Package ‘rrecsys’

October 14, 2022
Type Package

Title Environment for Evaluating Recommender Systems
Version 0.9.7.3.1
Date 2018-02-10

URL https://rrecsys.inf.unibz.it/

BugReports https://github.com/ludovikcoba/rrecsys/issues

Description Processes standard recommendation datasets (e.g., a user-item rating matrix) as in-
put and generates rating predictions and lists of recommended items. Standard algorithm imple-
mentations which are included in this package are the following: Global/Item/User-
Average baselines, Weighted Slope One, Item-Based KNN, User-
Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the stan-
dard offline evaluation methodology (Shani, et al. (2011) <doi:10.1007/978-0-387-85820-
3_8>) for recommender systems using measures such as MAE, RMSE, Precision, Re-
call, F1, AUC, NDCG, RankScore and coverage measures. The pack-
age (Coba, et al.(2017) <doi:10.1007/978-3-319-60042-0_36>) is intended for rapid prototyp-
ing of recommendation algorithms and education purposes.

Imports methods, Repp

Depends R (>=3.1.2), registry, MASS, stats, knitr, ggplot2
License GPL-3

VignetteBuilder knitr

Encoding UTF-8

Repository CRAN

LinkingTo Rcpp

NeedsCompilation yes

Author Ludovik Coba [aut, cre, cph],
Markus Zanker [ctb],
Panagiotis Symeonidis [ctb]

Maintainer Ludovik Coba <Ludovik.Coba@inf.unibz.it>

Date/Publication 2019-06-09 18:45:49 UTC

https://rrecsys.inf.unibz.it/
https://github.com/ludovikcoba/rrecsys/issues
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-3-319-60042-0_36

2 algAverageClass

R topics documented:

algAverageClass. e e e e e 2
BPRclass 3
dataChart e 3
dataSet-class 4
defineData 5
evalChart e 6
evalModel 7
evalModel-class 8
evalPred e 9
evalRec e 10
evalRecResults e 11
eval_nDCG e 12
getAUC . . . e 13
histogram e 14
IBclass e e e 14
mllOOK e e e 15
mlLatestIO0K 15
PPLclass e 16
predicto e e e e e 16
rankScore e e e e 17
recommend . ..o ... L e e e e e e 18
TIECSYS « ¢ v v v e v e e e e e e e e e e e e e e e 19
setStoppingCriteria e e 22
slopeOneClass o o e 23
sparseDataSet-class L 24
SVDclass 25
UBCIass e e e 25
WALScClass e 26
ds-class e e 26
Index 27
algAverageClass Baseline algorithms exploiting global/item and user averages.
Description

Container for the model learned using any average(global, user or item) based model.

Slots

alg: The algorithm denominator, of class "character”.
data: the dataset used for training the model, class "matrix”.

average: average calculated either globally, on user or item, class "matrix".

BPRclass 3

Methods

show signature(object = "algAverageClass")

See Also

rrecsys.

BPRclass Bayesian Personalized Ranking based model.

Description

Container for the model learned using any Bayesian Personalized Ranking based model.

Slots

alg: The algorithm denominator, of class "character”.
data: the dataset used for training the model, class "matrix”.
factors: user(U) and items(V) factors, class "1ist".

parameters: the parameters(such as number of factors k, learning rate 1ambda, user regularization
term regU, positive rated item regularization term regl, negative rated item regularization
term regJ and the Boolean updateJ to decide whatever negative updates are required) used
in the model, class "1ist".

Methods

show signature(object = "BPRclass")

See Also

rrecsys.

dataChart Visualization of data characteristics.

Description
This method visualizes data characteristics on a two dimensional graph, where "x" axes shows

either items ordered by descending popularity, or users based on the number of ratings they have

nen

submitted. Moreover the "y" axes shows the number of ratings.

Usage

dataChart(data, x = "items", y = "num_of_ratings")

4 dataSet-class

Arguments
data the dataset, class "_ds".
X class "character”, is the variable that will be shown on the "x" axis. Possible
values are: "items”, "users”.
y class "character”, is the variable that will be shown on the "y" axis. Possible
values are: "num_of_ratings”, "%_of_ratings”.
Value

Plot results.

See Also

See Also as _ds-class.

Examples

data(mlLatest100k)

a <- defineData(mlLatest100k)

dataChart(a, x = "items"”, y = "num_of_ratings")
dataSet-class Dataset class.
Description

Container for a dense dataset that distinguishes between binary and non-binary feedback datasets.
Extends _ds.

Slots

data: the dataset, class "matrix”.

binary: class "logical”, determines if the item dataset contains binary (i.e. 1/0) or non-binary
ratings.

minimum: class "numeric”, defines the minimal value present in the dataset.
maximum: class "numeric”, defines the maximal value present in the dataset.

intScale: object of class "logical”, if TRUE the range of ratings in the dataset contains as well
half star values.

defineData 5

Methods

nrow signature(object = "dataSet"): number of rows of the dataset.

ncol signature(object = "dataSet"): number of columns of the dataset.

dim signature(object = "dataSet"): returns the dimensions of the dataset.

rowRatings signature(object = "dataSet"): returns the number of ratings on each row.

colRatings signature(object = "dataSet"): returns the number of ratings on each column.
numRatings signature(object = "dataSet"): returns the total number of ratings.

