Package ‘rfacts’

October 14, 2022
Title R Interface to 'FACTS' on Unix-Like Systems

Description The 'rfacts' package is an R interface to the
Fixed and Adaptive Clinical Trial Simulator (‘FACTS')
on Unix-like systems. It programmatically invokes 'FACTS' to run clinical
trial simulations, and it aggregates simulation output data
into tidy data frames. These capabilities provide end-to-end
automation for large-scale simulation pipelines, and
they enhance computational reproducibility.
For more information on 'FACTS' itself,
please visit <https://www.berryconsultants.com/software/>.

Version 0.2.1
License MIT + file LICENSE

URL https://elilillyco.github.io/rfacts/,
https://github.com/EliLillyCo/rfacts

BugReports https://github.com/EliLillyCo/rfacts/issues

SystemRequirements FACTS Linux engines (>= 6.2.4), FLFLL (>=6.2.4),
Mono (>=5.20.1.19)

Depends R (>=3.6.0)

Imports digest (>= 0.6.25), fs (>= 1.3.1), tibble (>= 2.1.3), utils,
xml2 (>= 1.2.2)

Suggests dplyr (>= 0.8.4), knitr (>= 1.28), rmarkdown (>=2.1),
testthat (>= 3.0.0), withr (>= 2.2.0)

VignetteBuilder knitr
Config/testthat/edition 3
Language en-US
Encoding UTF-8
RoxygenNote 7.2.1
NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),
Eli Lilly and Company [cph]

https://www.berryconsultants.com/software/
https://elilillyco.github.io/rfacts/
https://github.com/EliLillyCo/rfacts
https://github.com/EliLillyCo/rfacts/issues
https://orcid.org/0000-0003-1878-3253

Maintainer William Michael Landau <will.landau@gmail.com>
Repository CRAN
Date/Publication 2022-08-19 13:10:02 UTC

R topics documented:

rfacts-package

rfacts-package L e e e 2
facts_engines L 3
facts_results e 8
get_csv_files 11
get_facts_engine 11
get_facts_file_example 12
get_facts_scenarios e e 14
get_facts_version e 14
get_facts_versions e 15
get_param_dirs Ll e e 16
get_param_fileso L. 17
overwrite_csv_files L e 17
prep_param_files e 18
read_facts e 19
reset_rfacts_paths 20
rfacts_paths L 21
rfacts_SItrep e 23
TUN_ENZINE v v vt et e et e e e e e e e e e e e e e 24
run_facts L e e 25
run_fIfll . . . e 27
Wrte_factS e e 28
Index 31
rfacts-package rfacts: interface to FACTS on Unix-like systems
Description

Call FACTS from R.

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("contin.facts") # example FACTS file
out <- run_facts(
facts_file,
n_sims = 4,
verbose = FALSE
)

facts_engines 3

What results files do we have?

head(get_csv_files(out))

Read all the "patients*.csv” files with ‘read_patients(out)".
For each scenario, we have files named

patients00001.csv, patients@0002.csv, patients@0003.csv,

and patients00004.csv.

read_patients(out)

}

facts_

engines Engine-specific trial simulation functions

Description

These functions are the inner functions called by run_engine(). In this help file, only the most
common engine functions are listed. To identify the appropriate engine function for your FACTS
file, call get_facts_engine().

Usage

run_engine_aipf_contin(): Enrichment continuous.
run_engine_aipf_dichot(): Enrichment dichotomous.
run_engine_aipf_tte(): Enrichment time to event.
run_engine_contin(): Core continuous.
run_engine_crm(): continual reassessment method (CRM).
run_engine_dichot(): Core dichotomous.
run_engine_multep(): Multiple endpoint.

run_engine_tte(): Time to event.

run_engine_aipf_contin(
param_files,
n_sims = 1L,

mode = c("", "r"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,

current_week = NULL,
execdata = NULL,
final = NULL,
interim = NULL,
mcmc_num = NULL,

verbose
version

FALSE,
NULL

run_engine_aipf_dichot(

facts_engines

param_files,

n_sims = 1L,

mode = c("", "r"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,
current_week = NULL,
execdata = NULL,
final = NULL,

interim = NULL,
mcmc_num = NULL,
verbose = FALSE,
version = NULL

)

run_engine_aipf_tte(
param_files,
n_sims = 1L,
mode = c("", "r"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,
current_week = NULL,
execdata = NULL,
final = NULL,
interim = NULL,
mcmc_num = NULL,
verbose = FALSE,
version = NULL

)

run_engine_contin(
param_files,
n_sims = 1L,
mode = c("s", "r", "p"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,
arm_selection = NULL,
armsdropped = NULL,
complete_data_analysis = NULL,
current_week = NULL,
execdata = NULL,
final = NULL,
fsimdata = NULL,
fsimexp = NULL,
fsimparam = NULL,
interim = NULL,

facts_engines

keepfiles = NULL,
mcmc_num = NULL,

noadapt = NULL,
s2_aux_paramfile = NULL,
stage = NULL,

verbose = FALSE,

version = NULL

)

run_engine_crm(
param_files,
n_sims = 1L,
mode = c("s", ""),
directory = ".",
allocator = NULL,
charting_info = NULL,
estimator = NULL,
force_cohort = NULL,
reduced_priority = NULL,
version = NULL,
verbose = FALSE

