Package 'rmweather'

February 21, 2025

Type Package

Title Tools to Conduct Meteorological Normalisation and Counterfactual Modelling for Air Quality Data

Version 0.2.62

Date 2025-02-20

Maintainer Stuart K. Grange <s.k.grange@gmail.com>

Description An integrated set of tools to allow data users to conduct meteorological normalisation and counterfactual modelling for air quality data. The meteorological normalisation technique uses predictive random forest models to remove variation of pollutant concentrations so trends and interventions can be explored in a robust way. For examples, see Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>. The random forest models can also be used for counterfactual or business as usual (BAU) modelling by using the models to predict, from the model's perspective, the future. For an example, see Grange et al. (2021) <doi:10.5194/acp-2020-1171>.

URL https://github.com/skgrange/rmweather

BugReports https://github.com/skgrange/rmweather/issues

License GPL-3 | file LICENSE

ByteCompile true

Depends R (>= 3.2.0)

Imports dplyr (>= 1.0.1), ggplot2, lubridate, magrittr, pdp, purrr (>= 1.0.0), ranger, stringr, strucchange, tibble, viridis, tidyr, cli

Suggests testthat, openair

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Stuart K. Grange [cre, aut] (<https://orcid.org/0000-0003-4093-3596>)

Repository CRAN Date/Publication 2025-02-21 00:20:02 UTC

Contents

base functions	2
data_london	3
data_london_normalised	3
dplyr functions	4
model_london	4
rmw_calculate_model_errors	5
rmw_clip	6
rmw_do_all	7
rmw_find_breakpoints	9
rmw_model_nested_sets	9
rmw_model_statistics	10
rmw_nest_for_modelling	11
rmw_normalise	13
rmw_normalise_nested_sets	14
rmw_partial_dependencies	16
rmw_plot_importance	17
rmw_plot_normalised	18
rmw_plot_partial_dependencies	19
rmw_plot_test_prediction	19
rmw_predict	20
rmw_predict_nested_partial_dependencies	21
rmw_predict_nested_sets	22
rmw_predict_nested_sets_by_year	23
rmw_predict_the_test_set	
rmw_prepare_data	25
rmw_train_model	
system_cpu_core_count	
wday_monday	29
ZZZ	
%>%	29
	20
	30

Index

base functions

Pseudo-function to re-export functions from the **stats** *package.*

Description

Pseudo-function to re-export functions from the stats package.

data_london

Description

These example data are daily means of NO2 and NOx observations at London Marylebone Road. The accompanying surface meteorological data are from London Heathrow, a major airport located 23 km west of Central London.

Usage

data_london

Format

Tibble with 15676 observations and 11 variables. The variables are: date_end, site, site_name, value, air_temp, atmospheric_pressure, rh, wd, and ws. The dates are in POSIXct format, the site variables are characters and all other variables are numeric.

Details

The NO2 and NOx observations are sourced from the European Commission Air Quality e-Reporting repository which can be freely shared with acknowledgement of the source. The meteorological data are sourced from the Integrated Surface Data (ISD) database which cannot be redistributed for commercial purposes and are bound to the WMO Resolution 40 Policy.

Author(s)

Stuart K. Grange

Examples

Load rmweather's example data and check head(data_london)

data_london_normalised

Example of meteorologically normalised data for the **rmweather** *package.*

Description

These example data are derived from the observational data included in **rmweather** and represent meteorologically normalised NO2 concentrations at London Marylebone Road, aggregated to monthly resolution.

data_london_normalised

Format

Tibble with 258 observations and 5 variables. The variables are: date_end, site, site_name, and value_predict. The dates are in POSIXct format, the site variables are characters and value_predict is numeric.

Author(s)

Stuart K. Grange

See Also

data_london

Examples

Load rmweather's meteorologically normalised example data and check head(data_london_normalised)

dplyr functions *Pseudo-function to re-export* dplyr's common functions.

Description

Pseudo-function to re-export dplyr's common functions.

model_london *Example* ranger *random* forest model for the **rmweather** package.

Description

This example object was created from the observational data included in **rmweather** and is a random forest model returned by **rmw_train_model**. This forest is only made from one tree to keep the file size small and is only used for the package's examples.