[signature(x = "dataSet",i="ANY", j="ANY", drop = "ANY")): returns a subset of the dataset.
coerce signature(from = "dataSet", to = "matrix")

rowAverages signature(object = "dataSet"): returns the average rating on each row.

colAverages signature(object = "dataSet"): returns the average rating on each column.

Examples

x <- matrix(sample(c(@:5), size = 100, replace = TRUE,
prob = c(.6,.08,.08,.08,.08,.08)), nrow = 20, byrow = TRUE)

x <- defineData(x)
colRatings(x)
rowRatings(x)
numRatings(x)
sparsity(x)

a <- x[1:10,2:3]

defineData Define dataset.

Description

Defines your dataset, if either it is implicit or explicit.

Arguments

data the dataset, class "matrix".

sparseMatrix class "logical”. If FALSE implies that the imput is a dense two dimensional
matrix. If TRUE implies that the imput is arranges as coordinate list where entries
are stored as list of (row, column, value) tuples.

6 evalChart

binary class "logical”, defines if the item dataset consists of binary (i.e. NA/I) or
non-binary ratings. Default value FALSE.

minimum class "numeric”, defines the minimal value present in the dataset. Default value
0.5.

maximum class "numeric”, defines the maximal value present in the dataset. Default value
5.

intScale object of class "logical”, if TRUE the range of ratings in the dataset contains
as well half star values. Default value FALSE.

positiveThreshold

class "numeric”, in case binary is TRUE, positiveThreshold defines the thresh-
old value for binarizing the dataset (i.e. any rating value >=positiveThreshold
will be transformed to 1 and all other values to NA(corresponding to a not rated
item). Default value 0. 5.

Value

Returns an object of class "dataSet".

See Also

See Also as dataSet-class.

Examples

data(mlLatest100k)
a <- defineData(mlLatest100k)

b <- defineData(mlLatest100k,binary = TRUE ,positiveThreshold = 3)

evalChart Visualization of data characteristics.

Description
This method visualizes data characteristics on a two dimensional graph, where "x" axes shows
either items ordered by descending popularity, or users based on the number of ratings they have

submitted. Moreover the "y" axes shows the number of ratings.

Usage

evalChart(res, x = "items"”, y = "TP", x_label, y_label, y_lim)

evalModel 7

Arguments
res evaluation results, class "evalRecResults"”.
X class "character”, is the variable that will be shown on the "x" axis. Possible
values are: "items”, "users”.
y class "character”, is the variable that will be shown on the "y" axis. Possible
values are: "num_of_ratings”, "%_of_ratings".
x_label class "character”, the label to be printed on the "x" axes.
y_label class "character"”, the label to be printed on the "y" axes.
y_lim class "numeric”, scale of the "y" axes.
Value

Plot results.

See Also

See Also as evalRecResults-class.

evalModel Creating the evaluation model.

Description

Creates the dataset split for evaluation where ratings of each user are uniformly distributed over
k random folds. The function returns the list of items that are assigned to each fold, such that
algorithms can be compared on the same train/test splits.

Usage
evalModel (data, folds)

Arguments
data dataset, of class _ds.
folds The number of folds to use in the k-fold cross validation, of class numeric,
default value set to 5.
Value

An object of class evalModel-class.

See Also

evalModel-class, evalRec, _ds.

8 evalModel-class

Examples

X <- matrix(sample(c(0:5), size = 200, replace = TRUE,
prob = c(.6,.08,.08,.08,.08,.08)), nrow = 20, byrow = TRUE)

d <- defineData(x)
my_2_folds <- evalModel(d, 2) #output class evalModel.

my_2_folds
2 - fold cross validation model on the dataset with 20 users and 10 items.

my_2_folds@data #the dataset.
my_2_folds@folds #the number of folds in the model.
my_2_folds@fold_indices #the index of each item in the fold.
evalModel-class Evaluation model.
Description

Class that contains the data and a distribution of the uniform distribution of ratings onto k-folds.

Details

The fold_indices list contains the indexes to access the dataset on one dimension. A matrix can be
addressed as a one dimensional array, considered as an extension of each column after another. E.g:
in a matrix M with 10 rows and 20 columns, M[10] == M[10, 1]; M[12] == M[2,2].

Slots

data: the dataset, class "matrix”.
folds: number of k - folds, class "numeric”.

fold_indices: a list with k slots, each slot represents a fold and contains the index of items as-
signed to that fold, class "1ist".

fold_indices_x_user: a list that specifies specifically for each user the distribution of the items
in the folds, class "1ist".

Methods

show signature(object = "evalModel")

evalPred 9

evalPred Evaluates the requested prediction algorithm.

