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aggmean Centers of classes

Description

Calculation of the centers (means) of classes of row observations of a data set.

Usage

aggmean(X, y = NULL)

Arguments
X Data (n, p) for which are calculated the centers (column-wise means).
y Class membership (n, 1) of the row of X. Default to NULL (all the rows of are
considered).
Value
ct centers (column-wise means)
lev classes
ni number of observations in each per class
Examples

n<-8;p<-6

X <= matrix(rnorm(n * p, mean = 10), ncol = p, byrow = TRUE)
y <- sample(1:2, size = n, replace = TRUE)

aggmean(X, y)

data(forages)
Xtrain <- forages$Xtrain
ytrain <- forages$ytrain

table(ytrain)

u <- aggmean(Xtrain, ytrain)$ct
headm(u)

plotsp(u, col = 1:4, main = "Means")

X <- Xtrain[1:20, ]
plotsp(x, ylab = "Absorbance”, col = "grey")
u <- aggmean(x)$ct
plotsp(u, col = "red”, add = TRUE, 1lwd = 2)
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aicplsr AIC and Cp for Univariate PLSR Models

Description

Computation of the AIC and Mallows’s Cp criteria for univariate PLSR models (Lesnoff et al.
2021). This function may receive modifications in the future (work in progress).

Usage
aicplsr(
X, y, nlv, algo = NULL,
meth = c("cg”, "div", "cov"),
correct = TRUE, B = 50,
print = FALSE, ...)
Arguments

X A nzp matrix or data frame of training observations.

y A vector of length n of training responses.

nlv The maximal number of latent variables (LVs) to consider in the model.

algo a PLS algorithm. Default to NULL (plskern is used).

meth Method used for estimating df. Possible values are "cg" (dfplsr_cg), "cov”
(dfplsr_cov)or "div" (dfplsr_div).

correct Logical. If TRUE (default), the AICc corection is applied to the criteria.

B For meth = "div": the number of observations in the data receiving perturbation
(maximum is n; see dfplsr_cov). For meth = "cov": the number of bootstrap
replications (see dfplsr_cov).

print Logical. If TRUE, fitting information are printed.

Optionnal arguments to pass in algo.
Details

For a model with a latent variables (LVs), function aicplsr calculates AIC and C'p by:

AIC(a) = nx*log(SSR(a)) + 2 * (df (a) + 1)

Cp(a) = SSR(a)/n+ 2 *df(a) * s2/n

where SSR is the sum of squared residuals for the current evaluated model, df (a) the estimated

PLSR model complexity (i.e. nb. model’s degrees of freedom), s2 an estimate of the irreductible
error variance (computed from a low biased model) and n the number of training observations.

By default (argument correct), the small sample size correction (so-called AICc) is applied to AIC
and Cp for deucing the bias.

The functions returns two estimates of Cp (cpl and cp2), each corresponding to a different estimate
of 52.

The model complexity df can be computed from three methods (argument meth).
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Value
crit dataframe with n, and the etimated criteria (df, ct, ssr, aic, cpl, cp2) for 0 to
nlv latent variables in the model.
delta dataframe with the differences between the estimated values of aic, cpl and cp2,
and those of the model with the lowest estimated values of azc, cpl and cp2, for
models with 0 to nlv latent variables
opt vector with the optimal number of latent variables in the model (i.e. minimizing
aic, cpl and cp?2 values)
References

Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical
informationtheoretic approach, 2nd ed. Springer, New York, NY, USA.

Burnham, K.P., Anderson, D.R., 2004. Multimodel Inference: Understanding AIC and BIC in
Model Selection. Sociological Methods & Research 33, 261-304. https://doi.org/10.1177/0049124104268644

Efron, B., 2004. The Estimation of Prediction Error. Journal of the American Statistical Association
99, 619-632. https://doi.org/10.1198/016214504000000692

Eubank, R.L., 1999. Nonparametric Regression and Spline Smoothing, 2nd ed, Statistics: Text-
books and Monographs. Marcel Dekker, Inc., New York, USA.

Hastie, T., Tibshirani, R.J., 1990. Generalized Additive Models, Monographs on statistics and
applied probablity. Chapman and Hall/CRC, New York, USA.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining,
inference, and prediction, 2nd ed. Springer, New York.

Hastie, T., Tibshirani, R., Wainwright, M., 2015. Statistical Learning with Sparsity: The Lasso and
Generalizations. CRC Press

Hurvich, C.M., Tsai, C.-L., 1989. Regression and Time Series Model Selection in Small Samples.
Biometrika 76, 297. https://doi.org/10.2307/2336663

Lesnoff, M., Roger, J.M., Rutledge, D.N., Submitted. Monte Carlo methods for estimating Mal-
lows’s Cp and AIC criteria for PLSR models. Illustration on agronomic spectroscopic NIR data.
Journal of Chemometrics.

Mallows, C.L., 1973. Some Comments on Cp. Technometrics 15, 661-675. https://doi.org/10.1080/00401706.1973.1048910:

Ye, J., 1998. On Measuring and Correcting the Effects of Data Mining and Model Selection. Journal
of the American Statistical Association 93, 120-131. https://doi.org/10.1080/01621459.1998.10474094

Zuccaro, C., 1992. Mallows’Cp Statistic and Model Selection in Multiple Linear Regression. In-
ternational Journal of Market Research. 34, 1-10. https://doi.org/10.1177/147078539203400204

Examples

data(cassav)

Xtrain <- cassav$Xtrain
ytrain <- cassav$ytrain

nlv <- 25
res <- aicplsr(Xtrain, ytrain, nlv = nlv)
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names(res)
headm(res$crit)

z <- res$crit

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 4))
plot(z$df[-11)
plot(z$aic[-1]1, type
plot(z$cpl1[-11, type
plot(z$cp2[-1], type
par(oldpar)

"b", main = "AIC")
”b”, main "Cp1 u)
"b”, main = ”sz”)

asdgap asdgap

Description

ASD NIRS dataset, with gaps in the spectra at wawelengths = 1000 and 1800 nm.

Usage

data(asdgap)

Format

A list with 1 element: the data frame X with 5 spectra and 2151 variables.

References

Thanks to J.-F. Roger (Inrae, France) and M. Ecarnot (Inrae, France) for the method.

Examples

data(asdgap)
names (asdgap)
X <- asdgap$x

numcol <- which(colnames(X) == "1000" | colnames(X) == "1800")

numcol

plotsp(X, lwd = 1.5)

abline(v = as.numeric(colnames(X)[1]) + numcol - 1, col = "grey", 1ty = 3)
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blockscal Block autoscaling

Description

Functions managing blocks of data.

- blockscal: Autoscales a list of blocks (i.e. sets of columns) of a training X-data, and eventually
the blocks of new X-data. The scaling factor (computed on the training) is the "norm" of the block,
i.e. the square root of the sum of the variances of each column of the block.

- mblocks: Makes a list of blocks from X-data.

- hconcat: Concatenates horizontally the blocks of a list.

Usage

blockscal (Xtrain, X = NULL, weights = NULL)

mblocks(X, blocks)

hconcat (X)
Arguments
Xtrain A list of blocks of training X-data
X For blockscal: A list of blocks of new X-data. For mblocks: X-data. For
hconcat: a list of blocks of X-data.
blocks A list (of same length as the number of blocks) giving the column numbers in X.
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).
Value

For mblocks: a list of blocks of X-data.

For hconcat: a matrix concatenating a list of data blocks.

For blockscal:

Xtrain A list of blocks of training X-data, after block autoscaling.
X A list of blocks of new X-data, after block autoscaling.
disp The scaling factor (computed on the training).

Note

The second example is equivalent to MB-PLSR
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Examples

n<-10 ; p<-10

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

m<- 2

Xtest <- matrix(rnorm(m * p), ncol = p)
colnames(Xtest) <- paste("v", 1:p, sep = "")
Xtrain

Xtest

blocks <- list(1:2, 4, 6:8)
zXtrain <- mblocks(Xtrain, blocks = blocks)
zXtest <- mblocks(Xtest, blocks = blocks)

zXtrain
blockscal(zXtrain, zXtest)

res <- blockscal(zXtrain, zXtest)
hconcat(res$Xtrain)
hconcat(res$X)

## example of equivalence with MB-PLSR

n<-10 ; p<-10

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

m<- 2

Xtest <- matrix(rnorm(m * p), ncol = p)
colnames(Xtest) <- paste("v", 1:p, sep = "")
Xtrain

Xtest

blocks <- 1list(1:2, 4, 6:8)

X1 <- mblocks(Xtrain, blocks = blocks)

X1 <- lapply(1:length(X1), function(x) scale(X1[[xJ1))
res <- blockscal(X1)

zXtrain <- hconcat(res$Xtrain)

nlv <- 3
fm <- plskern(zXtrain, ytrain, nlv = nlv)

cassav cassayv

Description

A NIRS dataset (absorbance) describing the concentration of a natural pigment in samples of tropi-
cal shrubs. Spectra were recorded from 400 to 2498 nm at 2 nm intervals.
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Usage

data(cassav)

Format

A list with the following components:
For the reference (calibration) data:

Xtrain A matrix whose rows are the NIR absorbance spectra (=1og10(1 / Reflectance)).

ytrain A vector of the response variable (pigment concentration).

year A vector of the year of data collection (2009 to 2012; the test set correponds to year 2013).
For the test data:

Xtest A matrix whose rows are the NIR absorbance spectra (= log10(1 / Reflectance)).

ytest A vector of the response variable (pigment concentration).

References

Davrieux, F., Dufour, D., Dardenne, P., Belalcazar, J., Pizarro, M., Luna, J., Londono, L., Jaramillo,
A., Sanchez, T., Morante, N., Calle, F., Becerra Lopez-Lavalle, L., Ceballos, H., 2016. LOCAL
regression algorithm improves near infrared spectroscopy predictions when the target constituent
evolves in breeding populations. Journal of Near Infrared Spectroscopy 24, 109. https://doi.org/10.1255/jnirs.1213

CIAT Cassava Project (Colombia), CIRAD Qualisud Research Unit, and funded mainly by the
CGIAR Research Program on Roots, Tubers and Bananas (RTB) with support from CGIAR Trust
Fund contributors (https://www.cgiar.org/funders/).

Examples

data(cassav)
str(cassav)

cglsr CG Least Squares Models

Description
Conjugate gradient algorithm (CG) for the normal equations (CGLS algorithm 7.4.1, Bjorck 1996,
p.289)

Usage
cglsr(X, y, nlv, reorth = TRUE, filt = FALSE)

## S3 method for class 'Cglsr'
coef(object, ..., nlv = NULL)

## S3 method for class 'Cglsr'
predict(object, X, ..., nlv = NULL)
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Arguments
X For the main function: Training X-data (n, p). — For auxiliary functions: New
X-data (m, p) to consider.
y Univariate training Y-data (n, 1).
nlv The number(s) of CG iterations.
reorth Logical. If TRUE, a Gram-Schmidt reorthogonalization of the normal equation
residual vectors is done.
filt Logical. If TRUE, the filter factors are computed (output F).
object For auxiliary functions: A fitted model, output of a call to the main functions.
For auxiliary functions: Optional arguments. Not used.
Details

The code for re-orthogonalization (Hansen 1998) and filter factors (Vogel 1987, Hansen 1998)
computations is a transcription (with few adaptations) of the matlab function ‘cgls‘ (Saunders et al.
https://web.stanford.edu/group/SOL/software/cgls/; Hansen 2008).

The filter factors can be used to compute the model complexity of CGLSR and PLSR models (see
dfplsr_cg).

Data X and y are internally centered.

Missing values are not allowed.

Value
For cglsr:
B matrix with the model coefficients for the fix nlv.
gnew squared norm of the s vector
xmeans variable means for the training X-data
ymeans variable means for the training Y-data
F If filt = TRUE, the filter factors

For coef.Cglsr:

int intercept value.

B matrix with the model coefficients.
For predict.Cglsr:

pred list of matrices, with the predicted values for each number nlv of CG iterations
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References

Bjorck, A., 1996. Numerical Methods for Least Squares Problems, Other Titles in Applied Mathe-
matics. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611971484

Hansen, P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems, Mathematical Modeling and
Computation. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719697

Hansen, P.C., 2008. Regularization Tools version 4.0 for Matlab 7.3. Numer Algor 46, 189-194.
https://doi.org/10.1007/s11075-007-9136-9

Manne R. Analysis of two partial-least-squares algorithms for multivariate calibration. Chemomet-
rics Intell. Lab. Syst. 1987; 2: 187-197.

Phatak A, De Hoog F. Exploiting the connection between PLS, Lanczos methods and conjugate
gradients: alternative proofs of some properties of PLS. J. Chemometrics 2002; 16: 361-367.

Vogel, C. R., "Solving ill-conditioned linear systems using the conjugate gradient method", Report,
Dept. of Mathematical Sciences, Montana State University, 1987.

Examples

z <- ozone$X
u <- which(!is.na(rowSums(z)))

X <= z[u, -4]
y <= z[u, 4]
dim(X)
headm(X)

Xtest <- X[1:2, ]
ytest <- y[1:2]

nlv <- 10
fm <- cglsr(X, y, nlv = nlv)

coef (fm)
coef(fm, nlv = 1)

predict(fm, Xtest)
predict(fm, Xtest, nlv = 1:3)

pred <- predict(fm, Xtest)$pred
msep(pred, ytest)

cglsr(X, y, nlv = 5, filt = TRUE)$F

checkdupl Duplicated rows in datasets

Description

Finding and removing duplicated row observations in datasets.
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Usage
checkdupl (X, Y = NULL, digits = NULL)

Arguments
X A dataset.
Y A dataset compared to X.
digits The number of digits when rounding the data before the duplication test. Default
to NULL (no rounding.
Value

a dataframe with the row numbers in the first and second datasets that are identical, and the values
of the variables.

Examples

X1 <- matrix(c(1:5, 1:5, c(1, 2, 7, 4, 8)), nrow = 3, byrow = TRUE)
dimnames(X1) <- list(1:3, c("v1", "v2", "v3", "v4" "v5"))

X2 <- matrix(c(6:10, 1:5, c(1, 2, 7, 6, 12)), nrow = 3, byrow = TRUE)
dimnames(X2) <- list(1:3, c("v1", "v2", "v3", "v4" "v5"))

X1
X2

checkdupl (X1, X2)

checkdupl(X1)
checkdupl(matrix(rnorm(20), nrow = 5))
res <- checkdupl(X1)

s <- unique(res$rownum?2)

zX1 <= X1[-s, ]
zX1

checkna Find and count NA values in a dataset

Description

Find and count NA values in each row observation of a dataset.

Usage
checkna(X)
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Arguments

X

Value

covsel

A dataset.

A data frame summarizing the numbers of NA by rows.

Examples

X <- data.frame(

vl = c(NA, rnorm(9)),

v2 = c(NA, rnorm(8), NA),
v3 = c(NA, NA, NA, rnorm(7))
)
X
checkna(X)
covsel CovSel
Description

Variable selection for high-dimensionnal data with the COVSEL method (Roger et al. 2011).

Usage

covsel(X, Y, nvar = NULL, scaly = TRUE, weights = NULL)

Arguments

X

Y
nvar
scaly

weights

Value

sel

weights

X-data (n, p).

Y-data (n, q).

Number of variables to select in X.

If TRUE (default), each column of Y is scaled by its standard deviation.

Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

A dataframe where variable sel shows the column numbers of the variables
selected in X.

The weights used for the row observations.
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References

Roger, J.M., Palagos, B., Bertrand, D., Fernandez-Ahumada, E., 2011. CovSel: Variable selection
for highly multivariate and multi-response calibration: Application to IR spectroscopy. Chem. Lab.
Int. Syst. 106, 216-223.

Examples

n<-6;p<-4

X <= matrix(rnorm(n * p), ncol = p)
Y <- matrix(rnorm(n * 2), ncol = 2)
covsel(X, Y, nvar = 3)
dderiv Derivation by finite difference

Description
Calculation of the first derivatives, by finite differences, of the row observations (e.g. spectra) of a
dataset.

Usage
dderiv(X, n =5, ts = 1)

Arguments

X X-data (n, p).

n The number of points (i.e. columns of X) defining the window over wich is
calculate each finite difference. The derivation is calculated for the point at the
center of the window. Therefore, n must be an odd integer, and be higher or
equal to 3.

ts A scaling factor for the finite differences (by default, ts =1.)

Value

A matrix of the transformed data.
Examples

data(cassav)

X <- cassav$Xtest

n <- 15

Xp_derivatel <- dderiv(X, n = n)
Xp_derivate2 <- dderiv(dderiv(X, n), n)



16 detrend

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))
plotsp(X, main = "Signal")

plotsp(Xp_derivatel, main = "Corrected signal”)
abline(h = @, 1ty = 2, col = "grey")
par(oldpar)
detrend Polynomial de-trend transformation
Description

Polynomial de-trend transformation of row observations (e.g. spectra) of a dataset. The function
fits an orthogonal polynom of a given degree to each observation and returns the residuals.

Usage
detrend(X, degree = 1)

Arguments

X X-data (n, p).

degree Degree of the polynom.
Details

detrend uses function poly of package stats.

Value

A matrix of the transformed data.

Examples

data(cassav)
X <- cassav$Xtest

degree <- 1
Xp <- detrend(X, degree = degree)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))

plotsp(X, main = "Signal"”)

plotsp(Xp, main = "Corrected signal")
abline(h = @, 1ty = 2, col = "grey")
par(oldpar)
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dfplsr_cg Degrees of freedom of Univariate PLSR Models

Description
Computation of the model complexity df (number of degrees of freedom) of univariate PLSR mod-
els (with intercept). See Lesnoff et al. 2021 for an illustration.
(1) Estimation from the CGLSR algorithm (Hansen, 1998).
- dfplsr_cov

(2) Monte Carlo estimation (Ye, 1998 and Efron, 2004). Details in relation with the functions are
given in Lesnoff et al. 2021.

- dfplsr_cov: The covariances are computed by parametric bootstrap (Efron, 2004, Eq. 2.16). The
residual variance sigma? is estimated from a low-biased model.

- dfplsr_div: The divergencies dysit/dy are computed by perturbation analysis(Ye, 1998 and
Efron, 2004). This is a Stein unbiased risk estimation (SURE) of df.
Usage
dfplsr_cg(X, y, nlv, reorth = TRUE)
dfplsr_cov(

X, y, nlv, algo = NULL,
maxlv = 50, B = 30, print = FALSE, ...)

dfplsr_div(
X, y, nlv, algo = NULL,

eps = le-2, B = 30, print = FALSE, ...)
Arguments

X A nxp matrix or data frame of training observations.

y A vector of length n of training responses.

nlv The maximal number of latent variables (LVs) to consider in the model.

reorth For dfplsr_cg: Logical. If TRUE, a Gram-Schmidt reorthogonalization of the
normal equation residual vectors is done.

algo a PLS algorithm. Default to NULL (plskern is used).

max1lv For dfplsr_cov: dDmension of the PLSR model (nb. LVs) used for parametric
bootstrap.

eps For dfplsr_div: The epsilon quantity used for scaling the perturbation analy-
sis.

B For dfplsr_cov: Number of bootstrap replications. For dfplsr_div: number

of observations in the data receiving perturbation (the maximum is 7).
print Logical. If TRUE, fitting information are printed.

Optionnal arguments to pass in the function defined in algo.
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Details

Missing values are not allowed.

The example below reproduces the numerical illustration given by Kramer & Sugiyama 2011 on the
Ozone data (Fig. 1, center). The pls.model function from the R package "plsdof" v0.2-9 (Kramer &
Braun 2019) is used for df calculations (df.kramer), and automatically scales the X matrix before
PLS. The example scales also X for consistency when using the other functions.

For the Monte Carlo estimations, B Should be increased for more stability

Value

A list of outputs :

df vector with the model complexity for the models with a = 0,1, ..., nlv compo-
nents.
cov For dfplsr_cov: vector with covariances, computed by parametric bootstrap.
References

Efron, B., 2004. The Estimation of Prediction Error. Journal of the American Statistical Association
99, 619-632. https://doi.org/10.1198/016214504000000692

Hastie, T., Tibshirani, R.J., 1990. Generalized Additive Models, Monographs on statistics and
applied probablity. Chapman and Hall/CRC, New York, USA.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining,
inference, and prediction, 2nd ed. Springer, New York.

Hastie, T., Tibshirani, R., Wainwright, M., 2015. Statistical Learning with Sparsity: The Lasso and
Generalizations. CRC Press

Kramer, N., Braun, M.L., 2007. Kernelizing PLS, degrees of freedom, and efficient model selection,
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Examples
## EXAMPLE 1
data(ozone)

z <- ozone$X
u <- which(!is.na(rowSums(z)))

X <= z[u, -4]
y <= z[u, 4]
dim(X)

Xs <- scale(X)

nlv <- 12
res <- dfplsr_cg(Xs, y, nlv = nlv)

df .kramer <- c(1.000000, 3.712373, 6.456417, 11.633565, 12.156760, 11.715101, 12.349716,
12.192682, 13.000000, 13.000000, 13.000000, 13.000000, 13.000000)

znlv <- @:nlv
plot(znlv, res$df, type = "1", col = "red",
ylim = c(@, 15),
xlab = "Nb components”, ylab = "df")
lines(znlv, znlv + 1, col = "grey40")
points(znlv, df.kramer, pch = 16)
abline(h = 1, 1ty = 2, col = "grey")
legend("bottomright”, legend=c("dfplsr_cg”,"Naive df","df.kramer"), col=c("red"”,"grey40","black"),
1ty=c(1,1,0), pch=c(NA,NA,16), bty="n")

## EXAMPLE 2
data(ozone)

z <- ozone$X

u <- which(!is.na(rowSums(z)))
X <= z[u, -4]

y <= z[u, 4]

dim(X)

Xs <- scale(X)

nlv <- 12

B <- 50

u <- dfplsr_cov(Xs, y, nlv = nlv, B = B)
v <- dfplsr_div(Xs, y, nlv = nlv, B = B)

df .kramer <- c(1.000000, 3.712373, 6.456417, 11.633565, 12.156760, 11.715101, 12.349716,
12.192682, 13.000000, 13.000000, 13.000000, 13.000000, 13.000000)

znlv <- @:nlv
plot(znlv, u$df, type = "1", col = "red",
ylim = c(0, 15),
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xlab = "Nb components”, ylab = "df")
lines(znlv, v$df, col = "blue")
lines(znlv, znlv + 1, col = "grey40")
points(znlv, df.kramer, pch = 16)
abline(h = 1, 1ty = 2, col = "grey")
legend("bottomright"”, legend=c("dfplsr_cov”,"dfplsr_div"”,"Naive df"”,"df.kramer"),
col=c("blue”,"red"”,"grey40","black"),
lty=c(1,1,1,0), pch=c(NA,NA,NA;16), bty="n")

dkplsr Direct KPLSR Models

Description

Direct kernel PLSR (DKPLSR) (Bennett & Embrechts 2003). The method builds kernel Gram
matrices and then runs a usual PLSR algorithm on them. This is faster (but not equivalent) to the
"true" NIPALS KPLSR algorithm such as described in Rosipal & Trejo (2001).