Usage

model_london

Format

A ranger object, a named list with 16 elements.

Author(s)

Stuart K. Grange

See Also

data_london, rmw_train_model

Examples

Load rmweather's ranger model example data and see what elements it contains names(model_london)

Print ranger object
print(model_london)

rmw_calculate_model_errors

Function to calculate observed-predicted error statistics.

Description

Function to calculate observed-predicted error statistics.

Usage

```
rmw_calculate_model_errors(
   df,
   value_model = "value_predict",
   value_observed = "value",
   testing_only = TRUE,
   as_long = FALSE
)
```

Arguments

df	Data frame with observed-predicted variables.
value_model	The modelled/predicted variable in "df".
value_observed	The observed variable in "df".
testing_only	Should only the testing set be used for the calculation of errors?
as_long	Should the returned tibble be in "long" format? This is useful for plotting.

Value

Tibble.

Author(s)

Stuart K. Grange

rmw_clip

Function to "clip" the edges of a normalised time series after being produced with rmw_normalise.

Description

rmw_clip helps if the random forest model behaves strangely at the beginning and end of the time series during prediction.

Usage

rmw_clip(df, seconds = 31536000/2)

Arguments

df	Data frame from rmw_normalise.
seconds	Number of seconds to clip from start and end of time-series. The default is half
	a year.

Value

Data frame.

Author(s)

Stuart K. Grange

See Also

rmw_normalise, rmw_plot_normalised

Examples

```
# Clip the edges of a normalised time series, default is half a year
data_normalised_clipped <- rmw_clip(data_london_normalised)</pre>
```

rmw_do_all Function to train a random forest model to predict (usually) pollutant concentrations using meteorological and time variables and then immediately normalise a variable for "average" meteorological conditions.

Description

rmw_do_all is a user-level function to conduct the meteorological normalisation process in one step.

Usage

```
rmw_do_all(
    df,
    variables,
    variables_sample = NA,
    n_trees = 300,
    min_node_size = 5,
    mtry = NULL,
    keep_inbag = TRUE,
    n_samples = 300,
    replace = TRUE,
    se = FALSE,
    aggregate = TRUE,
    n_cores = NA,
    verbose = FALSE
)
```

df	Input data frame after preparation with <pre>rmw_prepare_data</pre> . df has a number of constraints which will be checked for before modelling.
variables	Independent/explanatory variables used to predict "value".
variables_sampl	e
	Variables to use for the normalisation step. If not used, the default of all variables used for training the model with the exception of date_unix, the trend term (see rmw_normalise).
n_trees	Number of trees to grow to make up the forest.
min_node_size	Minimal node size.
mtry	Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.
keep_inbag	Should in-bag data be kept in the ranger model object? This needs to be TRUE if standard errors are to be calculated when predicting with the model.
n_samples	Number of times to sample df and then predict?

replace	Should variables be sampled with replacement?
se	Should the standard error of the predictions be calculated too? The standard error method is the "infinitesimal jackknife for bagging" and will slow down the predictions significantly.
aggregate	Should all the n_samples predictions be aggregated?
n_cores	Number of CPU cores to use for the model calculation. Default is system's total minus one.
verbose	Should the function give messages?

Named list.

Author(s)

Stuart K. Grange

See Also

rmw_prepare_data, rmw_train_model, rmw_normalise

Examples

```
# Load package
library(dplyr)
# Keep things reproducible
set.seed(123)
# Prepare example data
data_london_prepared <- data_london %>%
  filter(variable == "no2") %>%
  rmw_prepare_data()
# Use the example data to conduct the steps needed for meteorological
# normalisation
list_normalised <- rmw_do_all(</pre>
  df = data_london_prepared,
  variables = c(
    "ws", "wd", "air_temp", "rh", "date_unix", "day_julian", "weekday", "hour"
  ),
 n_trees = 300,
 n_samples = 300
)
```

rmw_find_breakpoints Function to detect breakpoints in a data frame using a linear regression based approach.

Description

rmw_find_breakpoints will generally be applied to a data frame after rmw_normalise. rmw_find_breakpoints
is rather slow.

