Package ‘riverconn’

January 23, 2024
Type Package
Title Fragmentation and Connectivity Indices for Riverscapes
Version 0.3.31

Maintainer Damiano Baldan <damiano.baldan91@gmail.com>
BugReports https://github.com/damianobaldan/riverconn/issues

URL https://github.com/damianobaldan/riverconn

Description Indices for assessing riverscape fragmentation, including the Dendritic Connectivity In-
dex, the Population Connectivity Index, the River Fragmentation Index, the Probability of Con-
nectivity, and the Integral Index of connectivity. For a review, see Ju-
mani et al. (2020) <doi:10.1088/1748-9326/abcb37> and Bal-
dan et al. (2022) <doi:10.1016/j.envsoft.2022.105470> Functions to calculate temporal in-
dices improvement when fragmentation due to barriers is reduced are also included.

License MIT + file LICENSE
Encoding UTF-8

Imports doParallel, dplyr, foreach, igraph, magrittr, parallel, rlang,
stats, tidyr, tidyselect, dodgr, reshape2

Suggests knitr, ggplot2, viridis, rmarkdown
RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Damiano Baldan [aut, cre] (<https://orcid.org/0000-0001-9237-4883>),
David Cunillera-Montcusi [ctb]
(<https://orcid.org/0000-0001-8666-346X>),
Andrea Funk [ctb] (<https://orcid.org/0000-0002-0568-1234>)

Repository CRAN
Date/Publication 2024-01-23 10:30:02 UTC

https://github.com/damianobaldan/riverconn/issues
https://github.com/damianobaldan/riverconn
https://doi.org/10.1088/1748-9326/abcb37
https://doi.org/10.1016/j.envsoft.2022.105470
https://orcid.org/0000-0001-9237-4883
https://orcid.org/0000-0001-8666-346X
https://orcid.org/0000-0002-0568-1234

2 B_ij_fun

R topics documented:

B_ij_fun e e 2
cj_fun . ..o e 4
d_index_calculation oL 5
index_calculation e 7
set_graph_directionality 10
t_index_calculation 10
t_passability_SeqUencer e e e e e e 12
t_Weights_Sequencer i e e e e e 13

Index 15

B_ij_fun Calculates B_ij: the functional contribution to dispersal probability
1_ij
Description

Calculates B_ij: the functional contribution to dispersal probability I_ij

Usage

B_ij_fun(
graph,
field_B = "length”,
dir_distance_type = "symmetric”,
disp_type = "exponential”,
param_u,
param_d,
param,
param_1

Arguments

graph an object of class igraph. Can be both directed or undirected.

field_B the "graph’ edge attribute to be used to calculate the distance. Defaultis "length”.
dir_distance_type
how directionality in B_ij calculations is dealt with: "symmetric"” (i.e. undi-
rected graph) or "asymmetric” (i.e. directed graph). See details.

disp_type the formula used to calculate the probabilities in the B_ij matrix. Use "exponential”
for exponential decay, "threshold” for setting a distance threshold, or "leptokurtic”
for leptokurtic dispersal.

param_u the upstream dispersal parameter. Must be a numeric value. Only used if
dir_distance_type = "asymmetric”. See details.

B_ij_fun 3

param_d the downstream dispersal parameter. Must be a numeric value. Only used if
dir_distance_type = "asymmetric”. See details.

param the dispersal parameter. Must be a numeric value. Only used if dir_distance_type
= "symmetric”. See details.

param_1l the parameters for the leptokurtic dispersal mode. Must be a numeric vector of
the type c(sigma_stat, sigma_mob, p). See details below.

Details

dir_distance_type = "symmetric” is to be used when the directionality of the river network is
not relevant. The distance between reaches midpoints is calculated for each couple of reaches.
dir_distance_type = "asymmetric” is to be used when the directionality is relevant. The dis-
tance between reaches midpoints is calculated for each couple of reaches and splitted between "up-
stream travelled’ distance and ’downstream travelled’ distance. When disp_type ="1leptokurtic”
is selected, symmetric dispersal is assumed.

