw_GLIgl(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
            gender=c(2,1,2,1), FEV1=c(-1.2, -1.9, 0, 0.5))
```

raw_JRS	Convert z-s	scores	back i	o raw	, spirometric	values	using	JRS	(2014)	
	equations									

Description

This function takes z-scores based on the JRS (Japanese Respiratory Society 2014) equations, plus demographic data (age, height and gender), and converts them back into absolute spirometry measurements (FEV1, FVC, VC, or FEV1FVC) in lt.

Usage

```
raw_JRS(
    age,
    height,
    gender = 1,
    FEV1 = NULL,
    FVC = NULL,
    VC = NULL,
    FEV1FVC = NULL
)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.

22

zscore_GLI

FEV1	Forced Expiratory Volume in 1 second (z-score)
FVC	Forced Vital Capacity (z-score)
VC	Vital Capacity (z-score)
FEV1FVC	FEV1 / FVC (as z-score)

Details

At least one of the spirometric z-score arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the z-score vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry z-score argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

zscore_GLI

```
Convert spirometric values to z-scores using GLI-2012 equations
```

Description

This function takes absolute spirometry measurements (FEV1, FVC, etc) in lt plus demographic data (age, height, gender and ethnicity) and converts them to z-scores based on the GLI-2012 equations.

Usage

```
zscore_GLI(
   age,
   height,
   gender = 1,
   ethnicity = 1,
   FEV1 = NULL,
   FVC = NULL,
   FEV1FVC = NULL,
   FEF2575 = NULL,
   FEF75 = NULL,
   FEV075 = NULL,
   FEV075FVC = NULL
)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = NE Asian, 4 = SE Asian, 5 = Other/mixed). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
FEV1FVC	FEV1 / FVC
FEF2575	Forced Expiratory Flow between 25% and 75% of FVC (lt/s)
FEF75	Forced Expiratory Flow at 75% of FVC (lt/s)
FEV075	Forced Expiratory Volume in 0.75 sec (lt)
FEV075FVC	FEV0.75 / FVC

Details

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height, gender and ethnicity must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (FEV1)
zscore_GLI(age=seq(25,40,4), height=c(1.8, 1.9, 1.75, 1.85),
            gender=c(2,1,2,1), ethnicity=rep(1,4), FEV1=c(3.5, 4, 3.6, 3.9))
```

zscore_GLIdiff	Convert diffusing capacity values to z-scores using GLI (2017) equa-
	tions

Description

This function takes absolute diffusing capacity measurements (TLCO, KCO and VA) plus demographic data (age, height and gender) and converts them to z-scores based on the GLI (2017) equations. zscore_GLIdiff

Usage

```
zscore_GLIdiff(
   age,
   height,
   gender = 1,
   TLCO = NULL,
   KCO = NULL,
   VA = NULL,
   SI = TRUE
)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
TLCO	Transfer factor of the lung for carbon monoxide (in mmol/min/kPa if SI=TRUE or ml/min/mmHg if SI=FALSE)
КСО	Transfer coefficient of the lung for carbon monoxide (in mmol/min/kPa/lt if SI=TRUE or ml/min/mmHg/lt if SI=FALSE)
VA	Alveolar volume (in lt)
SI	(default TRUE) Use SI (mmol/min/kPa) or traditional (ml/min/mmHg) units?

Details

At least one of the diffusing capacity measurement arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the diffusing capacity measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one diffusing capacity argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

```
# Random data, 4 patients, one parameter supplied (TLCO)
zscore_GLIdiff(age=seq(25,40,5), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), TLC0=c(7.8, 8.8, 7.5, 8.5))
```

zscore_GLIgl

Description

This function takes absolute spirometry measurements (FEV1, FVC, FEV1/FVC) in lt plus demographic data (age, height and gender) and converts them to z-scores based on the GLI global (2022) equations.

Usage

```
zscore_GLIg1(age, height, gender = 1, FEV1 = NULL, FVC = NULL, FEV1FVC = NULL)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
FEV1FVC	FEV1 / FVC

Details

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height and gender must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

```
# Random data, 4 patients, one parameter supplied (FEV1)
zscore_GLI(age=seq(25,40,4), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), FEV1=c(3.5, 4, 3.6, 3.9))
```

zscore_JRS

Description

This function takes absolute spirometry measurements (FEV1, FVC, VC, FEV1/FVC) in lt plus demographic data (age, height and gender) and converts them to z-scores based on the JRS (Japanese Respiratory Society 2014) equations.