)

run_engine_dichot(
param_files,
n_sims = 1L,
mode = c("s", "r", "p"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,
arm_selection = NULL,
armsdropped = NULL,
complete_data_analysis = NULL,
current_week = NULL,
execdata = NULL,
final = NULL,
fsimdata = NULL,
fsimexp = NULL,
fsimparam = NULL,
interim = NULL,
keepfiles = NULL,
mcmc_num = NULL,
noadapt = NULL,
s2_aux_paramfile = NULL,
stage = NULL,
verbose = FALSE,
version = NULL

facts_engines

run_engine_multep(
param_files,
n_sims = 1L,
mode = c("s", "r", "p"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,
arm_selection = NULL,
armsdropped = NULL,
complete_data_analysis = NULL,
current_week = NULL,
execdata = NULL,
final = NULL,
fsimdata = NULL,
fsimexp = NULL,
fsimparam = NULL,
interim = NULL,
keepfiles = NULL,
mcmc_num = NULL,
noadapt = NULL,
s2_aux_paramfile = NULL,
stage = NULL,
verbose = FALSE,
version = NULL

)

run_engine_tte(
param_files,
n_sims = 1L,
mode = c("s", "r", "p"),
seed = NULL,
analysis_data = NULL,
analysis_mode = NULL,
arm_selection = NULL,
armsdropped = NULL,
complete_data_analysis = NULL,
current_week = NULL,
execdata = NULL,
final = NULL,
fsimdata = NULL,
fsimexp = NULL,
fsimparam = NULL,
interim = NULL,
keepfiles = NULL,
mcmc_num = NULL,
noadapt = NULL,
s2_aux_paramfile = NULL,

facts_engines

NULL

stage = NULL,
verbose = FALSE,
version =
)
Arguments

param_files

n_sims

mode

seed

analysis_data
analysis_mode
current_week
execdata
final

interim
mcmc_num
verbose

version

arm_selection

armsdropped

Character vector of file paths or the output of prep_param_files(). If a charac-
ter vector, the elements can be directories containing *.param files or the paths
to the *. param files themselves. Such a directory is returned by run_f1f11().

Positive integer, number of simulations per param file.

Character scalar: "s" for simulation mode in non-enrichment designs, "" for
simulation mode in enrichment designs, "r" for execution mode, and "p" for

prediction mode. For the CRM engine, mode needs to be "s” or "".

Positive integer, random number generator seed for the actual trial simulations.
Use this seed argument instead of f1f11_seed (run_facts(), run_f1f11())
to control pseudo-randomness in the actual trial simulations. f1f11_seed only
controls how the . param files are generated.

Character, analysis mode patient data file name.

Logical, whether to activate analysis mode.

Numeric, current time in weeks.

Character, name of the execution mode patient file.

Logical, whether to do the final analysis. For execution mode only.
Integer, interim number.

Integer, MCMC file number. For analysis mode only.

Logical, whether to print progress information to the R console.

Character scalar, version of FACTS corresponding to the FACTS file. Get by
calling get_facts_version() on your FACTS file. See possible versions with

get_facts_versions(). Donotsupply versiontorun_engine(). run_engine()

detects the version automatically from the FACTS file and passes it to the ap-
propriate engine function.

Logical, whether to activate arm selection.

Character, a comma-separated collection of integers indicating dropped arms.

complete_data_analysis

fsimdata
fsimexp
fsimparam
keepfiles
noadapt

Logical, whether to do a complete data analysis.

Character, prediction mode patient data file name.

Logical. For expert use only.

Character, name of the prediction mode *. param file.

Logical, whether to deactivate cleanup of extraneous staged design files.

Logical, whether to deactivate adaptive actions in prediction mode.

s2_aux_paramfile

Character, name of the stage 2 execution auxiliary *. param file.

8 facts_results

stage Integer, trial design stage. For staged designs only.
directory Character, working directory. CRM only.
allocator Logical, allocator/execution/recommender mode. CRM only.

charting_info Logical, unused.
estimator Logical, use estimator. CRM only.

force_cohort Logical, whether to force small cohort run-in to end. CRM only.

reduced_priority
Logical, whether to run at reduced priority. CRM only.

Details

If you need to repeatedly invoke an engine, as with most trial execution mode workflows, these
engine functions may be slow on their own. To avoid the most severe sources of slowness, consider
running prep_param_files() and then passing the result to one of the individual engine functions
(such as run_engine_contin()).

Value

Nothing.

See Also

run_engine(), get_facts_file_example(), get_facts_engine(), run_facts(), run_f1f11().

Examples

facts_file <- get_facts_file_example("contin.facts")

Can only run if system dependencies are configured:

if (file.exists(Sys.getenv("RFACTS_PATHS"))) {

out <- run_f1fll(facts_file, verbose = FALSE) # Generate param files.
Identify which engine you need.

get_facts_engine(facts_file)

Run the sims with the engine function or ‘run_engine()".

run_engine_contin(out, n_sims = 1, verbose = FALSE, version = "6.2.5")
read_patients(out)
3

facts_results Read trial simulation results

facts_results 9

Description

These functions read trial simulation results. The results were computed by FACTS (via run_facts()

or run_engine() or one of the engine functions such as run_engine_contin()) and are stored in

CSV files. Different functions read different types of output. The functions are named according to

the CSV files they read. For example, read_patients() reads all files named patients@0001.csv,
patients@0002.csv, etc. The most important functions are read_patients() and read_weeks().

