
Package ‘rem’
October 14, 2022

Type Package

Title Relational Event Models (REM)

Version 1.3.1

Date 2018-10-24

Author Laurence Brandenberger

Maintainer Laurence Brandenberger <lbrandenberger@ethz.ch>

Description Calculate endogenous network effects in event sequences and fit relational event mod-
els (REM): Using network event sequences (where each tie between a sender and a tar-
get in a network is time-stamped), REMs can measure how net-
works form and evolve over time. Endogenous patterns such as popularity effects, inertia, simi-
larities, cycles or triads can be calculated and analyzed over time.

License GPL (>= 2)

Depends R (>= 2.14.0)

Imports Rcpp, foreach, doParallel

LinkingTo Rcpp

Suggests texreg, statnet, ggplot2

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-10-25 13:10:24 UTC

R topics documented:
rem-package . 2
createRemDataset . 3
degreeStat . 7
eventSequence . 13
fourCycleStat . 16
inertiaStat . 20
reciprocityStat . 24
similarityStat . 29
timeToEvent . 33
triadStat . 36

1

2 rem-package

Index 41

rem-package Fit Relational Event Models (REM)

Description

The rem package uses a combination of event history and network analysis to test network depen-
dencies in event sequences. If events in an event sequence depend on each other, network structures
and patterns can be calculated and estimated using relational event models. The rem-package in-
cludes functions to calculate endogenous network statistics in (signed) one-, two- and multi-mode
network event sequences. The statistics include inertia (inertiaStat), reciprocity (reciprocityStat),
in- or outdegree statistics (degreeStat), closing triads (triadStat), closing four-cycles (fourCycle-
Stat) or endogenous similarity statistics (similarityStat). The rate of event occurrence can then be
tested using standard models of event history analysis, such as a stratified Cox model (or a condi-
tional logistic regression). createRemDataset can be used to create counting process data sets with
dynamic risk sets.

Details

Package: rem
Type: Package
Version: 1.3.1
Date: 2018-10-24

Author(s)

Laurence Brandenberger <lbrandenberger@ethz.ch>

References

Lerner, Jurgen, Bussmann, Margit, Snijders, Tom. A., & Brandes, Ulrik. 2013. Modeling frequency
and type of interaction in event networks. Corvinus Journal of Sociology and Social Policy, (1), 3-
32.

Brandenberger, Laurence. 2018. Trading Favors - Examining the Temporal Dynamics of Reci-
procity in Congressional Collaborations Using Relational Event Models. Social Networks, 54:
238-253.

Malang, Thomas, Laurence Brandeberger and Philip Leifeld. 2018. Networks and Social Influence
in European Legislative Politics. British Journal of Political Science. DOI: 10.1017/S0007123417000217.

createRemDataset 3

createRemDataset Create REM data set with dynamic risk sets

Description

The function creates counting process data sets with dynamic risk sets for relational event models.
For each event in the event sequence, null-events are generated and represent possible events that
could have happened at that time but did not. A data set with true and null-events is returned with
an event dummy for whether the event occurred or was simply possible (variable eventdummy). The
returned data set also includes a variable eventTime which represents the true time of the reported
event.

Usage

createRemDataset(data, sender, target, eventSequence,
eventAttribute = NULL, time = NULL,
start = NULL, startDate = NULL,
end = NULL, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = FALSE, possibleEvents = NULL,
returnInputData = FALSE)

Arguments

data A data frame containing all the events.

sender A string (or factor or numeric) variable that represents the sender of the event.

target A string (or factor or numeric) variable that represents the target of the event.

eventSequence Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

eventAttribute An optional variable that represents an attribute to an event. Repeated events af-
fect the construction of the counting process data set. Use the eventAttribute-
variable to specify the uniqueness of an event. If eventAttribute = NULL,
events are defines as sender-target nodes only.

time An optional date variable that represents the date an event took place. The vari-
able is used if startDate or endDate are specified. timeformat should be used
to specify which format the date variable is in, in case it was not yet converted
to a Date-variable.

start An optional numeric variable that indicates at which point in the event sequence
a specific event was at risk. The variable has to be numerical and correspond
to the variable eventSequence. If this option is used, each event in the event
data set will be considered at risk from the specified value onwards. If it is not
specified, start is defined as the first value in the event sequence. In case of
repeated events, the start-value for each duplicated event is one event-unit after
the last such event.

4 createRemDataset

startDate An optional date variable that represents the date an event started being at risk.
timeformat should be used to specify which format the date variable is in,
incase it was not yet converted to a Date-variable.

end An optional numeric variable that indicates at which point in the event sequence
a specific event stopped being at risk. The variable has to be numerical and
correspond to the variable eventSequence. If this option is used, each event in
the event data set will be considered at risk until the specified value.

endDate An optional date variable that represents the date an event stoped being at risk.
timeformat should be used to specify which format the date variable is in,
incase it was not yet converted to a Date-variable.

timeformat A character string indicating the format of the datevar. see as.Date

atEventTimesOnly

TRUE/FALSE. Boolean option for continuous event sequences. If atEventTimesOnly
= TRUE, null-events are only created at times, when an event occurred. If atEventTimesOnly
= FALSE, null-events are created on each event-unit from min(eventSequence):max(eventSequence).
For instance: Given an event sequence with three events at c(1, 4, 6): If
atEventTimesOnly = TRUE null events are created for events 1, 4 and 6. If
atEventTimesOnly = FALSE null-events are also created for days 2, 3 and 5.

untilEventOccurrs

TRUE/FALSE. Boolean option to define whether null events should be an option
even after an event takes place. If untilEventOccurrs = TRUE a conditional
logisitc logic is applied in that events are only at risk as long as they have not
taken place yet. If untilEventOccurrs = FALSE events continue to be at risk
after they have occurred. Note that untilEventOccurrs = TRUE overwrites the
end-Variable, if specified.

includeAllPossibleEvents

TRUE/FALSE. Boolean option to allow a more dynamic and specified creation
of the risk set. If includeAllPossibleEvents = TRUE, a data set has to be
provided to possibleEvents.

possibleEvents An optional data set with the form: column 1 = sender, column 2 = target, 3 =
start, 4 = end, 5 = event attribute, 6... . The data set provides all possible events
for the entire event sequence and gives each possible event a start and end value
to determine when each event could have been possible. This is useful if the risk
set follows a complex pattern that cannot be resolved with the above options.
E.g., providing a startDate-variable and setting atEventTimesOnly == FALSE
will result in an error since in a continuous time setting the start variable will
be matched to the closest date, rather than to the exact value of said date in the
event sequence. Manually coding the possible events is neccessary.

returnInputData

TRUE/FALSE. Boolean option to check the original data set (handed over in data)
against the created start and stop variables. If returnInputData = TRUE, a list
of two data sets is returned. The first data set is the counting process data set
with null-events, the second the modified data.

Details

To follow.

createRemDataset 5

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

Example 1: standard conditional logistic set-up
dt <- data.frame(

sender = c('a', 'c', 'd', 'a', 'a', 'f', 'c'),
target = c('b', 'd', 'd', 'b', 'b', 'a', 'd'),
eventSequence = c(1, 2, 2, 3, 3, 4, 6)

)
count.data <- createRemDataset(

data = dt, sender = dt$sender,
target = dt$target, eventSequence = dt$eventSequence,
eventAttribute = NULL, time = NULL,
start = NULL, startDate = NULL,
end = NULL, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = FALSE, possibleEvents = NULL,
returnInputData = FALSE)

Example 2: add 2 attributes to the event-classification
dt <- data.frame(

sender = c('a', 'c', 'd', 'a', 'a', 'f', 'c'),
target = c('b', 'd', 'd', 'b', 'b', 'a', 'd'),
pro.con = c('pro', 'pro', 'con', 'pro', 'con', 'pro', 'pro'),
attack = c('yes', 'no', 'no', 'yes', 'yes', 'no', 'yes'),
eventSequence = c(1, 2, 2, 3, 3, 4, 6)

)
count.data <- createRemDataset(

data = dt, sender = dt$sender,
target = dt$target, eventSequence = dt$eventSequence,
eventAttribute = paste0(dt$pro.con, dt$attack), time = NULL,
start = NULL, startDate = NULL,
end = NULL, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = FALSE, possibleEvents = NULL,
returnInputData = FALSE)

Example 3: adding start and end variables
Note: the start and end variables will be overwritten
if there are duplicate events. If you want to
keep the strict start and stop values that you set, use
includeAllPossibleEvents = TRUE and specify a
possibleEvents-data set.
Note 2: if untilEventOccurrs = TRUE and an end

6 createRemDataset

variable is provided, this end variable is
overwritten. Set untilEventOccurrs 0 FALSE and
provide the end variable if you want the events
possibilities to stop at these exact event times.
dt <- data.frame(

sender = c('a', 'c', 'd', 'a', 'a', 'f', 'c'),
target = c('b', 'd', 'd', 'b', 'b', 'a', 'd'),
eventSequence = c(1, 2, 2, 3, 3, 4, 6),
start = c(0, 0, 1, 1, 1, 3, 3),
end = rep(6, 7)

)
count.data <- createRemDataset(

data = dt, sender = dt$sender,
target = dt$target, eventSequence = dt$eventSequence,
eventAttribute = NULL, time = NULL,
start = dt$start, startDate = NULL,
end = dt$end, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = FALSE, possibleEvents = NULL,
returnInputData = FALSE)

Example 4: using start (and stop) dates
dt <- data.frame(

sender = c('a', 'c', 'd', 'a', 'a', 'f', 'c'),
target = c('b', 'd', 'd', 'b', 'b', 'a', 'd'),
eventSequence = c(1, 2, 2, 3, 3, 4, 6),
date = c('01.02.1971', rep('02.02.1971', 2),

rep('03.02.1971', 2), '04.02.1971', '06.02.1971'),
dateAtRisk = c(rep('21.01.1971', 2), rep('01.02.1971', 5)),
dateRiskEnds = rep('01.03.1971', 7)

)
count.data <- createRemDataset(

data = dt, sender = dt$sender, target = dt$target,
eventSequence = dt$eventSequence,
eventAttribute = NULL, time = dt$date,
start = NULL, startDate = dt$dateAtRisk,
end = NULL, endDate = NULL,
timeformat = '%d.%m.%Y',
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = FALSE, possibleEvents = NULL,
returnInputData = FALSE)

if you want to include null-events at times when no event happened,
either see Example 5 or create a start-variable by yourself
by using the eventSequence()-command with the option
'returnDateSequenceData = TRUE' in this package. With the
generated sequence, dates from startDate can be matched
to the event sequence values (using the match()-command).

