
Package ‘recometrics’
February 20, 2023

Type Package
Title Evaluation Metrics for Implicit-Feedback Recommender Systems
Version 0.1.6-3
Author David Cortes
Maintainer David Cortes <david.cortes.rivera@gmail.com>

URL https://github.com/david-cortes/recometrics

BugReports https://github.com/david-cortes/recometrics/issues

Description Calculates evaluation metrics for implicit-feedback recommender systems
that are based on low-rank matrix factorization models, given the fitted model
matrices and data, thus allowing to compare models from a variety of libraries.
Metrics include P@K (precision-at-k, for top-K recommendations), R@K (recall at k),
AP@K (average precision at k), NDCG@K (normalized discounted cumulative gain at k),
Hit@K (from which the 'Hit Rate' is calculated), RR@K (reciprocal rank at k, from
which the 'MRR' or 'mean reciprocal rank' is calculated), ROC-AUC (area under the
receiver-operating characteristic curve), and PR-AUC (area under the
precision-recall curve).
These are calculated on a per-user basis according to the ranking of items induced
by the model, using efficient multi-threaded routines. Also provides functions
for creating train-test splits for model fitting and evaluation.

LinkingTo Rcpp, float
Imports Rcpp (>= 1.0.1), Matrix (>= 1.3-4), MatrixExtra (>= 0.1.6),

float, RhpcBLASctl, methods
Suggests recommenderlab (>= 0.2-7), cmfrec (>= 3.2.0), data.table,

knitr, rmarkdown, kableExtra, testthat
VignetteBuilder knitr
License BSD_2_clause + file LICENSE
RoxygenNote 7.1.1
StagedInstall TRUE
Biarch TRUE
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-02-19 23:00:02 UTC

1

https://github.com/david-cortes/recometrics
https://github.com/david-cortes/recometrics/issues

2 calc.reco.metrics

R topics documented:
calc.reco.metrics . 2
create.reco.train.test . 9

Index 12

calc.reco.metrics Calculate Recommendation Quality Metrics

Description

Calculates recommendation quality metrics for implicit-feedback recommender systems (fit to user-
item interactions data such as "number of times that a user played each song in a music service")
that are based on low-rank matrix factorization or for which predicted scores can be reduced to a
dot product between user and item factors/components.

These metrics are calculated on a per-user basis, by producing a ranking of the items according to
model predictions (in descending order), ignoring the items that are in the training data for each
user. The items that were not consumed by the user (not present in ‘X_train‘ and not present in
‘X_test‘) are considered "negative" entries, while the items in ‘X_test‘ are considered "positive"
entries, and the items present in ‘X_train‘ are ignored for these calculations.

The metrics that can be calculated by this function are:

• ‘P@K‘ ("precision-at-k"): denotes the proportion of items among the top-K recommended
(after excluding those that were already in the training data) that can be found in the test set
for that user:
P@K = 1

k

∑k
i=1 ri ∈ T

This is perhaps the most intuitive and straightforward metric, but it can present a lot of varia-
tion between users and does not take into account aspects such as the number of available test
items or the specific ranks at which they are shown.

• ‘TP@K‘ (truncated precision-at-k): a truncated or standardized version of the precision met-
ric, which will divide instead by the minimum between ‘k‘ and the number of test items:

TP@K = 1
min{k,T }

∑k
i=1 ri ∈ T

Note: many papers and libraries call this the "P@K" instead. The "truncated" prefix is a
non-standard nomenclature introduced here to differentiate it from the P@K metric that is
calculated by this and other libraries.

• ‘R@K‘ ("recall-at-k"): proportion of the test items that are retrieved in the top-K recom-
mended list. Calculation is the same as precision, but the division is by the number of test
items instead of ‘k‘:
R@K = 1

|T |
∑k

i=1 ri ∈ T
• ‘AP@K‘ ("average precision-at-k"): precision and recall look at all the items in the top-K

equally, whereas one might want to take into account also the ranking within this top-K list,
for which this metric comes in handy. "Average Precision" tries to reflect the precisions that
would be obtained at different recalls:
AP@K = 1

|T |
∑k

i=1(ri ∈ T) · P@i

calc.reco.metrics 3

This is a metric which to some degree considers precision, recall, and rank within top-K.
Intuitively, it tries to approximate the are under a precision-recall tradeoff curve.
The average of this metric across users is known as "Mean Average Precision" or "MAP@K".
IMPORTANT: many authors define AP@K differently, such as dividing by the minimum
between ‘k‘ and the number of test items instead, or as the average for P@1..P@K (either
as-is or stopping after already retrieving all the test items) - here, the second version is offered
as different metric instead. This metric is likely to be a source of mismatches when comparing
against other libraries due to all the different defintions used by different authors.