Description

Evaluates the prediction task of an algorithm with a given configuration and based on the given
evaluation model. RMSE and MAE are both calculated individually for each user and then averaged
over all users (in this case they will be referred as RMSE and MAE) as well as determined as the
average error over all predictions (in this case they are named globalRMSE and globalMAE).

Usage

evalPred(model, ...)

S4 method for signature 'evalModel'

evalPred(model, alg, ...)
Arguments

model Object of type evalModel. See evalModel-class.

alg The algorithm to be used in the evaluation. Of type character.

other attributes specific to the algorithm to be deployed. Refer to rrecsys.

Value

Returns a data frame with the RMSE, MAE, globalRMSE and globalMAE for each of the k-folds defined
in the evaluation model and an average over all folds.

References

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook.
Springer, 2011. ISBN 978-0-387-85819-7. URL http: //www.springerlink.com/content/978-0-387-85819-7.

See Also

evalModel-class, rrecsys.

Examples

x <- matrix(sample(c(0:5), size = 200, replace = TRUE,
prob = c(.6,.8,.8,.8,.8,.8)), nrow = 20, byrow = TRUE)

x <- defineData(x)
e <- evalModel(x, 2)
SVDEvaluation <- evalPred(e, "FunkSVD", k = 4)

SVDEvaluation

http://www.springerlink.com/content/978-0-387-85819-7

10 evalRec

IBEvaluation <- evalPred(e, "IBKNN", simFunct = "cos"”, neigh = 5, coRatedThreshold = 2)

IBEvaluation

evalRec Evaluates the requested recommendation algorithm.

Description

Evaluates the recommendation task of an algorithm with a given configuration and based on the
given evaluation model.

Arguments
model Object of type evalModel. See evalModel-class.
alg The algorithm to be used in the evaluation. Of class character.
topN Object of class numeric, specifying the number of items to be recommended
per user.
topNGen Object of class character, specifying the function used to produce the recom-
mendations. Values: "hpr" and "mf" (currently available only for IB and UB
methods).
positiveThreshold
Object of class numeric, indicating the threshold of the ratings to be considered
a good. This attribute is not used when evaluating implicit feedback.
alpha Object of class numeric, is the half-life parameter for the rankscore metric.
other attributes specific to the algorithm to be deployed. Refer to rrecsys.
Value

Returns an object of class evalRecResults with the precision, recall, F1, nDCG, RankScore,

true positives(TP), false positives(FP), true negatives(TN), false negatives(FN) for

each of the k-folds defined in the evaluation model and the overall average.
References

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors. Recommender Systems Handbook.

Springer, 2011. ISBN 978-0-387-85819-7. URL http: //www.springerlink.com/content/978-0-387-85819-7.
See Also

evalModel-class, rrecsys, evalRecResults-class.

http://www.springerlink.com/content/978-0-387-85819-7

evalRecResults 11

Examples

x <- matrix(sample(c(@:5), size = 200, replace = TRUE,
prob = c(.6,.8,.8,.8,.8,.8)), nrow = 20, byrow = TRUE)

x <- defineData(x)
e <- evalModel(x, 2)
SVDEvaluation <- evalRec(e, "FunkSVD", positiveThreshold = 4, k = 4)

SVDEvaluation

evalRecResults Evaluation results.

Description

Defines a structure for the results obtained by evaluating an algorithm

Slots

data: class "_ds", the dataset.

alg: class "character”, the name of the used algorithm.

topN: class "numeric”, the number N of Top-N items recommended to each user.
topNGen: class "character”, the name of the recommendation algorithm.

positiveThreshold: class "numeric”, indicating the threshold of the ratings to be considered a
good. This attribute is not used when evaluating implicit feedback.

alpha: class numeric, is the half-life parameter for the rankscore metric.
parameters: class "list”, parameters used in the configuration of the algorithm.
TP: class "numeric"”, True Positives count on each fold.

FP: class "numeric”, False Positives count on each fold.

TN: class "numeric”, True Negatives count on each fold.

FN: class "numeric”, False Negatives count on each fold.

precision: class "numeric”, precision measured on each fold.

recall: class "numeric"”, recall measured on each fold.

F1: class "numeric”, F1 measured on each fold.

nDCG: class "numeric”, nDCG measured on each fold.

rankscore: class "numeric”, rankscore measured on each fold.

item_coverage: class "numeric”, item coverage.

12 eval nDCG

user_coverage: class "numeric”, user coverage.

ex.time: class "numeric”, the execution time.

TP_count: class "numeric”, True positives count on each item.

rec_counts: class "numeric”, counts how many times an item was recommended.

rec_popularity: class "numeric”, popularity of recommendations.

Methods

show signature(object = "evalRecResults")

results signature(object = "evalRecResults", metrics = "character"): returns a subset of the results
based on the required metric.

eval_nDCG Normalized Discounted Cumulative Gain

Description

Metric for information retrival where positions are discounted logarithmically.