Example 5: using start and stop dates and including
possible events whenever no event occurred.
possible.events <- data.frame(

sender = c('a', 'c', 'd', 'f'),

degreeStat 7

target = c('b', 'd', 'd', 'a'),
start = c(0, 0, 1, 1),
end = c(rep(8, 4)))

count.data <- createRemDataset(
data = dt, sender = dt$sender, target = dt$target,
eventSequence = dt$eventSequence,
eventAttribute = NULL, time = NULL,
start = NULL, startDate = NULL,
end = NULL, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = TRUE, possibleEvents = possible.events,
returnInputData = FALSE)

now you can set 'atEventTimesOnly = FALSE' to include
null-events where none occurred until the events happened
count.data <- createRemDataset(

data = dt, sender = dt$sender, target = dt$target,
eventSequence = dt$eventSequence,
eventAttribute = NULL, time = NULL,
start = NULL, startDate = NULL,
end = NULL, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = FALSE, untilEventOccurrs = TRUE,
includeAllPossibleEvents = TRUE, possibleEvents = possible.events,
returnInputData = FALSE)

plus you can set to get the full range of the events
(bounded by max(possible.events$end))
count.data <- createRemDataset(

data = dt, sender = dt$sender, target = dt$target,
eventSequence = dt$eventSequence,
eventAttribute = NULL, time = NULL,
start = NULL, startDate = NULL,
end = NULL, endDate = NULL,
timeformat = NULL,
atEventTimesOnly = FALSE, untilEventOccurrs = FALSE,
includeAllPossibleEvents = TRUE, possibleEvents = possible.events,
returnInputData = FALSE)

degreeStat Calculate (in/out)-degree statistics

Description

Calculate the endogenous network statistic indegree/outdegree for relational event models. indegree/outdegree
measures the senders’ tendency to be involved in events (sender activity, sender out- or indegree) or
the tendency of events to surround a specific target (target popularity, target in- or outdegree)

Usage

degreeStat(data, time, degreevar, halflife,

8 degreeStat

weight = NULL,
eventtypevar = NULL,
eventtypevalue = "valuematch",
eventfiltervar = NULL,
eventfiltervalue = NULL,
eventvar = NULL,
degreeOnOtherVar = NULL,
variablename = "degree",
returnData = FALSE,
dataPastEvents = NULL,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL)

Arguments

data A data frame containing all the variables.

time Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

degreevar A string (or factor or numeric) variable that represents the sender or target of the
event. The degree statistic will calculate how often in the past, a given sender
or target has been active by counting the number of events in the past where the
degreevar is repeated. See details for more information on which variable to
chose as degreevar for one- and two-mode networks.

halflife A numeric value that is used in the decay function. The vector of past events
is weighted by an exponential decay function using the specified halflife. The
halflife parameter determines after how long a period the event weight should
be halved. E.g. if halflife = 5, the weight of an event that occurred 5 units in
the past is halved. Smaller halflife values give more importance to more recent
events, while larger halflife values should be used if time does not affect the
sequence of events that much.

weight An optional numeric variable that represents the weight of each event. If weight
= NULL each event is given an event weight of 1.

eventtypevar An optional variable that represents the type of the event. Use eventtypevalue
to specify how the eventtypevar should be used to filter past events.

eventtypevalue An optional value (or set of values) used to specify how paste events should be
filtered depending on their type. eventtypevalue = "valuematch" indicates
that only past events that have the same type should be used to calculate the
degree statistic. eventtypevalue = "valuemix" indicates that past and present
events of specific types should be used for the degree statistic. All the possible
combinations of the eventtypevar-values will be used. E.g. if eventtypevar
contains two unique values "a" and "b", 4 degree statistics will be calculated.
The first variable calculates the degree effect where the present event is of type
"a" and all the past events are of type "b". The next variable calculates the degree
statistic for present events of type "b" and past events of type "a". Additionally,
a variable is calculated, where present events as well as past events are of type
"a" and a fourth variable calculates the degree statistic for events with type "b"
(i.e. valuematch on value "b"). eventtypevalue = c("..", "..") is similar

degreeStat 9

to the "nodemix"-option, all different combinations of the values specified in
eventtypevalue are used to create the degree statistics.

eventfiltervar An optional numeric/character/or factor variable for each event. If eventfiltervar
is specified, eventfiltervalue has to be provided as well.

eventfiltervalue

An optional character string that represents the value for which past events
should be filtered. To filter the current events, use eventtypevar.

eventvar An (optional) dummy variable with 0 values for null-events and 1 values for true
events. If the data is in the form of counting process data, use the eventvar-
option to specify which variable contains the 0/1-dummy for event occurrence.
If this variable is not specified, all events in the past will be considered for the
calulation of the degree statistic, regardless if they occurred or not (= are null-
events).

degreeOnOtherVar

A string (or factor or numeric) variable that represents the sender or target of the
event. It can be used to calculate target-outdegree or sender-indegree statistics
in one-mode networks. For the sender indegree statistic, fill the sender variable
into the degreevar and the target variable into the degree.on.other.var. For
the target-outdegree statistic, fill the target variable into the degreevar and the
sender variable into the degree.on.other.var.

variablename An optional value (or values) with the name the degree statistic variable should
be given. Default "degree" is used. To be used if returnData = TRUE or multiple
degree statistics are calculated.

returnData TRUE/FALSE. Set to FALSE by default. The new variable(s) are bound directly to
the data.frame provided and the data frame is returned in full.

dataPastEvents An optional data.frame with the following variables: column 1 = time variable,
column 2 = degree variable, column 3 = degree on other variable (or all "1"),
column 4 = event dummy (or all 1), column 5 = weight variable (or all "1"),
column 6 = event type variable (or all "1"), column 7 = event filter variable (or
all "1").

showprogressbar

TRUE/FALSE. Can only be set to TRUE if the function is not run in parallel.

inParallel TRUE/FALSE. An optional boolean to specify if the loop should be run in parallel.

cluster An optional numeric or character value that defines the cluster. By specify-
ing a single number, the cluster option uses the provided number of nodes
to parallellize. By specifying a cluster using the makeCluster-command in
the doParallel-package, the loop can be run on multiple nodes/cores. E.g.,
cluster = makeCluster(12, type="FORK").

Details

The degreeStat()-function calculates an endogenous statistic that measures whether events have
a tendency to include either the same sender or the same target over the entire event sequence.

The effect is calculated as follows.

Gt = Gt(E) = (A,B,wt),

10 degreeStat

Gt represents the network of past events and includes all events E. These events consist each of a
sender a ∈ A and a target b ∈ B (in one-mode networks A = B) and a weight function wt:

wt(i, j) =
∑

e:a=i,b=j

|we| · e
−(t−te)· ln(2)

T1/2 · ln(2)
T1/2

,

where we is the event weight (usually a constant set to 1 for each event), t is the current event time,
te is the past event time and T1/2 is a halflife parameter.

For the degree effect, the past events Gt are filtered to include only events where the senders or
targets are identical to the current sender or target.

sender − outdegree(Gt, a, b) =
∑
j∈B

wt(a, j)

target− indegree(Gt, a, b) =
∑
i∈A

wt(i, b)

sender − indegree(Gt, a, b) =
∑
i∈A

wt(i, a)

target− outdegree(Gt, a, b) =
∑
j∈B

wt(b, j)

Depending on whether the degree statistic is measured on the sender variable or the target variable,
either activity or popularity effects are calculated.

For one-mode networks: Four distinct statistics can be calculated: sender-indegree, sender-outdegree,
target-indegree or target-outdegree. The sender-indegree measures how often the current sender was
targeted by other senders in the past (i.e. how popular were current senders). The sender-outedegree
measures how often the current sender was involved in an event, where they were also marked as
sender (i.e. how active the current sender has been in the past). The target-indegree statistic mea-
sures how often the current targets were targeted in the past (i.e. how popular were current targets).
And the target-outdegree measures how often the current targets were senders in the past (i.e. how
active were current targets in the past).

For two-mode networks: Two distinct statistics can be calculated: sender-outdegree and target-
indegree. Sender-outdegree measures how often the current sender has been involved in an event in
the past (i.e. how active the sender has been up until now). The target-indegree statistic measures
how often the current target has been involved in an event in the past (i.e. how popular a given target
has been before the current event).

An exponential decay function is used to model the effect of time on the endogenous statistics. Each
past event that contains the same sender or the same target (depending on the variable specified in
degreevar) and fulfills additional filtering options (specified via event type or event attributes) is
weighted with an exponential decay. The further apart the past event is from the present event, the
less weight is given to this event. The halflife parameter in the degreeStat()-function determines
at which rate the weights of past events should be reduced.