Usage

dkplsr(X, Y, weights = NULL, nlv, kern = "krbf”, ...)

## S3 method for class 'Dkpls'
transform(object, X, ..., nlv = NULL)

## S3 method for class 'Dkpls'
coef(object, ..., nlv = NULL)

## S3 method for class 'Dkplsr'

predict(object, X, ..., nlv = NULL)
Arguments

X For the main function: Matrix with the training X-data (n, p). — For auxiliary
functions: A matrix with new X-data (m, p) to consider.

Y Matrix with the training Y-data (n, g).

weights vector of weights (n, 1) to apply to the training observations. Internally, weights
are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv For the main function: The number(s) of LVs to calculate. — For auxiliary
functions: The number(s) of LVs to consider.

kern Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions (krbf, kpol,
ktanh).

Optional arguments to pass in the kernel function defined in kern (e.g. gamma
for krbf, gamma and coef® for ktanh, gamma and coef@ and degree for kpol).

object For auxiliary functions: A fitted model, output of a call to the main function.
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Value

For dkplsr:

X Matrix with the training X-data (n, p).

fm List with the outputs of the PLSR ((T): the X-score matrix (n,nlv); (P): the X-
loadings matrix (p,nlv); (R): The PLS projection matrix (p,nlv); (W): The X-
loading weights matrix (p,nlv); (C): The Y-loading weights matrix; (TT): the X-
score normalization factor; (xmeans): the centering vector of X (p,1); (ymeans):
the centering vector of Y (q,1); (weights): the weights vector of X-variables
(p,1); (U): intermediate output.

K kernel Gram matrix

kern kernel function

dots Optional arguments passed in the kernel function

For transform.Dkplsr : A matrix (m, nlv) with the projection of the new X-data on the X-scores

For predict.Dkplsr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

K kernel Gram matrix (m, nlv), with values for the new X-data

For coef.Dkplsr:

int matrix (1,nlv) with the intercepts
B matrix (n,nlv) with the coefficients
Note

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001
p. 105-106

References

Bennett, K.P., Embrechts, M.J., 2003. An optimization perspective on kernel partial least squares
regression, in: Advances in Learning Theory: Methods, Models and Applications, NATO Science
Series III: Computer & Systems Sciences. IOS Press Amsterdam, pp. 227-250.

Rosipal, R., Trejo, L.J., 2001. Kernel Partial Least Squares Regression in Reproducing Kernel
Hilbert Space. Journal of Machine Learning Research 2, 97-123.

Examples

## EXAMPLE 1

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]
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Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

nlv <- 2

fm <- dkplsr(Xtrain, Ytrain, nlv = nlv, kern = "krbf"”, gamma
transform(fm, Xtest)

transform(fm, Xtest, nlv = 1)

coef (fm)

coef(fm, nlv = 1)

predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:nlv)$pred

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

nlv <- 2
fm <- dkplsr(Xtrain, Ytrain, nlv = nlv, kern = "kpol"”, degree
predict(fm, Xtest, nlv = nlv)

## EXAMPLE 2

x <- seq(-10, 10, by = .2)
x[x == 0] <- le-5

n <- length(x)

zy <- sin(abs(x)) / abs(x)
y <= zy + rnorm(n, @, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)

X <- matrix(x, ncol = 1)

nlv <- 3

fm <- dkplsr(X, y, nlv = nlv)
pred <- predict(fm, X)$pred
plot(X, y, type = "p")
lines(X, zy, 1ty = 2)
lines(X, pred, col = "red")

= .8)

= 2, coef@ = 10)

dkrr

dkrr Direct KRR Models

Description

Direct kernel ridge regression (DKRR), following the same approcah as for DKPLSR (Bennett &
Embrechts 2003). The method builds kernel Gram matrices and then runs a RR algorithm on them.

This is not equivalent to the "true" KRR (= LS-SVM) algorithm.

Usage
dkrr(X, Y, weights = NULL, 1lb = 1e-2, kern = "krbf",

>
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## S3 method for class 'Dkrr'
coef(object, ., 1b = NULL)
## S3 method for class 'Dkrr'
predict(object, X, ..., lb = NULL)
Arguments
X For the main function: Training X-data (n,p). — For the auxiliary functions:
New X-data (m, p) to consider.
Y Training Y-data (n, q).
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).
1b A value of regularization parameter lambda.
kern Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions.
Optional arguments to pass in the kernel function defined in kern (e.g. gamma
for krbf).
object For the auxiliary functions: A fitted model, output of a call to the main function.
Value
For dkrr:
X Matrix with the training X-data (n, p).
fm List with the outputs of the RR ((V): eigenvector matrix of the correlation matrix
(n,n); (TtDY): intermediate output; (sv): singular values of the matrix (1,n); (1b):
value of regularization parameter lambda; (xmeans): the centering vector of X
(p,1); (ymeans): the centering vector of Y (q,1); (weights): the weights vector
of X-variables (p,1)
K kernel Gram matrix
kern kernel function
dots Optional arguments passed in the kernel function

For predict.Dkrr:

pred
K

For coef.Dkrr:
int

B

df

A list of matrices (m, q) with the Y predicted values for the new X-data

kernel Gram matrix (m, nlv), with values for the new X-data

matrix (1,nlv) with the intercepts
matrix (n,nlv) with the coefficients

model complexity (number of degrees of freedom)
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Note

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001
p. 105-106

References

Bennett, K.P., Embrechts, M.J., 2003. An optimization perspective on kernel partial least squares
regression, in: Advances in Learning Theory: Methods, Models and Applications, NATO Science
Series III: Computer & Systems Sciences. I0S Press Amsterdam, pp. 227-250.

Rosipal, R., Trejo, L.J., 2001. Kernel Partial Least Squares Regression in Reproducing Kernel
Hilbert Space. Journal of Machine Learning Research 2, 97-123.

Examples

## EXAMPLE 1

n<-6,;p<-4
Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m<- 3

Xtest <- Xtrain[1:m, , drop
Ytest <- Ytrain[1:m, , drop

FALSE]
FALSE] ; ytest <- Ytest[1:m, 1]

1b <- 2

fm <- dkrr(Xtrain, Ytrain, lb = 1lb, kern = "krbf"”, gamma = .8)
coef (fm)

coef(fm, 1lb = .6)

predict(fm, Xtest)

predict(fm, Xtest, 1lb = c(0.1, .8))

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

1b <- 2
fm <- dkrr(Xtrain, Ytrain, 1b = 1lb, kern = "kpol"”, degree = 2, coef@ = 10)
predict(fm, Xtest)

## EXAMPLE 1

x <- seq(-10, 10, by = .2)
x[x == 0] <- le-5

n <- length(x)

zy <- sin(abs(x)) / abs(x)
y <= zy + rnorm(n, @, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)

X <- matrix(x, ncol = 1)

fm <- dkrr(X, y, 1lb = .01, gamma = .5)
pred <- predict(fm, X)$pred
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plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")

dmnorm Multivariate normal probability density

Description

Prediction of the normal probability density of multivariate observations.

Usage

dmnorm(X = NULL, mu = NULL, sigma = NULL)

## S3 method for class 'Dmnorm'

predict(object, X, ...)
Arguments
X For the main function: Training data (n, p) used for estimating the mean and the
covariance matrix population (if mu or/and sigma are not provided). — For the

auxiliary functions: New data (m, p) for which the density has to be predicted.

mu The mean (p, 1) of the normal distribution. If NULL (default), mu is estimated
by the column-wise mean of the training data.

sigma The covariance matrix (pxp) of the normal distribution. If NULL (default), sigma
is estimated by the empirical covariance matrix (denominator n — 1) of the train-
ing data.

object For the auxiliary functions: A result of a call to dmnorm.

For the auxiliary functions: Optional arguments.

Value
For dmnorm:
mu means of the X variables
Uinv inverse of the Cholesky decomposition of the covariance matrix
det squared determinant of the Cholesky decomposition of the covariance matrix

For predict:

pred Prediction of the normal probability density of new multivariate observations



26 dtagg
Examples

data(iris)

X <= iris[, 1:2]

Xtrain <- X[1:40, ]
Xtest <- X[40:50, ]

fm <- dmnorm(Xtrain)

fm

k <- 50

x1 <- seq(min(Xtrain[, 11), max(Xtrain[, 1]), length.out = k)
x2 <- seq(min(Xtrain[, 21), max(Xtrain[, 2]), length.out = k)

zX <- expand.grid(x1, x2)
pred <- predict(fm, zX)$pred
contour(x1, x2, matrix(pred, nrow = 50))

points(Xtest, col = "red”, pch = 16)

dtagg Summary statistics of data subsets

Description

Faster alternative to aggregate to calculate a summary statistic over data subsets. dtagg uses
function data. table: :data. table of package data.table.

Usage
dtagg(formula, data, FUN = mean, ...)
Arguments
formula A left and right-hand-sides formula defing the variable and the aggregation lev-
els on which is calculated the statistic.
data A dataframe.
FUN Function defining the statistic to compute (default to mean).
Eventual additional arguments to pass through FUN.
Value

A dataframe, with the values of the agregation level(s) and the corresponding computed statistic
value.
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Examples

dat <- data.frame(matrix(rnorm(2 * 100), ncol = 2))
names(dat) <- c("y1", "y2")

dat$typl <- sample(1:2, size
dat$typ2 <- sample(1:3, size

nrow(dat), TRUE)
nrow(dat), TRUE)

headm(dat)

dtagg(yl ~ 1, data = dat)

dtagg(yl ~ typl + typ2, data = dat)

dtagg(yl ~ typl + typ2, data = dat, trim = .2)

dummy Table of dummy variables

Description

The function builds a table of dummy variables from a qualitative variable. A binary (i.e. 0/1)
variable is created for each level of the qualitative variable.

Usage
dummy (y)
Arguments
y A qualitative variable.
Value
Y A matrix of dummy variables (i.e. binary variables), each representing a given
level of the qualitative variable.
lev levels of the qualitative variable.
ni number of observations per level of the qualitative variable.
Examples

y <= c(1, 1, 3, 2, 3)
dummy (y)

y <- C(”B", nau’ "B”)

dummy (y)
dummy (as.factor(y))
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eposvd External parameter orthogonalization (EPO)

Description

Pre-processing a X-dataset by external parameter orthogonalization (EPO; Roger et al 2003). The
objective is to remove from a dataset X (n, p) some "detrimental” information (e.g. humidity effect)
represented by a dataset D(m, p).

EPO consists in orthogonalizing the row observations of X to the detrimental sub-space defined by
the first nlv non-centered PCA loadings vectors of D.

Function eposvd uses a SVD factorization of D and returns M (p, p) the orthogonalization matrix,
and P the considered loading vectors of D.

Usage

eposvd(D, nlv)

Arguments

D A dataset (m, p) containing detrimental information.

nlv The number of first loadings vectors of D considered for the orthogonalization.
Details

The data corrected from the detrimental information D can be computed by X corrected = X * M.
Rows of the corrected matrix Xcorr are orthogonal to the loadings vectors (columns of P): X corr *
P.

Value

M orthogonalization matrix.

P detrimental directions matrix (p, nlv) (loadings of D = columns of P).
References

Roger, J.-M., Chauchard, F., Bellon-Maurel, V., 2003. EPO-PLS external parameter orthogonalisa-
tion of PLS application to temperature-independent measurement of sugar content of intact fruits.
Chemometrics and Intelligent Laboratory Systems 66, 191-204. https://doi.org/10.1016/S0169-
7439(03)00051-0

Roger, J.-M., Boulet, J.-C., 2018. A review of orthogonal projections for calibration. Journal of
Chemometrics 32, e3045. https://doi.org/10.1002/cem.3045
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Examples

n<-4;p<-38
X <= matrix(rnorm(n * p), ncol = p)
m<- 3

D <- matrix(rnorm(m * p), ncol = p)

nlv <- 2

res <- eposvd(D, nlv = nlv)

M <- res$M

P <- res$P

M

P

euclsq Matrix of distances

Description

—— Matrix (n, m) of distances between row observations of two datasets X (n,p) and Y (m, p)
- euclsq: Squared Euclidean distance

- mahsq: Squared Mahalanobis distance

—— Matrix (n, 1) of distances between row observations of a dataset X (n, p) and a vector p (n)
- euclsqg_mu: Squared Euclidean distance

- mahsg_mu: Squared Euclidean distance

Usage
euclsq(X, Y = NULL)
euclsg_mu(X, mu)
mahsq(X, Y = NULL, Uinv = NULL)

mahsg_mu(X, mu, Uinv = NULL)

Arguments
X X-data (n, p).
Y Data (m, p) compared to X. If NULL (default), Y is set equal to X.
mu Vector (p) compared to X.
Uinv For Mahalanobis distance. The inverse of a Choleski factorization matrix of the

covariance matrix of X. If NULL (default), Uinv is calculated internally.
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Value

A distance matrix.

Examples

n<-5;p<-3
X <= matrix(rnorm(n * p), ncol = p)

euclsq(X)
as.matrix(stats::dist(X)*2)
euclsq(X, X)

Y <= X[c(1, 3), 1]
euclsq(X, Y)
euclsq_mu(X, Y[2, D)

i<-3
euclsq(X, X[i, , drop = FALSE])
euclsg_mu(X, X[i, 1)

S<-cov(X) * (n-1) / n
i<-3

mahsq(X)[i, , drop = FALSE]
stats::mahalanobis(X, X[i, 1, S)

mahsq(X)
Y <= X[c(1, 3), 1
mahsq(X, Y)

fda Factorial discriminant analysis

Description

Factorial discriminant analysis (FDA). The functions maximize the compromise p’ Bp/p'Wp, i.e.
maxp’ Bp with constraint p’Wp = 1. Vectors p are the linear discrimant coefficients "LD".

- fda: Eigen factorization of W( — 1)B
- fdasvd: Weighted SVD factorization of the matrix of the class centers.

If W is singular, WA(-1) is replaced by a MP pseudo-inverse.

Usage
fda(X, y, nlv = NULL)

fdasvd(X, y, nlv = NULL)

## S3 method for class 'Fda'
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transform(object, X, ..., nlv = NULL)

## S3 method for class 'Fda'

summary (object, ...)
Arguments
X For the main functions: Training X-data (n, p).— For the auxiliary functions:

New X-data (m, p) to consider.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.
nlv For the main functions: The number(s) of LVs to calculate. — For the auxiliary

functions: The number(s) of LVs to consider.
object For the auxiliary functions: A fitted model, output of a call to the main function.

For the auxiliary functions: Optional arguments. Not used.

Value

For fda and fdasvd:

T X-scores matrix (n,nlv).

P X-loadings matrix (p,nlv) = coefficients of the linear discriminant function =
"LD" of function lda of package MASS.

Tcenters projection of the class centers in the score space.
eig vector of eigen values

sstot total variance

W unbiased within covariance matrix

xmeans means of the X variables

lev y levels

ni number of observations per level of the y variable

For transform.Fda: scores of the new X-data in the model.

For summary . Fda:

explvar Explained variance by PCA of the class centers in transformed scale.

References

Saporta G., 2011. Probabilités analyse des données et statistique. Editions Technip, Paris, France.
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Examples

data(iris)

X <= iris[, 1:4]
y <- iris[, 5]
table(y)

fm <- fda(X, y)
headm(fm$T)

transform(fm, X[1:3, 1)

summary (fm)
plotxy(fm$T, group =y, ellipse = TRUE,

zeroes = TRUE, pch = 16, cex = 1.5, ncol = 2)
points(fm$Tcenters, pch = 8, col = "blue”, cex = 1.5)

forages forages

Description

A NIRS dataset (pre-processed absorbance) describing the class membership of forages. Spectra
were recorded from 1100 to 2498 nm at 2 nm intervals.

Usage

data(forages)

Format
A list with 4 components: Xtrain, ytrain, Xtest, ytest.
For the reference (calibration) data:

Xtrain A matrix whose rows are the pre-processed NIR absorbance spectra (= loglO(1 / Re-
flectance)).

ytrain A vector of the response variable (class membership).
For the test data:

Xtest A matrix whose rows are the pre-processed NIR absorbance spectra (=1og10(1 / Reflectance)).

ytest A vector of the response variable (class membership).

Examples

data(forages)
str(forages)
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getknn KNN selection

Description

Function getknn selects the &k nearest neighbours of each row observation of a new data set (=
query) within a training data set, based on a dissimilarity measure.

getknn uses function get. knnx of package FNN (Beygelzimer et al.) available on CRAN.

Usage

getknn(Xtrain, X, k = NULL, diss = c("eucl”, "mahal"),
algorithm = "brute"”, list = TRUE)

Arguments
Xtrain Training X-data (n, p).
X New X-data (m, p) to consider.
k The number of nearest neighbors to select in Xtrain for each observation of X.
diss The type of dissimilarity used. Possible values are "eucl" (default; Euclidean
distance) or "mahal" (Mahalanobis distance).
algorithm Search algorithm used for Euclidean and Mahalanobis distances. Default to
"brute”. See get.knnx.
list If TRUE (default), a list format is also returned for the outputs.
Value

A list of outputs, such as:

nn A dataframe (maxk) with the indexes of the neighbors.
d A dataframe (maxk) with the dissimilarities between the neighbors and the new
observations.
listnn Same as $nn but in a list format.
listd Same as $d but in a list format.
Examples
n<-10
p <-4

X <= matrix(rnorm(n * p), ncol = p)
Xtrain <- X

Xtest <- X[c(1, 3), 1]

m <- nrow(Xtest)
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k <=3

gridev

getknn(Xtrain, Xtest, k = k)

fm <- pcasvd(Xtrain, nlv = 2)

Ttrain <- fm$T

Ttest <- transform(fm, Xtest)
getknn(Ttrain, Ttest, k = k, diss = "mahal”)

gridcv

Cross-validation

Description

Functions for cross-validating predictive models.

The functions return "scores" (average error rates) of predictions for a given model and a grid of
parameter values, calculated from a cross-validation process.

- gridcv: Can be used for any model.

- gridcvlv: Specific to models using regularization by latent variables (LVs) (e.g. PLSR). Much
faster than gridcv.

- gridcvlb: Specific to models using ridge regularization (e.g. RR). Much faster than gridcv.

Usage

gridev(X, Y, segm, score, fun, pars, verb = TRUE)

gridcvlv(X, Y, segm, score, fun, nlv, pars = NULL, verb = TRUE)

gridcvlb(X, Y, segm, score, fun, lb, pars = NULL, verb = TRUE)

Arguments

X

Y
segm
score
fun
nlv
1b

pars

verb

Training X-data (n, p), or list of training X-data.

Training Y-data (n, g).

CV segments, typically output of segmkf or segmts.

A function calculating a prediction score (e.g. msep).

A function corresponding to the predictive model.

For gridcvlv. A vector of numbers of LVs.

For gridcvlb. A vector of ridge regulariation parameters.

A list of named vectors. Each vector must correspond to an argument of the
model function and gives the parameter values to consider for this argument.
(see details)

Logical. If TRUE, fitting information are printed.
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Details

Argument pars (the grid) must be a list of named vectors, each vector corresponding to an argument
of the model function and giving the parameter values to consider for this argument. This list can
eventually be built with function mpars, which returns all the combinations of the input parameters,
see the examples.

For gridcvly, pars must not contain nlv (nb. LVs), and for gridcvlb, 1b (regularization parame-
ter lambda).

Value

Dataframes with the prediction scores for the grid.

Note

Examples are given: - with PLSR, using gridcv and gridevlv (much faster) - with PLSLDA, using
gridev and gridevlv (much faster) - with RR, using gridcv and gridevlb (much faster) - with KRR,
using gridcv and gridevlb (much faster) - with LWPLSR, using gridcvlv

Examples

## EXAMPLE WITH PLSR

n<-50;p<-38

X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

Y <- cbind(y, 10 x rnorm(n))

K=3
segm <- segmkf(n = n, K =K, nrep = 1)
segm

nlv <- 5
pars <- mpars(nlv = 1:nlv)
pars
gridev(
X, Y, segm,
score = msep,
fun = plskern,
pars = pars, verb = TRUE)

gridevlv(
X, Y, segm,
score = msep,
fun = plskern,
nlv = @:nlv, verb = TRUE)

## EXAMPLE WITH PLSLDA
n<-50 ;p<-8

X <= matrix(rnorm(n * p), ncol = p, byrow = TRUE)
y <- sample(c(1, 4, 10), size = n, replace = TRUE)
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K=3
segm <- segmkf(n = n, K = K, nrep = 1)
segm

nlv <- 5

pars <- mpars(nlv = 1:nlv, prior = c("unif”, "prop"))

pars
gridcv(

X, y, segm,

score = err,

fun = plslda,

pars = pars, verb = TRUE)

pars <- mpars(prior = c("unif”, "prop"))
pars
gridcvlv(

X, y, segm,

score = err,

fun = plslda,

nlv = 1:nlv, pars = pars, verb = TRUE)

## EXAMPLE WITH RR

n<-5 ;p<-38

X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

Y <- cbind(y, 10 x rnorm(n))

K=3
segm <- segmkf(n = n, K =K, nrep = 1)
segm
1b <= c(.1, 1)
pars <- mpars(lb = 1b)
pars
gridev(
X, Y, segm,
score = msep,
fun = rr,

pars = pars, verb = TRUE)

gridcvlb(
X, Y, segm,
score = msep,
fun = rr,
1b = 1b, verb = TRUE)

## EXAMPLE WITH KRR
n<-50;p<-38

X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

gridev



gridscore

Y <- cbind(y, 10 * rnorm(n))

K=3

segm <- segmkf(n = n, K =K, nrep = 1)
segm

1b <= c(.1, 1)

gamma <- 10*(-1:1)
pars <- mpars(lb = 1b, gamma = gamma)

pars
gridcv(
X, Y, segm,
score = msep,
fun = krr,

pars = pars, verb = TRUE)

pars <- mpars(gamma = gamma)
gridcvlb(
X, Y, segm,
score = msep,
fun = krr,
1b = 1b, pars = pars, verb = TRUE)

## EXAMPLE WITH LWPLSR

n<-50;p<-38

X <= matrix(rnorm(n * p), ncol
y <= rnorm(n)

Y <- cbind(y, 10 * rnorm(n))

p)

K=3
segm <- segmkf(n = n, K =K, nrep = 1)
segm

nlvdis <- 5
h <- c(1, Inf)
k <- c(10, 20)
nlv <- 5
pars <- mpars(nlvdis = nlvdis, diss = "mahal”,
h =h, k =k)
pars
res <- gridcvlv(
X, Y, segm,
score = msep,
fun = lwplsr,
nlv = @:nlv, pars = pars, verb = TRUE)
res

gridscore Tuning of predictive models on a validation dataset
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Description

Functions for tuning predictive models on a validation set.