The ’param_u’, ’param_d’, and param’ values are interpreted differently based on the formula used
to relate distance (d_ij) and probability (B_ij). When disp_type ="exponential”, those values
are used as the base of the exponential dispersal kernel: B_ij = param”d_ij. When disp_type
="threshold", those values are used to define the maximum dispersal length: B_ij = ifelse(d_ij <
param, 1, 0).

When disp_type ="leptokurtic” is selected, a leptokurtic dispersal kernel is used to calculate
B_ij. A leptokurtic dispersal kernel is a mixture of two zero-centered gaussian distributions with
standard deviations sigma_stat (static part of the population), and sigma_mob (mobile part of the
population). The probability of dispersal is calculated as: B_ij = p F(0, sigma_stat, d_ij) + (1-p)
F(0, sigma_mob, d_ij) where F is the upper tail of the gaussian cumulative density function.

Value

a square matrix of size length(V(graph)) containing B_ij values. The matrix is organized with
"from" nodes on the columns and "to" nodes on the rows

Examples

library(igraph)

g <- igraph::graph_from_literal(1-+2, 2-+5, 3-+4, 4-+5, 6-+7, 7-+10, 8-+9, 9-+10,

5-+11, 11-+12, 10-+13, 13-+12, 12-+14, 14-+15, 15-+16)

E(g)$id_dam <- c("1", NA, "2", "3", NA, "4", NA, "5", "6", NA, NA, NA, NA, "7", NA)
E(g)$type <- ifelse(is.na(E(g)$id_dam), "joint"”, "dam")

v(g)$length <- c(1, 1, 2, 3, 4,1, 5,1, 7,7, 3, 2, 4,5, 6, 9)

V(g)$HSI <- c(0.2, 0.1, 0.3, 0.4, 0.5, 0.5, 0.5, 0.6, 0.7, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8)
V(g)$Id <- V(g)$name

E(g)$pass_u <- E(g)$pass_d <- ifelse(!is.na(E(g)$id_dam),0.1,NA)

dist_mat <- B_ij_fun(g, param = 0.9)

4 c_ij_fun

c_ij_fun Calculates c_ij: the structural contribution to the dispersal probability
1_ij

Description

Calculates c_ij: the structural contribution to the dispersal probability I_ij

Usage
c_ij_fun(
graph,
dir_fragmentation_type = "symmetric”,
pass_confluence = 1,
pass_u = "pass_u",
pass_d = "pass_d"
)
Arguments
graph an object of class igraph. Can be both directed or undirected.

dir_fragmentation_type
how directionality in c_ij calculations is dealt with: "symmetric” (i.e. undi-
rected graph) or "asymmetric” (i.e. directed graph). See details.
pass_confluence
a value in the range [0,1] that defines the passability of confluences (default is

D).
pass_u the "graph’ edge attribute to be used as upstream passability. Default is "pass_u".
pass_d the ’graph’ edge attribute to be used as downstream passability. Default is
"pass_d".

Details

dir_fragmentation_type = "symmetric” is to be used when the directionality of the river net-
work is not relevant. The equivalent passability for each barrier is calculated as the product of
upstream and downstream passabilities. dir_fragmentation_type = "asymmetric” is to be used
when the directionality is relevant. The equivalent passability of each barrier is calculated as a func-
tion of the path connecting each couple of reaches and depends on the direction of the path. Check
the package vignette for more details.