Usage

rmw_find_breakpoints(df, h = 0.15, n = NULL)

Arguments

df	Tibble from rmw_normalise to detect breakpoints in.
h	Minimal segment size either given as fraction relative to the sample size or as an integer giving the minimal number of observations in each segment.
n	Number of breaks to detect. Default is maximum number allowed by h.

Value

Tibble with a date variable indicating where the breakpoints are.

Author(s)

Stuart K. Grange

Examples

```
# Test for breakpoints in an example normalised time series
data_breakpoints <- rmw_find_breakpoints(data_london_normalised)</pre>
```

rmw_model_nested_sets Function to train random forest models using a nested tibble.

Description

Function to train random forest models using a nested tibble.

```
rmw_model_nested_sets(
    df_nest,
    variables,
    n_trees = 10,
    mtry = NULL,
    min_node_size = 5,
    n_cores = NA,
    verbose = FALSE,
    progress = FALSE
)
```

Arguments

df_nest	Nested tibble created by rmw_nest_for_modelling.
variables	Independent/explanatory variables used to predict "value".
n_trees	Number of trees to grow to make up the forest.
mtry	Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.
<pre>min_node_size</pre>	Minimal node size.
n_cores	Number of CPU cores to use for the model calculations.
verbose	Should the function give messages?
progress	Should a progress bar be displayed?

Value

Nested tibble.

Author(s)

Stuart K. Grange

See Also

rmw_nest_for_modelling, rmw_predict_nested_sets, rmw_train_model

<pre>rmw_model_statistics</pre>	Functions to extract model statistics from a model calculated with
	<pre>rmw_calculate_model.</pre>

Description

Functions to extract model statistics from a model calculated with rmw_calculate_model.

10

rmw_model_statistics(model)

```
rmw_model_importance(model, date_unix = TRUE)
```

Arguments

model	A ranger model object from rmw_calculate_model.
date_unix	Should the date_unix variable be included in the return?

Details

The variable importances are defined as "the permutation importance differences of predictions errors". This measure is unit-less and the values are not useful when comparing among data sets.

Value

Tibble.

Author(s)

Stuart K. Grange

Examples

Extract statistics from the example random forest model rmw_model_statistics(model_london)

Extract importances from a model object
rmw_model_importance(model_london)

rmw_nest_for_modelling

Function to nest observational data before modelling with **rmweather**.

Description

rmw_nest_for_modelling will resample the observations if desired, will test and prepare the data
(with rmw_prepare_data), and return a nested tibble ready for modelling.

```
rmw_nest_for_modelling(
   df,
   by = "resampled_set",
   n = 1,
   na.rm = FALSE,
   fraction = 0.8
)
```

Arguments

df	Input data frame. Generally a time series of air quality data with pollutant con- centrations and meteorological variables.
by	Variables within df which will be used for nesting. Generally, by will be "site" and "variable". "resampled_set" will always be added for clarity.
n	Number of resampling sets to create.
na.rm	Should missing values (NA) be removed from value?
fraction	Fraction of the observations to make up the training set.

Value

Nested tibble.

Author(s)

Stuart K. Grange

See Also

rmw_prepare_data, rmw_model_nested_sets, rmw_predict_nested_sets

Examples

```
# Load package
library(dplyr)
# Keep things reproducible
set.seed(123)
# Prepare example data for modelling, replicate observations twice too
data_london %>%
```

```
rmw_nest_for_modelling(by = c("site", "variable"), n = 2)
```

12

rmw_normalise

Description

Function to normalise a variable for "average" meteorological conditions.

Usage

```
rmw_normalise(
  model,
  df,
  variables = NA,
  n_samples = 300,
  replace = TRUE,
  se = FALSE,
  aggregate = TRUE,
  keep_samples = FALSE,
  n_cores = NA,
  verbose = FALSE
)
```

Arguments

model	A ranger model object from rmw_train_model.
df	Input data used to calculate model using <pre>rmw_prepare_data.</pre>
variables	Variables to randomly sample. Default is all variables used for training the model with the exception of date_unix, the trend term.
n_samples	Number of times to sample df and then predict?
replace	Should variables be sampled with replacement?
se	Should the standard error of the predictions be calculated too? The standard error method is the "infinitesimal jackknife for bagging" and will slow down the predictions significantly.
aggregate	Should all the n_samples predictions be aggregated?
keep_samples	When aggregate is FALSE, should the sampled/shuffled observations be kept?
n_cores	Number of CPU cores to use for the model predictions. Default is system's total minus one.
verbose	Should the function give messages and display a progress bar?

