Package ‘rio’

September 25, 2024

Type Package
Title A Swiss-Army Knife for Data I/O
Version 1.2.3

Description Streamlined data import and export by making assumptions that
the user is probably willing to make: 'import()' and 'export()' determine
the data format from the file extension, reasonable defaults are used for
data import and export, web-based import is natively supported (including
from SSL/HTTPS), compressed files can be read directly, and fast import
packages are used where appropriate. An additional convenience function,
'convert()', provides a simple method for converting between file types.

URL https://gesistsa.github.io/rio/, https://github.com/gesistsa/rio

BugReports https://github.com/gesistsa/rio/issues
Depends R (>=4.0)

Imports tools, stats, utils, foreign, haven (>= 1.1.2), curl (>= 0.6),
data.table (>= 1.11.2), readxl (>= 0.1.1), tibble, writexl,
lifecycle, R.utils, readr

Suggests datasets, bit64, testthat, knitr, magrittr, clipr, fst,
hexView, jsonlite, pzfx, readODS (>= 2.1.0), rmarkdown, rmatio,
xml2 (>= 1.2.0), yaml, gs, arrow (>= 0.17.0), stringi, withr,
nanoparquet

License GPL-2

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.1
Config/Needs/website gesistsa/tsatemplate
NeedsCompilation no

Author Jason Becker [aut],
Chung-hong Chan [aut, cre] (<https://orcid.org/0000-0002-6232-7530>),
David Schoch [aut] (<https://orcid.org/0000-0003-2952-4812>),
Geoffrey CH Chan [ctb],
Thomas J. Leeper [aut] (<https://orcid.org/0000-0003-4097-6326>),

1

https://gesistsa.github.io/rio/
https://github.com/gesistsa/rio
https://github.com/gesistsa/rio/issues
https://orcid.org/0000-0002-6232-7530
https://orcid.org/0000-0003-2952-4812
https://orcid.org/0000-0003-4097-6326

characterize

Christopher Gandrud [ctb],

Andrew MacDonald [ctb],

Ista Zahn [ctb],

Stanislaus Stadlmann [ctb],

Ruaridh Williamson [ctb],

Patrick Kennedy [ctb],

Ryan Price [ctb],

Trevor L Davis [ctb],

Nathan Day [ctb],

Bill Denney [ctb] (<https://orcid.org/0000-0002-5759-428X>),
Alex Bokov [ctb] (<https://orcid.org/0000-0002-0511-9815>),
Hugo Gruson [ctb] (<https://orcid.org/0000-0002-4094-1476>)

Maintainer Chung-hong Chan <chainsawtiney@gmail.com>
Repository CRAN
Date/Publication 2024-09-25 17:20:02 UTC

Contents
characterize e e e 2
CONVEIT . . v v v v o e e e e e e e e e e e e e e 4
EXPOIT . o v o i e e e e e e e 5
export_liSto 7
gather_attrs e 9
get_info e e 10
IMPOTE . . . v v o e 11
import_list. 15
install_formats 17
TIO & o v e e e e e e 18

Index 20

characterize Character conversion of labelled data
Description

Convert labelled variables to character or factor

Usage

characterize(x, ...)

factorize(x, ...)

Default S3 method:
characterize(x, ...)

https://orcid.org/0000-0002-5759-428X
https://orcid.org/0000-0002-0511-9815
https://orcid.org/0000-0002-4094-1476

characterize 3

S3 method for class 'data.frame'
characterize(x, ...)

Default S3 method:
factorize(x, coerce_character = FALSE, ...)

S3 method for class 'data.frame'

factorize(x, ...)
Arguments
X A vector or data frame.

e additional arguments passed to methods

coerce_character
A logical indicating whether to additionally coerce character columns to factor
(in factorize). Default FALSE.

Details

characterize converts a vector with a labels attribute of named levels into a character vector.
factorize does the same but to factors. This can be useful at two stages of a data workflow: (1)
importing labelled data from metadata-rich file formats (e.g., Stata or SPSS), and (2) exporting such
data to plain text files (e.g., CSV) in a way that preserves information.