Value

a square matrix of size length(V(graph)) containing c_ij values. The matrix is organized with "from"
nodes on the columns and "to" nodes on the rows

d_index_calculation 5

Examples

library(igraph)

g <- igraph::graph_from_literal(1-+2, 2-+5, 3-+4, 4-+5, 6-+7, 7-+10,

8-+9, 9-+10, 5-+11, 11-+12, 10-+13, 13-+12, 12-+14, 14-+15, 15-+16)

E(g)$id_dam <- c(”1", NA, "2", "3", NA, "4”, NA, "5", "6", NA, NA, NA, NA, "7", NA)
E(g)$type <- ifelse(is.na(E(g)$id_dam), "joint"”, "dam")

V(g)$length <- c(1, 1, 2, 3, 4,1, 5,1, 7, 7, 3, 2, 4, 5, 6, 9)

V(g)$HSI <- c(0.2, 0.1, 0.3, 0.4, 0.5, 0.5, 0.5, 0.6, 0.7, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8)
V(g)$Id <- V(g)$name

E(g)$pass_u <- E(g)$pass_d <- ifelse(!is.na(E(g)$id_dam),0.1,NA)

dist_mat <- c_ij_fun(g)

d_index_calculation Calculate Reach- and Catchment-scale index improvement for scenar-
ios of barriers removal

Description

Calculate Reach- and Catchment-scale index improvement for scenarios of barriers removal

Usage

d_index_calculation(
graph,
barriers_metadata,
id_barrier = "id_barrier”,
pass_u_updated = "pass_u_updated”,
pass_d_updated = "pass_d_updated”,

mode = "leave_one_out”,
parallel = TRUE,
ncores
)
Arguments
graph an object of class “igraph’. Can be both directed or undirected.

other arguments passed to the function ’index_calculation’

barriers_metadata
data.frame that must contain a column having the same name as the ’id_barrier’
attribute of the graph, and two columns with the corresponding upstream and
downstream improved passabilities (see *pass_u_updated’ and *pass_d_updated’
parameters).

id_barrier graph edges attribute used to label barriers. Default is "id_barrier”. Must be
of type charachter.

6 d_index_calculation

pass_u_updated field in barrier_metadata where updated value for upstream passability is stored
(recommended values higher than the original passability).

pass_d_updated field in barrier_metadata where updated value for downstream passability is
stored (recommended values higher than the original passability).

mode currentlym only "leave_one_out” is implemented.
parallel logical value to flag if parallel option is to be used.
ncores define how many cores are used in parallel processing. Active only when parallel
= TRUE
Details

Setting c_ij_flag = FALSE (see index_calculation arguments) removes from the calculations the
effect of barriers, i.e. the c_ij contribution is not used in the calculation of the index. Setting
B_ij_flag = FALSE (see index_calculation arguments) removes from the calculations the effect of
movement/dispersal, i.e. the B_ij contribution is not used in the calculation of the index. Note that
it is not possible to set both c_ij_flag = FALSE and B_ij_flag = FALSE.

The setting dir_distance_type = "symmetric” (see index_calculation arguments) is to be used
when the directionality of the river network is not relevant. The distance between reaches midpoints
is calculated for each couple of reaches. The setting dir_distance_type = "asymmetric” (see
index_calculation arguments) is to be used when the directionality is relevant. The distance between
reaches midpoints is calculated for each couple of reaches and splitted between "upstream travelled’
distance and downstream travelled’ distance

The ’param_u’, ’param_d’, and ’param’ values are interpreted differently based on the formula
used to relate distance and probability. When disp_type ="exponential” (see index_calculation
arguments), those values are used as the base of the exponential dispersal kernel: B_ij = param”d_ij.
When disp_type ="threshold"” (see index_calculation arguments), those values are used to define
the maximum dispersal length: B_ij = ifelse(d_ij < param, 1, 0).

Value

returns a data.frame containing the percent improvement of the index for each barrier present in
the ’barriers_metadata’ variable. If index_type = "full” (see index_calculation arguments), the
data.frame is organized by ’id_barrier’. If index_type = "reach” (see index_calculation argu-
ments), the data.frame is organized by ’id_barrier’ and 'name’. In both cases, both numerator and
denominator used in the index calculations are reported in the columns 'num’ and ’den’. The col-
umn ’d_index’ contains the relative index improvement when each barrier is removed.