Value

Tibble.

Author(s)

Stuart K. Grange

See Also

rmw_prepare_data, rmw_train_model

Examples

```
# Load package
library(dplyr)
# Keep things reproducible
set.seed(123)
# Prepare example data
data_london_prepared <- data_london %>%
filter(variable == "no2") %>%
rmw_prepare_data()
# Normalise the example no2 data
data_normalised <- rmw_normalise(
model_london,
df = data_london_prepared,
n_samples = 300,
verbose = TRUE
)
```

rmw_normalise_nested_sets

Function to normalise a variable for "average" meteorological conditions in a nested tibble.

Description

Function to normalise a variable for "average" meteorological conditions in a nested tibble.

Usage

```
rmw_normalise_nested_sets(
  df_nest,
  variables = NA,
  n_samples = 10,
  replace = TRUE,
```

rmw_normalise_nested_sets

```
se = FALSE,
aggregate = TRUE,
keep_samples = FALSE,
n_cores = NA,
verbose = FALSE,
progress = FALSE
```

Arguments

df_nest	Nested tibble created by rmw_model_nested_sets.
variables	Variables to randomly sample. Default is all variables used for training the model with the exception of date_unix, the trend term.
n_samples	Number of times to sample df and then predict?
replace	Should variables be sampled with replacement?
se	Should the standard error of the predictions be calculated too? The standard error method is the "infinitesimal jackknife for bagging" and will slow down the predictions significantly.
aggregate	Should all the n_samples predictions be aggregated?
keep_samples	When aggregate is FALSE, should the sampled/shuffled observations be kept?
n_cores	Number of CPU cores to use for the model predictions. Default is system's total minus one.
verbose	Should the function give messages?
progress	Should a progress bar be displayed?

Value

Nested tibble.

Author(s)

Stuart K. Grange

See Also

rmw_nest_for_modelling,rmw_model_nested_sets,rmw_model_nested_sets,rmw_normalise.

rmw_partial_dependencies

Function to calculate partial dependencies after training with **rmweather**.

Description

rmw_plot_partial_dependencies is rather slow.

Usage

```
rmw_partial_dependencies(
  model,
  df,
  variable,
  training_only = TRUE,
  resolution = NULL,
  n_cores = NA,
  verbose = FALSE
)
```

Arguments

model	A ranger model object from rmw_train_model.
df	Input data frame after preparation with rmw_prepare_data.
variable	Vector of variables to calculate partial dependencies for.
training_only	Should only the training set be used for prediction? The default is TRUE.
resolution	The number of points that should be predicted for each independent variable. If left as NULL, a default sequence will be generated. See partial for details.
n_cores	Number of CPU cores to use for the model calculation. The default is system's total minus one.
verbose	Should the function give messages?

Value

Tibble.

Author(s)

Stuart K. Grange

Examples

```
# Load packages
library(dplyr)
# Ranger package needs to be loaded
library(ranger)
# Prepare example data
data_london_prepared <- data_london %>%
  filter(variable == "no2") %>%
  rmw_prepare_data()
# Calculate partial dependencies for wind speed
data_partial <- rmw_partial_dependencies(</pre>
  model = model_london,
  df = data_london_prepared,
  variable = "ws",
  verbose = TRUE
)
# Calculate partial dependencies for all independent variables used in model
data_partial <- rmw_partial_dependencies(</pre>
  model = model_london,
  df = data_london_prepared,
  variable = NA,
  verbose = TRUE
)
```

rmw_plot_importance Function to plot random forest variable importances after training by
rmw_train_model.

Description

Function to plot random forest variable importances after training by rmw_train_model.

Usage

```
rmw_plot_importance(df, colour = "black")
```

df	Data frame created by rmw_model_importance.
colour	Colour of point and segment geometries.

ggplot2 plot with point and segment geometries.