Value

a character vector (for characterize) or factor vector (for factorize)

See Also

gather_attrs()

Examples

vector method

X <- structure(1:4, labels = c("A" =1, "B" =2, "C" = 3))
characterize(x)

factorize(x)

data frame method

x <- data.frame(vl = structure(1:4, labels = c("A" =1, "B" =2, "C" = 3)),
v2 = structure(c(1,0,0,1), labels = c("foo" = 0@, "bar"” = 1)))

str(factorize(x))

str(characterize(x))

Application

csv_file <- tempfile(fileext = ".csv")
comparison of exported file contents
import(export(x, csv_file))
import(export(factorize(x), csv_file))

4 convert

convert Convert from one file format to another

Description
This function constructs a data frame from a data file using import() and uses export() to write
the data to disk in the format indicated by the file extension.

Usage

convert(in_file, out_file, in_opts = list(), out_opts = list())

Arguments
in_file A character string naming an input file.
out_file A character string naming an output file.
in_opts A named list of options to be passed to import().
out_opts A named list of options to be passed to export().
Value

A character string containing the name of the output file (invisibly).

See Also
Luca Braglia has created a Shiny app called rioweb that provides access to the file conversion

features of rio through a web browser.

Examples

For demo, a temp. file path is created with the file extension .dta (Stata)

dta_file <- tempfile(fileext = ".dta")
.csv

csv_file <- tempfile(fileext = ".csv")
.x1lsx

xlsx_file <- tempfile(fileext = ".x1sx")

Create a Stata data file
export(mtcars, dta_file)

convert Stata to CSV and open converted file
convert(dta_file, csv_file)
import(csv_file)

correct an erroneous file format
export(mtcars, xlsx_file, format = "tsv") ## DON'T DO THIS
import(xlsx_file) ## ERROR

https://lbraglia.github.io/
https://github.com/lbraglia/rioweb

export

convert the file by specifying ~in_opts”
convert(xlsx_file, xlsx_file, in_opts = list(format = "tsv"))

import(xlsx_file)

convert from the command line:

Rscript -e "rio::convert('mtcars.dta', 'mtcars.csv')”
export Export
Description

Werite data.frame to a file

Usage

export(x, file, format, ...)

Arguments

X

file

format

Details

A data frame, matrix or a single-item list of data frame to be written into a file.
Exceptions to this rule are that x can be a list of multiple data frames if the
output file format is an OpenDocument Spreadsheet (.ods, .fods), Excel .xIsx
workbook, .Rdata file, or HTML file, or a variety of R objects if the output
file format is RDS or JSON. See examples.) To export a list of data frames to
multiple files, use export_list() instead.

A character string naming a file. Must specify file and/or format.

An optional character string containing the file format, which can be used to
override the format inferred from file or, in lieu of specifying file, a file with
the symbol name of x and the specified file extension will be created. Must
specify file and/or format. Shortcuts include: “,” (for comma-separated val-
ues), “;” (for semicolon-separated values), (for pipe-separated values), and

“dump” for base: :dump().

“l”

Additional arguments for the underlying export functions. This can be used to
specify non-standard arguments. See examples.

This function exports a data frame or matrix into a file with file format based on the file extension
(or the manually specified format, if format is specified).

The output file can be to a compressed directory, simply by adding an appropriate additional exten-

CLINNT3

siont to the file argument, such as: “mtcars.csv.tar”, “mtcars.csv.zip”, or “mtcars.csv.gz”.

export supports many file formats. See the documentation for the underlying export functions for
optional arguments that can be passed via . . .

e Comma-separated data (.csv), using data. table: :furite()

export

* Pipe-separated data (.psv), using data.table::fwrite()
» Tab-separated data (.tsv), using data. table::fwrite()
* SAS (.sas7bdat), using haven: :write_sas().

* SAS XPORT (.xpt), using haven: :write_xpt().

» SPSS (.sav), using haven: :write_sav()

* SPSS compressed (.zsav), using haven: :write_sav()

 Stata (.dta), using haven::write_dta(). Note that variable/column names containing dots
(.) are not allowed and will produce an error.

» Excel (xlIsx), using writexl::write_x1sx(). x can also be a list of data frames; the list
entry names are used as sheet names.

* R syntax object (.R), using base: :dput () (by default) or base: :dump() (if format = "dump')

» Saved R objects (.RData,.rda), using base: :save(). In this case, x can be a data frame, a
named list of objects, an R environment, or a character vector containing the names of objects
if a corresponding envir argument is specified.

* Serialized R objects (.rds), using base: : saveRDS(). In this case, x can be any serializable R
object.

* Serialized R objects (.qs), using gs: : qsave (), which is significantly faster than .rds. This can
be any R object (not just a data frame).