The read_s1*(), read_s2x(), and read_master=*() functions are for staged designs. The read_csv_special()
function allows you to supply a custom file name prefix such as "patients", but be warned: not every

kind of CSV output file is tested in rfacts.

Usage
read_patients(csv_files)
read_weeks(csv_files)
read_mcmc(csv_files)
read_s1_mcmc(csv_files)
read_s1_weeks(csv_files)
read_s1_patients(csv_files)
read_s2_patients(csv_files)
read_s2_weeks(csv_files)
read_s2_mcmc(csv_files)
read_master_mcmc(csv_files)
read_master_patients(csv_files)
read_master_weeks(csv_files)
read_cohorts(csv_files)
read_simulations(csv_files)

read_csv_special(csv_files, prefix, numbered = TRUE)

Arguments
csv_files Character vector of file paths. Either the directories containing the trial simula-
tion results or the actual CSV file files themselves.
prefix Character, name of the prefix for read_csv_special(). read_weeks(x) is

equivalent to read_csv_special(x, prefix = "weeks"). Be careful: not all

10 facts_results

kinds of CSV output are tested. We can only guarantee the file types with special
functions will be read correctly, e.g. read_patients() and read_weeks().

numbered Logical. If TRUE, only read the numbered files like patients@0001.csv, weeks@0017.csv,
etc. If FALSE, only list the non-numbered files like simulations.csv and
simulations_freq_locf.csv. Avoid summary.csv files. They are not reli-
able on Linux.

Value

A data frame of trial simulation data. Each read_x () function returns different information, but all
the read_= () functions support the following columns:

e facts_file: character, the base name of the FACTS file.

* facts_scenario: character, the name of the simulation scenario from FACTS. Usually, this
factors in the virtual subject response (VSR) profile, accrual profile (how fast do patients
enroll?) and dropout profile (how fast do they drop out?).

* facts_sim: integer, numeric index of the CSV file name. For example, the facts_sim of
patients@0012.csv is 12. In trial execution mode, all these indices are 00000, so facts_id
is much safer than facts_sim for packetized trial execution mode.

e facts_id: character, random unique id of each CSV file being read. Different for every call
to read_patients() etc. Safer than facts_sim for aggregation over simulations.

» facts_output: character, type of output is in the data frame: "patients” for patients files,
"weeks" for weeks files, "memc” for MCMC files, etc. These names adhere to established
conventions in FACTS.

» facts_csv: character, full path to the original CSV files where FACTS stored the simulation
output. Required for overwrite_csv_files().

» facts_header: acharacter vector of \n-delimited CSV file headers. Required for overwrite_csv_files().

See Also

get_facts_file_example(), run_facts(), run_f1f11(), run_engine()

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("contin.facts")
out <- run_facts(
facts_file,
n_sims = 4,
verbose = FALSE
)
What results files do we have?
head(get_csv_files(out))
Read all the "patientsx.csv” files with ‘read_patients(out)".
For each scenario, we have files named
patients00001.csv, patients@0002.csv, patients@0003.csv,
and patients00004.csv.
read_patients(out)

}

get_csv_files 11

get_csv_files List FACTS-generated CSV files

Description

List output CSV files in a directory or directories.

Usage

get_csv_files(csv_files, numbered = TRUE)

Arguments
csv_files Character vector of directories containing numbered CSV files
numbered Logical. If TRUE, only list the numbered files like patients0@001.csv, weeks@0017.csv,
etc. If FALSE, only list the non-numbered files like simulations.csv and
simulations_freq_locf.csv. Avoid summary.csv files. They are not reli-
able on Linux.
Value

A character vector of names of CSV files.

Examples

facts_file <- get_facts_file_example("contin.facts")
Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
out <- run_facts(

facts_file,

n_sims = 2L,

verbose = FALSE

)
get_csv_files(out)
3
get_facts_engine Get the FACTS engine function matching your FACTS file
Description

Identify the correct run_engine_x() function for your FACTS file.

Usage

get_facts_engine(facts_file)

12 get_facts_file_example

Arguments

facts_file Character, name of a FACTS file. Usually has a *. facts file extension.

Details

For most cases, it is sufficient to call run_facts(), or to call run_f1f11() followed by run_engine().
But either way, you will need to know the arguments of the run_engine_x() function that corre-
sponds to your FACTS file. Even if you are not calling this run_engine_x() directly, you will need

to pass the arguments to ... in run_facts() or run_engine(). get_facts_engine() identifies
the correct run_engine_x* () function so you can open the help file and read about the arguments,
e.g. ?run_engine_contin.

Value

Character, the name of a FACTS engine function.

See Also

run_facts(), run_engine()

Examples

Can only run if system dependencies are configured:

if (file.exists(Sys.getenv("RFACTS_PATHS"))) {

facts_file <- get_facts_file_example("contin.facts")

out <- run_f1fll(facts_file, verbose = FALSE) # Generate param files.
Find the appropriate FACTS engine function.
get_facts_engine(facts_file)

Read about the function arguments.

You can pass these arguments to ° *in ‘run_facts()®

or ‘run_engine()" or just call ‘run_engine_contin()‘ directly.

?run_engine_contin

Call the FACTS engine function to run simulations.