The eventtypevar- and eventattributevar-options help filter the past events more specifically.
How they are filtered depends on the eventtypevalue- and eventattributevalue-option.

degreeStat 11

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

create some data with 'sender', 'target' and a 'time'-variable
(Note: Data used here are random events from the Correlates of War Project)
sender <- c('TUN', 'NIR', 'NIR', 'TUR', 'TUR', 'USA', 'URU',

'IRQ', 'MOR', 'BEL', 'EEC', 'USA', 'IRN', 'IRN',
'USA', 'AFG', 'ETH', 'USA', 'SAU', 'IRN', 'IRN',
'ROM', 'USA', 'USA', 'PAN', 'USA', 'USA', 'YEM',
'SYR', 'AFG', 'NAT', 'NAT', 'USA')

target <- c('BNG', 'ZAM', 'JAM', 'SAU', 'MOM', 'CHN', 'IRQ',
'AFG', 'AFG', 'EEC', 'BEL', 'ITA', 'RUS', 'UNK',
'IRN', 'RUS', 'AFG', 'ISR', 'ARB', 'USA', 'USA',
'USA', 'AFG', 'IRN', 'IRN', 'IRN', 'AFG', 'PAL',
'ARB', 'USA', 'EEC', 'BEL', 'PAK')

time <- c('800107', '800107', '800107', '800109', '800109',
'800109', '800111', '800111', '800111', '800113',
'800113', '800113', '800114', '800114', '800114',
'800116', '800116', '800116', '800119', '800119',
'800119', '800122', '800122', '800122', '800124',
'800125', '800125', '800127', '800127', '800127',
'800204', '800204', '800204')

type <- sample(c('cooperation', 'conflict'), 33,
replace = TRUE)

combine them into a data.frame
dt <- data.frame(sender, target, time, type)

create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = "%y%m%d",

data = dt, type = "continuous",
byTime = "daily", returnData = TRUE,
sortData = TRUE)

create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target, dt$event.seq.cont,

eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,

returnInputData = TRUE)
divide up the results: counting process data = 1, original data = 2
dtrem <- dts[[1]]
dt <- dts[[2]]
merge all necessary event attribute variables back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]
dtrem$important <- dt$important[match(dtrem$eventID, dt$eventID)]
manually sort the data set

12 degreeStat

dtrem <- dtrem[order(dtrem$eventTime),]

calculate sender-outdegree statistic
dtrem$sender.outdegree <- degreeStat(data = dtrem,

time = dtrem$eventTime,
degreevar = dtrem$sender,
halflife = 2,
eventvar = dtrem$eventDummy,
returnData = FALSE)

plot sender-outdegree over time
library("ggplot2")
ggplot(dtrem, aes(eventTime, sender.outdegree,

group = factor(eventDummy), color = factor(eventDummy))) +
geom_point()+ geom_smooth()

calculate sender-indegree statistic
dtrem$sender.indegree <- degreeStat(data = dtrem,

time = dtrem$eventTime,
degreevar = dtrem$sender,
halflife = 2,
eventvar = dtrem$eventDummy,
degreeOnOtherVar = dtrem$target,
returnData = FALSE)

calculate target-indegree statistic
dtrem$target.indegree <- degreeStat(data = dtrem,

time = dtrem$eventTime,
degreevar = dtrem$target,
halflife = 2,
eventvar = dtrem$eventDummy,
returnData = FALSE)

calculate target-outdegree statistic
dtrem$target.outdegree <- degreeStat(data = dtrem,

time = dtrem$eventTime,
degreevar = dtrem$target,
halflife = 2,
eventvar = dtrem$eventDummy,
degreeOnOtherVar = dtrem$sender,
returnData = FALSE)

calculate target-indegree with typematch
dtrem$target.indegree.tm <- degreeStat(data = dtrem,

time = dtrem$eventTime,
degreevar = dtrem$target,
halflife = 2,
eventtypevar = dtrem$type,
eventtypevalue = "valuematch",
eventvar = dtrem$eventDummy,
returnData = FALSE)

eventSequence 13

eventSequence Create event sequence

Description

Create the event sequence for relational event models. Continuous or ordinal sequences can be
created. Various dates may be excluded from the sequence (e.g. special holidays, specific weekdays
or longer time spans).

Usage

eventSequence(datevar,
dateformat = NULL, data = NULL,
type = "continuous", byTime = "daily",
excludeDate = NULL, excludeTypeOfDay = NULL,
excludeYear = NULL, excludeFrom = NULL,
excludeTo = NULL, returnData = FALSE,
sortData = FALSE,
returnDateSequenceData = FALSE)

Arguments

datevar The variable containing the information on the date and/or time of the event.

dateformat A character string indicating the format of the datevar. see as.Date

data An optional data frame containing all the variables.

type "‘continuous"’ or "‘ordinal"’. Specifies whether the event sequence is to be
created as a continuous sequence or an ordinal sequence.

byTime String value. Specifies at what interval the event sequence is created. Use
"daily", "monthly" or "yearly".

excludeDate An optional string or string vector containing one or more dates that should be
excluded from the event.sequence. The dates have to be in the same format as
provided in dateformat. Only valid for continuous event sequences.

excludeTypeOfDay

String value or vector naming the day(s) that should be excluded from the event
sequence. Depending on the locale the weekdays may be named differently. Use
Sys.getlocale("LC_TIME") to find which locale is installed.

excludeYear A string value or vector naming the year(s) that should be excluded from the
event sequence.

excludeFrom A string value (or a vector of strings) with the start value of the date from (from-
value included) which the event sequence should not be affected. The value has
to be in the same format as specified in dateformat.

excludeTo A string value (or a vector of strings) with the end value of the date to which
time the event sequence should not be affected (to-value included). The value
has to be in the same format as specified in dateformat.

14 eventSequence

returnData TRUE/FALSE. Default set to FALSE. The data frame provided is returned in full,
together with the new variable for the event sequence.

sortData TRUE/FALSE. Default set to FALSE. Should only be used if returnData = TRUE.
The entire data.frame will be ordered according to the event sequence.

returnDateSequenceData

TRUE/FALSE. Boolean option to return the full information on which date matches
to which sequence number instead of the event sequence (and corresponding
data frame).

Details

In order to estimate relational event models, the events have to be ordered, either according to
an ordinal or a continuous event sequence. The ordinal event sequence simply orders the events
and gives each event a place in the sequence. The continuous event sequence creates an artificial
sequence ranging from min(datevar) to max(datevar) and matches each event with its place in
the artificial event sequence. Dates, years or Weekdays can be excluded from the artificial event
sequence. This is useful for excluding specific holidays, weekends etc..

Where two or more events occur at the same time, they are given the same value in the event
sequence.

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

create some data with 'sender', 'target' and a 'time'-variable
(Note: Data used here are random events from the Correlates of War Project)
sender <- c('TUN', 'NIR', 'NIR', 'TUR', 'TUR', 'USA', 'URU',

'IRQ', 'MOR', 'BEL', 'EEC', 'USA', 'IRN', 'IRN',
'USA', 'AFG', 'ETH', 'USA', 'SAU', 'IRN', 'IRN',
'ROM', 'USA', 'USA', 'PAN', 'USA', 'USA', 'YEM',
'SYR', 'AFG', 'NAT', 'NAT', 'USA')

target <- c('BNG', 'ZAM', 'JAM', 'SAU', 'MOM', 'CHN', 'IRQ',
'AFG', 'AFG', 'EEC', 'BEL', 'ITA', 'RUS', 'UNK',
'IRN', 'RUS', 'AFG', 'ISR', 'ARB', 'USA', 'USA',
'USA', 'AFG', 'IRN', 'IRN', 'IRN', 'AFG', 'PAL',
'ARB', 'USA', 'EEC', 'BEL', 'PAK')

time <- c('800107', '800107', '800107', '800109', '800109',
'800109', '800111', '800111', '800111', '800113',
'800113', '800113', '800114', '800114', '800114',
'800116', '800116', '800116', '800119', '800119',
'800119', '800122', '800122', '800122', '800124',
'800125', '800125', '800127', '800127', '800127',
'800204', '800204', '800204')

eventSequence 15

combine them into a data.frame
dt <- data.frame(sender, target, time)

create continuous event sequence: return the data with the
event sequence and sort the data according to the event sequence.
dt <- eventSequence(datevar = dt$time, dateformat = '%y%m%d',

data = dt, type = 'continuous',
byTime = 'daily', returnData = TRUE,
sortData = TRUE)

alternative : create variable with the continuous event
sequence, unsorted
dt$eventSeq <- eventSequence(datevar = dt$time,

dateformat = '%y%m%d',
data = dt, type = 'continuous',
byTime = 'daily',
returnData = FALSE,
sortData = FALSE)

manually sort the data set
dt <- dt[order(dt$eventSeq),]

create the sequence by month
dt$eventSeqMonthly <- eventSequence(datevar = dt$time,

dateformat = '%y%m%d',
data = dt,
type = 'continuous',
byTime = 'monthly',
returnData = FALSE,
sortData = FALSE)

create the sequence by year
dt$eventSeqYearly <- eventSequence(datevar = dt$time,

dateformat = '%y%m%d',
data = dt,
type = 'continuous',
byTime = 'yearly',
returnData = FALSE,
sortData = FALSE)

create an ordinal event sequence
dt$eventSeqOrdinal <- eventSequence(datevar = dt$time,

dateformat = '%y%m%d',
data = dt,
type = 'ordinal',
byTime = 'daily',
returnData = FALSE,
sortData = FALSE)

exclude certain dates
dt$eventSeqEx <- eventSequence(datevar = dt$time,

dateformat = '%y%m%d',
data = dt, type = 'continuous',
byTime = 'daily',

16 fourCycleStat

excludeDate = c('800108', '800112'),
returnData = FALSE,
sortData = FALSE)

return the sequence data set, where all values in the event sequence
correspond to the date of the events. Useful to calculate
start-variables for the createRemDataset-command.
seq.data <- eventSequence(datevar = dt$time,

dateformat = "%y%m%d",
data = dt, type = "continuous",
byTime = "daily",
excludeDate = c("800108", "800112"),
returnData = FALSE,
sortData = FALSE,
returnDateSequenceData = TRUE)

fourCycleStat Calculate four cycle statistics

Description

Calculate the endogenous network statistic fourCycle that measures the tendency for events to
close four cycles in two-mode event sequences.