» "XBASE" database files (.dbf), using foreign: :write.dbf()
* Weka Attribute-Relation File Format (.arff), using foreign: :write.arff ()

* Fixed-width format data (.fwf), usingutils: :write.table() with row.names = FALSE, quote
= FALSE, and col.names = FALSE

e CSVY (CSV with a YAML metadata header) using data. table: :fwrite().

* Apache Arrow Parquet (.parquet), using nanoparquet: :write_parquet()

* Feather R/Python interchange format (.feather), using arrow: :write_feather()
* Fast storage (.fst), using fst::write.fst()

* JSON (json), using jsonlite::toJSON(). In this case, x can be a variety of R objects, based
on class mapping conventions in this paper: https://arxiv.org/abs/1403.2805.

* Matlab (.mat), using rmatio: :write.mat()
* OpenDocument Spreadsheet (.ods, .fods), using readODS: :write_ods() or readODS: :write_fods().

* HTML (.html), using a custom method based on xm12: :xml_add_child() to create a simple
HTML table and xm12: :write_xml() to write to disk.

e XML (.xml), using a custom method based on xm12: :xml_add_child() to create a simple
XML tree and xml12: :write_xml() to write to disk.

* YAML (.yml), using yaml: :write_yaml(), default to write the content with UTF-8. Might
not work on some older systems, e.g. default Windows locale for R <=4.2.

* Clipboard export (on Windows and Mac OS), using utils: :write.table() with row.names
= FALSE

When exporting a data set that contains label attributes (e.g., if imported from an SPSS or Stata file)
to a plain text file, characterize() can be a useful pre-processing step that records value labels into
the resulting file (e.g., export(characterize(x), "file.csv")) rather than the numeric values.

Use export_list() to export a list of dataframes to separate files.

https://github.com/csvy
https://arxiv.org/abs/1403.2805

export_list

Value

The name of the output file as a character string (invisibly).

See Also

characterize(), import(), convert(), export_list()

Examples

For demo, a temp. file path is created with the file extension .csv

csv_file <- tempfile(fileext = ".csv")
. x1lsx
xlsx_file <- tempfile(fileext = ".x1sx")

create CSV to import
export(iris, csv_file)

You can certainly export your data with the file name, which is not a variable:
import(mtcars, "car_data.csv")

pass arguments to the underlying function
data.table::fwrite is the underlying function and “col.names™ is an argument
export(iris, csv_file, col.names = FALSE)

export a list of data frames as worksheets
export(list(a = mtcars, b = iris), xlsx_file)

NOT RECOMMENDED

specify ~format™ to override default format

export(iris, xlsx_file, format = "csv") ## That's confusing
You can also specify only the format; in the following case
"mtcars.dta” is written [also confusing]

export(mtcars, format = "stata”)
export_list Export list of data frames to files
Description

Use export () to export a list of data frames to a vector of file names or a filename pattern.

Usage

export_list(x, file, archive = "", ...)

8 export_list

Arguments
X A list of data frames to be written to files.
file A character vector string containing a single file name with a \%s wildcard place-
holder, or a vector of file paths for multiple files to be imported. If x elements
are named, these will be used in place of \%s, otherwise numbers will be used;
all elements must be named for names to be used.
archive character. Either empty string (default) to save files in current directory, a path
to a (new) directory, or a .zip/.tar file to compress all files into an archive.
Additional arguments passed to export().
Details

export() can export a list of data frames to a single multi-dataset file (e.g., an Rdata or Excel .xIsx
file). Use export_list to export such a list to multiple files.

Value

The name(s) of the output file(s) as a character vector (invisibly).

See Also

import(), import_list(), export()

Examples

For demo, a temp. file path is created with the file extension .xlsx
xlsx_file <- tempfile(fileext = ".xlsx")
export(
list(
mtcarsl = mtcars[1:10,],
mtcars2 = mtcars[11:20, 1,
mtcars3 = mtcars[21:32,]

),

xlsx_file

)

import a single file from multi-object workbook
import(xlsx_file, sheet = "mtcarsi1”)
import all worksheets, the return value is a list
import_list(xlsx_file)
library('datasets"')
export(list(mtcarsl = mtcars[1:10,],
mtcars2 = mtcars[11:20,],
mtcars3 = mtcars[21:32,]),
xlsx_file <- tempfile(fileext = ".x1lsx")

)

import all worksheets
list_of_dfs <- import_list(xlsx_file)

gather_attrs 9

re-export as separate named files
export_list(list_of_dfs, file = c("filel.csv"”, "file2.csv", "file3.csv"))

re-export as separate files using a name pattern; using the names in the list
This will be written as "mtcarsl.csv”, "mtcars2.csv”, "mtcars3.csv”

export_list(list_of_dfs, file = "%s.csv")

gather_attrs Gather attributes from data frame variables

Description

gather_attrs moves variable-level attributes to the data frame level and spread_attrs reverses
that operation.