Alternatively, you could just call ‘run_engine()".
run_engine_contin(out, n_sims = 1, verbose = FALSE, version = "6.2.5")
See the results.

read_patients(out)

}

get_facts_file_example
Locate an example FACTS file

Description

Get the path to an example FACTS file inside rfacts itself.

get_facts_file_example 13

Usage

get_facts_file_example(facts_file)

Arguments

facts_file Character, name of a FACTS file. Usually has a *. facts file extension. Does
not include the directory name. Possible choices:
* "aipf_contin.facts" - Enrichment continuous.
 "aipf_dichot.facts" - Enrichment dichotomous.
* "aipf_tte.facts" - Enrichment time to event.
¢ "broken.facts" - A broken FACTS file.
 "contin.facts" - Core continuous.
* "crm.facts" - N-CRM design.
 "dichot.facts" - Core dichotomous.
e "multep.facts" - Multiple endpoints.
 "staged.facts" - Staged design.
* "tte.facts" - Time to event.
* "unsupported.facts" - FACTS file with an unsupported engine type.

Details

The rfacts package comes with some example FACTS files. Use the get_facts_file_example()
function to get the full path to an example FACTS file. Use this file to try out run_f1f11(),
run_engine_contin(), etc.

Value

Character, the path to a FACTS file included with rfacts.

See Also

run_facts(), run_f1f11(), run_engine(), run_engine_contin()

Examples

Only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("contin.facts")
facts_file
out <- run_facts(
facts_file,
n_sims = 1,
verbose = FALSE
)
read_patients(out)

}

14 get_facts_version

get_facts_scenarios List the names of simulation scenarios

Description

Get the names of the simulation scenarios of a FACTS file. without actually running any simula-
tions. These names usually come from the virtual subject response (VSR) scenarios, the accrual
profiles, and the dropout profiles.

Usage

get_facts_scenarios(facts_file, verbose = FALSE)

Arguments
facts_file Character, name of a FACTS file. Usually has a *. facts file extension.
verbose Logical, whether to print progress to the R console.

Value

Character vector of FACTS simulation scenarios.

See Also

get_param_dirs(), run_facts(), run_f1f11(), run_engine(), run_engine_contin()

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("contin.facts")
get_facts_scenarios(facts_file)

}

get_facts_version Get FACTS version matching your FACTS file

Description

Get the version of FACTS compatible with your *. facts file.

Usage

get_facts_version(facts_file)

get_facts_versions 15

Arguments

facts_file Character, name of a FACTS file. Usually has a x. facts file extension.

Value

A version string.

See Also

get_facts_versions()

Examples

facts_file <- get_facts_file_example("contin.facts"”)
facts_file
get_facts_version(facts_file)

get_facts_versions List supported FACTS versions

Description
List versions of FACTS supported by rfacts. You can supply any of these versions to functions
engine-specific functions such as run_engine_contin().

Usage

get_facts_versions()

Details

If your FACTS file does not perfectly agree with one of the supported versions, rfacts will try to
find the best version for you, either

1. The greatest supported version less than or equal to the one in the FACTS file, or

2. The lowest supported version if (1) does not exist.

Value

A character vector of supported FACTS versions.

See Also

get_facts_version(), run_engine_contin()

16 get_param_dirs

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
get_facts_versions()

}

get_param_dirs List the directories containing param files

Description

Get the directory paths containing param files. This helps us run FACTS simulation scenarios one
at a time.

Usage

get_param_dirs(param_files)

Arguments
param_files Character, path to a top-level directory containing param files. run_f1f11() and
run_facts() return paths you can supply to param_filesin get_param_dirs().
Details

When you run run_f1f11() or run_facts(), rfacts creates a directory. This directory has a
bunch of subdirectories, each corresponding to a single simulation scenario (VSR profile x accrual
profile x dropout profile, etc).

Value

Character vector of FACTS simulation scenario directories.

See Also

get_facts_scenarios(), run_facts(), run_f1f11(), run_engine(), run_engine_contin()

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("”contin.facts")
param_files <- run_flfll(facts_file, verbose = FALSE)
scenarios <- get_param_dirs(param_files)

scenarios
scenario <- scenarios[1]
run_engine_contin(scenario, n_sims = 2, verbose = FALSE, version = "6.2.5")

read_patients(scenario)

3

get_param_files 17

get_param_files List the paths to the param files

Description

List the paths to the all the param files in a directory or directories.

Usage

get_param_files(param_files)

Arguments

param_files Character vector of directories containing param files.

Value

Character vector of paths to param files.

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("contin.facts")
dir <- run_flfll(facts_file, verbose = FALSE)
get_param_files(dir)

3

overwrite_csv_files Overwrite FACTS CSV output files

Description

read_patients() and friends read CSV output files from FACTS and return special aggregated
data frames. overwite_csv_files() accepts such an aggregated data frame and writes the content
to the original CSV files it came from.

Usage

overwrite_csv_files(x)

Arguments

X An aggregated data frame from read_patients() or similar function.

18 prep_param_files

Value

Nothing.

Examples

facts_file <- get_facts_file_example("”contin.facts")
Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {

out <- run_facts(facts_file, n_sims = 2)

pats <- read_patients(out)

head(pats$visit_1)

pats$visit_1 <- 0

overwrite_csv_files(pats)

pats2 <- read_patients(out)

head(pats2$visit_1)

3

prep_param_files Arrange the param files for the engines ahead of time.

Description

If you call prep_param_files() ahead of time, subsequent calls to the engines will initialize much

faster. This is useful in situations like trial execution mode, which require calling an engine function

on each new simulation. This function does not actually modify the param files themselves on disk.
Usage

prep_param_files(param_files)

Arguments

param_files A character vector of param files and/or directories containing param files.