The functions return "scores" (average error rates) of predictions for a given model and a grid of
parameter values, calculated on a validation dataset.

- gridscore: Can be used for any model.

- gridscorelv: Specific to models using regularization by latent variables (LVs) (e.g. PLSR).
Much faster than gridscore.

- gridscorelb: Specific to models using ridge regularization (e.g. RR). Much faster than gridscore.

Usage

gridscore(Xtrain, Ytrain, X, Y, score, fun, pars, verb = FALSE)
gridscorelv(Xtrain, Ytrain, X, Y, score, fun, nlv, pars = NULL, verb = FALSE)

gridscorelb(Xtrain, Ytrain, X, Y, score, fun, lb, pars = NULL, verb = FALSE)

Arguments
Xtrain Training X-data (n, p).
Ytrain Training Y-data (n, q).
X Validation X-data (n, p).
Y Validation Y-data (n, q).
score A function calculating a prediction score (e.g. msep).
fun A function corresponding to the predictive model.
nlv For gridscorelv. A vector of numbers of LVs.
1b For gridscorelb. A vector of ridge regulariation parameters.
pars A list of named vectors. Each vector must correspond to an argument of the
model function and gives the parameter values to consider for this argument.
(see details)
verb Logical. If TRUE, fitting information are printed.
Details

Argument pars (the grid) must be a list of named vectors, each vector corresponding to an argument
of the model function and giving the parameter values to consider for this argument. This list can
eventually be built with function mpars, which returns all the combinations of the input parameters,
see the examples.

For gridscorelv, pars must not contain nlv (nb. LVs), and for gridscorelb, 1b (regularization
parameter lambda).

Value

A dataframe with the prediction scores for the grid.
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Note

Examples are given: - with PLSR, using gridscore and gridscorelv (much faster) - with PLSLDA,
using gridscore and gridscorelv (much faster) - with RR, using gridscore and gridscorelb (much
faster) - with KRR, using gridscore and gridscorelb (much faster) - with LWPLSR, using gridscorelv

Examples

## EXAMPLE WITH PLSR

n<-50 ;p<-38

Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 10 * rnorm(n))

m<-3

Xtest <- Xtrain[1:m, ]

Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]

nlv <- 5
pars <- mpars(nlv = 1:nlv)
pars
gridscore(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,
fun = plskern,
pars = pars, verb = TRUE
)

gridscorelv(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,
fun = plskern,
nlv = @:nlv, verb = TRUE
)

fm <- plskern(Xtrain, Ytrain, nlv = nlv)
pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

## EXAMPLE WITH PLSLDA

n<-5 ; p<-38

X <= matrix(rnorm(n * p), ncol = p, byrow = TRUE)
y <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtrain <- X ; ytrain <-y

m<-5

Xtest <- X[1:m, ] ; ytest <- y[1:m]

nlv <- 5
pars <- mpars(nlv = 1:nlv, prior = c("unif”, "prop"))
pars
gridscore(
Xtrain, ytrain, Xtest, ytest,
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score = err,

fun = plslda,
pars = pars, verb = TRUE
)

fm <- plslda(Xtrain, ytrain, nlv = nlv)
pred <- predict(fm, Xtest)$pred
err(pred, ytest)

pars <- mpars(prior = c("unif”, "prop"))
pars
gridscorelv(

Xtrain, ytrain, Xtest, ytest,
score = err,

fun = plslda,
nlv = 1:nlv, pars = pars, verb = TRUE
)

## EXAMPLE WITH RR

n<-50;p<-38

Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 1@ * rnorm(n))

m<- 3

Xtest <- Xtrain[1:m, ]

Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]

1b <= c(.1, 1)

pars <- mpars(lb = 1b)

pars

gridscore(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,

fun = rr,
pars = pars, verb = TRUE
)

gridscorelb(

Xtrain, Ytrain, Xtest, Ytest,
score = msep,

fun = rr,
1b = 1b, verb = TRUE
)

## EXAMPLE WITH KRR

n<-50;p<-38

Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 1@ * rnorm(n))

m<- 3

Xtest <- Xtrain[1:m, ]

gridscore
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Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]

1b <= c(.1, 1)
gamma <- 10*(-1:1)
pars <- mpars(lb = 1b, gamma = gamma)
pars
gridscore(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,

fun = krr,
pars = pars, verb = TRUE
)

pars <- mpars(gamma = gamma)
gridscorelb(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,

fun = krr,
1b = 1b, pars = pars, verb = TRUE
)

## EXAMPLE WITH LWPLSR

n<-50;p<-38

Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 1@ * rnorm(n))

m<- 3

Xtest <- Xtrain[1:m, ]

Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]

nlvdis <- 5
h <- c¢(1, Inf)
k <= c(10, 20)

nlv <- 5

pars <- mpars(nlvdis = nlvdis, diss = "mahal”,
h=h, k =k)

pars

res <- gridscorelv(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,

fun = lwplsr,
nlv = @:nlv, pars = pars, verb = TRUE
)

res

41

headm Display of the first part of a data set
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Description

Function headm displays the first part and the dimension of a data set.

Usage
headm(X)

Arguments

X A matrix or dataframe.

Value

first 6 rows and columns of a dataset, number of rows, number of columns, dataset class.

Examples
n <- 1000
p <- 200

X <= matrix(rnorm(n * p), nrow = n)

headm(X)

interpl Resampling of spectra by interpolation methods

Description

Resampling of signals by interpolation methods, including linear, spline, and cubic interpolation.

The function uses function interp1 of package signal available on the CRAN.

Usage
interpl(X, w, meth = "cubic”, ...)
Arguments
X X-data (nzp). For the interpolation, the column names of X are taken as numeric
values, w0. If they are not numeric or missing, they are automatically set to wd
=1:p.
w A vector of the values where to interpolate (typically within the range of w0).
meth The method of interpolation. See interpl.

Optional arguments to pass in function splinefun if meth = "spline”.
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Value

A matrix of the interpolated signals.

Examples

data(cassav)

X <- cassav$Xtest
headm(X)

w <- seq(500, 2400, length = 10)

zX <- interpl(X, w, meth = "spline")
headm(zX)

plotsp(zX)

knnda KNN-DA

Description

KNN weighted discrimination. For each new observation to predict, a number of £ nearest neigh-
bors is selected and the prediction is calculated by the most frequent class in ¥ in this neighborhood.

Usage
knnda(X, vy,
nlvdis, diss = c("eucl”, "mahal"),
h, k)
## S3 method for class 'Knnda'
predict(object, X, ...)
Arguments
X For the main function: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.
y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.
nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-

tion before calculating the dissimilarities. If nlvdis = @, there is no dimension
reduction. (see details)

diss The type of dissimilarity used for defining the neighbors. Possible values are
"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-
lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).
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h A scale scalar defining the shape of the weight function. Lower is h, sharper is
the function. See wdist.
k The number of nearest neighbors to select for each observation to predict.
object For the auxiliary functions: A fitted model, output of a call to the main function.

For the auxiliary functions: Optional arguments. Not used.

Details

In function knnda, the dissimilarities used for computing the neighborhood and the weights can be
calculated from the original X-data or after a dimension reduction (argument nlvdis). In the last
case, global PLS scores are computed from (X, Y") and the dissimilarities are calculated on these
scores. For high dimension X-data, the dimension reduction is in general required for using the

Mahalanobis distance.

Value

For knnda:list with input arguments.

For predict.Knnda:

pred prediction calculated for each observation by the most frequent class in y in its
neighborhood.
listnn list with the neighbors used for each observation to be predicted
listd list with the distances to the neighbors used for each observation to be predicted
listw list with the weights attributed to the neighbors used for each observation to be
predicted
References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

h<-50;p<-8

Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

m<-5

Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]

nlvdis <- 5 ; diss <- "mahal”
h<-2; k<-10
fm <- knnda(
Xtrain, ytrain,
nlvdis = nlvdis, diss = diss,
h=h, k =k
)
res <- predict(fm, Xtest)
names(res)
res$pred
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err(res$pred, ytest)

knnr

KNN-R

Description

KNN weighted regression. For each new observation to predict, a number of k nearest neighbors
is selected and the prediction is calculated by the average (eventually weighted) of the response Y
over this neighborhood.

Usage
knnr(X, Y,
nlvdis, diss = c("eucl”, "mahal"),
h, k)
## S3 method for class 'Knnr'
predict(object, X, ...)
Arguments
X For the main function: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.
Y Training Y-data (n, q).
nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-
tion before calculating the dissimilarities. If nlvdis = @, there is no dimension
reduction. (see details)
diss The type of dissimilarity used for defining the neighbors. Possible values are
"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-
lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - tho)).
h A scale scalar defining the shape of the weight function. Lower is h, sharper is
the function. See wdist.
k The number of nearest neighbors to select for each observation to predict.
object — For the auxiliary functions: A fitted model, output of a call to the main
function.
— For the auxiliary functions: Optional arguments. Not used.
Details

In function knnr, the dissimilarities used for computing the neighborhood and the weights can be
calculated from the original X-data or after a dimension reduction (argument nlvdis). In the last
case, global PLS scores are computed from (X, Y") and the dissimilarities are calculated on these
scores. For high dimension X-data, the dimension reduction is in general required for using the
Mahalanobis distance.
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Value

For knnr:list with input arguments.

For predict.Knnr:

pred prediction calculated for each observation by the average (eventually weighted)
of the response Y over its neighborhood.
listnn list with the neighbors used for each observation to be predicted
listd list with the distances to the neighbors used for each observation to be predicted
listw list with the weights attributed to the neighbors used for each observation to be
predicted
References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

n<-30;p<-10

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 100 * ytrain)
m<- 4

Xtest <- matrix(rnorm(m * p), ncol = p)
ytest <- rnorm(m)

Ytest <- cbind(ytest, 10 x ytest)

nlvdis <- 5 ; diss <- "mahal”
h<-2; k<-10
fm <= knnr(

Xtrain, Ytrain,

nlvdis = nlvdis, diss = diss,

h=h, k =k)
res <- predict(fm, Xtest)
names(res)
res$pred

msep(res$pred, Ytest)

kpca KPCA

Description

Kernel PCA (Scholkopf et al. 1997, Scholkopf & Smola 2002, Tipping 2001) by SVD factorization
of the weighted Gram matrix D(1/2) x Phi(X) % Phi(X)"* D(1/2). D is a (n, n) diagonal matrix
of weights for the observations (rows of X).
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Usage

kpca(X, weights

## S3 method for class 'Kpca'
transform(object, X, ..., nlv = NULL)

## S3 method for class 'Kpca'

summary (object,

Arguments

X

weights

nlv

kern

object

Value

For kpca:

X

Kt

T

P

sV

eig
weights
kern

dots
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= NULL, nlv, kern = "krbf", ...)
L)
For the main function: Training X-data (n, p). — For the auxiliary functions:

New X-data (m, p) to consider.

Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

The number of PCs to calculate.

Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions.

Optional arguments to pass in the kernel function defined in kern (e.g. gamma
for krbf).

— For the auxiliary functions: A fitted model, output of a call to the main
functions.

Training X-data (n, p).

Gram matrix

X-scores matrix.

X-loadings matrix.

vector of singular values
vector of eigenvalues.

vector of observation weights.
kern function.

Optional arguments.

For transform.Kpca: X-scores matrix for new X-data.

For summary .Kpca:

explvar

explained variance matrix.
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References

Scholkopf, B., Smola, A., Muller, K.-R., 1997. Kernel principal component analysis, in: Gerstner,
W., Germond, A., Hasler, M., Nicoud, J.-D. (Eds.), Artificial Neural Networks - ICANN 97, Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 583-588. https://doi.org/10.1007/BFb0020217

Scholkopf, B., Smola, A.J., 2002. Learning with kernels: support vector machines, regularization,
optimization, and beyond, Adaptive computation and machine learning. MIT Press, Cambridge,
Mass.

Tipping, ML.E., 2001. Sparse kernel principal component analysis. Advances in neural infor-
mation processing systems, MIT Press. http://papers.nips.cc/paper/1791-sparse-kernel-principal-
component-analysis.pdf

Examples

## EXAMPLE 1

n<-5;p<-4
X <= matrix(rnorm(n * p), ncol = p)

nlv <- 3
kpca(X, nlv = nlv, kern = "krbf")

fm <- kpca(X, nlv = nlv, kern = "krbf", gamma = .6)
fm$T

transform(fm, X[1:2, 1)

transform(fm, X[1:2, ], nlv = 1)

summary (fm)

## EXAMPLE 2

n<-5;p<-4

X <= matrix(rnorm(n * p), ncol = p)
nlv <- 3

pcasvd(X, nlv = nlv)$T

kpca(X, nlv = nlv, kern = "kpol")$T

kplsr KPLSR Models

Description

NIPALS Kernel PLSR algorithm described in Rosipal & Trejo (2001).

The algorithm is slow for n >= 500.
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Usage

kplsr(X, Y, weights = NULL, nlv, kern = "krbf",
tol = .Machine$double.eps”0.5, maxit = 100, ...)

## S3 method for class 'Kplsr'
transform(object, X, ..., nlv = NULL)

## S3 method for class 'Kplsr'
coef(object, ..., nlv = NULL)

## S3 method for class 'Kplsr'

predict(object, X, ..., nlv = NULL)
Arguments

X For the main function: Training X-data (n,p). — For the auxiliary functions:
New X-data (m, p) to consider.

Y Training Y-data (n, q).

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv The number(s) of LVs to calculate. — For the auxiliary functions: The num-
ber(s) of LVs to consider.

kern Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions.

tol Tolerance level for stopping the NIPALS iterations.

maxit Maximum number of NIPALS iterations.

Optional arguments to pass in the kernel function defined in kern (e.g. gamma

for krbf).

object For the auxiliary functions: A fitted model, output of a call to the main function.
Value

For kplsr:

X Training X-data (n, p).

Kt Gram matrix

T X-scores matrix.

C The Y-loading weights matrix.

U intermediate output.

R The PLS projection matrix (p,nlv).

ymeans the centering vector of Y (q,1).

weights vector of observation weights.

kern kern function.
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dots Optional arguments.

For transform.Kplsr: X-scores matrix for new X-data.

For coef.Kplsr:

int intercept values matrix.

beta beta coefficient matrix.
For predict.Kplsr:

pred predicted values matrix for new X-data.

Note

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001
p. 105-106

References

Rosipal, R., Trejo, L.J., 2001. Kernel Partial Least Squares Regression in Reproducing Kernel
Hilbert Space. Journal of Machine Learning Research 2, 97-123.

Examples

## EXAMPLE 1

n<-6,;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)

m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]

Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

nlv <- 2

fm <- kplsr(Xtrain, Ytrain, nlv = nlv, kern = "krbf"”, gamma = .8)
transform(fm, Xtest)

transform(fm, Xtest, nlv = 1)

coef (fm)

coef(fm, nlv = 1)

predict(fm, Xtest)
predict(fm, Xtest, nlv = @:nlv)$pred

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

nlv <- 2
fm <- kplsr(Xtrain, Ytrain, nlv = nlv, kern = "kpol”, degree = 2, coef@ = 10)
predict(fm, Xtest, nlv = nlv)

## EXAMPLE 2
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x <- seq(-10, 10, by = .2)
x[x == 0] <- le-5
n <- length(x)
zy <- sin(abs(x)) / abs(x)
y <= zy + rnorm(n, @, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X <= matrix(x, ncol = 1)
nlv <- 2
fm <- kplsr(X, y, nlv = nlv)
pred <- predict(fm, X)$pred
plot(X, y, type = "p")
lines(X, zy, 1ty = 2)
lines(X, pred, col = "red")
kplsrda KPLSR-DA models
Description
Discrimination (DA) based on kernel PLSR (KPLSR)
Usage
kplsrda(X, y, weights = NULL, nlv, kern = "krbf", ...)
## S3 method for class 'Kplsrda'
predict(object, X, ..., nlv = NULL)
Arguments
X For main function: Training X-data (n, p). — For auxiliary function: New X-

data (m, p) to consider.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

weights Weights (n) to apply to the training observations for the PLS2. Internally,
weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv For main function: The number(s) of LVs to calculate. — For auxiliary function:
The number(s) of LVs to consider.

kern Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions.
Optional arguments to pass in the kernel function defined in kern (e.g. gamma
for krbf).

object For auxiliary function: A fitted model, output of a call to the main functions.
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Details

kplsrda

The training variable y (univariate class membership) is transformed to a dummy table contain-
ing nclas columns, where nclas is the number of classes present in y. Each column is a dummy
variable (0/1). Then, a kernel PLSR (KPLSR) is run on the X —data and the dummy table, return-
ing predictions of the dummy variables. For a given observation, the final prediction is the class
corresponding to the dummy variable for which the prediction is the highest.

Value

For kplsrda:

fm

lev

ni
For predict.Kpls

pred

posterior

Examples

n<-5 ;p<-8
Xtrain <- matrix(

list with the kplsrda model: (X): the training X-data (n, p); (Kt): the Gram ma-
trix; (T): X-scores matrix; (C): The Y-loading weights matrix; (U): intermediate
output; (R): The PLS projection matrix (p,nlv); (ymeans): the centering vector
of Y (q,1); (weights): vector of observation weights; (kern): kern function;
(dots): Optional arguments.

y levels

number of observations by level of y
rda:

predicted class for each observation

calculated probability of belonging to a class for each observation

rnorm(n * p), ncol = p)

ytrain <- sample(c(l, 4, 10), size = n, replace = TRUE)

m<-5
Xtest <- Xtrain[1

nlv <- 2

:m, ] ; ytest <- ytrain[1:m]

fm <- kplsrda(Xtrain, ytrain, nlv = nlv)

names (fm)

predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred

err(pred, ytest)

predict(fm, Xtest
predict(fm, Xtest

predict(fm, Xtest
predict(fm, Xtest

, nlv = @:nlv)$posterior
, nlv = @)$posterior

, nlv = 0:nlv)$pred

, nlv = @)$pred
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krbf Kernel functions

Description
Building Gram matrices for different kernels (e.g. Scholkopf & Smola 2002).
- radial basis: exp(-gamma * Ix - yl"2)
- polynomial: (gamma * x” * y + coef0)"degree

- sigmoid: tanh(gamma * x’ * y + coef()

Usage
krbf (X, Y = NULL, gamma = 1)
kpol(X, Y = NULL, degree = 1, gamma = 1, coef@ = 0)
ktanh(X, Y = NULL, gamma = 1, coef@ = 0)
Arguments
X Dataset (n, p).
Y Dataset (m, p). The resulting Gram matrix K (X, Y') has dimensionnality (n, m).
If NULL (default), Y is set equal to X.
gamma value of the gamma parameter in the kernel calculation.
degree For kpol: value of the degree parameter in the polynomial kernel calculation.
coef® For kpol and ktanh: value of the coef0 parameter in the polynomial or sigmoid
kernel calculation.
Value

Gram matrix

References

Scholkopf, B., Smola, A.J., 2002. Learning with kernels: support vector machines, regularization,
optimization, and beyond, Adaptive computation and machine learning. MIT Press, Cambridge,
Mass.

Examples

n<-5;p<-3
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtest <- Xtrain[1:2, , drop = FALSE]

gamma <- .8
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krbf(Xtrain, gamma = gamma)

krbf(Xtest, Xtrain, gamma = gamma)
exp(-.5 * euclsq(Xtest, Xtrain) / gamma*2)

kpol(Xtrain, degree = 2, gamma = .5, coef@ = 1)

krr

KRR (LS-SVMR)

Description

Kernel ridge regression models (KRR = LS-SVMR) (Suykens et al. 2000, Bennett & Embrechts

2003, Krell 2018).

Usage

krr(X, Y, weights = NULL, 1b = 1e-2, kern = "krbf", ...)

## S3 method for class 'Krr'

coef(object,

., 1b = NULL)

## S3 method for class 'Krr'

predict(object,

Arguments

X

Y

weights

1b

kern

object

X, ..., 1lb = NULL)
For main function: Training X-data (n, p). — For auxiliary function: New X-
data (m, p) to consider.
Training Y-data (n, q).
Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

A value of regularization parameter lambda. If 1b = @, a pseudo-inverse is used
in the RR.

Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions.

Optional arguments to pass in the kernel function defined in kern (e.g. gamma
for krbf).

— For auxiliary function: A fitted model, output of a call to the main function.
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Value

For krr:

X

K

Kt

U

utby

sV

1b
ymeans
weights
kern

dots

For coef .Krr:
int

alpha

df

For predict.Krr:

pred

Note

55

Training X-data (n, p).

Gram matrix

Gram matrix

intermediate output.

intermediate output.

singular values of the matrix (1,n)

value of regularization parameter lambda
the centering vector of Y (q,1)

the weights vector of X-variables (p,1)
kern function.