Usage

gather_attrs(x)

spread_attrs(x)

Arguments

X A data frame.

Details

import() attempts to standardize the return value from the various import functions to the extent
possible, thus providing a uniform data structure regardless of what import package or function is
used. It achieves this by storing any optional variable-related attributes at the variable level (i.e., an
attribute for mtcars$mpg is stored in attributes (mtcars$mpg) rather than attributes(mtcars)).
gather_attrs moves these to the data frame level (i.e., in attributes(mtcars)). spread_attrs
moves attributes back to the variable level.

Value

X, with variable-level attributes stored at the data frame level.

See Also

import(), characterize()

10 get_info

get_info Get File Info

Description

A utility function to retrieve the file information of a filename, path, or URL.

Usage

get_info(file)

get_ext(file)

Arguments

file A character string containing a filename, file path, or URL.

Value

For get_info(), a list is return with the following slots

* input file extension or information used to identify the possible file format
» format file format, see format argument of import()

* type "import" (supported by default); "suggest" (supported by suggested packages, see install_formats());
"enhance" and "known " are not directly supported; NA is unsupported

e format_name name of the format
e import_function What function is used to import this file
* export_function What function is used to export this file

e file file

For get_ext (), just input (usually file extension) is returned; retained for backward compatibility.

Examples

get_info("starwars.xlsx")

get_info("starwars.ods")
get_info("https://github.com/ropensci/read0ODS/raw/v2.1/starwars.ods")
get_info("~/duran_duran_rio.mp3")

get_ext("clipboard”) ## "clipboard”
get_ext("https://github.com/ropensci/readODS/raw/v2.1/starwars.ods")

import

11

import

Import

Description

Read in a data.frame from a file. Exceptions to this rule are Rdata, RDS, and JSON input file
formats, which return the originally saved object without changing its class.

Usage

import(
file,

format,
setclass

which,

Arguments

file

format

setclass

which

getOption("rio.import.class”, "data.frame"),

A character string naming a file, URL, or single-file (can be Gzip or Bzip2 com-
pressed), .zip or .tar archive.
An optional character string code of file format, which can be used to override

the format inferred from file. Shortcuts include: “,” (for comma-separated val-

ues), “;” (for semicolon-separated values), and “I” (for pipe-separated values).

“I”

An optional character vector specifying one or more classes to set on the import.
By default, the return object is always a “data.frame”. Allowed values include
“tbl_df”, “tbl”, or “tibble” (if using tibble), “arrow”, “arrow_table” (if using
arrow table; the suggested package arrow must be installed) or “data.table” (if
using data.table). Other values are ignored, such that a data.frame is returned.
The parameter takes precedents over parameters in . . . which set a different class.

This argument is used to control import from multi-object files; as a rule import
only ever returns a single data frame (use import_list() to import multiple
data frames from a multi-object file). If file is an archive format (zip and tar),
which can be either a character string specifying a filename or an integer speci-
fying which file (in locale sort order) to extract from the compressed directory.
But please see the section which below. For Excel spreadsheets, this can be used
to specify a sheet name or number. For .Rdata files, this can be an object name.
For HTML files, it identifies which table to extract (from document order). Ig-
nored otherwise. A character string value will be used as a regular expression,
such that the extracted file is the first match of the regular expression against the
file names in the archive.

Additional arguments passed to the underlying import functions. For example,
this can control column classes for delimited file types, or control the use of
haven for Stata and SPSS or readxl for Excel (.xIsx) format. See details below.