Details

prep_param_files() searches for the required *. param files groups them by directory, sorts them,
and returns the result as a list of special param_files objects. (It does not modify the actual con-
tents of the x.param** files.) This preprocessing step is fast when executed once, but slow when executed tf

Value

A list of special "params_files" objects that the engine functions can process fast.

See Also

run_f1f11(), run_engine(), run_engine_contin()

read_facts 19

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
facts_file <- get_facts_file_example("contin.facts")
out <- run_f1fll(facts_file, verbose = FALSE)
param_files <- prep_param_files(out) # For speed.
param_files # Shows where the param files live and how they are organized.
run_engine_contin(
param_files,
n_sims = 2,
verbose = FALSE,
version = "6.2.5"
)
Slower: run_engine_contin(out, n_sims = 2, verbose = FALSE) # nolint

}

read_facts Read parts of FACTS files.

Description

Read specific fields of a FACTS file.

Usage

read_facts(facts_file, fields)

Arguments
facts_file Character of length 1, path to FACTS XML file to read.
fields Data frame defining the kind of XML data to be read. It must have one row per
field definition and the following columns:
1. field: custom name of the field.
2. type: value of the "type" attribute of the <parameterSets> tag.
3. set: value of the "name" attribute of the <parameterSet> tag.
4. property: value of the "name" attribute of the <property> tag.
Details

A FACTS file has a special kind of XML format. Most of the content sits in an overarching <facts>
tag, then a <parameterSets> tag, then a <parameterSet> tag, then a <property> tag. For exam-
ple, here is the part of a FACTS file that controls the weeks between interims.

<facts>
<parameterSets type="NucleusParameterSet">
<parameterSet name="nucleus">
<property name="update_freq_save">4</property>

20 reset_rtfacts_paths

To use the read_facts() function, you must first identify the parts of the FACTS file you want to
read using the fields argument. To read the above part of the XML, you would first define the
update_freq_save field.

fields <- tibble::tibble(

field = "my_interval”,

type = "NucleusParameterSet”,
set = "nucleus”,

property = "update_freq_save”

and then call read_facts(input = "your_file.facts"”, fields = fields).

Value

A one-row tibble with the requested fields from the FACTS file.

Examples

facts_file <- get_facts_file_example("contin.facts")
fields <- data.frame(
field = c("my_subjects”, "my_vsr"),

type = c("NucleusParameterSet"”, "EfficacyParameterSet”),
set = c¢("nucleus”, "resp2"),
property = c("max_subjects”, "true_endpoint_response")

)

read_facts(facts_file = facts_file, fields = fields)

reset_rfacts_paths Reset system dependency info

Description
Reset system dependency information based on the current value of the RFACTS_PATHS environment
variable.

Usage

reset_rfacts_paths()

Dependencies

rfacts has strict system requirements, and the installations vary from system to system. You need
to specify the locations of system executables in a CSV file that lists the path and metadata of each
executable. This file must have one row per executable and the following columns.

* executable_type: Must be "mono"”, "flifll", or "engine" to denote the general type of the
executable.

rfacts_paths 21

» facts_version: The version of FACTS with which this executable is compatible.
* path: File path to the executable.

* engine_name: For engines only. Name of the engine. Must be one of the engine types in the
example CSV file at system.file("example_paths.csv", package = "rfacts").

* param_set: For engines only. Parameter set designation listed in the XML code of FACTS
files for that engine. See system.file("example_paths.csv"”, package = "rfacts”) for
examples.

» param_type: For engines only. Parameter type designation listed in the XML code of FACTS
files for that engine. See system.file("example_paths.csv"”, package = "rfacts") for
examples.

When you call a trial simulation function in rfacts, the package automatically reads this file and
memorizes the contents for later use. The file at system.file("example_paths.csv"”, package
="rfacts") (inst/example_paths.csv in the package source.) has an example of such a file.
All the columns in that file are required, and you may, remove, or modify rows to fit your specific
system.

To enable rfacts to find this CSV file, you need to set the RFACTS_PATHS environment variable to
the path to this file. The easiest way to do this is call usethis::edit_r_environ() to edit your
.Renviron file and then add a new line with something like RFACTS_PATHS=/path/to/file/paths.csv.
Then, restart your R session and call Sys. getenv ("RFACTS_PATHS") to verify that this environment
variable was set correctly.

The rfacts_sitrep() function inspects the current system dependency info and ensures each ex-
ecutable exists and has the correct permissions.

If you change the RFACTS_PATHS environment variable, you need to call reset_rfacts_paths()
or restart R for the changes to take effect.

See Also

rfacts_paths, rfacts_sitrep

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
reset_rfacts_paths()

3

rfacts_paths Read paths to rfacts system dependencies

Description

Read the file specified by the RFACTS_PATHS environment variable.

Usage

rfacts_paths()

22

Value

rfacts_paths

A data frame with paths and other metadata about rfacts system dependencies

Dependencies

rfacts has strict system requirements, and the installations vary from system to system. You need
to specify the locations of system executables in a CSV file that lists the path and metadata of each
executable. This file must have one row per executable and the following columns.

executable_type: Must be "mono"”, "fifll", or "engine" to denote the general type of the
executable.

facts_version: The version of FACTS with which this executable is compatible.
path: File path to the executable.

engine_name: For engines only. Name of the engine. Must be one of the engine types in the
example CSV file at system.file("example_paths.csv", package = "rfacts").

param_set: For engines only. Parameter set designation listed in the XML code of FACTS
files for that engine. See system.file("example_paths.csv"”, package = "rfacts”) for
examples.

param_type: For engines only. Parameter type designation listed in the XML code of FACTS
files for that engine. See system.file("example_paths.csv”, package = "rfacts”) for
examples.