References

Baldan, D., Cunillera-Montcusi, D., Funk, A., & Hein, T. (2022). Introducing ‘riverconn’: an R
package to assess river connectivity indices. Environmental Modelling & Software, 156, 105470.

Examples

library(igraph)

library(igraph)

g <- igraph::graph_from_literal(1-+2, 2-+4, 3-+2, 4-+6, 6-+7, 5-+6, 7-+8, 9-+5, 10-+5)
E(g)$id_dam <- c(NA, NA, "1", NA, NA, "2", NA, NA, NA)

index_calculation 7

E(g)$type <- ifelse(is.na(E(g)$id_dam), "joint"”, "dam")

V(g)$length <- c(1, 1, 2, 3, 4, 1, 5, 1, 2, 1)

V(g)$Id <- V(g)$name

E(g)$pass_u <- E(g)$pass_d <- ifelse(!is.na(E(g)$id_dam),0.1,NA)
dams_metadata <- data.frame("id_dam" = c("1", "2"),
"pass_u_updated” = c(1, 1), "pass_d_updated” = c(1, 1))

d_index <- d_index_calculation(g, barriers_metadata = dams_metadata,
id_barrier = "id_dam", parallel = FALSE, param = 0.6)

index_calculation Reach- and Catchment-scale indices of connectivity

Description

Reach- and Catchment-scale indices of connectivity

Usage
index_calculation(
graph,
weight = "length”,
nodes_id = "name”,
index_type = "full”,
index_mode = "to",

c_ij_flag = TRUE,
B_ij_flag = TRUE,

dir_fragmentation_type = "symmetric”,
pass_confluence = 1,
pass_u = "pass_u",
pass_d = "pass_d",
field_B = "length"”,
dir_distance_type = "symmetric”,
disp_type = "exponential”,
param_u,
param_d,
param,
param_1
)
Arguments
graph an object of class igraph. Can be both directed or undirected.
weight graph vertex attribute used to assign weights to the reaches (nodes/vertices).

Should not be also an edge attribute. Default is "1ength”.

8 index_calculation

nodes_id graph vertex attribute used to univoquely label reaches (nodes/vertices). Should
not be also an edge attribute. Default is "name”. The graph attribute must be a
character vector. Used to label the results when index_type = "reach”

index_type indicates if the index should be calculated for the whole catchment (index_type
= "full"), for each reach (index_type = "reach"), or for each barrier (index_type
= llsumll)

index_mode indicates if reach index should be calculated based on inbound links ("to") or
outbound links ("from"). Only active when index_type = "reach”.

c_ij_flag include the presence of barriers in the calculations (c_ij term).

B_ij_flag include dispersal/movement among reaches in the calculations (B_ij term).

dir_fragmentation_type
how directionality in c_ij calculations is dealt with: "symmetric” (i.e. undi-
rected graph) or "asymmetric” (i.e. directed graph). See details below.
pass_confluence
a value in the range [0,1] that defines the passability of confluences (default is

1).
pass_u the *graph’ edge attribute to be used as upstream passability. Default is "pass_u".
pass_d the ’graph’ edge attribute to be used as downstream passability. Default is
"pass_d".
field_B the *graph’ vertex attribute to be used to calculate the distance. Should not be

also an edge attribute. Default is "length".

dir_distance_type
how directionality in B_ij calculations is dealt with: "symmetric"” (i.e. undi-
rected graph) or "asymmetric” (i.e. directed graph). See details.

disp_type the formula used to calculate the probabilities in the B_ij matrix. Use "exponential”
for exponential decay, "threshold” for setting a distance threshold, or "leptokurtic”
for leptokurtic dispersal.

param_u upstream dispersal parameter. Must be a numeric value. Only used if dir_distance_type
= "asymmetric"”. See details below.

param_d downstream dispersal parameter. Must be a numeric value. Only used if dir_distance_type
= "asymmetric"”. See below for details.

param dispersal parameter. Must be a numeric value. Only used if dir_distance_type
= "symmetric”. See details below.

param_1 the parameters for the leptokurtic dispersal mode. Must be a numeric vector of
the type c(sigma_stat, sigma_mob, p). See details below.