Author(s)

Stuart K. Grange

See Also

rmw_train_model, rmw_model_importance

rmw_plot_normalised Function to plot the meteorologically normalised time series after
rmw_normalise.

Description

If the input data contains a standard error variable named "se", this will be plotted as a ribbon (+ and -) around the mean.

Usage

```
rmw_plot_normalised(df, colour = "#6B186EFF")
```

Arguments

df	Tibble created by rmw_normalise.
colour	Colour for line geometry.

Value

ggplot2 plot with a line and ribbon geometries.

Author(s)

Stuart K. Grange

Examples

```
# Plot normalised example data
rmw_plot_normalised(data_london_normalised)
```

rmw_plot_partial_dependencies

Function to plot partial dependencies after calculation by rmw_partial_dependencies.

Description

Function to plot partial dependencies after calculation by rmw_partial_dependencies.

Usage

rmw_plot_partial_dependencies(df)

Arguments

df

Tibble created by rmw_partial_dependencies.

Value

ggplot2 plot with a point geometry.

Author(s)

Stuart K. Grange

```
rmw_plot_test_prediction
```

Function to plot the test set and predicted set after rmw_predict_the_test_set.

Description

Function to plot the test set and predicted set after rmw_predict_the_test_set.

Usage

rmw_plot_test_prediction(df, bins = 30, coord_equal = TRUE)

df	Tibble created by rmw_predict_the_test_set.
bins	Numeric vector giving number of bins in both vertical and horizontal directions.
coord_equal	Should axes be forced to be equal?

ggplot2 plot with a hex geometry.

Author(s)

Stuart K. Grange

rmw_predict

Function to predict using a ranger random forest.

Description

Function to predict using a ranger random forest.

Usage

rmw_predict(model, df = NA, se = FALSE, n_cores = NULL, verbose = FALSE)

Arguments

model	A ranger model object from rmw_train_model.
df	Input data to be used for predictions.
se	If df is supplied, should the standard error of the prediction be calculated too? The standard error method is the "infinitesimal jackknife for bagging" and will slow down the predictions significantly.
n_cores	Number of CPU cores to use for the model predictions.
verbose	Should the function give messages?

Value

Numeric vector or a named list containing two numeric vectors.

Author(s)

Stuart K. Grange

Examples

```
# Load package
library(dplyr)
```

```
# Prepare example data
data_london_prepared <- data_london %>%
filter(variable == "no2") %>%
rmw_prepare_data()
```

Make a prediction with the examples

20

```
vector_prediction <- rmw_predict(
  model_london,
  df = data_london_prepared
)
# Make a prediction with standard errors too
list_prediction <- rmw_predict(
  model_london,
  df = data_london_prepared,
  se = TRUE
)
```

```
rmw_predict_nested_partial_dependencies
```

Function to calculate partial dependencies from a random forest models using a nested tibble.

Description

Function to calculate partial dependencies from a random forest models using a nested tibble.

Usage

```
rmw_predict_nested_partial_dependencies(
    df_nest,
    variables = NA,
    n_cores = NA,
    training_only = TRUE,
    rename = FALSE,
    verbose = FALSE,
    progress = FALSE
)
```

df_nest	Nested tibble created by rmw_model_nested_sets.
variables	Vector of variables to calculate partial dependencies for.
n_cores	Number of CPU cores to use for the model calculations.
training_only	Should only the training set be used for prediction?
rename	Within the partial_dependencies nested tibble, should the generic "variable" name be renamed to "variable_model". This is useful when "variable" has been used as a pollutant identifier.
verbose	Should the function give messages?
progress	Should a progress bar be displayed?

Nested tibble.

Author(s)

Stuart K. Grange

See Also

rmw_nest_for_modelling, rmw_model_nested_sets, rmw_partial_dependencies

```
rmw_predict_nested_sets
```

Function to make predictions from a random forest models using a nested tibble.

Description

Function to make predictions from a random forest models using a nested tibble.