When you call a trial simulation function in rfacts, the package automatically reads this file and
memorizes the contents for later use. The file at system.file("example_paths.csv"”, package
="rfacts") (inst/example_paths.csv in the package source.) has an example of such a file.
All the columns in that file are required, and you may, remove, or modify rows to fit your specific
system.

To enable rfacts to find this CSV file, you need to set the RFACTS_PATHS environment variable to
the path to this file. The easiest way to do this is call usethis::edit_r_environ() to edit your

.Renviron file and then add a new line with something like RFACTS_PATHS=/path/to/file/paths.

Then, restart your R session and call Sys. getenv("RFACTS_PATHS") to verify that this environment
variable was set correctly.

The rfacts_sitrep() function inspects the current system dependency info and ensures each ex-
ecutable exists and has the correct permissions.

If you change the RFACTS_PATHS environment variable, you need to call reset_rfacts_paths()
or restart R for the changes to take effect.

See Also

rfacts_sitrep

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
rfacts_paths()

}

CSvV.

rfacts_sitrep 23

rfacts_sitrep Check configuration of system dependencies

Description

Examine the file paths to executables and check that they exist and have the correct permissions.

Usage

rfacts_sitrep()

Value

A data frame of information on the status of each executable.

Dependencies

rfacts has strict system requirements, and the installations vary from system to system. You need
to specify the locations of system executables in a CSV file that lists the path and metadata of each
executable. This file must have one row per executable and the following columns.

* executable_type: Must be "mono"”, "flifll", or "engine" to denote the general type of the
executable.

» facts_version: The version of FACTS with which this executable is compatible.
* path: File path to the executable.

* engine_name: For engines only. Name of the engine. Must be one of the engine types in the
example CSV file at system.file("example_paths.csv", package = "rfacts”).

* param_set: For engines only. Parameter set designation listed in the XML code of FACTS
files for that engine. See system.file("example_paths.csv"”, package = "rfacts”) for
examples.

* param_type: For engines only. Parameter type designation listed in the XML code of FACTS
files for that engine. See system.file("example_paths.csv"”, package = "rfacts”) for
examples.

When you call a trial simulation function in rfacts, the package automatically reads this file and
memorizes the contents for later use. The file at system.file("example_paths.csv"”, package
="rfacts") (inst/example_paths.csv in the package source.) has an example of such a file.
All the columns in that file are required, and you may, remove, or modify rows to fit your specific
system.

To enable rfacts to find this CSV file, you need to set the RFACTS_PATHS environment variable to

the path to this file. The easiest way to do this is call usethis::edit_r_environ() to edit your
.Renviron file and then add a new line with something like RFACTS_PATHS=/path/to/file/paths.csv.
Then, restart your R session and call Sys. getenv("RFACTS_PATHS") to verify that this environment
variable was set correctly.

The rfacts_sitrep() function inspects the current system dependency info and ensures each ex-
ecutable exists and has the correct permissions.

24 run_engine

If you change the RFACTS_PATHS environment variable, you need to call reset_rfacts_paths()
or restart R for the changes to take effect.
See Also

rfacts_paths

Examples

Can only run if system dependencies are configured:
if (file.exists(Sys.getenv("RFACTS_PATHS"))) {
rfacts_sitrep()

3

run_engine Run trial simulations

Description

For fine control over trial simulations, you must first call run_f1f11() and then call either run_engine()
or one of the specific engine functions (such as run_engine_contin()). The engines read the
*.paranm files generated by run_f1f11(), run the trial simulations, and save output to a bunch of
CSV files. You can find these CSV output files next to the x. param files.

Usage
run_engine(facts_file, ...)
Arguments
facts_file Character, name of a FACTS file. Usually has a *. facts file extension.
Named arguments to the appropriate inner engine function, such as run_engine_contin().
Use get_facts_engine() to identify the appropriate engine function for your
FACTS file. Then, open the help file of that function to read about the argu-
ments.
Details

If you need to repeatedly invoke an engine, as with most trial execution mode workflows, run_engine ()
is slow. Instead, consider running prep_param_files() and then passing the result to one of the
individual engine functions (such as run_engine_contin()).

Value

Nothing.

See Also

get_facts_file_example(), run_f1f11(), get_facts_engine(), prep_param_files()

run_facts

Examples

Can only run if system dependencies are configured:

if (file.exi
facts_file <

sts(Sys.getenv("RFACTS_PATHS"))) {
- get_facts_file_example(”contin.facts") # example FACTS file

out <- run_f1fll(facts_file, verbose = FALSE) # Generate param files.

Run the si
run_engine(
facts_file
param_file
n_sims = 1
verbose =
)
read_patient

}

mulations.

’

s = out,

’

FALSE

s(out)

25

run_facts

Run FACTS

Description

Run FACTS trial simulations.