Usage
eval_nDCG(recommendedIDX, testSetIDX)

Arguments

recommendedIDX indices of the recommended items. Object of class numeric.

testSetIDX indices of the items in the test set. Object of class numeric

Details

nDCG is computed as the ratio between Discounted Cumulative Gain(DCG) and idealized Dis-
counted Cumulative Gain(IDCG):

pos

rel;
D s = E
GCpok rel; + 2 10g2i
W1 rel;
ID = E !
GCpos = rely + 2 o, 7
DCG
nDCCyos = TheG

References

Asela Gunawardana, Guy Shani, Evaluating Recommender Systems.

getAUC 13

getAUC Returns the Area under the ROC curve.

Description

Computes the Area Under the ROC curve for a recommendation task of an algorithm with its given
configuration and based on the given evaluation model.

Usage

getAUC(model, ...)

S4 method for signature 'evalModel'

getAUC(model, alg, ...)
Arguments

model Object of type evalModel. See evalModel-class.

alg The algorithm to be used in the evaluation. Of class character.

other attributes specific to the algorithm to be deployed. Refer to rrecsys.

Value

Returns a data frame with the AUC for each of the k-folds defined in the evaluation model and the
overall average.

References

T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Data Mining Researchers ROC
Graphs : Notes and Practical Considerations for Data Mining Researchers,”, HP Inven., p. 27,
2003.

See Also

evalModel-class, rrecsys.

Examples

x <- matrix(sample(c(NA, 1:5), size = 200, replace = TRUE,
prob = c(.6,.8,.8,.8,.8,.8)), nrow = 20, byrow = TRUE)

x <- defineData(x)
e <- evalModel(x, 5)
auc <- getAUC(e, "FunkSVD", k = 4)

auc

14

IBclass

histogram

Ratings histogram.

Description

Histogram of the ratings grouped by value.

Usage

histogram(data, title = "", x = "Rating values”, y = "# of ratings")
Arguments

data class "_ds", the dataset.

title class "character”, eventual caption of for the chart.

X class "character”, label for the x-axis.

y class "character”, label for the y-axis.

IBclass Item based model.

Description

Container for the model learned using any k-nearest neighbor item-based collaborative filtering

algorithm.

Slots

alg: The algorithm denominator, of class "character”.

data: the dataset used for training the model, class "matrix”.

sim: The item - item similarity matrix, class "matrix”.

sim_index_kNN: The index of the k nearest neighbors for each item, class "matrix”.

parameters: the parameters used in the model, class "1ist".

Methods

show signature(object = "IBclass")

See Also

rrecsys.

ml100k 15

ml100k Movielens 100K Dataset

Description

MovieLens data sets were collected by the GroupLens Research Project at the University of Min-
nesota.

This data set consists of:

1. 100,000 ratings (1-5) from 943 users on 1682 movies.

2. Each user has rated at least 20 movies.

The data was collected through the MovieLens web site (movielens.umn.edu) during the seven-
month period from September 19th, 1997 through April 22nd, 1998. This data has been cleaned
up - users who had less than 20 ratings or did not have complete demographic information were
removed from this data set. Detailed descriptions of the data file can be found at the end of this file.

Source

http://grouplens.org/datasets/movielens/100k/

mlLatest100k Movielens Latest

Description

This dataset (ml-latest-small) is a 5-star rating dataset from [MovieLens](http://movielens.org), a
movie recommendation service of the GroupLens research group at the University of Minnesota. It
contains 100234 ratings across 8927 movies. The data was created by 718 users between March 26,
1996 and August 05, 2015. This dataset was generated on August 06, 2015. Users were selected
at random for inclusion. All selected users had rated at least 20 movies. The data is edited and
structured as a matrix and distributed as such. Below the usage license of this redistributed data is
cited below.

Usage
data("mlLatest100k")

Format

The format is: num [1:718, 1:8915] 5300440300 ... - attr(*, "dimnames")=List of 2 ..$:
chr [1:718] "1" "2" "3" "4" $: chr [1:8915] "Toy Story (1995)" "Jumanji (1995)" "GoldenEye
(1995)" "Twelve Monkeys (a.k.a. 12 Monkeys) (1995)" ...

Source

http://grouplens.org/datasets/movielens/latest/

http://grouplens.org/datasets/movielens/100k/
http://grouplens.org/datasets/movielens/latest/

16 predict

PPLclass Popularity based model.

Description

Container for the model learned by an unpersonalized popularity-based algorithm.

Slots

alg: The algorithm denominator, of class "character”.
data: the dataset used for training the model, class "matrix”.
indices: the indices of items ordered by popularity, class "integer".

parameters: the parameters used in the model, class "1ist".

Methods

show signature(object = "PPLclass")

See Also

rrecsys.

predict Generate predictions.

Description

Generate predictions on any of the previously trained models.

Arguments
model A previously trained model, see rrecsys
Round object of class "logical”, if TRUE all the predictions are rounded to integer
values, else values are returned as calculated.
Value

All unrated items are predicted and the entire matrix is returned with the new ratings.