Usage

fourCycleStat(data, time, sender, target, halflife,
weight = NULL,
eventtypevar = NULL,
eventtypevalue = 'standard',
eventfiltervar = NULL,
eventfilterAB = NULL, eventfilterAJ = NULL,
eventfilterIB = NULL, eventfilterIJ = NULL,
eventvar = NULL,
variablename = 'fourCycle',
returnData = FALSE,
dataPastEvents = NULL,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL

)

Arguments

data A data frame containing all the variables.

time Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

sender A string (or factor or numeric) variable that represents the sender of the event.

fourCycleStat 17

target A string (or factor or numeric) variable that represents the target of the event.

halflife A numeric value that is used in the decay function. The vector of past events
is weighted by an exponential decay function using the specified halflife. The
halflife parameter determins after how long a period the event weight should be
halved. E.g. if halflife = 5, the weight of an event that occured 5 units in
the past is halved. Smaller halflife values give more importance to more recent
events, while larger halflife values should be used if time does not affect the
sequence of events that much.

weight An optional numeric variable that represents the weight of each event. If weight
= NULL each event is given an event weight of 1.

eventtypevar An optional variable that represents the type of the event. Use eventtypevalue
to specify how the eventtypevar should be used to filter past events.

eventtypevalue An optional value (or set of values) used to specify how paste events should be
filtered depending on their type. 'standard', 'positive' or 'negative' may
be used. Default set to 'standard'. 'standard' referrs to closing four cylces
where the type of the events is irrelevant. 'positive' closing four cycles can
be classified as reciprocity via the second mode. It indicates whether senders
have a tendency to reciprocate or show support by engaging in targets that close
a four cycle between two senders. 'negative' closing four cycles represent
opposition between two senders, where the current event is more likely if the
two senders have opposed each other in the past. Support or opposition is repre-
sented by the eventtypevar value for each event.

eventfiltervar An optinoal variable that allows filtering of past events using an event attribute.
It can be a sender attribute, a target attribute, time or dyad attribute. Use eventfilterAB,
eventfilterAJ, eventfilterIB or eventfilterIJ to specify how the eventfiltervar
should be used.

eventfilterAB An optional value used to specify how paste events should be filtered depend-
ing on their attribute. Each distinct edge that form a four cycle can be filtered.
eventfilterAB refers to the current event. eventfilterAJ refers to the event
involving the current sender and target j that has been used by the current as
well as the second actor in the past. eventfilterIB refers to the event involv-
ing the second sender and the current target. eventfilterIJ filters events that
involve the second sender and the second target. See the four cycle formula in
the details section for more information.

eventfilterAJ see eventfilterAB.

eventfilterIB see eventfilterAB.

eventfilterIJ see eventfilterAB.

eventvar An optional dummy variable with 0 values for null-events and 1 values for true
events. If the data is in the form of counting process data, use the eventvar-
option to specify which variable contains the 0/1-dummy for event occurrence.
If this variable is not specified, all events in the past will be considered for the
calulation of the four cycle statistic, regardless if they occurred or not (= are
null-events). Misspecification could result in grievous errors in the calculation
of the network statistic.

variablename An optional value (or values) with the name the four cycle statistic variable
should be given. To be used if returnData = TRUE.

18 fourCycleStat

returnData TRUE/FALSE. Set to FALSE by default. The new variable(s) are bound directly to
the data.frame provided and the data frame is returned in full.

dataPastEvents An optional data.frame with the following variables: column 1 = time variable,
column 2 = sender variable, column 3 = target on other variable (or all "1"),
column 4 = weight variable (or all "1"), column 5 = event type variable (or all
"1"), column 6 = event filter variable (or all "1"). Make sure that the data frame
does not contain null events. Filter it out for true events only.

showprogressbar

TRUE/FALSE. To be implemented.

inParallel TRUE/FALSE. An optional boolean to specify if the loop should be run in parallel.

cluster An optional numeric or character value that defines the cluster. By specify-
ing a single number, the cluster option uses the provided number of nodes
to parallellize. By specifying a cluster using the makeCluster-command in
the doParallel-package, the loop can be run on multiple nodes/cores. E.g.,
cluster = makeCluster(12, type="FORK").

Details

The fourCycleStat()-function calculates an endogenous statistic that measures whether events
have a tendency to form four cycles.

The effect is calculated as follows:

Gt = Gt(E) = (A,B,wt),

Gt represents the network of past events and includes all events E. These events consist each of a
sender a ∈ A and a target b ∈ B and a weight function wt:

wt(i, j) =
∑

e:a=i,b=j

|we| · e
−(t−te)· ln(2)

T1/2 · ln(2)
T1/2

,

where we is the event weight (usually a constant set to 1 for each event), t is the current event time,
te is the past event time and T1/2 is a halflife parameter.

For the four-cylce effect, the past events Gt are filtered to include only events where the current
event closes an open four-cycle in the past.

fourCycle(Gt, a, b) = 3

√ ∑
i∈A&j∈B

wt(a, j) · wt(i, b) · wt(i, j)

An exponential decay function is used to model the effect of time on the endogenous statistics. The
further apart the past event is from the present event, the less weight is given to this event. The
halflife parameter in the fourCycleStat()-function determins at which rate the weights of past
events should be reduced. Therefore, if the one (or more) of the three events in the four cycle have
ocurred further in the past, less weight is given to this four cycle because it becomes less likely that
the two senders reacted to each other in the way the four cycle assumes.

The eventtypevar- and eventfiltervar-options help filter the past events more specifically. How
they are filtered depends on the eventtypevalue- and eventfilter__-option.

fourCycleStat 19

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

create some data two-mode network event sequence data with
a 'sender', 'target' and a 'time'-variable
sender <- c('A', 'B', 'A', 'C', 'A', 'D', 'F', 'G', 'A', 'B',

'B', 'C', 'D', 'E', 'F', 'B', 'C', 'D', 'E', 'C',
'A', 'F', 'E', 'B', 'C', 'E', 'D', 'G', 'A', 'G',
'F', 'B', 'C')

target <- c('T1', 'T2', 'T3', 'T2', 'T1', 'T4', 'T6', 'T2',
'T4', 'T5', 'T5', 'T5', 'T1', 'T6', 'T7', 'T2',
'T3', 'T1', 'T1', 'T4', 'T5', 'T6', 'T8', 'T2',
'T7', 'T1', 'T6', 'T7', 'T3', 'T4', 'T7', 'T8', 'T2')

time <- c('03.01.15', '04.01.15', '10.02.15', '28.02.15', '01.03.15',
'07.03.15', '07.03.15', '12.03.15', '04.04.15', '28.04.15',
'06.05.15', '11.05.15', '13.05.15', '17.05.15', '22.05.15',
'09.08.15', '09.08.15', '14.08.15', '16.08.15', '29.08.15',
'05.09.15', '25.09.15', '02.10.15', '03.10.15', '11.10.15',
'18.10.15', '20.10.15', '28.10.15', '04.11.15', '09.11.15',
'10.12.15', '11.12.15', '12.12.15')

type <- sample(c('con', 'pro'), 33, replace = TRUE)
important <- sample(c('important', 'not important'), 33,

replace = TRUE)

combine them into a data.frame
dt <- data.frame(sender, target, time, type, important)

create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = '%d.%m.%y',

data = dt, type = 'continuous',
byTime = "daily", returnData = TRUE,
sortData = TRUE)

create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target, dt$event.seq.cont,

eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,

returnInputData = TRUE)
divide up the results: counting process data = 1, original data = 2
dtrem <- dts[[1]]
dt <- dts[[2]]
merge all necessary event attribute variables back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]
dtrem$important <- dt$important[match(dtrem$eventID, dt$eventID)]
manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime),]

20 inertiaStat

calculate closing four-cycle statistic
dtrem$fourCycle <- fourCycleStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 20)

plot closing four-cycles over time:
library("ggplot2")
ggplot(dtrem, aes (eventTime, fourCycle,

group = factor(eventDummy), color = factor(eventDummy))) +
geom_point()+ geom_smooth()

calculate positive closing four-cycles: general support
dtrem$fourCycle.pos <- fourCycleStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventtypevar = dtrem$type,
eventtypevalue = 'positive',
halflife = 20)

calculate negative closing four-cycles: general opposition
dtrem$fourCycle.neg <- fourCycleStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventtypevar = dtrem$type,
eventtypevalue = 'negative',
halflife = 20)

inertiaStat Calculate inertia statistics

Description

Calculate the endogenous network statistic inertia for relational event models. inertia measures
the tendency for events to consist of the same sender and target (i.e. repeated events).