Details

Setting c_ij_flag = FALSE removes from the calculations the effect of barriers, i.e. the c_ij con-
tribution is not used in the calculation of the index. Setting B_ij_flag = FALSE removes from the
calculations the effect of movement/dispersal, i.e. the B_ij contribution is not used in the calculation
of the index. Note that it is not possible to set both c_ij_flag = FALSE and B_ij_flag = FALSE.

The setting dir_distance_type = "symmetric” is to be used when the directionality of the river
network is not relevant. The distance between reaches midpoints is calculated for each couple of

index_calculation 9

reaches. The setting dir_distance_type = "asymmetric” is to be used when the directionality is
relevant. The distance between reaches midpoints is calculated for each couple of reaches and split-
ted between ’upstream travelled’ distance and downstream travelled’ distance. When disp_type
="leptokurtic" is selected, symmetric dispersal is assumed.

The ’param_u’, ’param_d’, and ’param’ values are interpreted differently based on the formula used
to relate distance (d_ij) and probability (B_ij). When disp_type ="exponential”, those values
are used as the base of the exponential dispersal kernel: B_ij = param”d_ij. When disp_type
="threshold", those values are used to define the maximum dispersal length: B_ij = ifelse(d_ij <
param, 1, 0).

When disp_type ="leptokurtic” is selected, a leptokurtic dispersal kernel is used to calculate
B_ij. A leptokurtic dispersal kernel is a mixture of two zero-centered gaussian distributions with
standard deviations sigma_stat (static part of the population), and sigma_mob (mobile part of the
population). The probability of dispersal is calculated as: B_ij = p F(0, sigma_stat, d_ij) + (1-p)
F(0, sigma_mob, d_ij) where F is the upper tail of the gaussian cumulative density function.

Value

If index_type = "full”, returns a numeric value with the index value (column ’index’). if index_type
=c("reach"”, "sum"), returns a data frame with the index value (column ’index’) for each reach
(the field specified in 'nodes_id’ is used for reach identification in the data frame). In both cases,
both numerator and denominator used in the index calculations are reported in the columns *num’
and ’den’.

References

Baldan, D., Cunillera-Montcusi, D., Funk, A., & Hein, T. (2022). Introducing ‘riverconn’: an R
package to assess river connectivity indices. Environmental Modelling & Software, 156, 105470.

Jumani, S., Deitch, M. J., Kaplan, D., Anderson, E. P., Krishnaswamy, J., Lecours, V., & Whiles,
M. R. (2020). River fragmentation and flow alteration metrics: a review of methods and directions
for future research. Environmental Research Letters, 15(12), 123009.

Radinger, J., & Wolter, C. (2014). Patterns and predictors of fish dispersal in rivers. Fish and
fisheries, 15(3), 456-473.

Examples

library(igraph)

g <- igraph::graph_from_literal(1-+2, 2-+5, 3-+4, 4-+5, 6-+7,

7-+10, 8-+9, 9-+10, 5-+11, 11-+12, 10-+13, 13-+12, 12-+14, 14-+15, 15-+16)

E(g)$id_dam <- c("1", NA, "2", "3", NA, "4", NA, "5", "6", NA, NA, NA, NA, "7", NA)
E(g)$type <- ifelse(is.na(E(g)$id_dam), "joint”, "dam")

v(g)$length <- c(1, 1, 2, 3, 4,1, 5,1, 7,7, 3, 2, 4,5, 6, 9)

V(g)$HSI <- c(0.2, 0.1, 0.3, 0.4, 0.5, 0.5, 0.5, 0.6, 0.7, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8)
V(g)$Id <- V(g)$name

E(g)$pass_u <- E(g)$pass_d <- ifelse(!is.na(E(g)$id_dam),0.1,NA)

index <- index_calculation(g, param = 0.9)

10 t index_calculation

set_graph_directionality
Create directed river graph based on outlet flag

Description

The input graph can be either directed or undirected. If directed, then it is made undirected before
directionality is assigned.