See Also

rrecsys, IBclass, SVDclass.

rankScore 17

Examples

data("mlLatest100k"”)

smallMl <- mlLatest100k[1:50, 1:100]

exExpl <- defineData(smallMl)

modellexp <- rrecsys(exExpl, alg = "funk”, k = 10, learningRate = 0.01, regCoef = 0.001)

prel <- predict(modellexp, Round = TRUE)

rankScore Rank Score

Description

Rank Score extends the recall metric to take the positions of correct items in a ranked list into
account.

Usage

rankScore(recommendedIDX, testSetIDX, alpha)

Arguments

recommendedIDX indices of the recommended items. Object of class numeric.

testSetIDX indices of the items in the test set. Object of class numeric
alpha is the ranking half life. Object of class numeric.
Details

Rank Score is defined as the ratio of the Rank Score of the correct items to best theoretical Rank
Score achievable for the user:

rank(i)—1

rankscore, = g 277 e

ich
[T
i1
rankscoremar = E 27 =
i=1
rankscore,

rankscore = ————
rankscore gz

18 recommend

recommend Generate recommendation.

Description

This method generates top-n recommendations based on a model that has been trained before. Two
main methods: recommendHPR, recommendMF. The first method recommends the highest pre-
dicted ratings on a user. Instead recommendMF (currently available only for IBKNN and UBKNN),
recommends the most frequent item in the user’s neighborhood.

Usage

recommendHPR(model, topN = 3)
recommendMF (model, topN = 3, pt)

Arguments
model the trained model of any algorithm.
topN number of items to be recommended per user, class numeric.
pt positive threshold, class numeric.

Value

Returns a list with suggested items for each user.

See Also

rrecsys.

Examples

myratings <- matrix(sample(c(@:5), size = 200, replace = TRUE,
prob = c(.6,.08,.08,.08,.08,.08)), nrow = 20, byrow = TRUE)
myratings <- defineData(myratings)

r <- rrecsys(myratings, alg = "FunkSVD", k = 2)

rec <- recommendHPR(r)

1recsys

19

rrecsys Create a recommender system.

Description

Based on the specific given algorithm a recommendation model will be trained.

Usage
rrecsys(data, alg, ...)
Arguments
data Training set of class "matrix”. The columns correspond to items and the rows
correspond to users.
alg A "character” string specifying the recommender algorithm to apply on the
data.
other attributes, see details.
Details

Based on the value of alg the attributes will have different names and values. Possible configuration
of alg and it’s meaning:

1.

itemAverage. When alg = "itemAverage” the average rating of an item is used to make
predictions and recommendations.

userAverage. When alg = "userAverage" the average rating of a user is used to make pre-
dictions and recommendations.

. globalAverage. When alg = "globalAverage” the overall average of all ratings is used to

make predictions and recommendations.

Mostpopular. The most popular algorithm (alg = "mostpopular”) is the most simple algo-
rithm for recommendations. Item will be ordered based on the number of times that they were
rated. Recommendations for a particular user will be the most popular items from the data set
which are not contained in the user’s training set.

IBKNN. As alg = "IBKNN" a k-nearest neighbor item-based collaborative filtering algorithm.
Given two items a and b, we consider them as rating vectors @ and b. If the argument simFunct
is set to "cos" the method computes the cosine similarity as:

If the argument simFunct is set to "adjCos" the method determines the "adjusted cosine" dis-
tance among the items as:

™ ZueU(Tu,a —T) % (Tup — Tu)

Sim(a,) \/(Tuﬂ — H)Q N \/(Tu,b — TU)Q

20

rrecsys

It extracts, based on the value of the neigh attribute, the number of closest neighbors for each
item.

. UBKNN. As alg = "UBKNN" a k-nearest neighbor user-based collaborative filtering algorithm.

Given two users # and u, we consider them as rating vectors # and ¥/. If the argument simFunct
is set to "cos" the method computes the cosine similarity as:

TRy,

] * |v

— —

sim/(@, ¥) = cos(i, V)

If the argument simFunct is set to "Pearson" the method determines the "Pearson correlation"
among the users as:

L S i€lunl,
sim(i,) = Pearson(d,v) = —
Y. (Rui—Ru)?x Y. (Rui— Ry,)?
i€l NI, i€lnl,

It extracts, based on the value of the neigh attribute, the number of closest neighbors for each
item.

. FunkSVD. It implements alg = "funkSVD" a stochastic gradient descent optimization tech-

nique. The U(user) and V(item) factor matrices are initialized at small values and cropped to k
features. Each feature is trained until convergence (the convergence value has to be specified
by the user, by configuring the sfeps argument). On each loop the algorithm predicts r,,; and
calculates the error as:

,r_l

_ T
wi — Wy *U;

’
Cui = Tui — T

ut

The factors are updated:
Vg Vi + learningRate x (ey; * uy, — regCoef * v;y)

Uyl Uyk + lambda * (ey; * Vi, — gamma * Uy,

. The attribute learningRate represents the learning rate, while regCoef corresponds to the
weight of the regularization term. If the argument biases is TRUE, the biases will be computed
to update the features and generate predictions.