Optional arguments.

matrix (1,nlv) with the intercepts
matrix (n,nlv) with the coefficients

model complexity (number of degrees of freedom)

A list of matrices (m, q) with the Y predicted values for the new X-data

KRR is close to the particular SVMR setting the epsilon coefficient to zero (no marges excluding
observations). The difference is that a L2-norm optimization is done, instead L1 in SVM.

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001

p. 105-106

References

Bennett, K.P., Embrechts, M.J., 2003. An optimization perspective on kernel partial least squares
regression, in: Advances in Learning Theory: Methods, Models and Applications, NATO Science
Series III: Computer & Systems Sciences. IOS Press Amsterdam, pp. 227-250.

Cawley, G.C., Talbot, N.L.C., 2002. Reduced Rank Kernel Ridge Regression. Neural Processing
Letters 16, 293-302. https://doi.org/10.1023/A:1021798002258

Krell, M.M., 2018. Generalizing, Decoding, and Optimizing Support Vector Machine Classifica-
tion. arXiv:1801.04929.

Saunders, C., Gammerman, A., Vovk, V., 1998. Ridge Regression Learning Algorithm in Dual
Variables, in: In Proceedings of the 15th International Conference on Machine Learning. Morgan
Kaufmann, pp. 515-521.
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Suykens, J.A.K., Lukas, L., Vandewalle, J., 2000. Sparse approximation using least squares support
vector machines. 2000 IEEE International Symposium on Circuits and Systems. Emerging Tech-
nologies for the 21st Century. Proceedings (IEEE Cat No.0OCH36353). https://doi.org/10.1109/ISCAS.2000.856439

Welling, M., n.d. Kernel ridge regression. Department of Computer Science, University of Toronto,
Toronto, Canada. https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

Examples

## EXAMPLE 1

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)

m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]

Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

1b <- 2

fm <- krr(Xtrain, Ytrain, lb = lb, kern = "krbf", gamma = .8)
coef (fm)

coef(fm, 1lb = .6)

predict(fm, Xtest)

predict(fm, Xtest, 1lb = c(0.1, .6))

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

1b <- 2
fm <- krr(Xtrain, Ytrain, 1lb = 1lb, kern = "kpol"”, degree = 2, coef@ = 10)
predict(fm, Xtest)

## EXAMPLE 2

x <- seq(-10, 10, by = .2)
x[x == 0] <- le-5

n <- length(x)

zy <- sin(abs(x)) / abs(x)
y <= zy + rnorm(n, @, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)

X <- matrix(x, ncol = 1)

fm <- krr(X, y, 1lb = .1, gamma = .5)
pred <- predict(fm, X)$pred

plot(X, y, type = "p")

lines(X, zy, lty = 2)

lines(X, pred, col = "red")
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krrda KRR-DA models
Description
Discrimination (DA) based on kernel ridge regression (KRR).
Usage
krrda(X, y, weights = NULL, 1lb = 1e-5, kern = "krbf", ...)
## S3 method for class 'Krrda'
predict(object, X, ..., 1b = NULL)
Arguments
X For main function: Training X-data (n, p). — For auxiliary function: New X-
data (m, p) to consider.
y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.
weights Weights (n) to apply to the training observations for the PLS2. Internally,
weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).
1b A value of regularization parameter lambda. If 1b = @, a pseudo-inverse is used
in the RR.
kern Name of the function defining the considered kernel for building the Gram ma-
trix. See krbf for syntax, and other available kernel functions.
Optional arguments to pass in the kernel function defined in kern (e.g. gamma
for krbf).
object — For auxiliary function: A fitted model, output of a call to the main functions.
Details

The training variable y (univariate class membership) is transformed to a dummy table containing
nclas columns, where nclas is the number of classes present in y. Each column is a dummy
variable (0/1). Then, a kernel ridge regression (KRR) is run on the X —data and the dummy table,
returning predictions of the dummy variables. For a given observation, the final prediction is the
class corresponding to the dummy variable for which the prediction is the highest.

Value

For krrda:

fm

List with the outputs of the RR ((X): Training X-data (n,p); (K): Gram ma-
trix; (Kt): Gram matrix; (U): intermediate output; (UtDY): intermediate output;



58 Ida

(sv): singular values of the matrix (1,n); (1b): value of regularization parame-
ter lambda; (ymeans): the centering vector of Y (q,1); (weights): the weights
vector of X-variables (p,1); (kern): kern function; (dots): Optional arguments.

lev y levels

ni number of observations by level of y

For predict.Krrda:

pred matrix or list of matrices (if Ib is a vector), with predicted class for each obser-
vation
posterior matrix or list of matrices (if Ib is a vector), calculated probability of belonging

to a class for each observation

Examples

n<-5 ; p<-8
Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- sample(c(l, 4, 10), size = n, replace = TRUE)

m<-5
Xtest <- Xtrain[1:m, 1 ; ytest <- ytrain[1:m]

1b <- 1

fm <- krrda(Xtrain, ytrain, 1lb = 1b)
names(fm)

predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred
err(pred, ytest)

predict(fm, Xtest, 1lb = 0:2)
predict(fm, Xtest, 1lb = @)

lda LDA and QDA

Description

Probabilistic (parametric) linear and quadratic discriminant analysis.

Usage
lda(X, y, prior = c("unif”, "prop"))
gda(X, y, prior = c("unif”, "prop"))

## S3 method for class 'Lda'
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predict(object, X, ...)

## S3 method for class 'Qda’

predict(object, X, ...)

Arguments

X For the main functions: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

prior The prior probabilities of the classes. Possible values are "unif" (default; proba-

bilities are set equal for all the classes) or "prop" (probabilities are set equal to
the observed proportions of the classes in y).

object For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

Details

For each observation to predict, the posterior probability to belong to a given class is estimated
using the Bayes’ formula, assuming priors (proportional or uniform) and a multivariate Normal
distribution for the dependent variables X . The prediction is the class with the highest posterior
probability.

LDA assumes homogeneous X —covariance matrices for the classes while QDA assumes different
covariance matrices. The functions use dmnorm for estimating the multivariate Normal densities.

Value

For 1da and qda:

ct centers (column-wise means) for classes of observations.

W unbiased within covariance matrices for classes of observations.
wprior prior probabilities of the classes.

lev y levels.

ni number of observations by level of y.

For predict.Lda and predict.Qda:

pred predicted classes of observations.

ds Prediction of the normal probability density.

posterior posterior probabilities of the classes.
References

Saporta, G., 2011. Probabilités analyse des données et statistique. Editions Technip, Paris, France.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
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Examples

## EXAMPLE 1
data(iris)

X <= iris[, 1:4]
y <- iris[, 5]
N <= nrow(X)

nTest <- round(.25 * N)
nTraining <- N - nTest
s <- sample(1:N, nTest)
Xtrain <- X[-s, 1]
ytrain <- y[-s]

Xtest <- X[s, ]

ytest <- y[s]

prior <- "unif”

fm <- lda(Xtrain, ytrain, prior = prior)
res <- predict(fm, Xtest)
names(res)

headm(res$pred)
headm(res$ds)
headm(res$posterior)

err(res$pred, ytest)
## EXAMPLE 2
data(iris)

X <= iris[, 1:4]
y <- iris[, 5]
N <- nrow(X)

nTest <- round(.25 * N)
nTraining <- N - nTest
s <- sample(1:N, nTest)
Xtrain <- X[-s, ]
ytrain <- y[-s]

Xtest <- X[s, 1]

ytest <- y[s]

prior <- "prop”
fm <- lda(Xtrain, ytrain, prior = prior)
res <- predict(fm, Xtest)

names(res)

headm(res$pred)
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headm(res$ds)
headm(res$posterior)
err(res$pred, ytest)
1mr Linear regression models
Description
Linear regression models (uses function 1m).
Usage
Imr(X, Y, weights = NULL)
## S3 method for class 'Lmr'
coef(object, ...)
## S3 method for class 'Lmr'
predict(object, X, ...)
Arguments
X For the main function: Training X-data (n,p). — For the auxiliary functions:
New X-data (m, p) to consider.
Y Training Y-data (n, q).
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).
object For the auxiliary functions:A fitted model, output of a call to the main functions.
For the auxiliary functions: Optional arguments. Not used.
Value
For 1mr:
coefficients coefficient matrix.
residuals residual matrix.
effects component relating to the linear fit, for use by extractor functions.
rank the numeric rank of the fitted linear model.

fitted.values
assign

qr

the fitted mean values.
component relating to the linear fit, for use by extractor functions.

component relating to the linear fit, for use by extractor functions.
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df.residual the residual degrees of freedom.

xlevels (only where relevant) a record of the levels of the factors used in fitting.
call the matched call.

terms the terms object used.

model the model frame used.

For coef.Lmr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients
For predict.Lmr:

pred A list of matrices (m, ¢) with the Y predicted values for the new X-data

Examples

n<-8;p<-3

X <= matrix(rnorm(n * p, mean = 10), ncol = p, byrow = TRUE)
y <= rnorm(n)

Y <- cbind(y, rnorm(n))

Xtrain <- X[1:6, 1 ; Ytrain <- Y[1:6, ]

Xtest <- X[7:8, ] ; Ytest <- Y[7:8, ]

fm <- lmr(Xtrain, Ytrain)
coef (fm)

predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

Imrda LMR-DA models

Description

Discrimination (DA) based on linear regression (LMR).

Usage
Imrda(X, y, weights = NULL)

## S3 method for class 'Lmrda'
predict(object, X, ...)
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Arguments

X

weights

object

Details

63

For the main function: Training X-data (n,p). — For the auxiliary function:
New X-data (m, p) to consider.

Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

Weights (n) to apply to the training observations for the PLS2. Internally,
weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).

For the auxiliary function: A fitted model, output of a call to the main functions.

For the auxiliary function: Optional arguments. Not used.

The training variable y (univariate class membership) is transformed to a dummy table containing
nclas columns, where nclas is the number of classes present in y. Each column is a dummy
variable (0/1). Then, a linear regression model (LMR) is run on the X —data and the dummy table,
returning predictions of the dummy variables. For a given observation, the final prediction is the
class corresponding to the dummy variable for which the prediction is the highest.

Value

For 1rmda:

fm

lev

ni

List with the outputs((coefficients): coefficient matrix; (residuals): resid-
ual matrix; (fitted.values): the fitted mean values; (effects): component
relating to the linear fit, for use by extractor functions; (weights): Weights (n)
applied to the training observations for the PLS2; (rank): the numeric rank of
the fitted linear model; (assign): component relating to the linear fit, for use
by extractor functions; (qr): component relating to the linear fit, for use by ex-
tractor functions; (df .residual): the residual degrees of freedom; (xlevels):
(only where relevant) a record of the levels of the factors used in fitting; (call):
the matched call; (terms): the terms object used; (model): the model frame
used).

y levels.

number of observations by level of y.

For predict.Lrmda:

pred

posterior

Examples

n<-5 ;p<-38

predicted classes of observations.

posterior probability of belonging to a class for each observation.

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

m<-5

Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]
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locw

fm <- lmrda(Xtrain, ytrain)
names(fm)
predict(fm, Xtest)

coef (fm$fm)

pred <- predict(fm, Xtest)$pred
err(pred, ytest)

locw Locally weighted models

Description

locw and locwlv are generic working functions returning predictions of KNN locally weighted
(LW) models. One specific (= local) model is fitted for each observation to predict, and a prediction
is returned. See the wrapper lwplsr (KNN-LWPLSR) for an example of use.

In KNN-LW models, the prediction is built from two sequential steps, therafter referred to as
weighting”1” and weighting”2”, respectively. For each new observation to predict, the two steps
are as follow:

- Weighting”1”. The k nearest neighbors (in the training data set) are selected and the prediction
model is fitted (in the next step) only on this neighborhood. It is equivalent to give a weight = 1 to
the neighbors, and a weight = 0 to the other training observations, which corresponds to a binary
weighting.

- Weighting”2”. Each of the k nearest neighbors eventually receives a weight (different from
the usual 1/k) before fitting the model. The weight depend from the dissimilarity (preliminary
calculated) between the observation and the neighbor. This corresponds to a within-neighborhood
weighting.

The prediction model used in step ”2” has to be defined in a function specified in argument fun. If
there are m new observations to predict, a list of m vectors defining the m neighborhoods has to be
provided (argument 1istnn). Each of the m vectors contains the indexes of the nearest neighbors
in the training set. The m vectors are not necessary of same length, i.e. the neighborhood size can
vary between observations to predict. If there is a weighting in step ”2”, a list of m vectors of
weights have to be provided (argument 1istw). Then locw fits the model successively for each of
the m neighborhoods, and returns the corresponding m predictions.

Function locwlv is dedicated to prediction models based on latent variables (LVs) calculations,
such as PLSR. It is much faster and recommended.

Usage

locw(Xtrain, Ytrain, X, listnn, listw = NULL, fun, verb = FALSE, ...)

locwlv(Xtrain, Ytrain, X, listnn, listw = NULL, fun, nlv, verb = FALSE, ...)



locw 65

Arguments
Xtrain Training X-data (n, p).
Ytrain Training Y-data (n, q).
X New X-data (m, p) to predict.
listnn A list of m vectors defining weighting "1". Component ¢ of this list is a vector
(of length between 1 and n) of indexes. These indexes define the training obser-
vations that are the nearest neighbors of new observation 7. Typically, listnn
can be built from getknn, but any other list of length m can be provided. The
m vectors can have equal length (i.e. the m neighborhoods are of equal size) or
not (the number of neighbors varies between the observations to predict).
listw A list of m vectors defining weighting "2". Component ¢ of this list is a vector
(that must have the same length as component ¢ of 1istnn) of the weights given
to the nearest neighbors when the prediction model is fitted. Internally, weights
are "normalized" to sum to 1 in each component. Default to NULL (weights are
set to 1/k where kis the size of the neihborhodd).
fun A function corresponding to the prediction model to fit on the m neighborhoods.
nlv For locwlv : The number of LVs to calculate.
verb Logical. If TRUE, fitting information are printed.
Optional arguments to pass in function fun.
Value
pred matrix or list of matrices (if nlv is a vector), with predictions
References

Lesnoff M, Metz M, Roger J-M. Comparison of locally weighted PLS strategies for regression and
discrimination on agronomic NIR data. Journal of Chemometrics. 2020;n/a(n/a):e3209. doi:10.1002/cem.3209.

Examples

n<-50; p<-30

Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 100 * ytrain)

m<- 4

Xtest <- matrix(rnorm(m * p), ncol = p, byrow = TRUE)
ytest <- rnorm(m)

Ytest <- cbind(ytest, 10 x ytest)

k <- 5

z <- getknn(Xtrain, Xtest, k = k)
listnn <- z$listnn

listd <- z$listd

listnn

listd

listw <- lapply(listd, wdist, h = 2)
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listw

nlv <- 2
locw(Xtrain, Ytrain, Xtest,
listnn = listnn, fun = plskern, nlv = nlv)
locw(Xtrain, Ytrain, Xtest,
listnn = listnn, listw = listw, fun = plskern, nlv = nlv)

locwlv(Xtrain, Ytrain, Xtest,

listnn = listnn, listw = listw, fun = plskern, nlv = nlv)
locwlv(Xtrain, Ytrain, Xtest,

listnn = listnn, listw = listw, fun = plskern, nlv = @:nlv)

lwplsr KNN-LWPLSR

Description

Function lwplsr fits KNN-LWPLSR models described in Lesnoff et al. (2020). The function uses
functions getknn, locw and PLSR functions. See the code for details. Many variants of such
pipelines can be build using locw.

Usage
lwplsr(X, Y,
nlvdis, diss = c("eucl”, "mahal"),
h, k,
nlv,
cri = 4,

verb = FALSE)

## S3 method for class 'Lwplsr'

predict(object, X, ..., nlv = NULL)
Arguments
X — For the main function: Training X-data (n, p). — For the auxiliary function:
New X-data (m, p) to consider.
Y Training Y-data (n, q).
nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-

tion before calculating the dissimilarities (see details). If nlvdis = @, there is no
dimension reduction.

diss The type of dissimilarity used for defining the neighbors. Possible values are
"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-
lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).
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h A scale scalar defining the shape of the weight function. Lower is h, sharper is
the function. See wdist.

k The number of nearest neighbors to select for each observation to predict.

nlv The number(s) of LVs to calculate in the local PLSR models.

cri Argument cri in function wdist.

verb Logical. If TRUE, fitting information are printed.

object — For the auxiliary function: A fitted model, output of a call to the main func-
tion.

— For the auxiliary function: Optional arguments.

Details

- LWPLSR: This is a particular case of "weighted PLSR" (WPLSR) (e.g. Schaal et al. 2002). In
WPLSR, a priori weights, different from the usual 1/n (standard PLSR), are given to the n training
observations. These weights are used for calculating (i) the PLS scores and loadings and (ii) the
regression model of the response(s) over the scores (by weighted least squares). LWPLSR is a
particular case of WPLSR. "L" comes from "localized": the weights are defined from dissimilarities
(e.g. distances) between the new observation to predict and the training observations. By definition
of LWPLSR, the weights, and therefore the fitted WPLSR model, change for each new observation
to predict.

- KNN-LWPLSR: Basic versions of LWPLSR (e.g. Sicard & Sabatier 2006, Kim et al 2011) use,
for each observation to predict, all the n training observation. This can be very time consuming,
in particular for large n. A faster and often more efficient strategy is to preliminary select, in
the training set, a number of k nearest neighbors to the observation to predict (this is referred to as
”weightingl” in function locw) and then to apply LWPLSR only to this pre-selected neighborhood
(this is referred to asweighting”2” in locw). This strategy corresponds to KNN-LWPLSR.

In function lwplsr, the dissimilarities used for computing the weights can be calculated from the
original X-data or after a dimension reduction (argument nlvdis). In the last case, global PLS
scores are computed from (X, Y') and the dissimilarities are calculated on these scores. For high di-
mension X-data, the dimension reduction is in general required for using the Mahalanobis distance.

Value

For 1wplsr: object of class Lwplsr

For predict.Lwplsr:

pred prediction calculated for each observation

listnn list with the neighbors used for each observation to be predicted

listd list with the distances to the neighbors used for each observation to be predicted
listw list with the weights attributed to the neighbors used for each observation to be

predicted
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References
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Examples

n<-30;pc<-10

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 100 * ytrain)
m<- 4

Xtest <- matrix(rnorm(m * p), ncol = p)
ytest <- rnorm(m)

Ytest <- cbind(ytest, 10 * ytest)

nlvdis <- 5 ; diss <- "mahal”
h<-2; k<-10
nlv <- 2
fm <- lwplsr(
Xtrain, Ytrain,
nlvdis = nlvdis, diss = diss,
h =h, k =k,
nlv = nlv)
res <- predict(fm, Xtest)
names(res)
res$pred
msep(res$pred, Ytest)

res <- predict(fm, Xtest, nlv = 0:2)
res$pred

lwplsrda KNN-LWPLS-DA Models

Description
- lwplsrda: KNN-LWPLSRDA models. This is the same methodology as for lwplsr except that
PLSR is replaced by PLSRDA (plsrda). See the help page of 1wplsr for details.

- lwplslda and 1wplsqda: Same as above, but PLSRDA is replaced by either PLSLDA (plslda)
or PLSQDA ((plsqda), respecively.
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Usage
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lwplsrda(

X, Y,

nlvdis, diss = c("eucl”, "mahal”),
h, k,

nlv,

cri = 4,

verb = FALSE

)

lwplslda(

X, v,

nlvdis, diss = c("eucl”, "mahal”),
h, k,

nlv,

prior = c("unif”, "prop"),

cri = 4,

verb = FALSE

)

lwplsqda(

X, ¥,

nlvdis, diss = c("eucl”, "mahal”),
h, k,
nlv,
prior =
cri = 4,
verb = FALSE
)

C(”Unif”, npr.opu) ,

## S3 method for class 'Lwplsrda'
predict(object, X, ..., nlv = NULL)

## S3 method for class 'Lwplsprobda'
predict(object, X, ..., nlv = NULL)

Arguments

X

For the main functions: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-
tion before calculating the dissimilarities. If nlvdis = @, there is no dimension
reduction.

diss The type of dissimilarity used for defining the neighbors. Possible values are
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nlv

prior

cri
verb

object

Value

Iwplsrda

"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-
lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).

A scale scalar defining the shape of the weight function. Lower is h, sharper is
the function. See wdist.

The number of nearest neighbors to select for each observation to predict.
The number(s) of LVs to calculate in the local PLSDA models.

The prior probabilities of the classes. Possible values are "unif" (default; proba-
bilities are set equal for all the classes) or "prop" (probabilities are set equal to
the observed proportions of the classes in y).

Argument cri in function wdist.
Logical. If TRUE, fitting information are printed.
For the auxiliary functions: A fitted model, output of a call to the main function.

For the auxiliary functions: Optional arguments. Not used.

For 1wplsrda, lwplslda, lwplsqda: object of class Lwplsrda or Lwplsprobda,

For predict.Lwplsrda, predict.Lwplsprobda :

pred
listnn
listd

listw

Examples

n<-50;p<-7

class predicted for each observation
list with the neighbors used for each observation to be predicted
list with the distances to the neighbors used for each observation to be predicted

list with the weights attributed to the neighbors used for each observation to be
predicted

Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

m<- 4

Xtest <- matrix(rnorm(m * p), ncol = p)
ytest <- sample(c(1, 4, 10), size = m, replace = TRUE)

nlvdis <- 5 ;
h<-2;
nlv <- 2

fm <- lwplsrda(

diss <- "mahal”

Xtrain, ytrain,
nlvdis = nlvdis, diss = diss,

h =h, k =k,
nlv = nlv

)

res <- predict(fm, Xtest)

res$pred
res$listnn

err(res$pred, ytest)
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res <- predict(fm, Xtest, nlv = 0:2)
res$pred

lwplsrda_agg Aggregation of KNN-LWPLSDA models with different numbers of LVs

Description

Ensemblist method where the predictions are calculated by "averaging" the predictions of KNN-
LWPLSDA models built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the
most occurent level (vote) over the predictions returned by the models with 5 LVS, 6 LVs, ... 10
LVs, respectively.

- lwplsrda_agg: use plsrda.
- lwplslda_agg: use plslda.
- lwplsqda_agg: use plsqda.