Usage
set_graph_directionality(graph, field_name = "name"”, outlet_name)
Arguments
graph an ’igraph’ object representing a river structure where reaches are nodes and
confluences (or fragmentation items) are links.
field_name a character value that flags the vertices attribute used to designate the outlet.
Each vertex must have an unique value for this field.
outlet_name a character value corresponding to the ’field_name’ attribute
Value

an object of class ’igraph’ containing a directed graph.

Examples

library(igraph)
g <- igraph::graph_from_literal(1-2, 2-4, 3-2, 4-6, 6-7, 5-6, 7-8, 9-5, 10-5)
gl <- set_graph_directionality(g, field_name = "name”, "8")

t_index_calculation Calculates time-dependent index when nodes weights or barriers pass-
ability are changing

Description

Calculates time-dependent index when nodes weights or barriers passability are changing

t index_calculation 11

Usage
t_index_calculation(
graph = graph,

°

barriers_metadata,

id_barrier = "id_barrier”,
year = "year",

pass_u = "pass_u",

pass_d = "pass_d",

weights_metadata,
weight = "length",

nodes_id = "name”,
parallel = TRUE,
ncores
)
Arguments
graph an object of class igraph. Can be both directed or undirected.

. other arguments passed to the function index_calculation

barriers_metadata
data.frame that must contain a column having the same name as the ’id_barrier’
attribute of the graph, and two columns with the corresponding upstream and
downstream improved passabilities (see pass_u and pass_d), and a column with
the year passability was changed. This data frame can be obtained from easily-
formatted data with the function t_passability_sequencer.

id_barrier graph edges attribute used to label barriers. Default is "id_barrier”. It should
be present in the "barriers metadata’ input as well.

year field of the ’barriers metadata’ where temporal information on the changes in
passability is stored.

pass_u field of the ’barriers metadata’ where temporal-dependent upstream passability
is stored.

pass_d field of the ’barriers metadata’ where temporal-dependent downstream passabil-

ity is stored.
weights_metadata
data.frame that must contain a column having the same name as the 'nodes_id’
attribute of the graph, a column with he corresponding weight information (see
weight’ parameter), and a column with the year weight was changed. This data
frame can be obtained from easily-formatted data with the function t_weight_sequencer.

weight param weight graph vertex attribute used to assign weights to the reaches (nodes).
Default is "length”.

nodes_id graph vertex attribute used to uniquely label reaches (nodes). Default is "name”.

parallel logical value to flag if parallel option is to be used.

ncores define how many cores are used in parallel processing. Active only when parallel

= TRUE

12 t_passability_sequencer

Value

a data.frame with a ’year’ field and related connectivity index. If index_type = "reach”, the
data.frame is organized by ’year’ and 'name’.

References

Baldan, D., Cunillera-Montcusi, D., Funk, A., & Hein, T. (2022). Introducing ‘riverconn’: an R
package to assess river connectivity indices. Environmental Modelling & Software, 156, 105470.

Examples

library(igraph)
g <- igraph::graph_from_literal(1-+2, 2-+4, 3-+2, 4-+6, 6-+5)
E(g)$id_barrier <- c(NA, NA, "1", NA, NA)
E(g)$type <- ifelse(is.na(E(g)$id_barrier), "joint", "dam")
V(g)$length <- c(1, 1, 2, 3, 4,5
V(g)$Id <- V(g)$name
E(g)$pass_u <- E(g)$pass_d <- ifelse(!is.na(E(g)$id_barrier),0.1,NA)
barriers_data <- data.frame("id_barrier” = c("1"),
"year_c" = 2000, "pass_c_u" = 0.1, "pass_c_d" = 0.4)
seq_ops <- c("c")
barriers_metadata <- t_passability_sequencer(barriers_data, seq_ops)