• ‘TAP@K‘ (truncated average precision-at-k): a truncated version of the AP@K metric, which
will instead divide it by the minimum between ‘k‘ and the number of test items.
Many other papers and libraries call this the "average precision" instead.

• ‘NDCG@K‘ (normalized discounted cumulative gain at K): a ranking metric calculated by
first determining the following:∑k

i=1
Ci

log2(i+1)

Where Ci denotes the confidence score for an item (taken as the value in ‘X_test‘ for that
item), with ‘i‘ being the item ranked at a given position for a given user according to the
model. This metric is then standardized by dividing by the maximum achievable such score
given the test data.
Unlike the other metrics:

– It looks not only at the presence or absence of items, but also at their confidence score.
– It can handle data which contains "dislikes" in the form of negative values (see caveats

below).

If there are only non-negative values in ‘X_test‘, this metric will be bounded between zero
and one.
A note about negative values: the NDCG metric assumes that all the values are non-negative.
This implementation however can accommodate situations in which a very small fraction of
the items have negative values, in which case: (a) it will standardize the metric by dividing
by a number which does not consider the negative values in its sum; (b) it will be set to ‘NA‘
if there are no positive values. Be aware however that NDCG loses some of its desirable
properties in the presence of negative values.

• ‘Hit@K‘ ("hit-at-k"): indicates whether any of the top-K recommended items can be found in
the test set for that user. The average across users is typically referred to as the "Hit Rate".
This is a binary metric (it is either zero or one, but can also be ‘NA‘ when it is not possible to
calculate, just like the other metrics).

• ‘RR@K‘ ("reciprocal-rank-at-k"): inverse rank (one divided by the rank) of the first item
among the top-K recommended that is in the test data. The average across users is typically
referred to as the "Mean Reciprocal Rank" or MRR.
If none of the top-K recommended items are in the test data, will be set to zero.

• ‘ROC-AUC‘ (area under the receiver-operating characteristic curve): see the Wikipedia entry
for details. This metric considers the full ranking of items rather than just the top-K. It is
bounded between zero and one, with a value of 0.5 corresponding to a random order and a
value of 1 corresponding to a perfect ordering (i.e. every single positive item has a higher
predicted score than every single negative item).
Be aware that there are different ways of calculating AUC, with some methods having higher
precision than others. This implementation uses a fast formula which implies dividing two

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

4 calc.reco.metrics

large numbers, and as such might not be as precise to the same number of decimals as the
trapezoidal method used by e.g. scikit-learn.

• ‘PR-AUC‘ (area under the precision-recall curve): while ROC AUC provides an overview of
the overall ranking, one is typically only interested in how well it retrieves test items within
top ranks, and for this the area under the precision-recall curve can do a better job at judging
rankings, albeit the metric itself is not standardized, and under the worst possible ranking, it
does not evaluate to zero.
The metric is calculated using the fast but not-so-precise rectangular method, whose formula
corresponds to the AP@K metric with K=N. Some papers and libraries call this the average
of this metric the "MAP" or "Mean Average Precision" instead (without the "@K").

Metrics can be calculated for a given value of ‘k‘ (e.g. "P@3"), or for values ranging from 1 to ‘k‘
(e.g. ["P@1", "P@2", "P@3"]).

This package does NOT cover other more specialized metrics. One might also want to look at other
indicators such as:

• Metrics that look at the rareness of the items recommended (to evaluate so-called "serendip-
ity").

• Metrics that look at "discoverability".

• Metrics that take into account the diversity of the ranked lists.