12

Details

import

This function imports a data frame or matrix from a data file with the file format based on the file
extension (or the manually specified format, if format is specified).

import supports the following file formats:

Comma-separated data (.csv), using data. table: :fread()
Pipe-separated data (.psv), using data. table::fread()
Tab-separated data (.tsv), using data.table::fread()
SAS (.sas7bdat), using haven: :read_sas()

SAS XPORT (.xpt), using haven: :read_xpt()

SPSS (.sav), using haven: :read_sav()

SPSS compressed (.zsav), using haven: :read_sav().
Stata (.dta), using haven: :read_dta()

SPSS Portable Files (.por), using haven: : read_por ().

Excel (.xIs and .xlsx), using readxl: :read_x1sx() or readxl::read_x1s(). Use which to
specify a sheet number.

R syntax object (.R), using base: :dget(), see trust below.

Saved R objects (.RData,.rda), using base: : load() for single-object .Rdata files. Use which
to specify an object name for multi-object .Rdata files. This can be any R object (not just a
data frame), see trust below.

Serialized R objects (.rds), using base: : readRDS(). This can be any R object (not just a data
frame), see trust below.

Serialized R objects (.qs), using gs: : qread(), which is significantly faster than .rds. This can
be any R object (not just a data frame).

Epiinfo (.rec), using foreign: :read.epiinfo()

Minitab (.mtp), using foreign: :read.mtp()

Systat (.syd), using foreign: :read.systat()

"XBASE" database files (.dbf), using foreign: :read.dbf ()

Weka Attribute-Relation File Format (.arff), using foreign: :read.arff()
Data Interchange Format (.dif), using utils: :read.DIF()

Fortran data (no recognized extension), using utils: :read.fortran()

Fixed-width format data (.fwf), using a faster version of utils: :read. fwf () that requires a
widths argument and by default in rio has stringsAsFactors = FALSE

CSVY (CSV with a YAML metadata header) using data. table: : fread().
Apache Arrow Parquet (.parquet), using nanoparquet: : read_parquet ()
Feather R/Python interchange format (.feather), using arrow: : read_feather()
Fast storage (.fst), using fst::read.fst()

JSON (.json), using jsonlite: : fromJSON()

Matlab (.mat), using rmatio: :read.mat()

https://github.com/csvy

import 13

* EViews (.wfl), using hexView: : readEViews()

* OpenDocument Spreadsheet (.ods, .fods), using read0DS: : read_ods () or readODS: : read_fods().

Use which to specify a sheet number.

* Single-table HTML documents (.html), using xml12::read_html(). There is no standard
HTML table and we have only tested this with HTML tables exported with this package.
HTML tables will only be read correctly if the HTML file can be converted to a list via
xml2::as_list(). This import feature is not robust, especially for HTML tables in the wild.
Please use a proper web scraping framework, e.g. rvest.

 Shallow XML documents (.xml), using xm12: :read_xml(). The data structure will only be
read correctly if the XML file can be converted to a list via xm12::as_list().

* YAML (.yml), using yaml: :yaml.load()
* Clipboard import, using utils: :read.table() with row.names = FALSE
* Google Sheets, as Comma-separated data (.csv)

* GraphPad Prism (.pzfx) using pzfx: :read_pzfx()

import attempts to standardize the return value from the various import functions to the extent pos-
sible, thus providing a uniform data structure regardless of what import package or function is used.
It achieves this by storing any optional variable-related attributes at the variable level (i.e., an at-
tribute for mtcars$mpg is stored in attributes(mtcars$mpg) rather than attributes(mtcars)).
If you would prefer these attributes to be stored at the data.frame-level (i.e., in attributes(mtcars)),
see gather_attrs().

After importing metadata-rich file formats (e.g., from Stata or SPSS), it may be helpful to recode
labelled variables to character or factor using characterize() or factorize() respectively.

Value

A data frame. If setclass is used, this data frame may have additional class attribute values, such
as “tibble” or “data.table”.

Trust

For serialization formats (.R, .RDS, and .RData), please note that you should only load these files
from trusted sources. It is because these formats are not necessarily for storing rectangular data and
can also be used to store many things, e.g. code. Importing these files could lead to arbitary code
execution. Please read the security principles by the R Project (Plummer, 2024). When importing
these files via rio, you should affirm that you trust these files, i.e. trust = TRUE. See example
below. If this affirmation is missing, the current version assumes trust to be true for backward
compatibility and a deprecation notice will be printed. In the next major release (2.0.0), you must
explicitly affirm your trust when importing these files.