Usage

```
zscore_JRS(
   age,
   height,
   gender = 1,
   FEV1 = NULL,
   FVC = NULL,
   VC = NULL,
   FEV1FVC = NULL
)
```

Arguments

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
VC	Vital Capacity (lt)
FEV1FVC	FEV1 / FVC

Details

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height, and gender must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

Examples

```
# Random data, 4 patients, one parameter supplied (FEV1)
zscore_JRS(age=seq(25,40,4), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), FEV1=c(3.5, 4, 3.6, 3.9))
```

zscore_NHANES3 Convert spirometric values to z-scores using NHANES III equations

Description

This function takes absolute spirometry measurements (FEV1, FVC, etc) in lt plus demographic data (age, height, gender and ethnicity) and converts them to z-scores based on the NHANES III equations.

Usage

```
zscore_NHANES3(
    age,
    height,
    gender = 1,
    ethnicity = 1,
    FEV1 = NULL,
    FVC = NULL,
    FEV1FVC = NULL,
    FEF2575 = NULL,
    FEV0 = NULL,
    FEV1FEV6 = NULL
)
```

age	Age in years
height	Height in meters
gender	Gender (1 = male, 2 = female) or a factor with two levels (first = male). Default is 1.
ethnicity	Ethnicity (1 = Caucasian, 2 = African-American, 3 = Mexican-American). Default is 1.
FEV1	Forced Expiratory Volume in 1 second (lt)
FVC	Forced Vital Capacity (lt)
FEV1FVC	FEV1 / FVC ratio
PEF	Peak Expiratory Flow (lt)
FEF2575	Forced Expiratory Flow between 25% and 75% of FVC (lt/s)
FEV6	Forced Expiratory Volume in 6 seconds (lt)
FEV1FEV6	FEV1 / FEV6 ratio

At least one of the spirometric measurement arguments must be set (i.e. be non-NULL). Arguments age, height, gender and ethnicity must be vectors of length equal to the length of the spirometric measurement vector(s), or of length one, in which case their value is recycled. If any input vector is not of equal length, the function stops with an error.

Normal distributions are assumed for all parameters, even though per the NHANES III equations paper (Hankinson et al) this was observed only for FEV1, FVC, PEF and FEV6.

Value

If only one spirometry argument is supplied, the function returns a numeric vector. If more are supplied, the function returns a data.frame with the same number of columns.

```
# Random data, 4 patients, one parameter supplied (FEV1)
zscore_NHANES3(age=seq(25,40,4), height=c(1.8, 1.9, 1.75, 1.85),
    gender=c(2,1,2,1), ethnicity=rep(1,4), FEV1=c(3.5, 4, 3.6, 3.9))
```

Index

* package rspiro-package, 2 LLN_GLI, 2, 3 LLN_GLIdiff, 4 LLN_GLIg1, 5 LLN_JRS, 6 LLN_NHANES3, 7 pctpred_GLI, 8 pctpred_GLIdiff, 9 pctpred_GLIg1, 10 pctpred_JRS, 11 pctpred_NHANES3, 12 pred_GLI, 14 pred_GLIdiff, 15 pred_GLIg1, 16 pred_JRS, 17 pred_NHANES3, 18 raw_GLI, 19 raw_GLIdiff, 20 raw_GLIgl, 21 raw_JRS, 22 rspiro (rspiro-package), 2 rspiro-package, 2 zscore_GLI, 23 $zscore_GLIdiff, 24$ zscore_GLIg1, 26 zscore_JRS, 27 zscore_NHANES3, 28