Usage

calc.reco.metrics(
X_train,
X_test,
A,
B,
k = 5L,
item_biases = NULL,
as_df = TRUE,
by_rows = FALSE,
sort_indices = TRUE,
precision = TRUE,
trunc_precision = FALSE,
recall = FALSE,
average_precision = TRUE,
trunc_average_precision = FALSE,
ndcg = TRUE,
hit = FALSE,
rr = FALSE,
roc_auc = FALSE,
pr_auc = FALSE,
all_metrics = FALSE,
rename_k = TRUE,
break_ties_with_noise = TRUE,
min_pos_test = 1L,
min_items_pool = 2L,

calc.reco.metrics 5

consider_cold_start = TRUE,
cumulative = FALSE,
nthreads = parallel::detectCores(),
seed = 1L

)

Arguments

X_train Training data for user-item interactions, with users denoting rows, items de-
noting columns, and values corresponding to confidence scores. Entries in
‘X_train‘ and ‘X_test‘ for each user should not intersect (that is, if an item is
the training data as a non-missing entry, it should not be in the test data as non-
missing, and vice versa).
Should be passed as a sparse matrix in CSR format (class ‘dgRMatrix‘ from
package ‘Matrix‘, can be converted to that format using ‘MatrixExtra::as.csr.matrix‘).
Items not consumed by the user should not be present in this matrix.
Alternatively, if there is no training data, can pass ‘NULL‘, in which case it will
look only at the test data.
This matrix and ‘X_test‘ are not meant to contain negative values, and if ‘X_test‘
does contain any, it will still be assumed for all metrics other than NDCG that
such items are deemed better for the user than the missing/zero-valued items
(that is, implicit feedback is not meant to signal dislikes).

X_test Test data for user-item interactions. Same format as ‘X_train‘.

A The user factors. If the number of users is ’m’ and the number of factors is
’p’, should have dimension ‘[p, m]‘ if passing ‘by_rows=FALSE‘ (the default),
or dimension ‘[m, p]‘ if passing ‘by_rows=TRUE‘ (in wich case it will be in-
ternally transposed due to R’s column-major storage order). Can be passed as
a dense matrix from base R (class ‘matrix‘), or as a matrix from package float
(class ‘float32‘) - if passed as ‘float32‘, will do the calculations in single preci-
sion (which is faster and uses less memory) and output the calculated metrics as
‘float32‘ arrays.
It is assumed that the model score for a given item ‘j‘ for user ‘i‘ is calculated
as the inner product or dot product between the corresponding vectors ai · bj

(columns ‘i‘ and ‘j‘ of ‘A‘ and ‘B‘, respectively, when passing ‘by_rows=FALSE‘),
with higher scores meaning that the item is deemed better for that user, and the
top-K recommendations produced by ranking these scores in descending order.
Alternatively, for evaluation of non-personalized models, can pass ‘NULL‘ here
and for ‘B‘, in which case ‘item_biases‘ must be passed.

B The item factors, in the same format as ‘A‘.

k The number of top recommendations to consider for the metrics (as in "precision-
at-k" or "P@K").

item_biases Optional item biases/intercepts (fixed base score that is added to the predictions
of each item). If present, it will append them to ‘B‘ as an extra factor while
adding a factor of all-ones to ‘A‘.
Alternatively, for non-personalized models which have only item-by-item scores,
can pass ‘NULL‘ for ‘A‘ and ‘B‘ while passing only ‘item_biases‘.

6 calc.reco.metrics

as_df Whether to output the result as a ‘data.frame‘. If passing ‘FALSE‘, the results
will be returned as a list of vectors or matrices depending on what is passed
for ‘cumulative‘. If ‘A‘ and ‘B‘ are passed as ‘float32‘ matrices, the resulting
‘float32‘ arrays will be converted to base R’s arrays in order to be able to create
a ‘data.frame‘.

by_rows Whether the latent factors/components are ordered by rows, in which case they
will be transposed beforehand (see documentation for ‘A‘).

sort_indices Whether to sort the indices of the ‘X‘ data in case they are not sorted already.
Skipping this step will make it faster and will make it consume less memory.
If the ‘X_train‘ and ‘X_test‘ matrices were created using functions from the
‘Matrix‘ package such as ‘Matrix::spMatrix‘ or ‘Matrix::Matrix‘, the indices
will always be sorted, but if creating it manually through S4 methods or as the
output of other software, the indices can end up unsorted.

precision Whether to calculate precision metrics or not.
trunc_precision

Whether to calculate truncated precision metrics or not. Note that this is out-
put as a separate metric from "precision" and they are not mutually exclusive
options.

recall Whether to calculate recall metrics or not.
average_precision

Whether to calculate average precision metrics or not.
trunc_average_precision

Whether to calculate truncated average precision metrics or not. Note that this is
output as a separate metric from "average_precision" and they are not mutually
exclusive options.