Which

For compressed archives (zip and tar, where a compressed file can contain multiple files), it is
possible to come to a situation where the parameter which is used twice to indicate two different
concepts. For example, it is unclear for . x1sx.zipwhether which refers to the selection of an exact
file in the archive or the selection of an exact sheet in the decompressed Excel file. In these cases,

14 import

rio assumes that which is only used for the selection of file. After the selection of file with which,
rio will return the first item, e.g. the first sheet.

Please note, however, .gz and .bz2 (e.g. .x1sx.gz) are compressed, but not archive format. In
those cases, which is used the same way as the non-compressed format, e.g. selection of sheet for
Excel.

Note
For csv and txt files with row names exported from export (), it may be helpful to specify row. names
as the column of the table which contain row names. See example below.

References
Plummer, M (2024). Statement on CVE-2024-27322. https://blog.r-project.org/2024/05/
10/statement-on-cve-2024-27322/

See Also

import_list(), characterize(), gather_attrs(), export(), convert()

Examples

For demo, a temp. file path is created with the file extension .csv

csv_file <- tempfile(fileext = ".csv")
.x1lsx
xlsx_file <- tempfile(fileext = ".xlsx")

create CSV to import

export(iris, csv_file)

specify ~format™ to override default format: see export()
export(iris, xlsx_file, format = "csv")

basic
import(csv_file)

You can certainly import your data with the file name, which is not a variable:
import("starwars.csv"); import("mtcars.xlsx")

Override the default format
import(xlsx_file) # Error, it is actually not an Excel file
import(xlsx_file, format = "csv")

import CSV as a “data.table”
import(csv_file, setclass = "data.table")

import CSV as a tibble (or "tbl_df")
import(csv_file, setclass = "tbl_df")

pass arguments to underlying import function
data.table::fread is the underlying import function and “nrows™ is its argument

import(csv_file, nrows = 20)

data.table::fread has an argument ~data.table™ to set the class explicitely to data.table. The

https://blog.r-project.org/2024/05/10/statement-on-cve-2024-27322/
https://blog.r-project.org/2024/05/10/statement-on-cve-2024-27322/

import_list 15

argument setclass, however, takes precedents over such undocumented features.
class(import(csv_file, setclass = "tibble"”, data.table = TRUE))

the default import class can be set with options(rio.import.class = "data.table")
options(rio.import.class = "tibble"), or options(rio.import.class = "arrow")

Security
rds_file <- tempfile(fileext = ".rds")
export(iris, rds_file)

You should only import serialized formats from trusted sources
In this case, you can trust it because it's generated by you.
import(rds_file, trust = TRUE)

import_list Import list of data frames

Description

Use import () to import a list of data frames from a vector of file names or from a multi-object file
(Excel workbook, .Rdata file, compressed directory in a zip file or tar archive, or HTML file)

Usage

import_list(
file,
setclass = getOption("rio.import.class”, "data.frame"),
which,
rbind = FALSE,
rbind_label = "_file",
rbind_fill = TRUE,

)
Arguments

file A character string containing a single file name for a multi-object file (e.g., Ex-
cel workbook, zip file, tar archive, or HTML file), or a vector of file paths for
multiple files to be imported.

setclass An optional character vector specifying one or more classes to set on the import.
By default, the return object is always a “data.frame”. Allowed values include
“tbl_df”, “tbl”, or “tibble” (if using tibble), “arrow”, “arrow_table” (if using
arrow table; the suggested package arrow must be installed) or “data.table” (if
using data.table). Other values are ignored, such that a data.frame is returned.
The parameter takes precedents over parameters in . . . which set a different class.

which If file is a single file path, this specifies which objects should be extracted

(passed to import()’s which argument). Ignored otherwise.

16 import_list

rbind A logical indicating whether to pass the import list of data frames through
data.table::rbindlist().

rbind_label If rbind = TRUE, a character string specifying the name of a column to add to
the data frame indicating its source file.

rbind_fill If rbind = TRUE, a logical indicating whether to set the fill = TRUE (and fill

missing columns with NA).

Additional arguments passed to import (). Behavior may be unexpected if files
are of different formats.

Details

When file is a vector of file paths and any files are missing, those files are ignored (with warnings)
and this function will not raise any error. For compressed files, the file name must also contain
information about the file format of all compressed files, e.g. files.csv.zip for this function to
work.

Value

If rbind=FALSE (the default), a list of a data frames. Otherwise, that list is passed to data.table: :rbindlist()
with fill = TRUE and returns a data frame object of class set by the setclass argument; if this op-
eration fails, the list is returned.