Usage

inertiaStat(data, time, sender, target, halflife,
weight = NULL,
eventtypevar = NULL,
eventtypevalue = "valuematch",
eventfiltervar = NULL,

inertiaStat 21

eventfiltervalue = NULL,
eventvar = NULL,
variablename = "inertia",
returnData = FALSE,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL)

Arguments

data A data frame containing all the variables.

time Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

sender A string (or factor or numeric) variable that represents the sender of the event.

target A string (or factor or numeric) variable that represents the target of the event.

halflife A numeric value that is used in the decay function. The vector of past events
is weighted by an exponential decay function using the specified halflife. The
halflife parameter determins after how long a period the event weight should be
halved. E.g. if halflife = 5, the weight of an event that occured 5 units in
the past is halved. Smaller halflife values give more importance to more recent
events, while larger halflife values should be used if time does not affect the
sequence of events that much.

weight An optional numeric variable that represents the weight of each event. If weight
= NULL each event is given an event weight of 1.

eventtypevar An optional variable that represents the type of the event. Use eventtypevalue
to specify how the eventtypevar should be used to filter past events.

eventtypevalue An optional value (or set of values) used to specify how paste events should be
filtered depending on their type. eventtypevalue = "valuematch" indicates
that only past events that have the same type as the current event should be used
to calculate the inertia statistic. eventtypevalue = "valuemix" indicates that
past and present events of specific types should be used for the inertia statistic.
All the possible combinations of the eventtypevar-values will be used. E.g. if
eventtypevar contains two unique values "a" and "b", 4 inertia statistics will be
calculated. The first variable calculates the inertia effect where the present event
is of type "a" and all the past events are of type "b". The next variable calculates
inertia for present events of type "b" and past events of type "a". Additionally, a
variable is calculated, where present events as well as past events are of type "a"
and a fourth variable calculates inertia for events with type "b" (i.e. valuematch
on value "b"). eventtypevalue = c(.., ..) is similar to the "nodmix"-option,
all different combinations of the values specified in eventtypevalue are used
to create inertia statistics.

eventfiltervar An optional numeric/character/or factor variable for each event. If eventfiltervar
is specified, eventfiltervalue has to be provided as well.

eventfiltervalue

An optional character string that represents the value for which past events
should be filtered. To filter the current events, use eventtypevar.

22 inertiaStat

eventvar An optional dummy variable with 0 values for null-events and 1 values for true
events. If the data is in the form of counting process data, use the eventvar-
option to specify which variable contains the 0/1-dummy for event occurrence.
If this variable is not specified, all events in the past will be considered for the
calulation of the inertia statistic, regardless if they occurred or not (= are null-
events).

variablename An optional value (or values) with the name the inertia statistic variable should
be given. To be used if returnData = TRUE or multiple inertia statistics are
calculated.

returnData TRUE/FALSE. Set to FALSE by default. The new variable(s) are bound directly to
the data.frame provided and the data frame is returned in full.

showprogressbar

TRUE/FALSE. Can only be set to TRUE if the function is not run in parallel.
inParallel TRUE/FALSE. An optional boolean to specify if the loop should be run in parallel.
cluster An optional numeric or character value that defines the cluster. By specify-

ing a single number, the cluster option uses the provided number of nodes
to parallellize. By specifying a cluster using the makeCluster-command in
the doParallel-package, the loop can be run on multiple nodes/cores. E.g.,
cluster = makeCluster(12, type="FORK").

Details

The inertiaStat()-function calculates an endogenous statistic that measures whether events have
a tendency to be repeated with the same sender and target over the entire event sequence.

The effect is calculated as follows.

Gt = Gt(E) = (A,B,wt),

Gt represents the network of past events and includes all events E. These events consist each of a
sender a ∈ A and a target b ∈ B and a weight function wt:

wt(i, j) =
∑

e:a=i,b=j

|we| · e
−(t−te)· ln(2)

T1/2 · ln(2)
T1/2

,

where we is the event weight (usually a constant set to 1 for each event), t is the current event time,
te is the past event time and T1/2 is a halflife parameter.

For the inertia effect, the past events Gt are filtered to include only events where the senders and
targets are identical to the current sender and target.

inertia(Gt, a, b) = wt(a, b)

An exponential decay function is used to model the effect of time on the endogenous statistics. Each
past event that contains the same sender and target and fulfills additional filtering options specivied
via event type or event attributes is weighted with an exponential decay. The further apart the past
event is from the present event, the less weight is given to this event. The halflife parameter in the
inertiaStat()-function determins at which rate the weights of past events should be reduced.

The eventfiltervar- and eventtypevar-options help filter the past events more specifically. How
they are filtered depends on the eventfiltervalue- and eventtypevalue-option.

inertiaStat 23

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

create some data with 'sender', 'target' and a 'time'-variable
(Note: Data used here are random events from the Correlates of War Project)
sender <- c('TUN', 'NIR', 'NIR', 'TUR', 'TUR', 'USA', 'URU',

'IRQ', 'MOR', 'BEL', 'EEC', 'USA', 'IRN', 'IRN',
'USA', 'AFG', 'ETH', 'USA', 'SAU', 'IRN', 'IRN',
'ROM', 'USA', 'USA', 'PAN', 'USA', 'USA', 'YEM',
'SYR', 'AFG', 'NAT', 'NAT', 'USA')

target <- c('BNG', 'ZAM', 'JAM', 'SAU', 'MOM', 'CHN', 'IRQ',
'AFG', 'AFG', 'EEC', 'BEL', 'ITA', 'RUS', 'UNK',
'IRN', 'RUS', 'AFG', 'ISR', 'ARB', 'USA', 'USA',
'USA', 'AFG', 'IRN', 'IRN', 'IRN', 'AFG', 'PAL',
'ARB', 'USA', 'EEC', 'BEL', 'PAK')

time <- c('800107', '800107', '800107', '800109', '800109',
'800109', '800111', '800111', '800111', '800113',
'800113', '800113', '800114', '800114', '800114',
'800116', '800116', '800116', '800119', '800119',
'800119', '800122', '800122', '800122', '800124',
'800125', '800125', '800127', '800127', '800127',
'800204', '800204', '800204')

type <- sample(c('cooperation', 'conflict'), 33,
replace = TRUE)

combine them into a data.frame
dt <- data.frame(sender, target, time, type)

create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = "%y%m%d",

data = dt, type = "continuous",
byTime = "daily", returnData = TRUE,
sortData = TRUE)

create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target,
dt$event.seq.cont, eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,
returnInputData = TRUE)
divide up the results: counting process data = 1, original data = 2
dtrem <- dts[[1]]
dt <- dts[[2]]
merge all necessary event attribute variables back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]
manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime),]

24 reciprocityStat

manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime),]

calculate inertia statistics
dtrem$inertia <- inertiaStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 2, returnData = FALSE,
showprogressbar = FALSE)

plot inertia over time
library("ggplot2")
ggplot(dtrem, aes (eventTime, inertia,
group = factor(eventDummy), color = factor(eventDummy))) +
geom_point() + geom_smooth()

inertia with typematch (e.g. for 'cooperation' events only count
past 'cooperation' events)
dtrem$inertia.tm <- inertiaStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 2,
eventtypevar = dtrem$type,
eventtypevalue = "valuematch",
returnData = FALSE,
showprogressbar = FALSE)

inertia with valuemix: for each combination of types
in the eventtypevar, create a variable
dtrem <- inertiaStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 2,
eventtypevar = dtrem$type,
eventtypevalue = "valuemix",
returnData = TRUE,
showprogressbar = FALSE)

reciprocityStat Calculate reciprocity statistics

Description

Calculate the endogenous network statistic reciprocity for relational event models. reciprocity
measures the tendency for senders to reciprocate prior events where they were targeted by other
senders. One-mode network statistic only.

reciprocityStat 25

Usage

reciprocityStat(data, time, sender, target, halflife,
weight = NULL,
eventtypevar = NULL,
eventtypevalue = "valuematch",
eventfiltervar = NULL,
eventfiltervalue = NULL,
eventvar = NULL,
variablename = "recip",
returnData = FALSE,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL)

Arguments

data A data frame containing all the variables.

time Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

sender A string (or factor or numeric) variable that represents the sender of the event.

target A string (or factor or numeric) variable that represents the target of the event.

halflife A numeric value that is used in the decay function. The vector of past events
is weighted by an exponential decay function using the specified halflife. The
halflife parameter determines after how long a period the event weight should
be halved. E.g. if halflife = 5, the weight of an event that occurred 5 units in
the past is halved. Smaller halflife values give more importance to more recent
events, while larger halflife values should be used if time does not affect the time
between events that much.

weight An optional numeric variable that represents the weight of each event. If weight
= NULL each event is given an event weight of 1.

eventtypevar An optional variable that represents the type of the event. Use eventtypevalue
to specify how the eventtypevar should be used to filter past events.

eventtypevalue An optional value (or set of values) used to specify how paste events should be
filtered depending on their type. eventtypevalue = "valuematch" indicates
that only past events that have the same type as the current event should be used
to calculate the reciprocity statistic. eventtypevalue = "valuemix" indicates
that past and present events of specific types should be used for the reciprocity
statistic. All the possible combinations of the eventtypevar-values will be used.
E.g. if eventtypevar contains three unique values "a" and "b", 4 reciprocity
statistics will be calculated. The first variable calculates the reciprocity effect
where the present event is of type "a" and all the past events are of type "b".
The next variable calculates reciprocity for present events of type "b" and past
events of type "a". Additionally, a variable is calculated, where present events as
well as past events are of type "a" and a fourth variable calculates reciprocity for
events with type "b" (i.e. valuematch on value "b"). eventtypevalue = c(..,
..), similar to the "nodmix"-option, all different combinations of the values
specified in eventtypevalue are used to create reciprocity statistics.