Usage

lwplsrda_agg(
X, v,
nlvdis, diss = c("eucl”, "mahal"),
h, k,
nlv,
cri = 4,
verb = FALSE
)

lwplslda_agg(
X, ¥,
nlvdis, diss = c("eucl”, "mahal”),
h, k,
nlv,
prior = c("unif”, "prop"),
cri = 4,
verb = FALSE
)

lwplsqda_agg(
X, Y,
nlvdis, diss = c("eucl”, "mahal"),
h, k,
nlv,
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prior = c("unif”, "prop"),
cri = 4,

verb = FALSE

)

## S3 method for class 'Lwplsrda_agg'
predict(object, X, ...)

## S3 method for class 'Lwplsprobda_agg'

predict(object, X, ...)
Arguments
X For the main functions: Training X-data (n, p). — For the auxiliary functions:

New X-data (m, p) to consider.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-
tion before calculating the dissimilarities. If nlvdis = @, there is no dimension
reduction.

diss The type of dissimilarity used for defining the neighbors. Possible values are

"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-
lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).

h A scale scalar defining the shape of the weight function. Lower is h, sharper is
the function. See wdist.

k The number of nearest neighbors to select for each observation to predict.

nlv A character string such as "5:20" defining the range of the numbers of LVs to
consider (here: the models with nb LVS =5, 6, ..., 20 are averaged). Syntax
such as "10" is also allowed (here: correponds to the single model with 10 LVs).

prior For 1wplslda_agg and lwplsqda_agg: The prior probabilities of the classes.
Possible values are "unif" (default; probabilities are set equal for all the classes)
or "prop" (probabilities are set equal to the observed proportions of the classes

iny).
cri Argument cri in function wdist.
verb Logical. If TRUE, fitting information are printed.
object For the auxiliary functions: A fitted model, output of a call to the main function.

For the auxiliary functions: Optional arguments. Not used.

Value

For 1wplsrda_agg, lwplslda_agg and lwplsgda_agg: object of class lwplsrda_agg, lwplslda_agg
or lwplsqda_agg

For predict.Lwplsrda_agg and predict.Lwplsprobda_agg:
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pred prediction calculated for each observation, which is the most occurent level
(vote) over the predictions returned by the models with different numbers of
LVS respectively

listnn list with the neighbors used for each observation to be predicted
listd list with the distances to the neighbors used for each observation to be predicted
listw list with the weights attributed to the neighbors used for each observation to be
predicted
Note

The first example concerns KNN-LWPLSRDA-AGG. The second example concerns KNN-LWPLSLDA-
AGG.

Examples

## KNN-LWPLSRDA-AGG

n<-40 ; p<-17
X <= matrix(rnorm(n * p), ncol = p, byrow = TRUE)
y <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtrain <- X ; ytrain <-y
m<-5
Xtest <- X[1:m, 1 ; ytest <- y[1:m]

nlvdis <- 5 ; diss <- "mahal”
h<-2; k<-10
nlv <- "2:4"
fm <- lwplsrda_agg(
Xtrain, ytrain,
nlvdis = nlvdis, diss = diss,
h =h, k =k,
nlv = nlv)
res <- predict(fm, Xtest)
res$pred
res$listnn

nlvdis <- 5 ; diss <- "mahal”

h <- c(2, Inf)

k <= c(10, 15)

nlv <- c("1:3", "2:4")

pars <- mpars(nlvdis = nlvdis, diss = diss,
h =h, k =k, nlv = nlv)

pars

res <- gridscore(
Xtrain, ytrain, Xtest, ytest,
score = err,
fun = lwplsrda_agg,
pars = pars)
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res

segm <- segmkf(n = n, K =3, nrep = 1)
res <- gridcv(
Xtrain, ytrain,
segm, score = err,
fun = lwplsrda_agg,
pars = pars,
verb = TRUE)
names(res)
res$val

## KNN-LWPLSLDA-AGG

n<-40; p<-7
X <= matrix(rnorm(n * p), ncol = p, byrow = TRUE)
y <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtrain <- X ; ytrain <-y
m<-5
Xtest <- X[1:m, ] ; ytest <- y[1:m]

nlvdis <- 5 ; diss <- "mahal”
h<-2; k<-10
nlv <- "2:4"
fm <- lwplslda_agg(
Xtrain, ytrain,
nlvdis = nlvdis, diss = diss,

h =h, k =k,

nlv = nlv, prior = "prop")
res <- predict(fm, Xtest)
res$pred
res$listnn

nlvdis <- 5 ; diss <- "mahal”

h <- c(2, Inf)

k <- c(10, 15)

nlv <- c("1:3", "2:4")

pars <- mpars(nlvdis = nlvdis, diss = diss,
h =h, k =k, nlv = nly,
prior = c("unif”, "prop"))

pars

res <- gridscore(
Xtrain, ytrain, Xtest, ytest,
score = err,
fun = lwplslda_agg,
pars = pars)
res

segm <- segmkf(n = n, K =3, nrep = 1)
res <- gridcv(
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Xtrain, ytrain,
segm, score = err,
fun = lwplslda_agg,
pars = pars,

verb = TRUE)

names(res)
res$val

lwplsr_agg Aggregation of KNN-LWPLSR models with different numbers of LVs

Description

Ensemblist method where the predictions are calculated by averaging the predictions of KNN-
LWPLSR models (1wplsr) built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the
simple average of the predictions returned by the models with 5 LVS, 6 LVs, ... 10 LVs, respectively.

Usage
lwplsr_agg(
X, Y,
nlvdis, diss = c("eucl”, "mahal"),
h, k,
nlv,
cri = 4,
verb = FALSE
)
## S3 method for class 'Lwplsr_agg'
predict(object, X, ...)
Arguments
X For the main function: Training X-data (n,p). — For the auxiliary function:

New X-data (m, p) to consider.

Y Training Y-data (n, g).

nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-
tion before calculating the dissimilarities. If nlvdis = @, there is no dimension
reduction.

diss The type of dissimilarity used for defining the neighbors. Possible values are
"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-
lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).

h A scale scalar defining the shape of the weight function. Lower is h, sharper is

the function. See wdist.
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nlv

cri
verb

object

Value

Iwplsr_agg

The number of nearest neighbors to select for each observation to predict.

A character string such as "5:20" defining the range of the numbers of LVs to
consider (here: the models with nb LVS =5, 6, ..., 20 are averaged). Syntax
such as "10" is also allowed (here: correponds to the single model with 10 LVs).

Argument cri in function wdist.
Logical. If TRUE, fitting information are printed.
For the auxiliary function: A fitted model, output of a call to the main function.

For the auxiliary function: Optional arguments. Not used.

For 1wplsr_agg: object of class Lwplsr_agg

For predict.Lwplsr_agg:

pred

listnn
listd

listw

Note

prediction calculated for each observation, which is the most occurent level
(vote) over the predictions returned by the models with different numbers of
LVS respectively

list with the neighbors used for each observation to be predicted
list with the distances to the neighbors used for each observation to be predicted

list with the weights attributed to the neighbors used for each observation to be
predicted

In the examples, gridscore and gricv have been used as there is no sense to use gridscorelv

and gricvlv.

Examples
## EXAMPLE 1
n<-30;p<-10

Xtrain <- matrix(
ytrain <- rnorm(n

rnorm(n * p), ncol = p)

)

Ytrain <- cbind(ytrain, 100 * ytrain)

m<- 4

Xtest <- matrix(rnorm(m * p), ncol = p)

ytest <- rnorm(m)

Ytest <- cbind(ytest, 10 x ytest)

nlvdis <- 5 ; diss <- "mahal”

h<-2; k<-10
nlv <- "2:6"
fm <- lwplsr_agg(

Xtrain, Ytrain,

nlvdis = nlvd
h =h, k =k,
nlv = nlv)

is, diss = diss,
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names (fm)

res <- predict(fm, Xtest)
names(res)

res$pred

msep(res$pred, Ytest)

## EXAMPLE 2

n<-30;pc<-10

Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 100 * ytrain)

m <-4

Xtest <- matrix(rnorm(m * p), ncol = p)
ytest <- rnorm(m)

Ytest <- cbind(ytest, 10 * ytest)

nlvdis <- 5 ; diss <- "mahal”

h <- c(2, Inf)

k <- c(10, 20)

nlv <- c("1:3", "2:5")

pars <- mpars(nlvdis = nlvdis, diss = diss,
h =h, k =k, nlv = nlv)

pars

res <- gridscore(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,
fun = lwplsr_agg,
pars = pars)

res

## EXAMPLE 3

n<-30;p<-10

Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 100 * ytrain)
m<- 4

Xtest <- matrix(rnorm(m * p), ncol = p)
ytest <- rnorm(m)

Ytest <- cbind(ytest, 10 x ytest)

K=3
segm <- segmkf(n = n, K =K, nrep = 1)
segm
res <- gridcv(
Xtrain, Ytrain,
segm, score = msep,
fun = lwplsr_agg,
pars = pars,
verb = TRUE)

res

77
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matW

matW

Between and within covariance matrices

Description

Calculation of within (matW) and between (matB) covariance matrices for classes of observations.

Usage

matW(X, y)

matB(X, y)

Arguments
X

y

Details

Data (n, p) on whch are calculated the covariances.

Class membership (n, 1).

The denominator in the variance calculations is n.

Value

For (matW):

Wi
lev

ni

For (matB):

ct
lev

ni

within covariance matrix.
list of covariance matrices for each class.
classes

number of observations in each per class

between covariance matrix.
matrix of class centers.
classes

number of observations in each per class



mavg 79

Examples

n<-8;p<-3

X <= matrix(rnorm(n * p), ncol = p)

y <- sample(1:2, size = n, replace = TRUE)
X

y

matW(X, y)
matB(X, y)

matW(X, y)$W + matB(X, y)$B
(n = 1) / n* cov(X)

mavg Smoothing by moving average

Description

Smoothing, by moving average, of the row observations (e.g. spectra) of a dataset.

Usage
mavg(X, n = 5)

Arguments
X X-data (n, p).
n The number of points (i.e. columns of X) defining the window over wich is
calculate each average. The smoothing is calculated for the point at the center
of the window. Therefore, n must be an odd integer, and be higher or equal to 3.
Value

A matrix of the transformed data.
Examples
data(cassav)

X <- cassav$Xtest
headm(X)

Xp <- mavg(X, n = 11)
headm(Xp)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))
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plotsp(X, main = "Signal")

plotsp(Xp, main = "Corrected signal")
abline(h = @, 1ty = 2, col = "grey")
par(oldpar)

mbplsr multi-block PLSR algorithms

Description
Algorithm fitting a multi-block PLS1 or PLS2 model between dependent variables Xlist and re-
sponses Y, based on the "Improved kernel algorithm #1" proposed by Dayal and MacGregor (1997).

For weighted versions, see for instance Schaal et al. 2002, Siccard & Sabatier 2006, Kim et al. 2011
and Lesnoff et al. 2020.

Auxiliary functions

transform Calculates the LVs for any new matrix X from the model.
summary returns summary information for the model.

coef Calculates b-coefficients from the model, adjuted for raw data.

predict Calculates the predictions for any new matrix X from the model.

Usage

mbplsr(Xlist, Y, blockscaling = TRUE, weights = NULL, nlv,
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none"”, "pareto”, "sd")[1])

## S3 method for class 'Mbplsr'
transform(object, X, ..., nlv = NULL)

## S3 method for class 'Mbplsr'
summary (object, X, ...)

## S3 method for class 'Mbplsr'
coef(object, ..., nlv = NULL)

## S3 method for class 'Mbplsr'

predict(object, X, ..., nlv = NULL)
Arguments
Xlist For the main function: list of training X-data (nrows).
X For the auxiliary functions: list of new X-data, with the same variables than the

training X-data.

Y Training Y-data (n, g).
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blockscaling

weights

nlv

Xscaling

Yscaling

object

Value

81

logical. If TRUE, the scaling factor (computed on the training) is the "norm" of
the block, i.e. the square root of the sum of the variances of each column of the
block.

Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

For the main functions: The number(s) of LVs to calculate. — For the auxiliary
functions: The number(s) of LVs to consider.

vector (of length Xlist) of variable scaling for each datablock, among "none"
(mean-centering only), "pareto” (mean-centering and pareto scaling), "sd" (mean-
centering and unit variance scaling). If "pareto" or "sd", uncorrected standard
deviation is used.

character. variable scaling for the Y-block, among "none" (mean-centering only),
"pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit
variance scaling). If "pareto” or "sd", uncorrected standard deviation is used.

For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

A list of outputs, such as

T
P
W
C

R

xmeans
ymeans
xscales
yscales
weights

T
blockscaling

Xnorms

U

The X-score matrix (n, nlv).
The X-loadings matrix (p, nlv).
The X-loading weights matrix (p, nlv).

The Y-loading weights matrix (C = t(Beta), where Beta is the scores regression
coefficients matrix).

The PLS projection matrix (p, nlv).

The list of centering vectors of Xist.

The centering vector of Y (q, 1).

The list of Xist variable standard deviations.

The vector of Y variable standard deviations (g, 1).
Weights applied to the training observations.

the X-score normalization factor.

block scaling.

"norm" of each block, i.e. the square root of the sum of the variances of each
column of each block, computed on the training, and used as scaling factor

intermediate output.

For transform.Mbplsr: X-scores matrix for new Xlist-data.

For summary .Mbplsr:
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explvarx matrix of explained variances.
For coef.Mbplsr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients
For predict.Mbplsr:

pred A list of matrices (m, q) with the Y predicted values for the new Xlist-data
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See Also
mbplsr_mbplsda_allsteps function to help determine the optimal number of latent variables,
perform a permutation test, calculate model parameters and predict new observations.

Examples

n<-10 ; p <- 10
Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- rnorm(n)

m<- 2
Xtest <- matrix(rnorm(m * p), ncol = p)
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colnames(Xtrain) <- colnames(Xtest) <- paste("v", 1:p, sep = "")

Xtrain
Xtest

blocks <- list(1:2, 4, 6:8)
X1 <- mblocks(Xtrain, blocks = blocks)
X2 <- mblocks(Xtest, blocks = blocks)

nlv <- 3
fm <- mbplsr(Xlist = X1, Y = ytrain, Xscaling = c("sd"”,"none"”,"none"),
blockscaling = TRUE, weights = NULL, nlv = nlv)

summary (fm, X1)
coef (fm)
transform(fm, X2)
predict(fm, X2)

mbplsrda multi-block PLSDA models

Description

Multi-block discrimination (DA) based on PLS.

The training variable y (univariate class membership) is firstly transformed to a dummy table con-
taining nclas columns, where nclas is the number of classes present in y. Each column is a dummy
variable (0/1). Then, a PLS2 is implemented on the X —data and the dummy table, returning latent
variables (LVs) that are used as dependent variables in a DA model.

-mbplsrda: Usual "PLSDA". A linear regression model predicts the Y-dummy table from the PLS2
LVs. This corresponds to the PLSR2 of the X-data and the Y-dummy table. For a given observation,
the final prediction is the class corresponding to the dummy variable for which the prediction is the
highest.

- mbplslda and mbplsqda: Probabilistic LDA and QDA are run over the PLS2 LVs, respectively.

Usage

mbplsrda(Xlist, y, blockscaling = TRUE, weights = NULL, nlv,
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none", "pareto”, "sd")[1])

mbplslda(Xlist, y, blockscaling = TRUE, weights = NULL, nlv, prior = c("unif”, "prop"),
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none"”, "pareto”, "sd")[1])

mbplsqda(Xlist, y, blockscaling = TRUE, weights = NULL, nlv, prior = c("unif"”, "prop"),
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none"”, "pareto”, "sd")[1])

## S3 method for class 'Mbplsrda’
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predict(object, X, ..., nlv = NULL)

## S3 method for class 'Mbplsprobda’

predict(object, X, ..., nlv = NULL)
Arguments
Xlist For the main functions: list of training X-data (nrows).
X For the auxiliary functions: list of new X-data (n rows), with the same variables
than the training X-data.
y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

blockscaling  logical. If TRUE, the scaling factor (computed on the training) is the "norm" of
the block, i.e. the square root of the sum of the variances of each column of the

block.
weights Weights (n) to apply to the training observations for the PLS2. Internally,
weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).
nlv The number(s) of LVs to calculate.
prior The prior probabilities of the classes. Possible values are "unif" (default; proba-

bilities are set equal for all the classes) or "prop" (probabilities are set equal to
the observed proportions of the classes in y).

Xscaling vector (of length Xlist) of variable scaling for each datablock, among "none"
(mean-centering only), "pareto” (mean-centering and pareto scaling), "sd" (mean-
centering and unit variance scaling). If "pareto" or "sd", uncorrected standard
deviation is used.

Yscaling character. variable scaling for the Y-block after binary transformation, among
"none" (mean-centering only), "pareto” (mean-centering and pareto scaling),
"sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected
standard deviation is used.

object For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

Value

For mbplsrda:

fm list with the MB-PLS model: (T): X-scores matrix; (P): X-loading matrix;(R):
The PLS projection matrix (p,nlv); (W): X-loading weights matrix ;(C): The
Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans):
the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1);
(weights): vector of observation weights; (blockscaling): block scaling; (Xnorms):
"norm" of each block; (U): intermediate output.

lev classes

ni number of observations in each class
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For mbplslda, mbplsqda:

fm list with [[1]] the MB-PLS model: (T): X-scores matrix; (P): X-loading ma-
trix;(R): The PLS projection matrix (p,nlv); (W): X-loading weights matrix ;(C):
The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans):
the centering vectors of X; (ymeans): the centering vector of Y (q,1); (xscales):
the scaling vector of X (p,1); (yscales): the scaling vector of Y (q,1); (weights):
vector of observation weights; (blockscaling): block scaling; (Xnorms): "norm"
of each block; (U): intermediate output. [[2]] lda or gda models.

lev classes

ni number of observations in each class

For predict.Mbplsrda, predict.Mbplsprobda:

pred predicted class for each observation
posterior calculated probability of belonging to a class for each observation
Note

The first example concerns MB-PLSDA, and the second one concerns MB-PLS LDA. fm are PLS1
models, and zfm are PLS2 models.

See Also
mbplsr_mbplsda_allsteps function to help determine the optimal number of latent variables,

perform a permutation test, calculate model parameters and predict new observations.

Examples
## EXAMPLE OF MB-PLSDA
n<-5; p<-38
Xtrain <- matrix(rnorm(n x p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])

nlv <- 5
fm <- mbplsrda(Xtrainlist, ytrain, Xscaling = "sd”, nlv = nlv)

names (fm)

predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 0:2)$pred

pred <- predict(fm, Xtestlist)$pred
err(pred, ytest)

zfm <= fm$fm
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transform(zfm, Xtestlist)
transform(zfm, Xtestlist, nlv = 1)
summary (zfm, Xtrainlist)

coef (zfm)

coef(zfm, nlv = @)

coef(zfm, nlv = 2)

## EXAMPLE OF MB-PLS LDA

n<-5 ; p<-38
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:81)

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])

nlv <- 5

fm <- mbplslda(Xtrainlist, ytrain, Xscaling = "none”, nlv = nlv)
predict(fm, Xtestlist)

predict(fm, Xtestlist, nlv = 1:2)$pred

zfm <- fm[[1]11CC1]]
class(zfm)

names (zfm)

summary(zfm, Xtrainlist)
transform(zfm, Xtestlist)
coef (zfm)

## EXAMPLE OF MB-PLS QDA

n<-50;p<-38
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:81)

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])

nlv <- 5

fm <- mbplsqda(Xtrainlist, ytrain, Xscaling = "none”, nlv = nlv)
predict(fm, Xtestlist)

predict(fm, Xtestlist, nlv = 1:2)$pred

zfm <- fm[[11]1CC1]]
class(zfm)

names (zfm)

summary (zfm, Xtrainlist)
transform(zfm, Xtestlist)
coef (zfm)
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mbplsr_mbplsda_allsteps

MBPLSR or MBPLSDA analysis steps

Description

Help determine the optimal number of latent variables by cross-validation, perform a permuta-
tion test, calculate model parameters and predict new observations, for mbplsr (mbplsr), mbplsrda
(mbplsrda), mbplslda (mbplslda) or mbplsqda (mbplsgda) models.

Usage

mbplsr_mbplsda_allsteps(Xlist, Xnames = NULL, Xscaling = c("none", "pareto”,"sd")[1],

Arguments

Xlist
Xnames

Xscaling

Y, Yscaling = c("none”,"pareto”,"sd")[1], weights = NULL,
newXlist = NULL, newXnames = NULL,

method = c("mbplsr”, "mbplsrda”,"mbplslda”,"mbplsqda”)[1],
prior = c("unif”, "prop")[1],

step = c("nlvtest”,”"permutation”, "model”, "prediction”)[1],
nlv,

modeloutput = c("scores"”,"loadings”,"coef"”,"vip"),

cvmethod = c("kfolds"”,"loo")[1],
nbrep = 30,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 30,

criterion = c("err”,"rmse")[11],

n on

selection = c("localmin”, "globalmin”,"1std")[1],

import = c("R","ChemFlow","W4M")[1],
outputfilename = NULL)

list of training X-data (n, p).
names of the X-matrices

vector of Xlist length. X variable scaling among "none" (mean-centering only),
"pareto” (mean-centering and pareto scaling), "sd" (mean-centering and unit
variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.