ndcg Whether to calculate NDCG (normalized discounted cumulative gain) metrics
or not.

hit Whether to calculate Hit metrics or not.

rr Whether to calculate RR (reciprocal rank) metrics or not.

roc_auc Whether to calculate ROC-AUC (area under the ROC curve) metrics or not.

pr_auc Whether to calculate PR-AUC (area under the PR curve) metrics or not.

all_metrics Passing ‘TRUE‘ here is equivalent to passing ‘TRUE‘ to all the calculable met-
rics.

rename_k If passing ‘as_df=TRUE‘ and ‘cumulative=FALSE‘, whether to rename the ’k’
in the resulting column names to the actual value of ’k’ that was used (e.g.
"p_at_k" -> "p_at_5").

break_ties_with_noise

Whether to add a small amount of noise ‘~Uniform(-10^-12, 10^-12)‘ in order
to break ties at random, in case there are any ties in the ranking. This is not
recommended unless one expects ties (can happen if e.g. some factors are set to
all-zeros for some items), as it has the potential to slightly alter the ranking.

min_pos_test Minimum number of positive entries (non-zero entries in the test set) that users
need to have in order to calculate metrics for that user. If a given user does not
meet the threshold, the metrics will be set to ‘NA‘.

calc.reco.metrics 7

min_items_pool Minimum number of items (sum of positive and negative items) that a user must
have in order to calculate metrics for that user. If a given user does not meet the
threshold, the metrics will be set to ‘NA‘.

consider_cold_start

Whether to calculate metrics in situations in which some user has test data but
no positive (non-zero) entries in the training data. If passing ‘FALSE‘ and such
cases are encountered, the metrics will be set to ‘NA‘.
Will be automatically set to ‘TRUE‘ when passing ‘NULL‘ for ‘X_train‘.

cumulative Whether to calculate the metrics cumulatively (e.g. [P@1, P@2, P@3] if pass-
ing ‘k=3‘) for all values up to ‘k‘, or only for a single desired ‘k‘ (e.g. only P@3
if passing ‘k=3‘).

nthreads Number of parallel threads to use. Parallelization is done at the user level, so
passing more threads than there are users will not result in a speed up. Be aware
that, the more threads that are used, the higher the memory consumption.

seed Seed used for random number generation. Only used when passing ‘break_ties_with_noise=TRUE‘.

Details

Metrics for a given user will be set to ‘NA‘ in the following situations:

• All the rankeable items have the exact same predicted score.

• One or more of the predicted scores evaluates to ‘NA‘/‘NaN‘.

• There are only negative entries (no non-zero entries in the test data).

• The number of available items to rank (between positive and negative) is smaller than the
requested ‘k‘, and the metric is not affected by the exact order within the top-K items (i.e.
precision, recall, hit, will be ‘NA‘ if there’s ‘k‘ or fewer items after discarding those from the
training data).

• There are inconsistencies in the data (e.g. number of entries being greater than the number of
columns in ‘X‘, meaning the matrices do not constitute valid CSR).

• A user does not meet the minimum criteria set by the configurable parameters for this function.

• There are only positive entries (i.e. the user already consumed all the items). In this case,
"NDCG@K" will still be calculated, while the rest will be set to ‘NA‘.

The NDCG@K metric with ‘cumulative=TRUE‘ will have lower decimal precision than with ‘cu-
mulative=FALSE‘ when using ‘float32‘ inputs - this is extremely unlikely to be noticeable in typical
datasets and small ‘k‘, but for large ‘k‘ and large (absolute) values in ‘X_test‘, it might make a dif-
ference after a couple of decimal points.

Internally, it relies on BLAS function calls, so it’s recommended to use R with an optimized BLAS
library such as OpenBLAS or MKL for better speed - see this link for instructions on getting Open-
BLAS in R for Windows (Alternatively, Microsoft’s R distribution comes with MKL preinstalled).

Doing computations in float32 precision depends on the package float, and as such comes with
some caveats:

• On Windows, if installing ‘float‘ from CRAN, it will use very unoptimized routines which
will likely result in a slowdown compared to using regular double (numeric) type. Getting
it to use an optimized BLAS library is not as simple as substituting the Rblas DLL - see the
package’s README for details.

https://github.com/david-cortes/R-openblas-in-windows
https://cran.r-project.org/package=float
https://github.com/wrathematics/float

8 calc.reco.metrics

• On macOS, it will use static linking for ‘float‘, thus if changing the BLAS library used by R,
it will not change the float32 functions, and getting good performance out of it might require
compiling it from source with ‘-march=native‘ flag.