26 reciprocityStat

eventfiltervar An optional numeric/character/or factor variable for each event. If eventfiltervar
is specified, eventfiltervalue has to be provided as well.

eventfiltervalue

An optional character string that represents the value for which past events
should be filtered. To filter the current events, use eventtypevar.

eventvar An optional dummy variable with 0 values for null-events and 1 values for true
events. If the data is in the form of counting process data, use the eventvar-
option to specify which variable contains the 0/1-dummy for event occurrence.
If this variable is not specified, all events in the past will be considered for the
calulation of the reciprocity statistic, regardless if they occurred or not (= are
null-events).

variablename An optional value (or values) with the name the reciprocity statistic variable
should be given. To be used if returnData = TRUE or multiple reciprocity statis-
tics are calculated.

returnData TRUE/FALSE. Set to FALSE by default. The new variable(s) are bound directly to
the data.frame provided and the data frame is returned in full.

showprogressbar

TRUE/FALSE. Can only be set to TRUE if the function is not run in parallel.

inParallel TRUE/FALSE. An optional boolean to specify if the loop should be run in parallel.

cluster An optional numeric or character value that defines the cluster. By specify-
ing a single number, the cluster option uses the provided number of nodes
to parallellize. By specifying a cluster using the makeCluster-command in
the doParallel-package, the loop can be run on multiple nodes/cores. E.g.,
cluster = makeCluster(12, type="FORK").

Details

The reciprocityStat()-function calculates an endogenous statistic that measures whether senders
have a tendency to reciprocate events.

The effect is calculated as follows:

Gt = Gt(E) = (A,B,wt),

Gt represents the network of past events and includes all events E. These events consist each of a
sender a ∈ A and a target b ∈ B and a weight function wt:

wt(i, j) =
∑

e:a=i,b=j

|we| · e
−(t−te)· ln(2)

T1/2 · ln(2)
T1/2

,

where we is the event weight (usually a constant set to 1 for each event), t is the current event time,
te is the past event time and T1/2 is a halflife parameter.

For the reciprocity effect, the past events Gt are filtered to include only events where the senders
are the present targets and the targets are the present senders:

reciprocity(Gt, a, b) = wt(b, a)

reciprocityStat 27

An exponential decay function is used to model the effect of time on the endogenous statistics.
Each past event that involves the sender as target and the target as sender, and fulfills additional
filtering options specified via event type or event attributes, is weighted with an exponential decay.
The further apart the past event is from the present event, the less weight is given to this event. The
halflife parameter in the reciprocityStat()-function determines at which rate the weights of past
events should be reduced.

The eventtypevar- and eventattributevar-options help filter the past events more specifically.
How they are filtered depends on the eventtypevalue- and eventattributevalue-option.

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

create some data with 'sender', 'target' and a 'time'-variable
(Note: Data used here are random events from the Correlates of War Project)
sender <- c('TUN', 'NIR', 'NIR', 'TUR', 'TUR', 'USA', 'URU',

'IRQ', 'MOR', 'BEL', 'EEC', 'USA', 'IRN', 'IRN',
'USA', 'AFG', 'ETH', 'USA', 'SAU', 'IRN', 'IRN',
'ROM', 'USA', 'USA', 'PAN', 'USA', 'USA', 'YEM',
'SYR', 'AFG', 'NAT', 'NAT', 'USA')

target <- c('BNG', 'ZAM', 'JAM', 'SAU', 'MOM', 'CHN', 'IRQ',
'AFG', 'AFG', 'EEC', 'BEL', 'ITA', 'RUS', 'UNK',
'IRN', 'RUS', 'AFG', 'ISR', 'ARB', 'USA', 'USA',
'USA', 'AFG', 'IRN', 'IRN', 'IRN', 'AFG', 'PAL',
'ARB', 'USA', 'EEC', 'BEL', 'PAK')

time <- c('800107', '800107', '800107', '800109', '800109',
'800109', '800111', '800111', '800111', '800113',
'800113', '800113', '800114', '800114', '800114',
'800116', '800116', '800116', '800119', '800119',
'800119', '800122', '800122', '800122', '800124',
'800125', '800125', '800127', '800127', '800127',
'800204', '800204', '800204')

type <- sample(c('cooperation', 'conflict'), 33,
replace = TRUE)

important <- sample(c('important', 'not important'), 33,
replace = TRUE)

combine them into a data.frame
dt <- data.frame(sender, target, time, type, important)

create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = "%y%m%d",

data = dt, type = "continuous",
byTime = "daily", returnData = TRUE,
sortData = TRUE)

28 reciprocityStat

create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target, dt$event.seq.cont,

eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,

returnInputData = TRUE)
divide up the results: counting process data = 1, original data = 2
dtrem <- dts[[1]]
dt <- dts[[2]]
merge all necessary event attribute variables back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]
dtrem$important <- dt$important[match(dtrem$eventID, dt$eventID)]
manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime),]

calculate reciprocity statistic
dtrem$recip <- reciprocityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 2)

plot sender-outdegree over time
library("ggplot2")
ggplot(dtrem, aes(eventTime, recip,

group = factor(eventDummy), color = factor(eventDummy))) +
geom_point()+ geom_smooth()

calculate reciprocity statistic with typematch
if a cooperated with b in the past, does
b cooperate with a now?
dtrem$recip.typematch <- reciprocityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventtypevar = dtrem$type,
eventtypevalue = 'valuematch',
halflife = 2)

calculate reciprocity with valuemix on type
dtrem <- reciprocityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventtypevar = dtrem$type,
eventtypevalue = 'valuemix',
halflife = 2,
returnData = TRUE)

calculate reciprocity and count important events only
dtrem$recip.filtered <- reciprocityStat(data = dtrem,

similarityStat 29

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
eventfiltervar = dtrem$important,
eventfiltervalue = 'important',
halflife = 2)

similarityStat Calculate similarity statistics

Description

Calculate the endogenous network statistic similarity for relational event models. similarityStat
measures the tendency for senders to adapt their behavior to that of their peers.

Usage

similarityStat(data, time, sender, target,
senderOrTarget = 'sender',
whichSimilarity = NULL,
halflifeLastEvent = NULL,
halflifeTimeBetweenEvents = NULL,
eventtypevar = NULL,
eventfiltervar = NULL,
eventfiltervalue = NULL,
eventvar = NULL,
variablename = 'similarity',
returnData = FALSE,
dataPastEvents = NULL,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL

)

Arguments

data A data frame containing all the variables.

time Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

sender A string (or factor or numeric) variable that represents the sender of the event.

target A string (or factor or numeric) variable that represents the target of the event.

senderOrTarget sender or target. Indicates on which variable (sender or target) the similarity
should be calculated on. Sender similarity measures how many targets the cur-
rent sender has in common with other senders who used the same targets in the
past. Target similarity measures how many senders have used the current target
as well as another target that the current sender used in the past.

30 similarityStat

whichSimilarity

"total" or "average". Indicates how the variable should be aggregated. "total"
counts the number of similar events there are in the past event history. "average"
divides the count of similar events by the number of senders or the number of
targets, depending on which mode of similarity is chosen.

halflifeLastEvent

A numeric value that is used in the decay function. The vector of past events
is weighted by an exponential decay function using the specified halflife. The
halflife parameter determines after how long a period the event weight should be
halved. For sender similarity: The halflife determines the weight of the count of
targets that two actors have in common. The further back the second sender was
active, the less weight is given the similarity between this sender and the current
sender. For target similarity: The halflife determines the weight of the count of
targets that have used both been used by other senders in the past. The longer
ago the current sender engaged in an event with the other target, the less weight
is given the count.

halflifeTimeBetweenEvents

A numeric value that is used in the decay function. Instead of counting each past
event for the similarity statistic, each event is reduced depending on the time
that passed between the current event and the past event. For sender similarity:
Each target that two actors have in common is weighted by the time that passed
between the two events. For target similarity: Each sender that two targets have
in common is weighted by the time that passed between the two events.

eventtypevar An optional dummy variable that represents the type of the event. If specified,
only past events are considered for the count that reflect the same type as the
current event (typematch).

eventfiltervar An optional variable that filters past events by the eventfiltervalue specified.
eventfiltervalue

A string that represents an event attribute by which all past events have to be
filtered by.

eventvar An optional dummy variable with 0 values for null-events and 1 values for true
events. If the data is in the form of counting process data, use the eventvar-
option to specify which variable contains the 0/1-dummy for event occurrence.
If this variable is not specified, all events in the past will be considered for the
calulation of the similarity statistic, regardless if they occurred or not (= are null-
events). Misspecification could result in grievous errors in the calculation of the
network statistic.

variablename An optional value (or values) with the name the similarity statistic variable
should be given. To be used if returnData = TRUE.

returnData TRUE/FALSE. Set to FALSE by default. The new variable(s) are bound directly to
the data.frame provided and the data frame is returned in full.

dataPastEvents An optional data.frame with the following variables: column 1 = time variable,
column 2 = sender variable, column 3 = target on other variable (or all "1"),
column 4 = event type variable (or all "1"), column 5 = event filter variable (or
all "1"). Make sure that the data frame does not contain null events. Filter it out
for true events only.

similarityStat 31

showprogressbar

TRUE/FALSE. To be implemented.

inParallel TRUE/FALSE. An optional boolean to specify if the loop should be run in parallel.

cluster An optional numeric or character value that defines the cluster. By specify-
ing a single number, the cluster option uses the provided number of nodes
to parallellize. By specifying a cluster using the makeCluster-command in
the doParallel-package, the loop can be run on multiple nodes/cores. E.g.,
cluster = makeCluster(12, type="FORK").