Training Y-data (n, q) for plsr models, and (n, 1) for plsrda, plslda or plsqda
models.
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Yscaling

weights

newXlist
newXnames
method

prior

step

nlv

modeloutput

cvmethod

nbrep

seed

samplingk

nfolds

npermut

criterion

selection

mbplsr_mbplsda_allsteps

Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

list of new X-data (m, p) to consider.

names of the newX-matrices

non "non non

method to apply among "plsr”, "plsrda","plslda","plsqda"

for plslda or plsqda models : The prior probabilities of the classes. Possible
values are "unif" (default; probabilities are set equal for all the classes) or "prop"
(probabilities are set equal to the observed proportions of the classes in y).

step of the analysis among "nlvtest" (cross-validation to help determine the
optimal number of latent variables), "permutation” (permutation test)," " model"
(model calculation),"prediction" (prediction of newX-data or X-data if any))

number of latent variables to test if step is "nlvtest"; number of latent variables
of the model if step is not "nlvtest".

non

if step is "model": outputs among "scores", "loadings", "coef" (regression co-
efficients), "vip" (Variable Importance in Projection; the VIP calculation being
based on the proportion of Y-variance explained by the components, as proposed
by Mehmood et al (2012, 2020).)

if step is "nlvtest" or "permutation": "kfolds" for k-folds cross-validation, or
"loo" for leave-one-out.

if step is "nlvtest" and cvmethod is "kfolds": An integer, setting the number of
CV repetitions. Default value is 30. Must me set to 1 if cvmethod is "loo"

if step is "nlvtest" and cvmethod is "kfolds", or if step is "permutation: a nu-
meric. Seed used for the repeated resampling

A vector of length n. The elements are the values of a qualitative variable used
for stratified partition creation. If NULL, the first observation is set in the first
fold, the second observation in the second fold, etc...

if cvmethod is "kfolds". An integer, setting the number of partitions to create.
Default value is 10.

if step is "permutation”: An integer, setting the number of Y-Block with permu-
tated responses to create. Default value is 30.

non

if step is "nlvtest" or "permutation” and method is "plsrda", "plslda" or "plsqda":
optimisation criterion among "rmse" and "err" (for classification error rate)))

if step is "nlvtest": a character indicating the selection method to use to choose
the optimal combination of components, among "localmin”,"globalmin","1std".
If "localmin": the optimal combination corresponds to the first local minimum
of the mean CV rmse or error rate. If "globalmin" : the optimal combination
corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard
error rule) : it corresponds to the first combination after which the mean cross-

validated rmse or error rate does not decrease significantly.
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import

outputfilename

Value

If step is "nlvtest"

If "R", X and Y are in the global environment, and the observation names are in
rownames. If "ChemFlow", X and Y are tabulated tables (.txt), and the obser-
vation names are in the first column. If "W4M", X and Y are tabulated tables

(.txt), and the observation names are in the headers of X, and in the first column
of Y.

character: If not NULL, name of the tabular file, in which the function outputs
have to be written.)

: table with rmsecv or cross-validated classification error rates. The suggested

optimal number of latent variables is indicated by the binary "optimum" variable.

If step is "permutation”: table with the dissimilarity between the original and the permutated Y-
block, and the rmsecv or cross-validated classification error rates obtained with the permutated
Y-block by the model and the given number of latent variables.

If step is "model": tables of scores, loadings, regression coefficients, and vip values, depending of
the "modeloutput” parameter.

If step is "prediction": table of predicted scores and predicted classes or values.

Examples

n<-5;p<-38

Xtrain <- matrix(rnorm(n x p), ncol = p)
colnames(Xtrain) <- paste@("V",1:p)

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]

Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])

Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])

nlv <- 5

resnlvtestmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,

Xnames = NULL, Xscaling = c("none”,"pareto”,"”sd")[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("mbplsr”, "mbplsrda”,”mbplslda”,"”mbplsqda”)[2],
prior = c("unif”, "prop”)[11],

step = c("nlvtest”,"permutation”, "model”,"prediction”)[1],
nlv = 5,

modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,
seed = 123,
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samplingk = NULL,
nfolds = 10,
npermut = 5,

criterion = c("err”,"rmse")[1],

non

selection = c("localmin”,"globalmin”,"1std")[1],
outputfilename = NULL)

respermutationmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,
Xnames = NULL, Xscaling = c("none”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("mbplsr”, "mbplsrda”,"mbplslda”, "mbplsqda”)[2],
prior = C(“Unif", npropn)[1],

step = c("nlvtest”,"permutation”,"model”, "prediction”)[2],
nlv = 1,

modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],
selection = c("localmin”,"globalmin”,"1std"”)[1],

outputfilename = NULL)

plotxy(respermutationmbplsrda, pch=16)
abline (h = respermutationmbplsrdalrespermutationmbplsrdal, "permut_dyssimilarity”]==0,"res_permut”])

resmodelmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,
Xnames = NULL, Xscaling = c("none”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("mbplsr”, "mbplsrda”,"mbplslda”,"mbplsqda”)[2],
prior = c("unif”, "prop”")[1],

step = c("nlvtest”,"permutation”,"model”, "prediction”)[3],
nlv = 1,

modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,
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npermut = 5,

criterion = c("err”,"rmse")[1],

non

selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

resmodelmbplsrda$scores
resmodelmbplsrda$loadings
resmodelmbplsrda$coef
resmodelmbplsrda$vip

respredictionmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,

Xnames = NULL, Xscaling = c("none”,"pareto”,"sd"”)[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("mbplsr”, "mbplsrda”,"mbplslda”,"mbplsqda”)[2],
prior = c("unif”, "prop”)[11],

step = c("nlvtest”,"permutation”,"model”, "prediction”")[4],
nlv = 1,
modeloutput = c("scores”,"loadings”,"coef"”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],
selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

mse

Residuals and prediction error rates

Description

Usage

residreg(pred, Y)
residcla(pred, y)

Residuals and prediction error rates (MSEP, SEP, etc. or classification error rate) for models with
quantitative or qualitative responses.
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msep(pred, Y)
rmsep(pred, Y)

sep(pred, Y)

bias(pred, Y)

cor2(pred, Y)

r2(pred, Y)

rpd(pred, Y)

rpdr(pred, Y)

mse(pred, Y, digits = 3)

err(pred, y)

Arguments
pred Prediction (m, q); output of a function predict.
Y Observed response (m, q).
y Observed response (m, 1).
digits Number of digits for the numerical outputs.
Details

The rate R2 is calculated by R2 = 1 — M SEP(currentmodel)/M SE P (nullmodel), where
MSEP = Sum((y; — pred;)?)/n and "null model" is the overall mean of y. For predictions over
CV or Test sets, and/or for non linear models, it can be different from the square of the correlation
coefficient (cor2) between the observed values and the predictions.

Function sep computes the SEP, referred to as "corrected SEP" (SEP_c) in Bellon et al. 2010. SEP
is the standard deviation of the residuals. There is the relation: MSEP = BIAS? + SEP2.

Function rpd computes the ratio of the "deviation" (sqrt of the mean of the squared residuals for
the null model when it is defined by the simple average) to the "performance" (sqrt of the mean
of the squared residuals for the current model, i.e. RMSEP), ie. RPD = SD/RMSEP =
RMSEP(nullmodel)/ RMSEP (see eg. Bellon et al. 2010).

Function rpdr computes a robust RPD.

Value

Residuals or prediction error rates.

References

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M., McBratney, A., 2010. Crit-
ical review of chemometric indicators commonly used for assessing the quality of the prediction
of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry 29, 1073-1081.
https://doi.org/10.1016/j.trac.2010.05.006
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Examples

## EXAMPLE 1

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]
Ytest <- Ytrain[1:m, , drop = FALSE]
ytest <- Ytest[1:m, 1]

nlv <- 3

fm <- plskern(Xtrain, Ytrain, nlv = nlv)
pred <- predict(fm, Xtest)$pred

residreg(pred, Ytest)
msep(pred, Ytest)
rmsep(pred, Ytest)

sep(pred, Ytest)

bias(pred, Ytest)

cor2(pred, Ytest)

r2(pred, Ytest)

rpd(pred, Ytest)

rpdr(pred, Ytest)

mse(pred, Ytest, digits = 3)

## EXAMPLE 2

n<-50 ;p<-38

Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ]

ytest <- ytrain[1:5]

nlv <- 5

fm <- plsrda(Xtrain, ytrain, nlv = nlv)

pred <- predict(fm, Xtest)$pred

residcla(pred, ytest)
err(pred, ytest)

octane octane

Description

Octane dataset.

Near infrared (NIR) spectra (absorbance) of n = 39 gasoline samples over p = 226 wavelengths
(1102 nm to 1552 nm, step = 2 nm).

Samples 25, 26, and 36-39 contain added alcohol (outliers).
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odis

Usage

data(octane)

Format

A list with 1 component: the matrix X with 39 samples and 226 variables.

Source

K.H. Esbensen, S. Schoenkopf and T. Midtgaard Multivariate Analysis in Practice, Trondheim,
Norway: Camo, 1994.

Todorov, V. 2020. rrcov: Robust Location and Scatter Estimation and Robust Multivariate Analysis
with High Breakdown. R Package version 1.5-5. https://cran.r-project.org/.

References

M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005), ROBPCA: a new approach to robust prin-
cipal components analysis, Technometrics, 47, 64-79.

P. J. Rousseeuw, M. Debruyne, S. Engelen and M. Hubert (2006), Robustness and Outlier Detection
in Chemometrics, Critical Reviews in Analytical Chemistry, 36(3-4), 221-242.

Examples

data(octane)

X <- octane$X
headm(X)

plotsp(X, xlab = "Wawelength”, ylab = "Absorbance")
plotsp(X[c(25:26, 36:39), 1, add = TRUE, col = "red")

odis Orthogonal distances from a PCA or PLS score space

Description

odis calculates the orthogonal distances (OD = "X-residuals") for a PCA or PLS model. OD is the
Euclidean distance of a row observation to its projection to the score plan (see e.g. Hubert et al.
2005, Van Branden & Hubert 2005, p. 66; Varmuza & Filzmoser, 2009, p. 79).

A distance cutoff is computed using a moment estimation of the parameters of a Chi-squared dis-
tribution for OD"2 (see Nomikos & MacGregor 1995, and Pomerantzev 2008). In the function
output, column dstand is a standardized distance defined as OD/cutof f. A value dstand > 1 can
be considered as extreme.

The cutoff for detecting extreme OD values is computed using a moment estimation of a Chi-
squared distrbution for the squared distance.
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Usage
odis(
object, Xtrain, X = NULL,
nlv = NULL,
rob = TRUE, alpha = .01
)
Arguments
object A fitted model, output of a call to a fitting function.
Xtrain Training X-data that was used to fit the model.
X New X-data.
nlv Number of components (PCs or LVs) to consider.
rob Logical. If TRUE, the moment estimation of the distance cutoff is robustified.
This can be recommended after robust PCA or PLS on small data sets containing
extreme values.
alpha Risk-7 level for defining the cutoff detecting extreme values.
Value
res.train matrix with distance and a standardized distance calculated for Xtrain.
res matrix with distance and a standardized distance calculated for X.
cutoff distance cutoff computed using a moment estimation of the parameters of a Chi-
squared distribution for OD*2.
References

M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005). ROBPCA: a new approach to robust
principal components analysis. Technometrics, 47, 64-79.

Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC Charts for Monitoring Batch Processes. null
37, 41-59. https://doi.org/10.1080/00401706.1995.10485888

Pomerantsev, A.L., 2008. Acceptance areas for multivariate classification derived by projection
methods. Journal of Chemometrics 22, 601-609. https://doi.org/10.1002/cem.1147

K. Vanden Branden, M. Hubert (2005). Robuts classification in high dimension based on the
SIMCA method. Chem. Lab. Int. Syst, 79, 10-21.

K. Varmuza, P. Filzmoser (2009). Introduction to multivariate statistical analysis in chemometrics.
CRC Press, Boca Raton.

Examples

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Xtest <- Xtrain[1:3, , drop = FALSE]

nlv <- 3
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fm <- pcasvd(Xtrain, nlv = nlv)
odis(fm, Xtrain)

odis(fm, Xtrain, nlv = 2)

odis(fm, Xtrain, X = Xtest, nlv = 2)

orthog Orthogonalization of a matrix to another matrix

Description

Function orthog orthogonalizes a matrix Y to a matrix X. The row observations can be weighted.

The function uses function 1m.

Usage
orthog(X, Y, weights = NULL)

Arguments
X A nxp matrix or data frame.
Y A nxq matrix or data frame to orthogonalize to X.
weights A vector of length n defining a priori weights to apply to the observations. In-
ternally, weights are "normalized" to sum to 1. Default to NULL (weights are set
to 1/n).
Value
Y The Y matrix orthogonalized to X.
b The regression coefficients used for orthogonalization.
Examples
n<-8;p<-3
set.seed(1)
X <- matrix(rnorm(n * p, mean = 10), ncol = p, byrow = TRUE)

10), ncol TRUE)

2, byrow

Y <- matrix(rnorm(n * 2, mean
colnames(Y) <- c("y1", "y2")
set.seed(NULL)

X

Y

res <- orthog(X, Y)
res$y
crossprod(res$y, X)
res$b
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# Same as:
fm <= Im(Y ~ X)

Y_

fm$fitted.values

fm$coef

#### WITH WEIGHTS

w <- T:n
fm <= Im(Y ~ X, weights = w)

Y_

fm$fitted.values

fm$coef

res

<- orthog(X, Y, weights = w)

ress$y
t(ress$Y)
res$b
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ozone ozone

Description

Los Angeles ozone pollution data in 1976 (sources: Breiman & Friedman 1985, Leisch & Dimitri-
adou 2020).

Usage

data(ozone)

Format

A list with 1 component: the matrix X with 366 observations, 13 variables. The variable to predict

is V4.

V1 Month: 1 = January, ..., 12 = December
V2 Day of month

V3 Day of week: 1 = Monday, ..., 7 = Sunday

V4
V5
V6
V7
V8
V9

Daily maximum one-hour-average ozone reading

500 millibar pressure height (m) measured at Vandenberg AFB
Wind speed (mph) at Los Angeles International Airport (LAX)
Humidity (%) at LAX

Temperature (degrees F) measured at Sandburg, CA
Temperature (degrees F) measured at E1 Monte, CA

V10 Inversion base height (feet) at LAX

V11

Pressure gradient (mm Hg) from LAX to Daggett, CA

V12 Inversion base temperature (degrees F) at LAX

V13

Visibility (miles) measured at LAX
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pcasvd

Source

Breiman L., Friedman J.H. 1985. Estimating optimal transformations for multiple regression and
correlation, JASA, 80, pp. 580-598.

Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine Learning Benchmark Problems. R
package version 1.1-6. https://cran.r-project.org/.

Examples

data(ozone)

z <- ozone$X
head(z)

plotxna(z)

pcasvd PCA algorithms

Description

Algorithms fitting a centered weighted PCA of a matrix X.

Noting D a (n, n) diagonal matrix of weights for the observations (rows of X), the functions consist
in:

- pcasvd: SVD factorization of D(1/2) x X, using function svd.
- pcaeigen:Eigen factorization of X’ x D x X, using function eigen.

- pcaeigenk: Eigen factorization of D(1/2) * X % X’D(1/2), using function eigen. This is the
"kernel cross-product trick" version of the PCA algorithm (Wu et al. 1997). For wide matrices
(n << p) and n not too large, this algorithm can be much faster than the others.

- pcanipals: Eigen factorization of X’ x D % X using NIPALS.
- pcanipalsna: Eigen factorization of X’ x D * X using NIPALS allowing missing data in X.
- pcasph: Robust spherical PCA (Locantore et al. 1990, Maronna 2005, Daszykowski et al. 2007).

Function pcanipalsna accepts missing data (NAs) in X, unlike the other functions. The part of
pcanipalsna accounting specifically for missing missing data is based on the efficient code of K.
Wright in the R package nipals (https://cran.r-project.org/web/packages/nipals/index.html).

Gram-Schmidt orthogonalization in the NIPALS algorithm
The PCA NIPALS is known to generate a loss of orthogonality of the PCs (due to the accumulation

of rounding errors in the successive iterations), particularly for large matrices or with high degrees
of column collinearity.

With missing data, orthogonality of loadings is not satisfied neither.

An approach for coming back to orthogonality (PCs and loadings) is the iterative classical Gram-
Schmidt orthogonalization (Lingen 2000, Andrecut 2009, and vignette of R package nipals), re-
ferred to as the iterative CGS. It consists in adding a CGS orthorgonalization step in each iteration
of the PCs and loadings calculations.
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For the case with missing data, the iterative CGS does not insure that the orthogonalized PCs are
centered.

Auxiliary function
transform Calculates the PCs for any new matrix X from the model.

summary returns summary information for the model.

Usage

pcasvd(X, weights = NULL, nlv)
pcaeigen(X, weights = NULL, nlv)
pcaeigenk(X,weights = NULL, nlv)

pcanipals(X, weights = NULL, nlv,
gs = TRUE,

tol = .Machine$double.eps”®@.5, maxit = 200)
pcanipalsna(X, nlv,
gs = TRUE,
tol = .Machine$double.eps”®@.5, maxit = 200)
pcasph(X, weights = NULL, nlv)
## S3 method for class 'Pca’
transform(object, X, ..., nlv = NULL)
## S3 method for class 'Pca’
summary(object, X, ...)
Arguments
X For the main functions and auxiliary function summary: Training X-data (n, p).
— For the other auxiliary functions: New X-data (m, p) to consider.
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).
nlv The number of PCs to calculate.
object A fitted model, output of a call to the main functions.

e Optional arguments.
Specific for the NIPALS algorithm

gs Logical indicating if a Gram-Schmidt orthogonalization is implemented or not
(default to TRUE).
tol Tolerance for testing convergence of the NIPALS iterations for each PC.

maxit Maximum number of NIPALS iterations for each PC.
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Value

A list of outputs, such as:

T The score matrix (n, niv).

The loadings matrix (p, nlv).

R The projection matrix (= P) (p, nlv).

sV The singular values (min(n, p), 1) except for NIPALS = (nlv, 1).

eig The eigenvalues (= sv*2) (min(n,p), 1) except for NIPALS = (nlv, 1).

xmeans The centering vector of X (p, 1).

niter Numbers of iterations of the NIPALS.

conv Logical indicating if the NIPALS converged before reaching the maximal num-

ber of iterations.

References

Andrecut, M., 2009. Parallel GPU Implementation of Iterative PCA Algorithms. Journal of Com-
putational Biology 16, 1593-1599. https://doi.org/10.1089/cmb.2008.0221

Gabriel, R. K., 2002. Le biplot - Outil d\’exploration de données multidimensionnelles. Journal de
la Société Francaise de la Statistique, 143, 5-55.

Lingen, F.J., 2000. Efficient Gram-Schmidt orthonormalisation on parallel computers. Commu-
nications in Numerical Methods in Engineering 16, 57-66. https://doi.org/10.1002/(SICI)1099-
0887(200001)16:1<57::AID-CNM320>3.0.CO;2-1
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Examples

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), nrow = n)
s <- c(3, 4, 7, 10, 11, 15, 21:24)

zX <- replace(Xtrain, s, NA)

Xtrain

zX
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m<- 2
Xtest <- matrix(rnorm(m * p), nrow = m)

pcasvd(Xtrain, nlv = 3)
pcaeigen(Xtrain, nlv = 3)
pcaeigenk(Xtrain, nlv = 3)
pcanipals(Xtrain, nlv = 3)
pcanipalsna(Xtrain, nlv = 3)
pcanipalsna(zX, nlv = 3)

fm <- pcaeigen(Xtrain, nlv = 3)
fm$T

transform(fm, Xtest)
transform(fm, Xtest, nlv = 2)

pcaeigen(Xtrain, nlv = 3)$T
pcaeigen(Xtrain, nlv = 3, weights = 1:n)$T

Ttrain <- fm$T
Ttest <- transform(fm, Xtest)
T <= rbind(Ttrain, Ttest)

group <- c(rep("Training”, nrow(Ttrain)), rep("Test"”, nrow(Ttest)))

i<-1

plotxy(T[, i:(i+1)], group = group, pch = 16, zeroes = TRUE, cex = 1.3, main
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"scores”)

plotxy(fm$P, zeroes = TRUE, label = TRUE, cex = 2, col = "red3"”, main ="loadings")

summary (fm, Xtrain)
res <- summary(fm, Xtrain)

plotxy(res$cor.circle, zeroes = TRUE, label = TRUE, cex = 2, col = "red3",

circle = TRUE, ylim = c(-1, 1))

pinv Moore-Penrose pseudo-inverse of a matrix

Description

Calculation of the Moore-Penrose (MP) pseudo-inverse of a matrix X.

Usage

pinv(X, tol = sqrt(.Machine$double.eps))

Arguments

X X-data (n, p).

tol A relative tolerance to detect zero singular values.
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Value
Xplus The MP pseudo-inverse.
sV singular values.
Examples

n<-7,;p<-4
X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

pinv(X)

tcrossprod(pinv(X)$Xplus, t(y))
Im(y ~ X - 1)

plotjit Jittered plot

Description
Plot comparing classes with jittered points (random noise is added to the x-axis values for avoiding
overplotting).

Usage

plotjit(x, y, group = NULL,
jit =1, col = NULL, alpha.f = .8,
legend = TRUE, legend.title = NULL, ncol = 1, med = TRUE,

.)
Arguments
X A vector of length n defining the class membership of the observations (x-axis).
y A vector of length n defining the variable to plot (y-axis).
group A vector of length n defining groups of observations to be plotted with different
colors (default to NULL).
jit Scalar defining the jittering magnitude. Default to 1.
alpha.f Scalar modifying the opacity of the points in the graphics; typically in [0,1]. See
adjustcolor.
col A color, or a vector of colors (of length equal to the number of classes or groups),
defining the color(s) of the points.
legend Only if there are groups. Logical indicationg is a legend is drawn for groups

(Default to FALSE).

legend.title  Character string indicationg a title for the legend.
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ncol Number of columns drawn in the legend box.
med Logical. If TRUE (default), the median of each class is plotted.
Other arguments to pass in plot.

Value

Jittered plot.

Examples

n <- 500

x <= c(rep("A", n), rep("B", n))

y <= c(rnorm(n), rnorm(n, mean = 5, sd = 3))

group <- sample(1:2, size = 2 * n, replace = TRUE)

plotjit(x, y, pch = 16, jit = .5, alpha.f = .5)
plotjit(x, y, pch = 16, jit = .5, alpha.f = .5,
group = group)
plotscore Plotting errors rates
Description
Plotting scores of prediction errors (error rates).
Usage
plotscore(x, y, group = NULL,
col = NULL, steplab = 2, legend = TRUE, legend.title = NULL, ncol =1, ...)
Arguments
X Horizontal axis vector (n).
y Vertical axis vector (1)
group Groups of data (n) to be plotted with different colors.
col A color, or a vector of colors (of length equal to the number of groups), defining
the color(s) of the groups.
steplab A step for the horizontal axis. Can be NULL (automatic step).
legend Only if there are groups. Logical indicationg is a legend is drawn for groups

(Default to FALSE).
legend.title  Character string indicationg a title for the legend.
ncol Number of columns drawn in the legend box.

Other arguments to pass in function plot.
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Value

A plot.