Value

Will return the calculated metrics on a per-user basis (each user corresponding to a row):

• If passing ‘as_df=TRUE‘ (the default), the result will be a ‘data.frame‘, with the columns
named according to the metric they represent (e.g. "p_at_3", see below for the other names
that they can take). Depending on the value passed for ‘rename_k‘, the column names might
end in "k" or in the number that was passed for ‘k‘ (e.g "p_at_3" or "p_at_k").
If passing ‘cumulative=TRUE‘, they will have names ranging from 1 to ‘k‘.

• If passing ‘as_df=FALSE‘, the result will be a list with entries named according to each met-
ric, with ‘k‘ as letter rather than number (‘p_at_k‘, ‘tp_at_k‘, ‘r_at_k‘, ‘ap_at_k‘, ‘tap_at_k‘,
‘ndcg_at_k‘, ‘hit_at_k‘, ‘rr_at_k‘, ‘roc_auc‘, ‘pr_auc‘), plus an additional entry with the ac-
tual ‘k‘.
The values under each entry will be vectors if passing ‘cumulative=FALSE‘, or matrices (users
corresponding to rows) if passing ‘cumulative=TRUE‘.

The ‘ROC-AUC‘ and ‘PR-AUC‘ metrics will be named just "roc_auc" and "pr_auc", since they are
calculated for the full ranked predictions without stopping at ‘k‘.

Examples

(See the package vignette for a better example)
library(recometrics)
library(Matrix)
library(MatrixExtra)

Generating random data
n_users <- 10L
n_items <- 20L
n_factors <- 3L
k <- 4L
set.seed(1)
UserFactors <- matrix(rnorm(n_users * n_factors), nrow=n_factors)
ItemFactors <- matrix(rnorm(n_items * n_factors), nrow=n_factors)
X <- Matrix::rsparsematrix(n_users, n_items, .5, repr="R")
X <- abs(X)

Generating a random train-test split
data_split <- create.reco.train.test(X, split_type="all")
X_train <- data_split$X_train
X_test <- data_split$X_test

Calculating these metrics
(should be poor quality, since data is random)
metrics <- calc.reco.metrics(

X_train, X_test,
UserFactors, ItemFactors,

create.reco.train.test 9

k=k, as_df=TRUE,
nthreads=1L

)
print(metrics)

create.reco.train.test

Create Train-Test Splits of Implicit-Feedback Data

Description

Creates train-test splits of implicit-feedback data (recorded user-item interactions) for fitting and
evaluating models for recommender systems.

These splits choose "test users" and "items for a given user" separately, offering three modes of
splitting the data:

• Creating training and testing sets for each user in the data (when passing ‘split_type=’all’‘).
This is meant for cases in which the number of users is small or the users to test have already
been selected (e.g. one typically does not want to create a train-test split which would leave
one item for the user in the training data and zero in the test set, or would want to have other
minimum criteria for the test set to be usable). Typically, one would want to take only a sub-
sample of users for evaluation purposes, as calculating recommendation quality metrics can
take a very long time.

• Selecting a sub-set of users for testing, for which training and testing data splits will be gen-
erated, while leaving the remainder of users with all the data for model fitting (when passing
‘split_type=’separated’‘).
This is meant to be used for fitting a model to the remainder of the data, then generating latent
factors (assuming a low-rank matrix factorization model) or top-K recommendations for the
test users given their training data, and evaluating these recommendations on the test data for
each user (which can be done through the function calc.reco.metrics).

• Selecting a sub-set of users for testing as above, but adding those users to the training data, in
which case they will be the first rows (when passing ‘split_type=’joined’‘).
This is meant to be used for fitting a model to all such training data, and then evaluating the
produced user factors or top-K recommendations for the test users against the test data.
It is recommended to use the ‘separated‘ mode, as it is more reflective of real scenarios, but
some models or libraries do not have the capabilities for producing factors/recommendations
for users which where not in the training data, and this option then comes in handy.

