
Package ‘reproj’
June 11, 2024

Type Package

Title Coordinate System Transformations for Generic Map Data

Version 0.7.0

Description Transform coordinates from a specified source to a specified
target map projection. This uses the 'PROJ' library directly, by wrapping the
'PROJ' package which leverages 'libproj', otherwise the 'proj4' package. The 'reproj()'
function is generic, methods may be added to remove the need for an explicit
source definition. If 'proj4' is in use 'reproj()' handles the requirement for
conversion of angular units where necessary. This is for use primarily to
transform generic data formats and direct leverage of the underlying
'PROJ' library. (There are transformations that aren't possible with 'PROJ' and
that are provided by the 'GDAL' library, a limitation which users of this
package should be aware of.) The 'PROJ' library is available at
<https://proj.org/>.

License GPL-3

Depends R (>= 3.2.5)

Imports proj4, crsmeta (>= 0.3.0), PROJ (>= 0.4.5)

Suggests testthat, covr

RoxygenNote 7.3.1

Encoding UTF-8

SystemRequirements PROJ (>= 4.4.6)

BugReports https://github.com/hypertidy/reproj/issues

URL https://github.com/hypertidy/reproj,

https://hypertidy.github.io/reproj/

NeedsCompilation no

Author Michael D. Sumner [aut, cre] (<https://orcid.org/0000-0002-2471-7511>)

Maintainer Michael D. Sumner <mdsumner@gmail.com>

Repository CRAN

Date/Publication 2024-06-11 06:30:02 UTC

1

https://proj.org/
https://github.com/hypertidy/reproj/issues
https://github.com/hypertidy/reproj
https://hypertidy.github.io/reproj/
https://orcid.org/0000-0002-2471-7511

2 reproj.sc

Contents
reproj.sc . 2
reproj_extent . 4

Index 6

reproj.sc Reproject coordinates.

Description

Reproject coordinates from a matrix or data frame by explicitly specifying the ’source’ and ’target’
projections.

Usage

S3 method for class 'sc'
reproj(x, target = NULL, ..., source = NULL)

S3 method for class 'mesh3d'
reproj(x, target, ..., source = NULL)

S3 method for class 'quadmesh'
reproj(x, target, ..., source = NULL)

S3 method for class 'triangmesh'
reproj(x, target, ..., source = NULL)

reproj(x, target, ..., source = NULL, four = FALSE)

S3 method for class 'matrix'
reproj(x, target, ..., source = NULL, four = FALSE)

S3 method for class 'data.frame'
reproj(x, target, ..., source = NULL, four = FALSE)

reproj_xy(x, target, ..., source = NULL)

reproj_xyz(x, target, ..., source = NULL)

Arguments

x coordinates
target target specification (PROJ.4 string or epsg code)
... arguments passed to proj4::ptransform()

source source specification (PROJ.4 string or epsg code)
four if TRUE, and PROJ version 6 is available return four columns xyzt (not just three

xyz)

reproj.sc 3

Details

We currently use the proj4 package.

The reproj() and related functions drive proj4::ptransform() and sort out the requirements for
it so that we can simply give coordinates in data frame or matrix form, with a source projection and
a target projection.

If using PROJ, reproj can pass in a wider variety of source and target strings, not just "proj4string"
and we are completely subject to the new rules and behaviours of the PROJ library. We always
assume "visualization order", i.e. longitude then latitude, easting then northing (as X, Y).

The basic function reproj() takes input in generic form (matrix or data frame) and returns a 3-
column matrix, by transforming from map projection specified by the source argument to that
specified by the target argument. Only column order is respected, column names are ignored.

This model of working also allows adding methods for specific data formats that already carry a
suitable source projection string. Currently we support types from the silicate and quadmesh and
rgl packages, and only the target string need be specified.

This model has obvious flexibility, for packages to import the generic and call it with the correct
source (from the data format) and the target from user, or process controlled mechanism.

The source argument must be named, and if it is not present a light check is made that the source
data could be "longitude/latitude" and transformation to target is applied (this can be controlled
by setting options).