Trust

For serialization formats (.R, .RDS, and .RData), please note that you should only load these files
from trusted sources. It is because these formats are not necessarily for storing rectangular data and
can also be used to store many things, e.g. code. Importing these files could lead to arbitary code
execution. Please read the security principles by the R Project (Plummer, 2024). When importing
these files via rio, you should affirm that you trust these files, i.e. trust = TRUE. See example
below. If this affirmation is missing, the current version assumes trust to be true for backward
compatibility and a deprecation notice will be printed. In the next major release (2.0.0), you must
explicitly affirm your trust when importing these files.

Which

For compressed archives (zip and tar, where a compressed file can contain multiple files), it is
possible to come to a situation where the parameter which is used twice to indicate two different
concepts. For example, it is unclear for . x1sx.zipwhether which refers to the selection of an exact
file in the archive or the selection of an exact sheet in the decompressed Excel file. In these cases,
rio assumes that which is only used for the selection of file. After the selection of file with which,
rio will return the first item, e.g. the first sheet.

Please note, however, .gz and .bz2 (e.g. .x1lsx.gz) are compressed, but not archive format. In
those cases, which is used the same way as the non-compressed format, e.g. selection of sheet for
Excel.

References

Plummer, M (2024). Statement on CVE-2024-27322. https://blog.r-project.org/2024/05/
10/statement-on-cve-2024-27322/

https://blog.r-project.org/2024/05/10/statement-on-cve-2024-27322/
https://blog.r-project.org/2024/05/10/statement-on-cve-2024-27322/

install_formats 17

See Also

import(), export_list(), export()

Examples
For demo, a temp. file path is created with the file extension .xlsx
xlsx_file <- tempfile(fileext = ".x1lsx")
export(
list(

mtcarsl = mtcars[1:10, 1],
mtcars2 = mtcars[11:20, 1],
mtcars3 = mtcars[21:32,]
),
xlsx_file

)

import a single file from multi-object workbook
import(xlsx_file, sheet = "mtcarsi1”)

import all worksheets, the return value is a list
import_list(xlsx_file)

import and rbind all worksheets, the return value is a data frame
import_list(xlsx_file, rbind = TRUE)

install_formats Install rio’s ‘Suggests’ Dependencies

Description

Not all suggested packages are installed by default. These packages are not installed or loaded by

default in order to create a slimmer and faster package build, install, and load. Use show_unsupported_formats()
to check all unsupported formats. install_formats() installs all missing ‘Suggests’ dependencies

for rio that expand its support to the full range of support import and export formats.

Usage

install_formats(...)

show_unsupported_formats()

Arguments

Additional arguments passed to utils::install.packages().

Value

For show_unsupported_formats(), if there is any missing unsupported formats, it return TRUE
invisibly; otherwise FALSE. For install_formats() it returns TRUE invisibly if the installation
is succuessful; otherwise errors.

18

rio

Examples

if (interactive()) {

install_formats()

}
rio A Swiss-Army Knife for Data I/0
Description
The aim of rio is to make data file input and output as easy as possible. export() and import()

serve as a Swiss-army knife for painless data I/O for data from almost any file format by inferring
the data structure from the file extension, natively reading web-based data sources, setting reason-

able

defaults for import and export, and relying on efficient data import and export packages. An

additional convenience function, convert(), provides a simple method for converting between file
types.

Note that some of rio’s functionality is provided by ‘Suggests’ dependendencies, meaning they are
not installed by default. Use install_formats() to make sure these packages are available for

use.

Author(s)

Maintainer: Chung-hong Chan <chainsawtiney@gmail.com> (ORCID)
Authors:

Jason Becker <jason@jbecker.co>
David Schoch <david@schochastics.net> (ORCID)
Thomas J. Leeper <thosjleeper@gmail.com> (ORCID)

Other contributors:

Geoffrey CH Chan <gefchchan@gmail. com> [contributor]

Christopher Gandrud [contributor]

Andrew MacDonald [contributor]

Ista Zahn [contributor]

Stanislaus Stadlmann [contributor]

Ruaridh Williamson <ruaridh.williamson@gmail.com> [contributor]
Patrick Kennedy [contributor]

Ryan Price <ryapric@gmail.com> [contributor]

Trevor L Davis <trevor.l.davis@gmail.com> [contributor]

Nathan Day <nathancday@gmail. com> [contributor]

Bill Denney <wdenney@humanpredictions.com> (ORCID) [contributor]
Alex Bokov <alex.bokov@gmail.com> (ORCID) [contributor]

Hugo Gruson (ORCID) [contributor]

https://orcid.org/0000-0002-6232-7530
https://orcid.org/0000-0003-2952-4812
https://orcid.org/0000-0003-4097-6326
https://orcid.org/0000-0002-5759-428X
https://orcid.org/0000-0002-0511-9815
https://orcid.org/0000-0002-4094-1476

rio 19

References

datamods provides Shiny modules for importing data via rio.