Usage

create.reco.train.test(
X,
split_type = "separated",
users_test_fraction = 0.1,
max_test_users = 10000L,
items_test_fraction = 0.3,

10 create.reco.train.test

min_items_pool = 2L,
min_pos_test = 1L,
consider_cold_start = FALSE,
seed = 1L

)

Arguments

X The implicit feedback data to split into training-testing-remainder for evaluat-
ing recommender systems. Should be passed as a sparse CSR matrix from the
‘Matrix‘ package (class ‘dgRMatrix‘). Users should correspond to rows, items
to columns, and non-zero values to observed user-item interactions.

split_type Type of data split to generate. Allowed values are: ‘all‘, ‘separated‘, ‘joined‘
(see the function description above for more details).

users_test_fraction

Target fraction of the users to set as test (see the function documentation for
more details). If the number represented by this fraction exceeds the number
set by ‘max_test_users‘, then the actual number will be set to ‘max_test_users‘.
Note however that the end result might end up containing fewer users if there
are not enough users in the data meeting the minimum desired criteria.
If passing ‘NULL‘, will not take a fraction, but will instead take the number that
is passed for ‘max_test_users‘.
Ignored when passing ‘split_type=’all’‘.

max_test_users Maximum number of users to set as test. Note that this will only be applied for
choosing the minimum between this and ‘ncol(X)*users_test_fraction‘, while
the actual number might end up being lower if there are not enough users meet-
ing the desired minimum conditions.
If passing ‘NULL‘ for ‘users_test_fraction‘, will interpret this as the number of
test users to take.
Ignored when passing ‘split_type=’all’‘.

items_test_fraction

Target fraction of the data (items) to set for test for each user. Should be a
number between zero and one (non-inclusive). The actual number of test entries
for each user will be determined as ‘round(n_entries_user*items_test_fraction)‘,
thus in a long-tailed distribution (typical for recommender systems), the actual
fraction that will be obtained is likely to be slightly lower than what is passed
here.
Note that items are sampled independently for each user, thus the items that are
in the test set for some users might be in the training set for different users.

min_items_pool Minimum number of items (sum of positive and negative items) that a user must
have in order to be eligible as test user.

min_pos_test Minimum number of positive entries (non-zero entries in the test set) that users
would need to have in order to be eligible as test user.

consider_cold_start

Whether to still set users as eligible for test in situations in which some user
would have test data but no positive (non-zero) entries in the training data. This
will only happen when passing ‘test_fraction>=0.5‘.

create.reco.train.test 11

seed Seed to use for random number generation.

Value

Will return a list with two to four elements depending on the requested split type:

• If passing ‘split_type=’all’‘, will have elements ‘X_train‘ and ‘X_test‘, both of which will be
sparse CSR matrices (class ‘dgRMatrix‘ from the ‘Matrix‘ package, which can be converted
to other types through e.g. ‘MatrixExtra::as.csc.matrix‘) with the same number of rows and
columns as the ‘X‘ that was passed as input.

• If passing ‘split_type=’separated’‘, will have the entries ‘X_train‘ and ‘X_test‘ as above (but
with a number of rows corresponding to the number of selected test users instead), plus an
entry ‘X_rem‘ which will be a CSR matrix containing the data for the remainder of the users
(those which were not selected for testing and on which the recommendation model is meant
to be fitted), and an entry ‘users_test‘ which will be an integer vector containing the indices of
the users/rows in ‘X‘ which were selected for testing. The selected test users will be in sorted
order, and the remaining data will remain in sorted order with the test users removed (e.g. if
there’s 5 users, with the second and fifth selected for testing, then ‘X_train‘ and ‘X_test‘ will
contain rows [2,5] of ‘X‘, while ‘X_rem‘ will contain rows [1,3,4]).

• If passing ‘split_type=’joined’‘, will not contain the entry ‘X_rem‘, but instead, ‘X_train‘ will
be the concatenation of ‘X_train‘ and ‘X_rem‘, with ‘X_train‘ coming first (e.g. if there’s 5
users, with the second and fifth selected for testing, then ‘X_test‘ will contain rows [2,5] of
‘X‘, while ‘X_train‘ will contain rows [2,5,1,3,4], in that order).

The training and testing items for each user will not intersect, and each item in the original ‘X‘ data
for a given test user will be assigned to either the training or the testing sets.

Index

calc.reco.metrics, 2, 9
create.reco.train.test, 9

12

	calc.reco.metrics
	create.reco.train.test
	Index

