Package ‘rnames’

March 14, 2024

Title Recursive Display of Items in Nested Lists
Version 1.0.1
Maintainer Diego Ciccia <cicciadiego99@gmail.com>

Description
Recursive display of names and paths of all the items nested within sublists of a list object.

License MIT + file LICENSE

Author Diego Ciccia [aut, cre]

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-03-14 08:30:02 UTC

R topics documented:

PriNLINAMES o ot e e e e e e e e e e e e e
TNAMES &+ v v v v e e e e e e e e e e e e e e e e e
mames.ist e e e e e e e e

Index

print.rnames A print method for rnames

Description

A customized printed display for rnames output

Usage

S3 method for class 'rnames'
print(x, ...)

2 rnames

Arguments
X A rnames object
Undocumented
Value

No return, custom print method for rnames objects.

rnames Recursive function to get names in nested lists

Description

Recursive display of names and paths of all the items nested within sublists of a list object.

Usage
rnames(obj, ignore, ...)
Arguments
obj A list to be traversed.
ignore A list of sublists to exclude from binary tree traversal. The program will report
the ignored sublists as end-points. This option is normally suggested for very
deep sublists that may cause recursion errors.
Undocumented
Value

A list with entries corresponding to the end-points of the traversed list. The name of each element
is the name of the end-point, while the item is a vector of the sublists that lead to the end-point.

Description

The rnames() function recursively runs names() on a list object and returns a list with the names
and paths of all the end items. The paths are arrays cointaining all the sublists that need to be
accessed in order to retrieve the corresponding item. The built-in names () function only returns the
names of the objects on the top-most layer of the list. Therefore, all the other subobjects can only
be browsed by reiterating names () on their parent object. Instead, rnames() returns the name and
paths of all the end-points of any list. This allows the user to browse all the non-list elements of a
nested list without having to manually inspect each sublist.

The program may halt if the recursion goes too deep. With the ignore option, the user can halt
the execution of the traversal algorithm beyond certain specified nodes. In this way, the program is
prevented from exceeding recursion limits. Nodes can be referenced by their object name (e.g., the
output of names() on their parent object). Notice that the nodes specified in the ignore argument

rnames.list 3

will be included in the output. The function stops from traversing the nodes nested inside those
specified in the ignore option.

By definition, a list object can be very complex to visualize due to the presence of sublists. The key
idea is that a list object and its subobjects can be represented as the root and leaves of a tree graph,
respectively. Sublists form subtrees which can be inspected for subleaves. An object having no sub-
objects is the end-point of a list, since it is not a list itself. At the same time, data and other objects
are stored in end-points. Thus, if these objects are stored in nested lists, it is surely convenient to
traverse the list and show all the subobjects at once.

Examples

deep_list <- list(
A= list(B =2, C =3, D= 1list(L = "A", M= "B", N = "C")),
B = list(Vl = 2, V2 = 3),
C = list(Vl = 2, V2 = 3),
D =4)
print(rnames(deep_list, ignore = c("D")))

rnames.list General rnames method for lisis

Description

General rnames method for generic lists.

Usage
S3 method for class 'list'
rnames(obj = obj, ignore = c(), ...)
Arguments
obj A list
ignore A set of sublists to be ignored
Undocumented
Value

A list with rname class.

Index

print.rnames, I

rnames, 2
rnames.list, 3

	print.rnames
	rnames
	rnames.list
	Index