Usage

```
rmw_predict_nested_sets(
    df_nest,
    se = FALSE,
    n_cores = NULL,
    keep_vectors = FALSE,
    model_errors = FALSE,
    as_long = TRUE,
    partial = FALSE,
    verbose = FALSE,
    progress = FALSE
)
```

Arguments

df_nest	Nested tibble created by rmw_model_nested_sets.
se	Should the standard error of the predictions be calculated?
n_cores	Number of CPU cores to use for the model calculations.
keep_vectors	Should the prediction vectors be kept in the return? This is usually not needed because these vectors have been added to the observations variable.
model_errors	Should model error statistics between the observed and predicted values be cal- culated and returned?
as_long	For when model_errors is TRUE, should the model error unit be returned in "long format"?

22

partial	Should the model's partial dependencies also be calculated? This will increase
	the execution time of the function.
verbose	Should the function give messages?
progress	Should a progress bar be displayed?

Nested tibble.

Author(s)

Stuart K. Grange

See Also

rmw_nest_for_modelling,rmw_model_nested_sets,rmw_predict,rmw_calculate_model_errors, rmw_partial_dependencies

rmw_predict_nested_sets_by_year

Function to make predictions by meteorological year from a random forest models using a nested tibble.

Description

Function to make predictions by meteorological year from a random forest models using a nested tibble.

Usage

```
rmw_predict_nested_sets_by_year(
    df_nest,
    variables = NA,
    n_samples = 10,
    aggregate = TRUE,
    n_cores = NULL,
    verbose = FALSE
)
```

df_nest	Nested tibble created by rmw_model_nested_sets.
variables	Variables to randomly sample. Default is all variables used for training the model with the exception of date_unix, the trend term.
n_samples	Number of times to sample the observations from each meteorological year and then predict.

aggregate	Should all the n_samples predictions be aggregated?
n_cores	Number of CPU cores to use for the model calculations.
verbose	Should the function give messages?

Nested tibble.

Author(s)

Stuart K. Grange

See Also

rmw_nest_for_modelling, rmw_model_nested_sets

rmw_predict_the_test_set

Functions to use a model to predict the observations within a test set after rmw_calculate_model.

Description

rmw_predict_the_test_set uses data withheld from the training of the model and therefore can be used for investigating overfitting.

Usage

```
rmw_predict_the_test_set(model, df)
```

Arguments

model	A ranger model object from rmw_calculate_model.
df	Input data used to calculate model.

Value

Tibble.

Author(s)

Stuart K. Grange

rmw_prepare_data

Examples

```
# Load package
library(dplyr)
# Prepare example data
data_london_prepared <- data_london %>%
  filter(variable == "no2") %>%
  rmw_prepare_data()
# Use the test set for prediction
rmw_predict_the_test_set(
 model_london,
  df = data_london_prepared
)
# Predict, then produce a hex plot of the predictions
rmw_predict_the_test_set(
  model_london,
  df = data_london_prepared
) %>%
  rmw_plot_test_prediction()
```

rmw_prepare_data Function to prepare a data frame for modelling with **rmweather**.

Description

rmw_prepare_data will test and prepare a data frame for further use with **rmweather**.

Usage

```
rmw_prepare_data(
   df,
   value = "value",
   na.rm = FALSE,
   replace = FALSE,
   fraction = 0.8
)
```

df	Input data frame. Generally a time series of air quality data with pollutant con- centrations and meteorological variables.
value	Name of the dependent variable. Usually a pollutant, for example, "no2" or "pm10".
na.rm	Should missing values (NA) be removed from value?

replace	When adding the date variables to the set, should they replace the versions al-
	ready contained in the data frame if they exist?
fraction	Fraction of the observations to make up the training set. Default is 0.8, 80 %.

Details

rmw_prepare_data will check if a date variable is present and is of the correct data type, impute missing numeric and categorical values, randomly split the input into training and testing sets, and rename the dependent variable to "value". The date variable will also be used to calculate new variables such as date_unix, day_julian, weekday, and hour which can be used as independent variables. These attributes are needed for other **rmweather** functions to operate.

Use set. seed in an R session to keep results reproducible.

Value

Tibble, the input data transformed ready for modelling with rmweather.

Author(s)

Stuart K. Grange

See Also

set.seed, rmw_train_model, rmw_normalise

Examples

```
# Load package
library(dplyr)
# Keep things reproducible
set.seed(123)
# Prepare example data for modelling, only use no2 data here
data_london_prepared <- data_london %>%
filter(variable == "no2") %>%
rmw_prepare_data()
```

rmw_train_model	Function to train a random forest model to predict (usually) pollutant
	concentrations using meteorological and time variables.