. WALS. The alg="wALS" weighted Alternated Least squares method. For a given non-

negative weight matrix W the algorithm will perform updates on the item V and user U feature
matrix as follows:

U, =R, * I/IN/Z « Vx (VT « VAVJz *V 4+ Zambda(z Wij)l)_l

J
Vi =R] * I/IN/J U x (VT « I/IN/J * U+ lambda(z Wi)I)™!

Initially the V matrix is initialized with Gaussian random numbers with mean zero and small
standard deviation. Than U and V are updated until convergence. The attribute scheme must
specify the scheme(uni, uo, io, co) to use.

rrecsys 21

9. BPR. In this implementation of BPR (alg = "BPR") is applied a stochastic gradient descent
approach that randomly choose triples from Dy and trains the model ©. In this implementa-
tion the BPR optimization criterion is applied on matrix factorization. If R = U x VT, where
U and V are the usual feature matrix cropped to k features, the parameter vector of the model
is © = (U, V). The Boolean randomInit parameter determines whatever the feature matrix
are initialized to a random value or at a static 0.1 value. The algorithm will use three regular-
ization terms, RegU for the user features U, ReglI for positive updates and RegJ for negative
updates of the item features V, lambda is the learning rate, autoConvergence is a toggle to
the auto convergence validation, convergence upper limit to the convergence, and updateJ
if true updates negative item features.

10. SlopeOne The Weighted Slope One (alg = "slopeOne") performs prediction for a missing
rating 7,,; for user u on item ¢ as the following average:

Twi =
> v, Cid

The average deviation rating dev_ij between co-rated items is defined by:

Tui — Tuj
devij = E 73.
Cix

Yu€users v

. ZVTW- (devij + ruj)cij

Where c_ij is the number of co-ratings between items i and j and r_ui is an existing
rating for user u on item i. The Weighted Slope One takes into account both, information
from users who rated the same item and the number of observed ratings.

To view a full list of available algorithms and their default configuration execute rrecsysRegistry.

Value

Depending on the alg value it will be either an object of type SVDclass or IBclass.

References

D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender Systems: An Introduction.
Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN 978-0-521-49336-9.

Funk, S., 2006, Netflix Update: Try This at Home, http://sifter.org/~simon/journal/20061211.
html.

Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems.
Computer, 42(8):30-37, Aug. 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.263. http://dx.
doi.org/10.1109/MC.2009.263.

R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-Class Collaborative
Filtering. In Data Mining, 2008. ICDM ’08. Eighth IEEE International Conference on, pages
502-511, Dec 2008. doi: 10.1109/ICDM.2008.16.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian Personalized
Ranking from Implicit Feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, UAI *09, pages 452461, Arlington, Virginia, United States, 2009. AUAI
Press. ISBN 978-0-9749039-5-8. URL http://dl.acm.org/citation.cfm?id=1795114.1795167.

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dl.acm.org/citation.cfm?id=1795114.1795167

22 setStoppingCriteria

Examples

myratings <- matrix(sample(c(@:5), size = 200, replace = TRUE,
prob = c(.6,.08,.08,.08,.08,.08)), nrow = 20, byrow = TRUE)

myratings <- defineData(myratings)
r <- rrecsys(myratings, alg = "funkSVD", k = 2)
r2 <- rrecsys(myratings, alg = "IBKNN", simFunct = "cos”, neigh = 5)

rrecsysRegistry$get_entries()

setStoppingCriteria Set stopping criteria.

Description

Define stopping criteria for functions that need a convergence check.

Usage

setStoppingCriteria(autoConverge = FALSE,

deltaErrorThreshold = 1e-05, nrLoops = NULL, minNrLoops = 10)
showStoppingCriteria()
showDeltaError()

Arguments

autoConverge class "logical”, turns on the auto-convergence algorithm.
deltaErrorThreshold

class "numeric”, is the threshold for the auto-convergence algorithm.

nrLoops class "numeric”, number of loops that will be performed in case autoConvergence
is FALSE
minNrLoops class "numeric”, the minimum number of loops to consider before verifying the
deltaErrorThreshold.
Details

If autoConvergence = TRUE tells the package to monitor the difference of global RMSE on two
consecutive iterations, and to see if it drops below a threshold value. Whenever it drops under the

specified value the iteration is considered converged. If FALSE the limit of iterations is delimited by
nrLoops

slopeOneClass 23

Methods

showStoppingCriteria Print on console the current configuration of the convergence algorithm.

showDeltaError Report the delta error on each iteration of the algorithm that requires an auto-
convergence algorithm.

References

M. D. Ekstrand, M. Ludwig, J. Kolb, and J. T. Riedl, “LensKit: a modular recommender frame-
work,”, Proc. fifth ACM Conf. Recomm. Syst. - RecSys 11, p. 349, 2011.