Details

The similiarityStat()-function calculates an endogenous statistic that measures whether sender
(or targets) have a tendency to cluster together. Tow distinct types of similarity measures can be
calculated: sender similarity or target similarity.

Sender similarity: How many targets does the current sender have in common with senders who
used the current target in the past? How likely is it that two senders are alike?

The function proceeds as follows:

1. First it filters out all the targets that the present sender a used in the past

2. Next it filters out all the senders that have also used the current target b

3. For each of the senders found in (2) it compiles a list of targets that this sender has used in the
past

4. For each of the senders found in (2) it cross-checks the two lists generated in (1) and (3) and
count how many targets the two senders have in common.

Target similarity: How many senders have used the same two concepts that the current sender has
used (in the past and is currently using)? For each target that the current sender has used in the past,
how many senders have also used these past targets as well as the current target? How likely is it
that two targets are used together?

The function proceeds as follows:

1. First filter out all the targets that the current sender a has used in the past

2. Next it filters out all the senders that have also used the current target b

3. For each target found in (1) it compiles a list of senders that have also used this target in the
past

4. For each target found in (1) it cross-checks the list of senders that have used b (found under
(2)) and the list of senders that also used one other target that a used (found under (3))

Two decay functions may be used in the calculation of the similarity score for each event.

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

32 similarityStat

Examples

create some data with 'sender', 'target' and a 'time'-variable
(Note: Data used here are random events from the Correlates of War Project)
sender <- c('TUN', 'NIR', 'NIR', 'TUR', 'TUR', 'USA', 'URU',

'IRQ', 'MOR', 'BEL', 'EEC', 'USA', 'IRN', 'IRN',
'USA', 'AFG', 'ETH', 'USA', 'SAU', 'IRN', 'IRN',
'ROM', 'USA', 'USA', 'PAN', 'USA', 'USA', 'YEM',
'SYR', 'AFG', 'NAT', 'NAT', 'USA')

target <- c('BNG', 'ZAM', 'JAM', 'SAU', 'MOM', 'CHN', 'IRQ',
'AFG', 'AFG', 'EEC', 'BEL', 'ITA', 'RUS', 'UNK',
'IRN', 'RUS', 'AFG', 'ISR', 'ARB', 'USA', 'USA',
'USA', 'AFG', 'IRN', 'IRN', 'IRN', 'AFG', 'PAL',
'ARB', 'USA', 'EEC', 'BEL', 'PAK')

time <- c('800107', '800107', '800107', '800109', '800109',
'800109', '800111', '800111', '800111', '800113',
'800113', '800113', '800114', '800114', '800114',
'800116', '800116', '800116', '800119', '800119',
'800119', '800122', '800122', '800122', '800124',
'800125', '800125', '800127', '800127', '800127',
'800204', '800204', '800204')

type <- sample(c('cooperation', 'conflict'), 33,
replace = TRUE)

important <- sample(c('important', 'not important'), 33,
replace = TRUE)

combine them into a data.frame
dt <- data.frame(sender, target, time, type, important)

create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = "%y%m%d",

data = dt, type = "continuous",
byTime = "daily", returnData = TRUE,
sortData = TRUE)

create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target, dt$event.seq.cont,

eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,

returnInputData = TRUE)
divide up the results: counting process data = 1, original data = 2
dtrem <- dts[[1]]
dt <- dts[[2]]
merge all necessary event attribute variables back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]
dtrem$important <- dt$important[match(dtrem$eventID, dt$eventID)]
manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime),]

average sender similarity
dtrem$s.sim.av <- similarityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,

timeToEvent 33

target = dtrem$target,
eventvar = dtrem$eventDummy,
senderOrTarget = "sender",
whichSimilarity = "average")

average target similarity
dtrem$t.sim.av <- similarityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
senderOrTarget = "target",
whichSimilarity = "average")

Calculate sender similarity with 1 halflife
parameter: This parameter makes sure, that those other
senders (with whom you compare your targets) have been
active in the past. THe longer they've done nothing, the
less weight is given to the number of similar targets.
dtrem$s.sim.hl2 <- similarityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
senderOrTarget = "sender",
halflifeLastEvent = 2)

Calculate sender similarity with 2 halflife parameters:
The first parameter makes sure that the actors against
whom you compare yourself have been active in the
recent past. The second halflife parameter makes
sure that the two events containing the same
targets (once by the current actor, once by the other
actor) are not that far apart. The longer apart, the
less likely it is that the current sender will remember
how the similar-past sender has acted.
dtrem$s.sim.hl2.hl1 <- similarityStat(data = dtrem,

time = dtrem$eventTime,
sender = dtrem$sender,
target = dtrem$target,
eventvar = dtrem$eventDummy,
senderOrTarget = "sender",
halflifeLastEvent = 2,
halflifeTimeBetweenEvents = 1)

timeToEvent Calculate the time-to-next-event or the time-since-date for a REM data
set.

Description

Calculate time-to-next-event or time-since-date for a REM data set.

34 timeToEvent

Usage

timeToEvent(time, type = 'time-to-next-event', timeEventPossible = NULL)

Arguments

time A integer or Date variable reflecting the time of the event. Note: make sure to
specify event time not the event sequence in a counting process data set.

type Either ’time-to-next-event’ or ’time-since-date’. type = 'time-to-next-event'
calculates the time between the current event and the event closes to the current
in the past. type = 'time-since-date' uses the time-variable as well as the
timeEventPossible-variable to calculate how much time has passed between
the two variables, i.e., how long the event took to come true.

timeEventPossible

An optional integer or Date variable to be used if type = 'time-since-date'
is specified.

Details

To come.

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

Examples

get some random data
dt <- data.frame(

sender = c('a', 'c', 'd', 'a', 'a', 'f', 'c'),
target = c('b', 'd', 'd', 'b', 'b', 'a', 'd'),
date = c(rep('10.01.90',2), '11.01.90', '04.01.90',
'05.01.90', rep('10.01.90',2)),
start = c(0, 0, 1, 1, 1, 3, 3),
end = rep(6, 7),
targetAvailableSince = c(rep(-10,6), -2),
dateTargetAvailable = c(rep('31.12.89',6), '01.01.90')

)

create event sequence
dt <- eventSequence(dt$date, dateformat = '%d.%m.%y', data = dt,

type = "continuous", byTime = "daily",
excludeDate = '07.01.90',
returnData = TRUE, sortData = TRUE,
returnDateSequenceData = FALSE)

also return the sequenceData
dt.seq <- eventSequence(dt$date, dateformat = '%d.%m.%y', data = dt,

timeToEvent 35

type = "continuous", byTime = "daily",
excludeDate = '07.01.90',
returnDateSequenceData = TRUE)

create counting process data set
dts <- createRemDataset(
data = dt, sender = dt$sender, target = dt$target,
eventSequence = dt$event.seq.cont,
eventAttribute = NULL, time = NULL,
start = dt$start, startDate = NULL,
end = dt$end, endDate = NULL,
timeformat = NULL, atEventTimesOnly = TRUE,
untilEventOccurrs = TRUE,
includeAllPossibleEvents = FALSE,
possibleEvents = NULL, returnInputData = TRUE)
divide up the results: counting process data = 1, original data = 2
dt.rem <- dts[[1]]
dt <- dts[[2]]

merge all necessary event attribute variables back in
dt.rem$targetAvailableSince <- dt$targetAvailableSince[match(dt.rem$eventID,
dt$eventID)]
dt.rem$dateTargetAvailable <- dt$dateTargetAvailable[match(dt.rem$eventID,
dt$eventID)]

add dates to the eventTime
dt.rem$eventDate <- dt.seq$date.sequence[match(dt.rem$eventTime,
dt.seq$event.sequence)]

sort the dataframe according to eventTime
dt.rem <- dt.rem[order(dt.rem$eventTime),]

1. numeric, time-to-next-event
dt.rem$timeToNextEvent <- timeToEvent(as.integer(dt.rem$eventTime))

2. numeric, time-since
dt.rem$timeSince <- timeToEvent(dt.rem$eventTime,

type = 'time-since-date',
dt.rem$targetAvailableSince)

3. Date, time-to-next-event
since the event sequence excluded 06.01.90 => time to next event differs
for the two specification with the integr (1) and the Date-variable (2).
To be consistent, pick the eventTime instead of the Date-variable.
dt.rem$timeToNextEvent2 <- timeToEvent(as.Date(dt.rem$eventDate, '%d.%m.%y'))

4. Date, time-since
dt.rem$timeSince2 <- timeToEvent(
as.Date(dt.rem$eventDate, '%d.%m.%y'),
type = 'time-since-date',
as.Date(dt.rem$dateTargetAvailable, '%d.%m.%y'))

36 triadStat

triadStat Calculate triad statistics

Description

Calculate the endogenous network statistic triads that measures the tendency for events to close
open triads.