GREA provides an RStudio add-in to import data using rio.

See Also

import(), import_list(), export(), export_list(), convert(), install_formats()

Examples
export
library("datasets”)
export(mtcars, csv_file <- tempfile(fileext = ".csv")) # comma-separated values
export(mtcars, rds_file <- tempfile(fileext = ".rds")) # R serialized

export(mtcars, sav_file <- tempfile(fileext ".sav")) # SPSS
import

x <- import(csv_file)

y <- import(rds_file)

z <- import(sav_file)

convert sav (SPSS) to dta (Stata)
convert(sav_file, dta_file <- tempfile(fileext = ".dta"))

cleanup
unlink(c(csv_file, rds_file, sav_file, dta_file))

https://cran.r-project.org/package=datamods
https://github.com/Stan125/GREA

Index

arrow: :read_feather(), 12
arrow: :write_feather(), 6

base: :dget(), 12
base: :dput(), 6
base: :dump(), 5, 6
base::load(), 12
base::readRDS(), 12
base::save(), 6
base: :saveRDS(), 6

characterize, 2
characterize(),6, 7,9, 13, 14
convert, 4
convert(), 7, 14,18, 19

data.table::fread(), 12
data.table::fwrite(), 5, 6
data.table::rbindlist(), 16

export, 5
export(),4,7, 8,14, 17-19
export_list,7
export_list(), 5-7,17,19

factorize (characterize), 2
factorize(), 13
foreign::read.arff(), 12
foreign::read.dbf(), 12
foreign::read.epiinfo(), 12
foreign::read.mtp(), 12
foreign::read.systat(), 12
foreign::write.arff(), 6
foreign::write.dbf(), 6
fst::read.fst(), 12
fst::write.fst(), 6

gather_attrs, 9
gather_attrs(), 3, 13, 14
get_ext (get_info), 10
get_ext(), 10

20

get_info, 10
get_info(), 10

haven: :read_dta(), 12
haven: :read_por(), 12
haven: :read_sas(), 12
haven: :read_sav(), 12
haven: :read_xpt(), 12
haven::write_dta(), 6
haven: :write_sas(), 6
haven: :write_sav(), 6
haven: :write_xpt(), 6
hexView: :readEViews(), 13

import, 11
import(), 4, 7-10, 15-19
import_list, 15
import_list(), 8, 11, 14, 19
install_formats, 17
install_formats(), 710, 18, 19

jsonlite::fromJSON(Q), 12
jsonlite::toJSON(), 6

nanoparquet: :read_parquet(), 12
nanoparquet: :write_parquet(), 6

pzfx::read_pzfx(), I3

gs::qread(), 12
gs::qgsave(), 6

readoDS: :read_fods(), 13
readODS: :read_ods (), 13
readODS: :write_fods(), 6
readODS: :write_ods(), 6
readxl::read_x1s(), 12
readxl::read_xlsx(), 12
rio, 18

rio-package (rio), 18
rmatio::read.mat(), 12

INDEX

rmatio::write.mat(), 6

show_unsupported_formats

(install_formats), 17

spread_attrs (gather_attrs), 9

utils:
utils:
utils:
utils:
utils:
utils:

:install.packages(), 17
:read.DIF(), 12
:read.fortran(), 12
:read. fwf(), 12
:read.table(), I3
:write.table(), 6

writexl::write_x1sx(), 6

xml2:
xml2:
xml2:
xml2:
xml2:

yaml:
yaml:

ras_list(), 13
:read_html(), 13
:read_xml(), 13
:write_xml(), 6
:xml_add_child(), 6

:write_yaml(), 6
:yaml.load(), I3

	characterize
	convert
	export
	export_list
	gather_attrs
	get_info
	import
	import_list
	install_formats
	rio
	Index