See Also

See Also as rrecsys, SVDclass, wALSclass, BPRclass.

Examples

setStoppingCriteria(autoConverge = TRUE)

setStoppingCriteria(nrLoops = 30)

slopeOneClass Slope One model.

Description

Container for the model learned using Slope One algorithm.

Slots

alg: The algorithm denominator, of class "character”.

data: the dataset used for training the model, class "matrix”.

n

devcard: Deviation and Cardinality between columns, class "1ist".

Methods

show signature(object = "SVDclass")

See Also

rrecsys.

24 sparseDataSet-class

sparseDataSet-class Dataset class for tuples (user, item, rating).

Description

Container for a sparse dataset that distinguishes between binary and non-binary feedback datasets.
Data are stored as tuples (user, item, rating). Extends _ds.

Slots

data: the dataset, class "matrix".

binary: class "logical”, determines if the item dataset contains binary (i.e. 1/0) or non-binary
ratings.

minimum: class "numeric”, defines the minimal value present in the dataset.
maximum: class "numeric”, defines the maximal value present in the dataset.

intScale: object of class "logical”, if TRUE the range of ratings in the dataset contains as well
half star values.

userID: class "numeric”, array containing all user IDs.
itemID: class "numeric”, array containing all item IDs.
userPointers: class "list", pointer to all users position in the dataset.

itemPointers: class "1list”, pointer to all items position in the dataset.

Methods

nrow signature(object = "sparseDataSet"): number of rows of the dataset.

ncol signature(object = "sparseDataSet"): number of columns of the dataset.

dim signature(object = "sparseDataSet"): returns the dimensions of the dataset.

rowRatings signature(object = "sparseDataSet"): returns the number of ratings on each row.
colRatings signature(object = "sparseDataSet"): returns the number of ratings on each column.
numRatings signature(object = "sparseDataSet"): returns the total number of ratings.

[signature(x = "sparseDataSet", i ="ANY", j = "ANY", drop = "ANY")): returns a subset of the
dataset.

coerce signature(from = "sparseDataSet", to = "matrix")
rowAverages signature(object = "sparseDataSet"): returns the average rating on each row.

colAverages signature(object = "sparseDataSet"): returns the average rating on each column.

SVDclass 25

SVDclass SVD model.

Description

Container for the model learned using any matrix factorization algorithm.

Slots

alg: The algorithm denominator, of class "character”.
data: the dataset used for training the model, class "matrix”.
factors: user(U) and items(V) factors, class "1ist".
parameters: the parameters used in the model, class "1ist".

baselines: Global, user and item baselines, class "1ist".

Methods

show signature(object = "SVDclass")

See Also

rrecsys.

UBclass Item based model.

Description

Container for the model learned using any k-nearest neighbor item-based collaborative filtering
algorithm.

Slots

alg: The algorithm denominator, of class "character”.

data: the dataset used for training the model, class "matrix”.

sim: The item - item similarity matrix, class "matrix”.

sim_index_kNN: The index of the k nearest neighbors for each item, class "matrix”.

parameters: the parameters used in the model, class "list".

Methods

show signature(object = "UBclass")

See Also

rrecsys.

26 _ds-class

wALSclass Weighted Alternating Least Squares based model.

Description

Container for the model learned using any weighted Alternating Least Squares based algorithm.

Slots

alg: The algorithm denominator, of class "character”.

data: the dataset used for training the model, class "matrix”.

factors: user(U) and items(V) factors, class "1ist".

weightScheme: The weighting scheme used in updating the factors, class "matrix”.

parameters: the parameters(such as number of factors k, learning rate lambda, number of itera-
tions until convergence and the weighting scheme) used in the model, class "1ist".

Methods

show signature(object = "wALSclass")

See Also

rrecsys.

_ds-class Dataset class.

Description

Defines a structure for a dataset that distinguishes between binary and non-binary feedback datasets.

Slots
binary: class "logical”, determines if the item dataset contains binary (i.e. 1/0) or non-binary
ratings.
minimum: class "numeric”, defines the minimal value present in the dataset.
maximum: class "numeric”, defines the maximal value present in the dataset.

intScale: object of class "logical”, if TRUE the range of ratings in the dataset contains as well
half star values.

Methods

show signature(object ="_ds")
sparsity signature(object = "_ds"): returns the sparsity of the dataset.
summary signature(object = "_ds"): summary of the characteristics of the dataset.