Usage

triadStat(data, time, sender, target, halflife,
weight = NULL,
eventtypevar = NULL,
eventtypevalues = NULL,
eventfiltervar = NULL,
eventfilterAI = NULL,
eventfilterBI = NULL,
eventfilterAB = NULL,
eventvar = NULL,
variablename = 'triad',
returnData = FALSE,
showprogressbar = FALSE,
inParallel = FALSE, cluster = NULL

)

Arguments

data A data frame containing all the variables.

time Numeric variable that represents the event sequence. The variable has to be
sorted in ascending order.

sender A string (or factor or numeric) variable that represents the sender of the event.

target A string (or factor or numeric) variable that represents the target of the event.

halflife A numeric value that is used in the decay function. The vector of past events
is weighted by an exponential decay function using the specified halflife. The
halflife parameter determins after how long a period the event weight should be
halved. E.g. if halflife = 5, the weight of an event that occured 5 units in
the past is halved. Smaller halflife values give more importance to more recent
events, while larger halflife values should be used if time does not affect the
sequence of events that much.

weight An optional numeric variable that represents the weight of each event. If weight
= NULL each event is given an event weight of 1.

eventtypevar An optional dummy variable that represents the type of the event. Use eventtypevalues
to specify how the eventtypevar should be used to filter past events. Specify-
ing the eventtypevar is needed to calculate effects of social balance theory,
such as ’friend-of-friend’ or ’enemy-of-enemy’ statistics.

triadStat 37

eventtypevalues

Two string values that represent the type of the past events. The first string value
represents the eventtype that exists for all past events that include the current
sender (either as sender or target) and a third actor. The second value repre-
sents the eventtype for all past events that include the target (either as sender
or target) as well as the third actor. An example: Let the eventtypevar indi-
cate whether an event is of cooperative or hostile nature. To test whether the
hypothesis ’the friend of my friend is my friend’ holds, both eventtypevalues
must be the same and point to the cooperative type (e.g. eventtypevalues =
c("cooperation", "cooperation")) depending on how the eventtypevar is
coded. To test whether the hypothesis ’the friend of my enemy is my enemy’
holds, the first value in eventtypevalues represents the hostile event between
current sender and a third actor and the second value represents the cooperative
event between the third actor and the target. To test the hypothesis ’the enemy
of my enemy is my friend’, the first value represents the hostile events between
current sender and a third actor and the second value represents the hostile event
between the current target and the third actor. For the fourth hypothesis, to test
social balance theory ’the enemy of my friend is my enemy’, the first value rep-
resents a cooperative event between the current sender and a third actor and the
second value represents a hostile event between the current target and the third
actor.

eventfiltervar An optional string (or factor or numeric) variable that can be used to filter past
and current events. Use eventfilterAI, eventfilterBI or eventfilterAB to
specify which past events should be filtered and by what value.

eventfilterAI An optional value used to specify how paste events should be filtered depending
on their attribute. Each distinct edge that form a triad can be filtered. eventfilterAI
refers to the past event involving the current sender (a) and a third actor (i).
eventfilterBIreferrs to past events involving target (b) and the third actor (i).
eventfilterAB refers to the current event involving sender (a) and target (b).

eventfilterBI see eventfilterAI.

eventfilterAB see eventfilterAI.

eventvar An optional dummy variable with 0 values for null-events and 1 values for true
events. If the data is in the form of counting process data, use the eventvar-
option to specify which variable contains the 0/1-dummy for event occurrence.
If this variable is not specified, all events in the past will be considered for the
calulation of the triad statistic, regardless if they occurred or not (= are null-
events).

variablename An optional value (or values) with the name the triad statistic variable should be
given. To be used if returnData = TRUE.

returnData TRUE/FALSE. Set to FALSE by default. The new variable is bound directly to the
data.frame provided and the data frame is returned in full.

showprogressbar

TRUE/FALSE. Can only be set to TRUE if the function is not run in parallel.

inParallel TRUE/FALSE. An optional boolean to specify if the loop should be run in parallel.

cluster An optional numeric or character value that defines the cluster. By specify-
ing a single number, the cluster option uses the provided number of nodes

38 triadStat

to parallellize. By specifying a cluster using the makeCluster-command in
the doParallel-package, the loop can be run on multiple nodes/cores. E.g.,
cluster = makeCluster(12, type="FORK").

Details

The triadStat()-function calculates an endogenous statistic that measures whether events have a
tendency to form closing triads.

The effect is calculated as follows:

Gt = Gt(E) = (A,B,wt),

Gt represents the network of past events and includes all events E. These events consist each of a
sender a ∈ A and a target b ∈ B and a weight function wt:

wt(i, j) =
∑

e:a=i,b=j

|we| · e
−(t−te)· ln(2)

T1/2 · ln(2)
T1/2

,

where we is the event weight (usually a constant set to 1 for each event), t is the current event time,
te is the past event time and T1/2 is a halflife parameter.

For the triad effect, the past events Gt are filtered to include only events where the current event
closes an open triad in the past.

triad(Gt, a, b) =

√∑
i∈A

wt(a, i) · wt(i, b)

An exponential decay function is used to model the effect of time on the endogenous statistics. The
further apart the past event is from the present event, the less weight is given to this event. The
halflife parameter in the triadStat()-function determines at which rate the weights of past events
should be reduced. Therefore, if the one (or more) of the two events in the triad have occurred
further in the past, less weight is given to this triad because it becomes less likely that the sender
and target actors reacted to each other in the way the triad assumes.

The eventtypevar- and eventattributevar-options help filter the past events more specifically.
How they are filtered depends on the eventtypevalue- and eventattributevalue-option.

Author(s)

Laurence Brandenberger <laurence.brandenberger@eawag.ch>

See Also

rem-package

triadStat 39

Examples

create some data with 'sender', 'target' and a 'time'-variable
(Note: Data used here are random events from the Correlates of War Project)
sender <- c('TUN', 'UNK', 'NIR', 'TUR', 'TUR', 'USA', 'URU',

'IRQ', 'MOR', 'BEL', 'EEC', 'USA', 'IRN', 'IRN',
'USA', 'AFG', 'ETH', 'USA', 'SAU', 'IRN', 'IRN',
'ROM', 'USA', 'USA', 'PAN', 'USA', 'USA', 'YEM',
'SYR', 'AFG', 'NAT', 'UNK', 'IRN')

target <- c('BNG', 'RUS', 'JAM', 'SAU', 'MOM', 'CHN', 'IRQ',
'AFG', 'AFG', 'EEC', 'BEL', 'ITA', 'RUS', 'UNK',
'IRN', 'RUS', 'AFG', 'ISR', 'ARB', 'USA', 'USA',
'USA', 'AFG', 'IRN', 'IRN', 'IRN', 'AFG', 'PAL',
'ARB', 'USA', 'EEC', 'IRN', 'CHN')

time <- c('800107', '800107', '800107', '800109', '800109',
'800109', '800111', '800111', '800111', '800113',
'800113', '800113', '800114', '800114', '800114',
'800116', '800116', '800116', '800119', '800119',
'800119', '800122', '800122', '800122', '800124',
'800125', '800125', '800127', '800127', '800127',
'800204', '800204', '800204')

type <- sample(c('cooperation', 'conflict'), 33,
replace = TRUE)

important <- sample(c('important', 'not important'), 33,
replace = TRUE)

combine them into a data.frame
dt <- data.frame(sender, target, time, type, important)

create event sequence and order the data
dt <- eventSequence(datevar = dt$time, dateformat = "%y%m%d",

data = dt, type = "continuous",
byTime = "daily", returnData = TRUE,
sortData = TRUE)

create counting process data set (with null-events) - conditional logit setting
dts <- createRemDataset(dt, dt$sender, dt$target, dt$event.seq.cont,

eventAttribute = dt$type,
atEventTimesOnly = TRUE, untilEventOccurrs = TRUE,

returnInputData = TRUE)
dtrem <- dts[[1]]
dt <- dts[[2]]
manually sort the data set
dtrem <- dtrem[order(dtrem$eventTime),]
merge type-variable back in
dtrem$type <- dt$type[match(dtrem$eventID, dt$eventID)]

calculate triad statistic
dtrem$triad <- triadStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
eventvar = dtrem$eventDummy,
halflife = 2)

40 triadStat

calculate friend-of-friend statistic
dtrem$triad.fof <- triadStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
halflife = 2, eventtypevar = dtrem$type,
eventtypevalues = c("cooperation",

"cooperation"),
eventvar = dtrem$eventDummy)

calculate friend-of-enemy statistic
dtrem$triad.foe <- triadStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
halflife = 2, eventtypevar = dtrem$type,
eventtypevalues = c("conflict",

"cooperation"),
eventvar = dtrem$eventDummy)

calculate enemy-of-friend statistic
dtrem$triad.eof <- triadStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
halflife = 2, eventtypevar = dtrem$type,
eventtypevalues = c("cooperation",

"conflict"),
eventvar = dtrem$eventDummy)

calculate enemy-of-enemy statistic
dtrem$triad.eoe <- triadStat(data = dtrem, time = dtrem$eventTime,

sender = dtrem$sender, target = dtrem$target,
halflife = 2, eventtypevar = dtrem$type,
eventtypevalues = c("conflict",

"conflict"),
eventvar = dtrem$eventDummy)

Index

as.Date, 4, 13

createRemDataset, 2, 3

degree (degreeStat), 7
degreeStat, 2, 7

event sequence (eventSequence), 13
event.sequence (eventSequence), 13
eventSequence, 13

fourCycle (fourCycleStat), 16
fourCycleStat, 2, 16

indegree (degreeStat), 7
inertia (inertiaStat), 20
inertiaStat, 2, 20

outdegree (degreeStat), 7

reciprocity (reciprocityStat), 24
reciprocityStat, 2, 24
relational event model (rem-package), 2
relational-event-model (rem-package), 2
rem (rem-package), 2
rem-package, 2, 5, 11, 14, 19, 23, 27, 31, 34,

38

similarity (similarityStat), 29
similarityStat, 2, 29

timeToEvent, 33
triad (triadStat), 36
triadStat, 2, 36

41

	rem-package
	createRemDataset
	degreeStat
	eventSequence
	fourCycleStat
	inertiaStat
	reciprocityStat
	similarityStat
	timeToEvent
	triadStat
	Index