Examples

n<-50; p<-20

Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)

Ytrain <- cbind(ytrain, 1@ * rnorm(n))

m<- 3

Xtest <- Xtrain[1:m, ]

Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]

nlv <- 15
res <- gridscorelv(
Xtrain, ytrain, Xtest, ytest,
score = msep,
fun = plskern,
nlv = @:nlv, verb = TRUE
)
plotscore(res$nlv, res$yl,
main = "MSEP", xlab = "Nb. LVs", ylab = "Value")

nlvdis <- 5
h <- c(1, Inf)
k <- c(10, 20)
nlv <- 15
pars <- mpars(nlvdis = nlvdis, diss = "mahal”,
h =h, k = k)
res <- gridscorelv(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,

fun = lwplsr,

nlv = @:nlv, pars = pars, verb = TRUE)
headm(res)
group <- paste("h=", ress$h, " k=", res$k, sep = "")

plotscore(res$nlv, res$yl, group = group,
main = "MSEP", xlab = "Nb. LVs"”, ylab = "Value")

plotsp Plotting spectra

Description

plotsp plots lines corresponding to the row observations (e.g. spectra) of a data set.

plotspl plots only one observation per plot (e.g. spectrum by spectrum) by scrolling the rows.
After running a plotsp1 command, the plots are printed successively by pushing the R console
"entry button", and stopped by entering any character in the R console.
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Usage
plotsp(X,
type = "1", col = NULL, zeroes = FALSE, labels = FALSE,
add = FALSE,
)
plotsp1(X, col = NULL, zeroes = FALSE, ...)
Arguments
X Data (n, p) to plot.
type 1-character string giving the type of plot desired. Default value to "1" (lines).
See plot.default for other options.
col A color, or a vector of colors (of length n), defining the color(s) of the lines
representing the rows.
zeroes Logical indicationg if an horizontal line is drawn at coordonates (0, 0) (Default
to FALSE).
labels Logical indicating if the row names of X are plotted (default to FALSE).
add Logical defining if the frame of the plot is plotted (add = FALSE; default) or not
(add = TRUE). This allows to add new observations to a plot without red-building
the frame.
Other arguments to pass in functions plot or lines
Value

A plot (see examples).

Note

For the first example, see ?hcl.colors and ?hcl.pals, and try with col <- hcl.colors(n = n, alpha = 1,
rev = FALSE, palette = "Green-Orange") col <- terrain.colors(n, rev = FALSE) col <- rainbow(n,
rev = FALSE, alpha = .2)

The second example is with plotspl (Scrolling plot of PCA loadings). After running the code, type
Enter in the R console for starting the scrolling, and type any character in the R console

Examples

## EXAMPLE 1
data(cassav)

X <- cassav$Xtest
n <- nrow(X)

plotsp(X)
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plotsp(X, col = "grey")
plotsp(X, col = "lightblue”,
xlim = c(500, 1500),
xlab = "Wawelength (nm)", ylab = "Absorbance")

col <- hcl.colors(n = n, alpha = 1, rev = FALSE, palette = "Grays")
plotsp(X, col = col)

plotsp(X, col = "grey")
plotsp(X[23, , drop = FALSE], lwd = 2, add = TRUE)
plotsp(X[c(23, 16), 1, lwd = 2, add = TRUE)

plotsp(X[5, , drop = FALSE], labels

TRUE)

plotsp(X[c(5, 61), 1, labels = TRUE)

col <- hcl.colors(n = n, alpha = 1, rev = FALSE, palette = "Grays")

plotsp(X, col = col)

plotsp(X[5, , drop = FALSE], col = "red”, lwd = 2, add = TRUE, labels = TRUE)
## EXAMPLE 2 (Scrolling plot of PCA loadings)

data(cassav)

X <- cassav$Xtest

fm <- pcaeigenk(X, nlv = 20)

P <- fm$P

plotsp1(t(P), ylab = "Value")

plotxna Plotting Missing Data in a Matrix

Description

Plot the location of missing data in a matrix.

Usage
plotxna(X, pch = 16, col = "red", grid = FALSE, asp = 0, ...)
Arguments
X A data set (nxp).
pch Type of point. See points.
col A color defining the color of the points.
grid Logical. If TRUE, a grid is plotted for representing the matrix rows an columns.

Default to FALSE.



plotxy 107

asp Scalar. Giving the aspect ratio y/x. The value asp = @ is the defaultin plot.default
(no constraints on the ratio). See plot.default.

Other arguments to pass in functions plot.

Value

A plot.

Examples

data(octane)
X <- octane$X
n <- nrow(X)
p <- ncol(X)
N<-n=x*xp

s <- sample(1:N, size = 50)

zX <- replace(X, s, NA)
plotxna(zX)

plotxna(zX, grid = TRUE, asp = @)

plotxy 2-d scatter plot

Description

2-dimension scatter plot.

Usage

plotxy(X, group = NULL,
asp = 0, col = NULL, alpha.f = .8,
zeroes = FALSE, circle = FALSE, ellipse = FALSE,

labels = FALSE,
legend = TRUE, legend.title = NULL, ncol =1,
.
Arguments
X Data (n, p) to plot. If p > 2, only the first two columns are considered.
group Groups of observations (n) to be plotted with different colors (default to NULL).
asp Scalar. Giving the aspect ratio y/x. The value asp = @ is the defaultin plot.default
(no constraints on the ratio). See plot.default.

col A color, or a vector of colors (of length equal to the number of groups), defining

the color(s) of the groups.
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alpha.f

Zeroes

circle

ellipse

labels

legend

legend.title

ncol

Value

A plot.

Examples

n<-5;p<-10
Xtrain <- matrix(
Xtest <- Xtrain[1

fm <- pcaeigen(Xt
Ttrain <- fm$T
Ttest <- transfor
T <= rbind(Ttrain
group <- c(rep("T
i<-1

plotxy(TL, i:(i+1

pch = 16,

plotxy
Scalar modifying the opacity of the points in the graphics; typically in [0,1]. See
adjustcolor.

Logical indicationg if an horizontal and vertical lines are drawn at coordonates
(0, 0) (Default to FALSE).

Not still working. Logical indicating if a correlation circle is plotted (default to
FALSE).

Logical indicating if a Gaussian ellipse is plotted (default to FALSE). If there are
groups, an ellipse is drawn for each group.

Logical indicating if the row names of X (instead of points) are plotted (default
to FALSE).

Only if there are groups. Logical indicationg is a legend is drawn for groups
(Default to FALSE).

Character string indicationg a title for the legend.
Number of columns drawn in the legend box.

Other arguments to pass in functions plot, points, axis and text.

rnorm(n * p), ncol = p)
(5, 1+ .4

rain, nlv = 5)
m(fm, Xtest)

, Ttest)
raining”, nrow(Ttrain)), rep("Test"”, nrow(Ttest)))

)1, group = group,
zeroes = TRUE,

main = "PCA")

plotxy(T[, i:(i+1
pch = 16,

)], group = group,
zeroes = TRUE, asp =1,

main = "PCA")
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plskern PLSR algorithms

Description

Algorithms fitting a PLS1 or PLS2 model between dependent variables X and responses Y.

- plskern: "Improved kernel algorithm #1" proposed by Dayal and MacGregor (1997). This algo-
rithm is stable and fast (Andersson 2009), and returns the same results as the NIPALS.

- plsnipals: NIPALS algorithm (e.g. Tenenhaus 1998, Wold 2002). In the function, the usual
PLS2 NIPALS iterative is replaced by a direct calculation of the weights vector w by SVD decom-
position of matrix X’Y (Hoskuldsson 1988 p.213).

- plsrannar: Kernel algorithm proposed by Rannar et al. (1994) for "wide" matrices, i.e. with low
number of rows and very large number of columns (p » n; e.g. p = 20000). In such a situation, this
algorithm is faster than the others (but it becomes much slower in other situations). If the algorithm
converges, it returns the same results as the NIPALS (Note: discrepancies can be observed if too
many PLS components are requested compared to the low number of observations).

For weighted versions, see for instance Schaal et al. 2002, Siccard & Sabatier 2006, Kim et al. 2011
and Lesnoff et al. 2020.

Aucxiliary functions

transform Calculates the LVs for any new matrix X from the model.
summary returns summary information for the model.

coef Calculates b-coefficients from the model.

predict Calculates the predictions for any new matrix X from the model.

Usage

plskern(X, Y, weights = NULL, nlv,
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none"”, "pareto”, "sd")[1])

plsnipals(X, Y, weights = NULL, nlv,
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none", "pareto”, "sd")[1])

plsrannar(X, Y, weights = NULL, nlv,
Xscaling = c("none”, "pareto”, "sd")[1], Yscaling = c("none"”, "pareto”, "sd")[1])

## S3 method for class 'Plsr'
transform(object, X, ..., nlv = NULL)

## S3 method for class 'Plsr'
summary (object, X, ...)

## S3 method for class 'Plsr'
coef(object, ..., nlv = NULL)
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## S3 method for class 'Plsr'

predict(object, X, ..., nlv = NULL)
Arguments
X For the main functions: Training X-data (n, p). — For the auxiliary functions:
Training X-data (n, p).
Y Training Y-data (n, q).
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv For the main functions: The number(s) of LVs to calculate. — For the auxiliary
functions: The number(s) of LVs to consider.

Xscaling X variable scaling among "none" (mean-centering only), "pareto” (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

Yscaling Y variable scaling among "none" (mean-centering only), "pareto” (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

object For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

Value

For plskern, plsnipals, plsrannar: A list of outputs, such as

T The X-score matrix (n, nlv).

P The X-loadings matrix (p, nlv).

W The X-loading weights matrix (p, niv).

C The Y-loading weights matrix (C = t(Beta), where Beta is the scores regression
coefficients matrix).

R The PLS projection matrix (p, nlv).

Xmeans The centering vector of X (p, 1).

ymeans The centering vector of Y (q, 1).

xscales The vector of X variable standard deviations (p, 1).

yscales The vector of Y variable standard deviations (g, 1).

weights Weights applied to the training observations.

1T the X-score normalization factor.

u intermediate output.

For transform.Plsr: X-scores matrix for new X-data.

For summary.Plsr:

explvarx matrix of explained variances.
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For coef.Plsr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients
For predict.Plsr:

pred A list of matrices (m, ¢) with the Y predicted values for the new X-data
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See Also

plsr_plsda_allsteps function to help determine the optimal number of latent variables, perform
a permutation test, calculate model parameters and predict new observations.

Examples

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)

m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]

Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

nlv <- 3
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plskern(Xtrain, Ytrain, Xscaling = "sd", nlv = nlv)

plsnipals(Xtrain, Ytrain, Xscaling = "sd", nlv = nlv)
plsrannar(Xtrain, Ytrain, Xscaling = "sd”, nlv = nlv)
plskern(Xtrain, Ytrain, Xscaling = "none"”, nlv = nlv)

plskern(Xtrain, Ytrain, nlv = nlv)$T
plskern(Xtrain, Ytrain, nlv = nlv, weights = 1:n)$T

fm <- plskern(Xtrain, Ytrain, nlv = nlv)
coef (fm)

coef(fm, nlv
coef(fm, nlv

)
»

fm$T
transform(fm, Xtest)
transform(fm, Xtest, nlv = 1)

summary(fm, Xtrain)

predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:3)

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)

plsrda PLSDA models

Description

Discrimination (DA) based on PLS.

The training variable y (univariate class membership) is firstly transformed to a dummy table con-
taining nclas columns, where nclas is the number of classes present in y. Each column is a dummy
variable (0/1). Then, a PLS2 is implemented on the X —data and the dummy table, returning latent
variables (LVs) that are used as dependent variables in a DA model.

- plsrda: Usual "PLSDA". A linear regression model predicts the Y-dummy table from the PLS2
LVs. This corresponds to the PLSR2 of the X-data and the Y-dummy table. For a given observation,
the final prediction is the class corresponding to the dummy variable for which the prediction is the
highest.

- plslda and plsqda: Probabilistic LDA and QDA are run over the PLS2 LVs, respectively.

Usage

plsrda(X, y, weights = NULL, nlv,

Xscaling = c("none”,"pareto”,"sd")[1], Yscaling = c("none"”,"pareto”,"”sd")[1])

plslda(X, y, weights = NULL, nlv, prior = c("unif”, "prop"),



plsrda

Xscaling = c("none
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,"pareto”,"sd")[1], Yscaling = c("none”,"pareto”,"sd")[1])

plsqda(X, y, weights = NULL, nlv, prior = c("unif”, "prop"),
Xscaling = c("none","pareto”,"sd")[1], Yscaling = c("none","pareto”,"sd")[1])

## S3 method for class 'Plsrda’
predict(object, X, ..., nlv = NULL)

## S3 method for class 'Plsprobda’

predict(object, X, ..., nlv = NULL)
Arguments

X For the main functions: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

weights Weights (n) to apply to the training observations for the PLS2. Internally,
weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv The number(s) of LVs to calculate.

prior The prior probabilities of the classes. Possible values are "unif" (default; proba-
bilities are set equal for all the classes) or "prop" (probabilities are set equal to
the observed proportions of the classes in y).

Xscaling X variable scaling among "none" (mean-centering only), "pareto” (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

Yscaling Y variable scaling, once converted to binary variables, among "none" (mean-
centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering
and unit variance scaling). If "pareto” or "sd", uncorrected standard deviation is
used.

object For the auxiliary functions: A fitted model, output of a call to the main functions.
For the auxiliary functions: Optional arguments. Not used.

Value

For plsrda, plslda, plsqda:

fm

lev

ni

list with the model: (T): X-scores matrix; (P): X-loading matrix;(R): The PLS
projection matrix (p,nlv); (W): X-loading weights matrix ;(C): The Y-loading
weights matrix; (TT): the X-score normalization factor; (xmeans): the center-
ing vector of X (p,1); (ymeans): the centering vector of Y (q,1); (xscales): the
scaling vector of X (p,1); (yscales): the scaling vector of Y (q,1); (weights):
vector of observation weights; (U): intermediate output.

classes

number of observations in each class
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For predict.Plsrda, predict.Plsprobda:

pred

posterior

Note

predicted class for each observation

calculated probability of belonging to a class for each observation

plsrda

The first example concerns PLSDA, and the second one concerns PLS LDA. fm are PLS1 models,
and zfm are PLS2 models to predict the disjunctive matrix.

See Also

plsr_plsda_allsteps function to help determine the optimal number of latent variables, perform
a permutation test, calculate model parameters and predict new observations.

Examples

## EXAMPLE OF

n<-250;p<-

PLSDA

8

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]

nly <- 5

fm <- plsrda(Xtrain, ytrain, Xscaling = "sd”, nlv = nlv)

names(fm)

predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:2)$pred

pred <- predict(fm, Xtest)$pred
err(pred, ytest)

zfm <- fm$fm

transform(zfm,
transform(zfm,

Xtest)
Xtest, nlv = 1)

summary (zfm, Xtrain)

coef (zfm)
coef(zfm, nlv
coef(zfm, nlv

## EXAMPLE OF

- @)
2)

PLS LDA

n<-5 ; p<-8

Xtrain <- matrix(rnorm(n x p), ncol = p)

ytrain <- sample(c(l, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, 1 ; ytest <- ytrain[1:5]

nlv <- 5

fm <- plslda(Xtrain, ytrain, Xscaling = "sd”, nlv = nlv)
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predict(fm, Xtest)
predict(fm, Xtest, nlv = 1:2)$pred

zfm <- fm$fm[[1]]

class(zfm)

names (zfm)

summary (zfm, Xtrain)
transform(zfm, Xtest[1:2, 1)
coef (zfm)

plsrda_agg PLSDA with aggregation of latent variables

Description

Ensemblist approach where the predictions are calculated by "averaging" the predictions of PLSDA
models built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the
most occurent level (vote) over the predictions returned by the models with 5 LVS, 6 LVs, ... 10
LVs.

- plsrda_agg: use plsrda.
- plslda_agg: use plslda.
- plsqda_agg: use plsqda.

Usage
plsrda_agg(X, y, weights = NULL, nlv)

plslda_agg(X, y, weights = NULL, nlv, prior = c("unif”, "prop"))

plsqda_agg(X, y, weights = NULL, nlv, prior = c("unif”, "prop"))

## S3 method for class 'Plsda_agg'

predict(object, X, ...)
Arguments
X For the main functions: Training X-data (n,p). — For the auxiliary function:
New X-data (m, p) to consider.
y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).
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nlv A character string such as "5:20" defining the range of the numbers of LVs to
consider (here: the models with nb LVS =5, 6, ..., 20 are averaged). Syntax
such as "10" is also allowed (here: correponds to the single model with 10 LVs).

prior The prior probabilities of the classes. Possible values are "unif" (default; proba-
bilities are set equal for all the classes) or "prop" (probabilities are set equal to
the observed proportions of the classes in y).

object For the auxiliary function: A fitted model, output of a call to the main functions.

For the auxiliary function: Optional arguments. Not used.

Value

For plsrda_agg, plslda_agg and plsqda_agg:

fm list contaning: the model((fm)=(T): X-scores matrix; (P): X-loading matrix;(R):
The PLS projection matrix (p,nlv); (W): X-loading weights matrix ;(C): The
Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans):
the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1);
(weights): vector of observation weights; (U): intermediate output), (1ev):classes,
(ni):number of observations in each class

nlv range of the numbers of LVs considered

For predict.Plsda_agg:

pred Final predictions (after aggregation)
predlv Intermediate predictions (Per nb. LVs)
Note

the first example concerns PLSRDA-AGG, and the second one concerns PLSLDA-AGG.

Examples

## EXAMPLE OF PLSRDA-AGG

n<-5;pc<-8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10, 2), size = n, replace = TRUE)

m<-5
Xtest <- Xtrain[1:m, 1 ; ytest <- ytrain[1:m]

nlv <- "2:5"

fm <- plsrda_agg(Xtrain, ytrain, nlv = nlv)
names(fm)

res <- predict(fm, Xtest)

names(res)

res$pred

err(res$pred, ytest)

res$predlv
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pars <- mpars(nlv = c("1:3", "2:5"))
pars

res <- gridscore(
Xtrain, ytrain, Xtest, ytest,
score = err,
fun = plsrda_agg,
pars = pars)
res

segm <- segmkf(n = n, K =3, nrep = 1)
res <- gridcv(

Xtrain, ytrain,

segm, score = err,

fun = plslda_agg,

pars = pars,

verb = TRUE)
res

## EXAMPLE OF PLSLDA-AGG

n<-5 ;p<-38

Xtrain <- matrix(rnorm(n * p), ncol = p)

ytrain <- sample(c(1, 4, 10, 2), size = n, replace = TRUE)
#ytrain <- sample(c("a”, "10", "d"), size = n, replace = TRUE)
m<-5

Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]

nlv <- "2:5"

fm <- plslda_agg(Xtrain, ytrain, nlv = nlv, prior = "unif")
names (fm)

res <- predict(fm, Xtest)

names(res)

res$pred

err(res$pred, ytest)

res$predlv

pars <- mpars(nlv = c("1:3", "2:5"), prior = c("unif”, "prop"))
pars
res <- gridscore(
Xtrain, ytrain, Xtest, ytest,
score = err,
fun = plslda_agg,
pars = pars)
res

segm <- segmkf(n = n, K =3, nrep = 1)
res <- gridcv(

Xtrain, ytrain,

segm, score = err,

fun = plslda_agg,

pars = pars,

verb = TRUE)
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res

plsr_agg

plsr_agg

PLSR with aggregation of latent variables

Description

Ensemblist approach where the predictions are calculated by averaging the predictions of PLSR
models (plskern) built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the
average (without weighting) of the predictions returned by the models with 5 LVS, 6 LVs, ... 10

LVs.

Usage

plsr_agg(X, Y, weights = NULL, nlv)

## S3 method for class 'Plsr_agg'
predict(object, X, ...)

Arguments

For plsr_agg:

X

Y
weights

nlv

object

Value

For plsr_agg:

fm

For the main function: Training X-data (n,p). — For the auxiliary function:
New X-data (m, p) to consider.

Training Y-data (n, g).
Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

A character string such as "5:20" defining the range of the numbers of LVs to
consider (here: the models with nb LVS =5, 6, ..., 20 are averaged). Syntax
such as "10" is also allowed (here: correponds to the single model with 10 LVs).

For the auxiliary function: A fitted model, output of a call to the main functions.

For the auxiliary function: Optional arguments. Not used.

list contaning the model: (fm)=(T): X-scores matrix; (P): X-loading matrix;(R):
The PLS projection matrix (p,nlv); (W): X-loading weights matrix ;(C): The
Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans):
the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1);
(weights): vector of observation weights; (U): intermediate output.
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nlv range of the numbers of LVs considered

For predict.Plsr_agg:

pred Final predictions (after aggregation)
predlv Intermediate predictions (Per nb. LVs)
Note

In the example, zfm is the maximal PLSR model, and there is no sense to use gridscorelv or gridevlv
instead of gridscore or gridcv.

Examples

n<-20;p<-4

Xtrain <- matrix(rnorm(n x p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)

m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]

Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

nly <- "1:3"

fm <- plsr_agg(Xtrain, ytrain, nlv = nlv)
names (fm)

zfm <- fm$fm
class(zfm)

names (zfm)

summary (zfm, Xtrain)

res <- predict(fm, Xtest)
names(res)

res$pred
msep(res$pred, ytest)

res$predlv

pars <- mpars(nlv = c("1:3", "2:5"))
pars
res <- gridscore(
Xtrain, Ytrain, Xtest, Ytest,
score = msep,
fun = plsr_agg,
pars = pars)
res

K=3
segm <- segmkf(n = n, K = K, nrep = 1)
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segm
res <- gridcv(
Xtrain, Ytrain,
segm, score = msep,
fun = plsr_agg,
pars = pars,
verb = TRUE)
res

plsr_plsda_allsteps PLSR or PLSDA analysis steps

Description

Help determine the optimal number of latent variables by cross-validation, perform a permutation
test, calculate model parameters and predict new observations, for plsr (plskern), plsrda (plsrda),
plslda (plslda) or plsqda (plsqda) models.