The function reproj() always returns a 3-column matrix unless four = TRUE, and PROJ package
is available then a 4-column matrix is returned.

Functions reproj_xy() and reproj_xyz() are helpers for reproj() and always return 2- or 3-
column matrix respectively.

Note that any integer input for source or target will be formatted to a character string like
"EPSG:<integer_code>" as a simple convenience. Note that there are other authorities besides
EPSG, so the pattern "AUTH:code" is a general one and you should really be explicit.

Until recently the proj4 package was the only one available for generic data that will transform
between arbitrary coordinate systems specified by source and target coordinate systems and with
control over ’xy’ versus ’xyz’ input and output. This package adds some further features by wrap-
ping the need to convert longitude/latitude data to or from radians.

Other R packages for transforming coordinates are geared toward data that’s in a particular format.
It’s true that only GDAL provides the full gamut of available geographic map projections, but this
leaves a huge variety of workflows and applications that don’t need that level of functionality.

Value

numeric matrix of the transformed coordinates, either 2, 3, or 4 columns depending on the shape
of the input, or the argument ’four’ in reproj(). Use reproj_xy() or reproj_xyz() for those
specific 2- and 3-column cases.

Dependencies

• The PROJ package is a stub atm and is not used.

The proj4 package works perfectly well with the PROJ-lib at versions 4, 5, 6, or 7 and if this is
preferred reproj can be set to ignore the PROJ R package (see reproj-package).

https://CRAN.r-project.org/package=PROJ
https://hypertidy.github.io/reproj/reference/reproj-package.html

4 reproj_extent

Global options

Assuming longitude/latitude input:
The behaviour is controlled by user-settable options which on start up are reproj.assume.longlat
= TRUE and reproj.default.longlat = "OGC:CRS84".
If the option reproj.assume.longlat is set to FALSE then the source argument must be named
explicitly, i.e. reproj(xy, t_srs, source = s_srs), this is to help catch mistakes being made.
The target is the second argument in reproj though it is the third argument in proj4::ptransform.
This function also converts to radians on input or output as required.
If the option reproj.assume.longlat is set to TRUE and the input data appear to be sensible
longitude/latitude values, then the value of reproj.default.longlat is used as the assumed
source projection.

Controlling use or PROJ or proj4:
See reproj-package for another option set reproj.mock.noproj6 for package testing for expert
use.

Warning

There are a number of limitations to the PROJ library please use at your own risk. The sf package
provides a better supported facility. The libproj package will be used if it makes it to CRAN.

Examples

reproj(cbind(147, -42), target = "+proj=laea +datum=WGS84",
source = getOption("reproj.default.longlat"))

reproj_extent Reproject extent

Description

A four figure extent (xmin, xmax, ymin, ymax) is used to approximate the boundary of its repro-
jected version by interpolating new vertices along each edge.

Usage

reproj_extent(extent, target, limit = NULL, ..., source = NULL)

Arguments

extent a four element vector of extent c(xmin, xmax, ymin, ymax)

target target specification (PROJ.4 string or epsg code)

limit if used, a one or two element numeric vector to give the maximum radius to the
edge of the extent from the middle

... arguments passed to proj4::ptransform()

source source specification (PROJ.4 string or epsg code)

reproj_extent 5

Details

This is a simple version of what GDAL’s ’SuggestedWarpOutput’ does, and similar functions like
the raster package ’projectExtent()’.

Internal functions unpack the various stages, and might be exposed in future. These stages are

1. interpolate around the boundary with correct ordering (can be used as a polygon or line)

2. reproject the interpolated boundary

3. summarize the interpolated boundary to the new extent

Value

four value extent c(xmin, xmax, ymin, ymax)

Examples

reproj_extent(c(0, 10, 0, 20), "+proj=laea", source = "+proj=longlat")

Index

proj4::ptransform(), 2–4

reproj (reproj.sc), 2
reproj(), 3
reproj-package, 4
reproj.sc, 2
reproj_extent, 4
reproj_xy (reproj.sc), 2
reproj_xy(), 3
reproj_xyz (reproj.sc), 2
reproj_xyz(), 3

6

	reproj.sc
	reproj_extent
	Index