Usage

run_facts(

facts_file,

output_path = tempfile(),
log_path = output_path,
n_burn = NULL,

n_mcmc = NULL,
n_weeks_files = 10000,
n_patients_files = 10000,
n_mcmc_files = 0,
n_mcmc_thin = NULL,
f1fll_seed = NULL,
f1fll_offset = NULL,

n_sims,

Arguments

facts_file
output_path
log_path
n_burn

n_mcmc

Character, name of a FACTS file. Usually has a *. facts file extension.

Character, directory path to the files to generate.
Character, path to the log file generated by FLFLL.
Number of burn-in iterations for the MCMC.

Number of MCMC iterations used in inference.

26 run_facts

n_weeks_files Number of weeksx.csv files to save in output_path.
n_patients_files
Number of patientsx.csv files to save in output_path.

n_mcmc_files Number of mcme*. csv files to save in output_path.
n_mcmc_thin Number of thinning iterations for the MCMC.

f1fll_seed Positive integer, random number generator seed for FLFLL. This seed is only
used for stochastic preprocessing steps for generating the *.param files. It is
not the random number generator seed for the actual trial simulations. To set the
trial simulation seed, use the seed argument of run_facts(), run_engine(),
or one of the specific run_enginex() functions.

f1fll_offset Integer, offset for the random number generator.
n_sims Positive integer, number of simulations per param file.

Named arguments to the appropriate FACTS engine function. Use get_facts_engine()
to identify the appropriate engine function and then open the help file of that
function to read about the arguments, e.g. ?run_engine_contin.
Details
run_facts() calls run_f1f11() and then run_engine(). For finer control over trial simulation,
you can call these latter two functions individually.
Value

Character, path to the directory with FACTS output.

See Also

run_f1f11(), run_engine(), get_facts_engine()

Examples

Can only run if system dependencies are configured:

if (file.exists(Sys.getenv("RFACTS_PATHS"))) {

facts_file <- get_facts_file_example("contin.facts”) # example FACTS file
out <- run_facts(

facts_file,
n_sims = 4,
verbose = FALSE

)

What results files do we have?

head(get_csv_files(out))

Read all the "patientsx.csv” files with ‘read_patients(out)".
For each scenario, we have files named

patients00001.csv, patients@0002.csv, patients@0003.csv,

and patients00004.csv.

read_patients(out)

}

run_fifil

27

run_f1f11

Generate param files to prepare for trial simulations

Description

Generate the preparatory files required for simulation.

Usage

run_f1f11(
facts_file,

output_path = tempfile(),
log_path = output_path,
n_burn = NULL,

n_mcmc = NULL,
n_weeks_files = 10000,
n_patients_files = 10000,
n_mcmc_files = 0,
n_mcmc_thin = NULL,
f1f1ll_seed = NULL,
f1f1ll_offset = NULL,
verbose = FALSE,

max_sims =

Arguments

facts_file
output_path
log_path
n_burn
n_mcmc

n_weeks_files

99999L

Character, name of a FACTS file. Usually has a *. facts file extension.
Character, directory path to the files to generate.

Character, path to the log file generated by FLFLL.

Number of burn-in iterations for the MCMC.

Number of MCMC iterations used in inference.

Number of weeks*. csv files to save in output_path.

n_patients_files

n_mcmc_files
n_mcmc_thin
f1fll_seed

fl1fll_offset

verbose

Number of patients*.csv files to save in output_path.
Number of mcme* . csv files to save in output_path.
Number of thinning iterations for the MCMC.

Positive integer, random number generator seed for FLFLL. This seed is only
used for stochastic preprocessing steps for generating the *.param files. It is
not the random number generator seed for the actual trial simulations. To set the
trial simulation seed, use the seed argument of run_facts(), run_engine(),
or one of the specific run_engine* () functions.

Integer, offset for the random number generator.

Logical, whether to print progress information to the R console.

28

max_sims

Details

write_facts

Positive integer of length 1, maximum number of simulations that will be al-
lowed to run for certain engines like CRM in subsequent calls to the engine. If
the n_sims argument of the engine is larger than max_sims, only max_sims sim-
ulations will be run. The max_sims argument only applies to FLFLL >= 6.4.1
and only needs to be set manually if you are manually calling run_f1f11() and
then the engine instead of just run_facts().

For advanced control over trial simulations, you must first call run_f1f11() and then call one of the
engine functions such as run_engine_contin(). run_f1f11() generates the preparatory *.param
files that the run_engine_x() functions understand. You will pass these *.param files or their
parent directory to param_files argument of run_engine_contin() etc.

Value

Character, the value of output_path. output_path is the directory path to the files generated by

run_f1f11().

See Also

get_facts_file_example(), run_engine(), run_engine_contin()

Examples

Can only run if system dependencies are configured:

if (file.exists(Sys.getenv("RFACTS_PATHS"))) {

facts_file <- get_facts_file_example("contin.facts") # example FACTS file
out <- run_f1fll(facts_file, verbose = FALSE) # Generate param files.

Run the simulations.

run_engine(
facts_file,
param_files = out,
n_sims = 1,
verbose = FALSE

)

read_patients(out)

}

write_facts

Write modified FACTS files.