Index

+ datasets
ml100k, 15
mlLatest100k, 15
[,dataSet,ANY,ANY,missing-method
(dataSet-class), 4
[,sparseDataSet,ANY,ANY,missing-method
(sparseDataSet-class), 24
_ds,4,7,24
_ds (_ds-class), 26
_ds-class, 26

algAverageClass, 2
algAverageClass-class
(algAverageClass), 2

BPRclass, 3, 23
BPRclass-class (BPRclass), 3

coerce,dataSet,matrix-method
(dataSet-class), 4
coerce, sparseDataSet,matrix-method
(sparseDataSet-class), 24
colAverages (_ds-class), 26
colAverages,dataSet-method
(dataSet-class), 4
colAverages, sparseDataSet-method
(sparseDataSet-class), 24
colRatings (_ds-class), 26
colRatings,dataSet-method
(dataSet-class), 4
colRatings, sparseDataSet-method
(sparseDataSet-class), 24

dataChart, 3

dataSet (dataSet-class), 4
dataSet-class, 4

defineData, 5

defineData,matrix-method (defineData), 5
details, 719

dim,dataSet-method (dataSet-class), 4

27

dim, sparseDataSet-method
(sparseDataSet-class), 24

eval_nDCG, 12

evalChart, 6

evalModel, 7

evalModel,_ds-method (evalModel), 7

evalModel,dataSet-method (evalModel), 7

evalModel, sparseDataSet-method
(evalModel), 7

evalModel-class, 8

evalPred, 9

evalPred,evalModel,list-method
(evalPred), 9

evalPred, evalModel-method (evalPred), 9

evalRec, 7, 10

evalRec,evalModel,list-method
(evalRec), 10

evalRec, evalModel-method (evalRec), 10

evalRecResults, 11

evalRecResults-class (evalRecResults),
11

getAUC, 13
getAUC, evalModel (getAUC), 13
getAUC, evalModel-method (getAUC), 13

histogram, 14

IBclass, 14, 16, 21
IBclass-class (IBclass), 14

ml100k, 15
ml100k_array (m1100k), 15
mlLatest100k, 15

ncol,dataSet-method (dataSet-class), 4

ncol, sparseDataSet-method
(sparseDataSet-class), 24

nrow,dataSet-method (dataSet-class), 4

28

nrow, sparseDataSet-method
(sparseDataSet-class), 24
numRatings (_ds-class), 26
numRatings,dataSet-method
(dataSet-class), 4
numRatings, sparseDataSet-method
(sparseDataSet-class), 24

PPLclass, 16
PPLclass-class (PPLclass), 16
predict, 16
predict, slopeOneclass (predict), 16
predict,algAverageClass-method
(predict), 16
predict,BPRclass-method (predict), 16
predict,IBclass-method (predict), 16
predict,slopeOneClass-method
(slopeOneClass), 23
predict,SVDclass-method (predict), 16
predict,UBclass-method (predict), 16
predict,wALSclass-method (predict), 16

rankScore, 17
recommend, 18
recommendHPR (recommend), 18
recommendMF (recommend), 18
results (evalRecResults), 11
results,evalRecResults-method
(evalRecResults), 11
rowAverages (_ds-class), 26
rowAverages,dataSet-method
(dataSet-class), 4
rowAverages, sparseDataSet-method
(sparseDataSet-class), 24
rowRatings (_ds-class), 26
rowRatings,dataSet-method
(dataSet-class), 4
rowRatings, sparseDataSet-method
(sparseDataSet-class), 24
rrecsys, 3,9, 10, 13, 14, 16, 18, 19, 23, 25, 26
rrecsys,_ds-method (rrecsys), 19
rrecsysRegistry (rrecsys), 19

setStoppingCriteria, 22

show, _ds-method (_ds-class), 26

show, algAverageClass-method
(algAverageClass), 2

show,BPRclass-method (BPRclass), 3

INDEX

show, evalModel-method
(evalModel-class), 8

show, evalRecResults-method
(evalRecResults), 11

show, IBclass-method (IBclass), 14

show,PPLclass-method (PPLclass), 16

show, slopeOneClass-method
(slopeOneClass), 23

show, SVDclass-method (SVDclass), 25

show,UBclass-method (UBclass), 25

show,wALSclass-method (wALSclass), 26

showDeltaError (setStoppingCriteria), 22

showStoppingCriteria
(setStoppingCriteria), 22

slopeOneClass, 23

slopeOneClass-class (slopeOneClass), 23

sparseDataSet (sparseDataSet-class), 24

sparseDataSet-class, 24

sparsity (_ds-class), 26

sparsity,_ds-method (_ds-class), 26

summary, _ds-method (_ds-class), 26

SVDclass, 16, 21, 23, 25

SVDclass-class (SVDclass), 25

UBclass, 25
UBclass-class (UBclass), 25

wALSclass, 23, 26
wALSclass-class (WALSclass), 26

	algAverageClass
	BPRclass
	dataChart
	dataSet-class
	defineData
	evalChart
	evalModel
	evalModel-class
	evalPred
	evalRec
	evalRecResults
	eval_nDCG
	getAUC
	histogram
	IBclass
	ml100k
	mlLatest100k
	PPLclass
	predict
	rankScore
	recommend
	rrecsys
	setStoppingCriteria
	slopeOneClass
	sparseDataSet-class
	SVDclass
	UBclass
	wALSclass
	_ds-class
	Index