Description

Function to train a random forest model to predict (usually) pollutant concentrations using meteorological and time variables. rmw_train_model

Usage

```
rmw_train_model(
    df,
    variables,
    n_trees = 300,
    mtry = NULL,
    min_node_size = 5,
    keep_inbag = TRUE,
    n_cores = NA,
    verbose = FALSE
)
```

Arguments

df	Input tibble after preparation with rmw_prepare_data. df has a number of constraints which will be checked for before modelling.
variables	Independent/explanatory variables used to predict "value".
n_trees	Number of trees to grow to make up the forest.
mtry	Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.
<pre>min_node_size</pre>	Minimal node size.
keep_inbag	Should in-bag data be kept in the ranger model object? This needs to be TRUE if standard errors are to be calculated when predicting with the model.
n_cores	Number of CPU cores to use for the model calculation. Default is system's total minus one.
verbose	Should the function give messages?

Value

A ranger model object, a named list.

Author(s)

Stuart K. Grange

See Also

rmw_prepare_data, rmw_normalise

Examples

```
# Load package
library(dplyr)
```

Keep things reproducible

```
set.seed(123)
# Prepare example data
data_london_prepared <- data_london %>%
  filter(variable == "no2") %>%
  rmw_prepare_data()
# Calculate a model using common meteorological and time variables
model <- rmw_train_model(
  data_london_prepared,
  variables = c(
    "ws", "wd", "air_temp", "rh", "date_unix", "day_julian", "weekday", "hour"
  ),
  n_trees = 300
)</pre>
```

system_cpu_core_count Function to return the system's number of CPU cores.

Description

Function to return the system's number of CPU cores.

Usage

```
system_cpu_core_count(logical_cores = TRUE, max_cores = NA)
```

Arguments

logical_cores	Should logical cores be included in the core count?
max_cores	Should the return have a maximum value? This can be useful when there are
	very many cores and logic is being built.

Author(s)

Stuart K. Grange

28

wday_monday

Function to get weekday number from a date where 1 *is Monday and* 7 *is Sunday.*

Description

Function to get weekday number from a date where 1 is Monday and 7 is Sunday.

Usage

wday_monday(x, as.factor = FALSE)

Arguments

х	Date vector.
as.factor	Should the return be a factor?

Value

Numeric vector.

Author(s)

Stuart K. Grange

ZZZ

Squash the global variable notes when building a package.

Description

Squash the global variable notes when building a package.

%>%

Pseudo-function to re-export magrittr's pipe.

Description

Pseudo-function to re-export magrittr's pipe.

Index

* datasets data_london, 3 data_london_normalised, 3 model_london, 4 %>%, 29 base functions, 2 data_london, 3, 4, 5 data_london_normalised, 3 dplyr functions, 4 model_london, 4 partial, 16 rmw_calculate_model_errors, 5, 23 rmw_clip, 6 rmw_do_all,7 rmw_find_breakpoints,9 rmw_model_importance, 17, 18 rmw_model_importance (rmw_model_statistics), 10 rmw_model_nested_sets, 9, 12, 15, 21-24 rmw_model_statistics, 10 rmw_nest_for_modelling, 10, 11, 15, 22-24 rmw_normalise, 6-9, 13, 15, 18, 26, 27 rmw_normalise_nested_sets, 14 rmw_partial_dependencies, 16, 19, 22, 23 rmw_plot_importance, 17 rmw_plot_normalised, 6, 18 rmw_plot_partial_dependencies, 19 rmw_plot_test_prediction, 19 rmw_predict, 20, 23 rmw_predict_nested_partial_dependencies, 21 rmw_predict_nested_sets, 10, 12, 22 rmw_predict_nested_sets_by_year, 23 rmw_predict_the_test_set, 19, 24 rmw_prepare_data, 7, 8, 11-14, 16, 25, 27

rmw_train_model, 4, 5, 8, 10, 13, 14, 16-18, 26, 26 set.seed, 26 system_cpu_core_count, 28 wday_monday, 29 zzz, 29