weights_dataframe <- data.frame("name” = seq(1,6) %>% as.character,
"length_1999" = c(1, 1, 2, 3, 4,5))
weights_metadata <- t_weights_sequencer(weights_dataframe, weight = "length”)

t_index <- t_index_calculation(g, barriers_metadata = barriers_metadata,
weights_metadata = weights_metadata, weight = "length”, parallel = FALSE, B_ij_flag = FALSE)

t_passability_sequencer
Create the time-dependent metadata for barriers

Description

Create the time-dependent metadata for barriers

Usage

t_passability_sequencer(passability_information, seq_ops)

t_weights_sequencer 13

Arguments

passability_information
a data frame in wide format. Must contain an ’id_barrier’ column. Each change
in passability is listed in a group of 3 columns: ’year_op’, ’pass_op_u’, and
"pass_op_d’, listing the year the operation (op) took place, and the related up-
stream and downstream passabilities. In case the passability did not change, a
NA value should be used. See details.

seq_ops A charachter vector with the temporal sequence of operations. It should contain
all the operation strings in the ’passability_information’ data frame.

Details

This function is meant to help processing data the way they can be obtained from a database, or the
way they are stored in a spreadsheet. The substring "op’ in the fields "year_op’, "pass_op_u’, and
’pass_op_d’ is used to identify each operation and to relate it to the relative passability parameters.
For example, ¢ can be used for construction, and fp for the implementation of a fish pass. In
this case, passability_information will have the fields ’year_c’, "pass_c_u’, and ’pass_c_d’,
’year_{p’, 'pass_fp_u’, and ’pass_fp_d’. Then, the input seq_ops =c("c"”, "fp"), meaning that
first the operation named ’¢’ occurred, and then the operation named *fp’ occurred.

Value

a dataframe in a long format that can be used as input to the tDCI function.

Examples

barriers_data <- data.frame("id_barrier” = c("1", "2"),

"year_c" = c(1950, 1990), "pass_c_u" = c(0.1, 0.1), "pass_c_d" = c(0.4, 0.4),
"year_fp" = c(2000, 2010), "pass_fp_u" = c(0.5, 0.5), "pass_fp_d" = c(0.8, 0.8))
seq_ops <- c("c”, "fp")

t_metadata <- t_passability_sequencer(barriers_data, seq_ops)

t_weights_sequencer Create the time-dependent weights data

Description

Create the time-dependent weights data

Usage

t_weights_sequencer(weights_information, weight = "length"”, nodes_id = "name")

14 t_weights_sequencer

Arguments

weights_information
a data.frame that must contain a 'nodes_id’ column and several *weight’ columns.
Weight columns are named with the string contained in the *weight’ input and
the relative year (4 digits format), separated by an underscore (e.g. when weight
= "length”, the names of the "weight’ columns will be: *weight_1990’, *weight_2000’,
weight_2020, etc.).

weight a character object containing the label of the columns whose weight change with
time
nodes_id a character object containing the label of the columns that uniquely identify
reaches.
Value

a data frame with columns 'name’, ’year’, and ’weight’ to be used in the function t_index_calculation

Examples

weights_dataframe <- data.frame(”id"” = c("1", "2", "3", "4" "5"),

"weight_1900" = c(1@, 15, 100, 50, 40),

"weight_1950"= c(11, 16, 90, 55, 45),

"weight_2000"= c(13, 19, 80, 49, 44))

weights_metadata <- t_weights_sequencer(weights_dataframe, weight = "weight"”, nodes_id = "id")

Index

B_ij_fun, 2

c_ij_fun, 4
d_index_calculation, 5
index_calculation, 7
set_graph_directionality, 10

t_index_calculation, 10
t_passability_sequencer, 12
t_weights_sequencer, 13

15

	B_ij_fun
	c_ij_fun
	d_index_calculation
	index_calculation
	set_graph_directionality
	t_index_calculation
	t_passability_sequencer
	t_weights_sequencer
	Index