Description

Write modified versions of existing FACTS files. This function can be used to tweak properties of
a FACTS file such as maximum sample size, number of weeks between interims, allocation ratios,
data generation parameters, and analysis priors.

write_facts

29

Usage
write_facts(fields, values, default_dir = "_facts")
Arguments
fields Data frame defining the kind of XML data to be replaced. It must have one row
per field definition and the following columns:
1. field: custom name of the field.
2. type: value of the "type" attribute of the <parameterSets> tag.
3. set: value of the "name" attribute of the <parameterSet> tag.
4. property: value of the "name" attribute of the <property> tag.
values Data frame defining the FACTS files to generate. Must have one row per FACTS

default_dir

Details

file and a column called facts_file with the names of the input FACTS files.
An output column with the names of the output FACTS files is recommended
but not required. (If output is not specified, the output FACTS files will be writ-
ten to automatically generated paths inside default_dir.) Other columns must
have names corresponding to elements of fields$field and contain values to
insert into the FACTS files. These columns could be vectors or lists of vectors.
In the former case, each element is a scalar replacement to a property. In the
latter case, an XML property receives an entire vector as an item list, and the
vector must be the same length as the original item list.

Directory to write the output FACTS files if values has no output column.

A FACTS file has a special kind of XML format. Most of the content sits in an overarching <facts>
tag, then a <parameterSets> tag, then a <parameterSet> tag, then a <property> tag. For exam-
ple, here is the part of a FACTS file that controls the weeks between interims.

<facts>

<parameterSets type="NucleusParameterSet">
<parameterSet name="nucleus">
<property name="update_freq_save">4</property>

To use the write_facts() function, you must first identify the parts of the FACTS file you want to
modify (the fields argument) then the values that should be substituted in (the values argument).
Given the XML above, to create new FACTS files with intervals 5 and 6 instead of 4, you would set

fields <- tibble::tibble(
field = "my_interval”,

type = "NucleusParameterSet”,
set = "nucleus”,
property = "update_freq_save”

)

values <- tibble::tibble(
facts_file = "your_facts_file.facts”,
output = "output_file.facts”,

30 write_facts

my_interval = c(5, 6)
)

and then call write_facts(fields = fields, values = values).

Value

The function writes FACTS XML files and returns a character vector with the paths to those files.

Examples

Identify a source FACTS file.
facts_file <- get_facts_file_example("contin.facts")
Create 4 new FACTS files with different numbers of max patients.
fields <- data.frame(
field = "my_subjects”,

type = "NucleusParameterSet”,
set = "nucleus”,
property = "max_subjects”

)
values <- data.frame(
facts_file = facts_file,
output = c(”"_facts/out1000.facts”, "_facts/out2000.facts"),
my_subjects = c(1000, 2000)
)
default_dir <- tempfile()
write_facts(fields = fields, values = values, default_dir = default_dir)
list.files("_facts")
unlink("_facts”, recursive = TRUE)

Index

facts_engines, 3
facts_results, 8

get_csv_files, 11
get_facts_engine, 11
get_facts_engine(), 3, 8, 24, 26
get_facts_file_example, 12
get_facts_file_example(), 8, 10, 24, 28
get_facts_scenarios, 14
get_facts_scenarios(), 16
get_facts_version, 14
get_facts_version(), 7, 15
get_facts_versions, 15
get_facts_versions(), 7, 15
get_param_dirs, 16
get_param_dirs(), 14
get_param_files, 17

overwrite_csv_files, 17
overwrite_csv_files(), 10

prep_param_files, 18
prep_param_files(), 7, 8, 24

read_cohorts (facts_results), 8
read_csv_special (facts_results), 8
read_facts, 19

read_master_mcmc (facts_results), 8
read_master_patients (facts_results), 8
read_master_weeks (facts_results), 8
read_mcmc (facts_results), 8
read_patients (facts_results), 8
read_patients(), 17

read_s1_mcmc (facts_results), 8
read_s1_patients (facts_results), 8
read_s1_weeks (facts_results), 8
read_s2_mcmc (facts_results), 8
read_s2_patients (facts_results), 8
read_s2_weeks (facts_results), 8
read_simulations (facts_results), 8

31

read_weeks (facts_results), 8

reset_rfacts_paths, 20

reset_rfacts_paths(), 21, 22, 24

rfacts (rfacts-package), 2

rfacts-package, 2

rfacts_paths, 21

rfacts_sitrep, 23

run_engine, 24

run_engine(), 3, 7-10, 12-14, 16, 18, 24,
26-28

run_engine_aipf_contin (facts_engines),
3

run_engine_aipf_contin(), 3

run_engine_aipf_dichot (facts_engines),
3

run_engine_aipf_dichot(), 3

run_engine_aipf_tte (facts_engines), 3

run_engine_aipf_tte(), 3

run_engine_contin (facts_engines), 3

run_engine_contin(), 3,8, 9, 13-16, 18, 24,
28

run_engine_crm (facts_engines), 3

run_engine_crm(), 3

run_engine_dichot (facts_engines), 3

run_engine_dichot(), 3

run_engine_multep (facts_engines), 3

run_engine_multep(), 3

run_engine_tte (facts_engines), 3

run_engine_tte(), 3

run_facts, 25

run_facts(), 7-10, 12-14, 16, 26-28

run_f1f11, 27

run_f1f11(), 7, 8, 10, 12-14, 16, 18, 24, 26,
28

write_facts, 28

	rfacts-package
	facts_engines
	facts_results
	get_csv_files
	get_facts_engine
	get_facts_file_example
	get_facts_scenarios
	get_facts_version
	get_facts_versions
	get_param_dirs
	get_param_files
	overwrite_csv_files
	prep_param_files
	read_facts
	reset_rfacts_paths
	rfacts_paths
	rfacts_sitrep
	run_engine
	run_facts
	run_flfll
	write_facts
	Index