Usage

plsr_plsda_allsteps(X, Xname = NULL, Xscaling = c("none","pareto”,"sd")[1],
Y, Yscaling = c("none”,"pareto”,"”sd")[1], weights = NULL,
newX = NULL, newXname = NULL,

method = c("plsr”, "plsrda”,"plslda”,"plsqda”)[1],

prior - C(“Unif”, "prOp")[T],

step = c("nlvtest”,"permutation”, "model”,"prediction”)[1],
nlv,

modeloutput = c("scores"”,"loadings"”,"coef"”,"vip"),

cvmethod = c("kfolds","loo")[1],
nbrep = 30,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 30,

criterion = c("err”,"rmse")[11],
selection = c("localmin”,"globalmin”,"1std")[1],

import = c(”R","ChemFlow","W4M")[1],
outputfilename = NULL)
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Arguments

X
Xname

Xscaling

Yscaling

weights

newX
newXname
method

prior

step

nlv

modeloutput

cvmethod

nbrep

seed

samplingk

nfolds

npermut

criterion
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Training X-data (n, p).
name of the X-matrix

X variable scaling among "none" (mean-centering only), "pareto” (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

Training Y-data (n, q) for plsr models, and (n, 1) for plsrda, plslda or plsqda
models.

Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

New X-data (m, p) to consider.

name of the newX-matrix

non non non

method to apply among "plsr”, "plsrda","plslda","plsqda"

for plslda or plsqda models : The prior probabilities of the classes. Possible
values are "unif" (default; probabilities are set equal for all the classes) or "prop”
(probabilities are set equal to the observed proportions of the classes in y).

step of the analysis among "nlvtest" (cross-validation to help determine the
optimal number of latent variables), "permutation" (permutation test),"model"
(model calculation),"prediction" (prediction of newX-data or X-data if any))

number of latent variables to test if step is "nlvtest"; number of latent variables
of the model if step is not "nlvtest".

non

if step is "model": outputs among "scores", "loadings", "coef" (regression co-
efficients), "vip" (Variable Importance in Projection; the VIP calculation being
based on the proportion of Y-variance explained by the components, as proposed
by Mehmood et al (2012, 2020).)

if step is "nlvtest" or "permutation": "kfolds" for k-folds cross-validation, or
"loo" for leave-one-out.

if step is "nlvtest” and cvmethod is "kfolds": An integer, setting the number of
CV repetitions. Default value is 30. Must me set to 1 if cvmethod is "loo"

if step is "nlvtest" and cvmethod is "kfolds", or if step is "permutation: a nu-
meric. Seed used for the repeated resampling

A vector of length n. The elements are the values of a qualitative variable used
for stratified partition creation. If NULL, the first observation is set in the first
fold, the second observation in the second fold, etc...

if cvmethod is "kfolds". An integer, setting the number of partitions to create.
Default value is 10.

if step is "permutation”: An integer, setting the number of Y-Block with permu-
tated responses to create. Default value is 30.

non

if step is "nlvtest" or "permutation” and method is "plsrda", "plslda" or "plsqda":
optimisation criterion among "rmse" and "err" (for classification error rate)))
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selection

import

outputfilename

Value

If step is "nlvtest"

plsr_plsda_allsteps

if step is "nlvtest": a character indicating the selection method to use to choose
the optimal combination of components, among "localmin","globalmin","1std".
If "localmin": the optimal combination corresponds to the first local minimum
of the mean CV rmse or error rate. If "globalmin" : the optimal combination
corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard
error rule) : it corresponds to the first combination after which the mean cross-

validated rmse or error rate does not decrease significantly.

If "R", X and Y are in the global environment, and the observation names are in
rownames. If "ChemFlow", X and Y are tabulated tables (.txt), and the obser-
vation names are in the first column. If "W4M", X and Y are tabulated tables
(.txt), and the observation names are in the headers of X, and in the first column
of Y.

character: If not NULL, name of the tabular file, in which the function outputs
have to be written.)

: table with rmsecv or cross-validated classification error rates. The suggested

optimal number of latent variables is indicated by the binary "optimum" variable.

If step is "permutation”: table with the dissimilarity between the original and the permutated Y-
block, and the rmsecv or cross-validated classification error rates obtained with the permutated
Y-block by the model and the given number of latent variables.

If step is "model":

tables of scores, loadings, regression coefficients, and vip values, depending of

the "modeloutput” parameter.

If step is "prediction": table of predicted scores and predicted classes or values.

Examples

n<-50;p<-8

Xtrain <- matrix(rnorm(n * p), ncol = p)

colnames(Xtrain)

<- paste@("V",1:p)

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, 1 ; ytest <- ytrain[1:5]

resnlvtestplsrda

<- plsr_plsda_allsteps(X = Xtrain, Xname
Xscaling = c("none"”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none”, weights = NULL,
newX = Xtest, newXname = NULL,

NULL,

method = c("plsr”, "plsrda”,"plslda”,"plsqda”)[2],
prior = c("unif”, "prop”)[1],

step = c("nlvtest”,"permutation”,"model”, "prediction”)[1],
nlv = 5,
modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,
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seed = 123,
samplingk = NULL,
nfolds = 10,
npermut = 5,

criterion = c("err”,"rmse")[1],
selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

respermutationplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none"”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none", weights = NULL,
newX = Xtest, newXname = NULL,

method = c("plsr”, "plsrda”,"plslda”,"plsqda”)[2],
prior = c("unif”, "prop”)[11],

step = c("nlvtest”,"permutation”,"model”,"prediction”")[2],
nlv = 2,
modeloutput = c("scores”,"”loadings”,"coef”,"vip"),

cvmethod = c("kfolds”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],

non

selection = c("localmin”,"globalmin”,"1std")[1],
outputfilename = NULL)

plotxy(respermutationplsrda, pch=16)
abline (h = respermutationplsrdalrespermutationplsrdal,”permut_dyssimilarity”]==0,"res_permut"])

resmodelplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none”, "pareto”,"sd")[1],
Y = ytrain, Yscaling = "none”, weights = NULL,
newX = Xtest, newXname = NULL,

method = c("plsr”, "plsrda”,"plslda”,"plsqda”)[2],
prior = c("unif”, "prop”)[1],

step = c("nlvtest”,"permutation”, "model”,"prediction”)[3],
nlv = 2,
modeloutput = c("scores”,"loadings”,"coef"”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,
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nfolds = 10,
npermut = 5,
criterion = c("err”,"rmse")[1],

selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

resmodelplsrda$scores
resmodelplsrda$loadings
resmodelplsrda$coef
resmodelplsrda$vip

respredictionplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none", weights = NULL,
newX = Xtest, newXname = NULL,

method = c("plsr”, "plsrda”,"plslda”,"plsqda”)[2],

prior = c("unif”, "prop”)[11],

step = c("nlvtest”,"permutation”, "model”,"prediction”)[4],
nlv = 2,

modeloutput = c("scores”,"loadings","coef”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],
selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

rmgap Removing vertical gaps in spectra

Description
Remove the vertical gaps in spectra (rows of matrix X), e.g. for ASD. This is done by extrapolation
from simple linear regressions computed on the left side of the gaps.

Usage

rmgap(X, indexcol, k = 5)



T 125

Arguments
X A dataset.
indexcol The column indexes corresponding to the gaps. For instance, if two gaps are ob-
served between indexes 651-652 and between indexes 1451-1452, respectively,
then indexcol = c(651, 1451).
k The number of columns used on the left side of the gaps for fitting the linear
regressions.
Value

The corrected data X.

Note

In the example, two gaps are at wavelengths 1000-1001 nm and 1800-1801 nm.

Examples

data(asdgap)
X <- asdgap$x

indexcol <- which(colnames(X) == "1000" | colnames(X) == "1800")

indexcol

plotsp(X, lwd = 1.5)

abline(v = as.numeric(colnames(X)[1]) + indexcol - 1, col = "lightgrey", 1ty = 3)

zX <- rmgap(X, indexcol = indexcol)
plotsp(zX, lwd = 1.5)
abline(v = as.numeric(colnames(zX)[1]) + indexcol - 1, col = "lightgrey"”, 1ty = 3)

rr Linear Ridge Regression

Description
Fitting linear ridge regression models (RR) (Hoerl & Kennard 1970, Hastie & Tibshirani 2004,
Hastie et al 2009, Cule & De Iorio 2012) by SVD factorization.

Usage
rr(X, Y, weights = NULL, 1b = 1e-2)

## S3 method for class 'Rr'
coef(object, ..., 1b = NULL)

## S3 method for class 'Rr'
predict(object, X, ..., 1lb = NULL)
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Arguments
X For the main function: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.
Y Training Y-data (n, q).
weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).
1b A value of regularization parameter lambda. If 1b = @, a pseudo-inverse is used.
object For the auxiliary functions: A fitted model, output of a call to the main function.
— For the auxiliary functions: Optional arguments. Not used.
Value
For rr:
v eigenvector matrix of the correlation matrix (n,n).
TtDY intermediate output.
sv singular values of the matrix (1,n).
1b value of regularization parameter lambda.
xmeans the centering vector of X (p,1).
ymeans the centering vector of Y (g, 1).
weights the weights vector of X-variables (p, 1).

For coef.Rr:

int matrix (1,nlv) with the intercepts
B matrix (n,nlv) with the coefficients
df model complexity (number of degrees of freedom)

For predict.Rr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

References

Cule, E., De Iorio, M., 2012. A semi-automatic method to guide the choice of ridge parameter in
ridge regression. arXiv:1205.0686.

Hastie, T., Tibshirani, R., 2004. Efficient quadratic regularization for expression arrays. Biostatis-
tics 5, 329-340. https://doi.org/10.1093/biostatistics/kxh010

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining,
inference, and prediction, 2nd ed. Springer, New York.

Hoerl, A.E., Kennard, R.W., 1970. Ridge Regression: Biased Estimation for Nonorthogonal Prob-
lems. Technometrics 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634

Wu, W., Massart, D.L., de Jong, S., 1997. The kernel PCA algorithms for wide data. Part I: Theory
and algorithms. Chemometrics and Intelligent Laboratory Systems 36, 165-172. https://doi.org/10.1016/S0169-
7439(97)00010-5
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Examples

n<-6;p<-4
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Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Ytrain <- cbind(yl = ytrain, y2 = 100 * ytrain)

m<- 3
Xtest <- Xtrain[1
Ytest <- Ytrain[1

1b <- .1

:m, , drop = FALSE]
:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

fm <- rr(Xtrain, Ytrain, 1lb = 1b)

coef (fm)
coef(fm, 1b = .8)

predict(fm, Xtest)
predict(fm, Xtest, 1lb = c(0.1, .8))

pred <- predict(fm, Xtest)$pred

msep(pred, Ytest)

rrda

RR-DA models

Description

Discrimination (DA) based on ridge regression (RR).

Usage

rrda(X, y, weights = NULL, lb = 1e-5)

## S3 method for class 'Rrda’

predict(object,

Arguments
For rrda:

X

weights
1b

object

X, ..., 1b = NULL)

For the main function: Training X-data (n,p). — For the auxiliary function:
New X-data (m, p) to consider.

Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

Weights (n) to apply to the training observations for the PLS2. Internally,
weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n).

A value of regularization parameter lambda. If 1b = @, a pseudo-inverse is used
in the RR.

For the auxiliary function: A fitted model, output of a call to the main functions.

For the auxiliary function: Optional arguments. Not used.



128 rrda

Details

The training variable y (univariate class membership) is transformed to a dummy table contain-
ing nclas columns, where nclas is the number of classes present in . Each column is a dummy
variable (0/1). Then, a ridge regression (RR) is run on the X —data and the dummy table, return-
ing predictions of the dummy variables. For a given observation, the final prediction is the class
corresponding to the dummy variable for which the prediction is the highest.

Value

For rrda:

fm List with the outputs of the RR ((V): eigenvector matrix of the correlation matrix
(n,n); (TtDY): intermediate output; (sv): singular values of the matrix (1,n);
(1b): value of regularization parameter lambda; (xmeans): the centering vector
of X (p,1); (ymeans): the centering vector of Y (g, 1) ; (weights): the weights
vector of X-variables (p, 1).

lev classes

ni number of observations in each class

For predict.Rrda:

pred matrix or list of matrices (if Ib is a vector), with predicted class for each obser-
vation
posterior matrix or list of matrices (if Ib is a vector), calculated probability of belonging

to a class for each observation

Examples

n<-50;p<-38
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

m<-5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]

1b <- 1
fm <- rrda(Xtrain, ytrain, 1lb = 1lb)
predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred
err(pred, ytest)

predict(fm, Xtest, 1lb = 0:2)
predict(fm, Xtest, 1lb = @)
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sampcla Within-class sampling

Description

The function divides a datset in two sets, "train" vs "test", using a stratified sampling on defined
classes.

If argument y = NULL (default), the sampling is random within each class. If not, the sampling is
systematic (regular grid) within each class over the quantitative variable y.

Usage

sampcla(x, y = NULL, m)

Arguments

X A vector (length m) defining the class membership of the observations.

y A vector (length m) defining the quantitative variable for the systematic sam-
pling. If NULL (default), the sampling is random within each class.

m Either an integer defining the equal number of test observation(s) to select per
class, or a vector of integers defining the numbers to select for each class. In the
last case, vector m must have a length equal to the number of classes present in
x, and be ordered in the same way as the ordered class membership.

Value

train Indexes (i.e. position in ) of the selected observations, for the training set.

test Indexes (i.e. position in x) of the selected observations, for the test set.

lev classes

ni number of observations in each class

Note

The second example is a representative stratified sampling from an unsupervised clustering.

References

Naes, T., 1987. The design of calibration in near infra-red reflectance analysis by clustering. Journal
of Chemometrics 1, 121-134.
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Examples

## EXAMPLE 1

x <- sample(c(1, 3, 4), size = 20, replace = TRUE)
table(x)

sampcla(x, m = 2)
s <- sampcla(x, m = 2)$test
x[s]

sampcla(x, m = c(1, 2, 1))
s <- sampcla(x, m = c(1, 2, 1))$test
x[s]

y <= rnorm(length(x))
sampcla(x, y, m = 2)

s <- sampcla(x, y, m = 2)$test
x[s]

## EXAMPLE 2
data(cassav)
X <- cassav$Xtrain
y <- cassav$ytrain

N <= nrow(X)

fm <- pcaeigenk(X, nlv = 10)

z <- stats::kmeans(x = fm$T, centers = 3, nstart = 25, iter.max = 50)
x <- z$cluster

z <- table(x)

z

p <-c(z) /N

p

psamp <- .20

m <- round(psamp * N * p)

m

random_sampling <- sampcla(x, m = m)
s <- random_sampling$test
table(x[s])

Systematic_sampling_for_y <- sampcla(x, y, m = m)
s <- Systematic_sampling_for_y$test
table(x[s])

sampdp Duplex sampling
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Description

The function divides the data X in two sets, "train" vs "test", using the Duplex algorithm (Snee,
1977). The two sets are of equal size. If needed, the user can add aposteriori the eventual remain-
ing observations (not in "train" nor "test") to "train".

Usage

sampdp(X, k, diss = c("eucl”, "mahal"))

Arguments
X X-data (n, p) to be sampled.
k An integer defining the number of training observations to select. Must be <=
n/2.
diss The type of dissimilarity used for selecting the observations in the algorithm.
Possible values are "eucl" (default; Euclidean distance) or "mahal" (Mahalanobis
distance).
Value
train Indexes (i.e. row numbers in X) of the selected observations, for the training
set.
test Indexes (i.e. row numbers in X)) of the selected observations, for the test set.
remain Indexes (i.e., row numbers in X') of the remaining observations.
References

Kennard, R.W., Stone, L.A., 1969. Computer aided design of experiments. Technometrics, 11(1),
137-148.

Snee, R.D., 1977. Validation of Regression Models: Methods and Examples. Technometrics 19,
415-428. https://doi.org/10.1080/00401706.1977.10489581

Examples

n<-10 ; p<-3
X <= matrix(rnorm(n * p), ncol = p)

k <-4
sampdp(X, k = k)
sampdp(X, k = k, diss = "mahal"”)
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sampks Kennard-Stone sampling

Description

The function divides the data X in two sets, "train" vs "test", using the Kennard-Stone (KS) algo-
rithm (Kennard & Stone, 1969). The two sets correspond to two different underlying probability
distributions: set "train" has higher dispersion than set "test".

Usage

sampks(X, k, diss = c("eucl”, "mahal"))

Arguments
X X-data (n, p) to be sampled.
k An integer defining the number of training observations to select.
diss The type of dissimilarity used for selecting the observations in the algorithm.
Possible values are "eucl" (default; Euclidean distance) or "mahal" (Mahalanobis
distance).
Value
train Indexes (i.e. row numbers in X) of the selected observations, for the training
set.
test Indexes (i.e. row numbers in X)) of the selected observations, for the test set.
References

Kennard, R.W., Stone, L.A., 1969. Computer aided design of experiments. Technometrics, 11(1),
137-148.

Examples

n<-10 ; p<-3
X <= matrix(rnorm(n * p), ncol = p)

k <=7
sampks(X, k = k)

n<-10 ; k <- 25

X <- expand.grid(1:n, 1:n)

X <= X + rnorm(nrow(X) * ncol(X), @, .1)

s <- sampks(X, k)$train

plot(X)

points(X[s, ], pch = 19, col = 2, cex = 1.5)
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savgol Savitzky-Golay smoothing

Description

Smoothing by derivation, with a Savitzky-Golay filter, of the row observations (e.g. spectra) of a
data set.

The function uses function sgolayfilt of package signal available on the CRAN.

Usage

savgol(X, m, n, p, ts = 1)

Arguments
X X-data).
m Derivation order.
n Filter length (must be odd), i.e. the number of colums in X defining the filter
window.
p Polynomial order.
ts Scaling factor (e.g. the absolute step between two columns in matrix X), see
argument ts in function sgolayfilt. This has not impact on the form of the
transformed output.
Value

A matrix of the transformed data.

Examples

X <- cassav$Xtest

m<-1,;n<-11; p<-2
Xp <- savgol(X, m, n, p)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))

plotsp(X, main = "Signal”)

plotsp(Xp, main = "Corrected signal”)
abline(h = @, 1ty = 2, col = "grey")
par(oldpar)
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scordis

Score distances (SD) in a PCA or PLS score space

Description

scordis calculates the score distances (SD) for a PCA or PLS model. SD is the Mahalanobis
distance of the projection of a row observation on the score plan to the center of the score space.

A distance cutoff is computed using a moment estimation of the parameters of a Chi-squared distr-
bution for SD*2 (see e.g. Pomerantzev 2008). In the function output, column dstand is a standard-
ized distance defined as SD/cutof f. A value dstand > 1 can be considered as extreme.

The Winisi "GH" is also provided (usually considered as extreme if GH > 3).

Usage

scordis(

object, X = NULL,

nlv = NULL,

rob = TRUE, alpha = .01

)

Arguments

object

nlv
rob
alpha

Value

res.train
res
cutoff

References

A fitted model, output of a call to a fitting function (for example from pcasvd,
plskern,...).

New X-data.
Number of components (PCs or LVs) to consider.

Logical. If TRUE, the moment estimation of the distance cutoff is robustified.
This can be recommended after robust PCA or PLS on small data sets containing
extreme values.

Risk-TI level for defining the cutoff detecting extreme values.

matrix with distances, standardized distances and Winisi "GH", for the training
set.

matrix with distances, standardized distances and Winisi "GH", for new X-data
if any.

cutoff value

M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005). ROBPCA: a new approach to robust
principal components analysis. Technometrics, 47, 64-79.

Pomerantsev, A.L., 2008. Acceptance areas for multivariate classification derived by projection
methods. Journal of Chemometrics 22, 601-609. https://doi.org/10.1002/cem.1147
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Examples

n<-6;p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

Xtest <- Xtrain[1:3, , drop = FALSE]

nlv <- 3

fm <- pcasvd(Xtrain, nlv = nlv)
scordis(fm)

scordis(fm, nlv = 2)
scordis(fm, Xtest, nlv = 2)

segmkf Segments for cross-validation

Description

Build segments of observations for K-Fold or "test-set" cross-validation (CV).
The CV can eventually be randomly repeated. For each repetition:
- K-fold CV - Function segmkf returns the K segments.

- Test-set CV - Function segmts returns a segment (of a given length) randomly sampled in the
dataset.

CV of blocks

Argument y allows sampling blocks of observations instead of observations. This can be required
when there are repetitions in the data. In such a situation, CV should account for the repetition level
(if not, the error rates are in general highly underestimated). For implementing such a CV, object y
must be a a vector (n) defining the blocks, in the same order as in the data.

In any cases (y = NULL or not), the functions return a list of vector(s). Each vector contains the
indexes of the observations defining the segment.

Usage
segmkf(n, y = NULL, K = 5,

type = c("random”, "consecutive”, "interleaved"), nrep = 1)

segmts(n, y = NULL, m, nrep)

Arguments

n The total number of row observations in the dataset. If y =NULL, the CV is
implemented on 1:n. If y !=NULL, blocks of observations (defined in y) are
sampled instead of observations (but indexes of observations are returned).

y A vector (n) defining the blocks. Default to NULL.
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K For segmkf.The number of folds (i.e. segments) in the K-fold CV.
type For segmkf.The type K-fold CV. Possible values are "random" (default), "con-
secutive" and "interleaved".
m For segmts. If y = NULL, the number of observations in the segment. If not, the
number of blocks in the segment.
nrep The number of replications of the repeated CV. Default to nrep = 1.
Value
The segments (lists of indexes).
Examples
Kfold <- segmkf(n = 10, K = 3)
interleavedKfold <- segmkf(n = 10, K = 3, type = "interleaved")
LeaveOneOut <- segmkf(n = 10, K = 10)
RepeatedKfold <- segmkf(n = 10, K = 3, nrep = 2)
repeatedTestSet <- segmts(n = 10, m = 3, nrep = 5)
n<-10
y <- rep(LETTERS[1:5], 2)
y
Kfold_withBlocks <- segmkf(n =n, y =y, K =3, nrep = 1)
z <- Kfold_withBlocks
z
y[z$repl1$segmi]
y[z$repl$segm2]
y[z$repl1$segm3]
TestSet_withBlocks <- segmts(n = n, y =y, m =3, nrep = 1)
z <- TestSet_withBlocks
z
y[z$repl1$segmi]
selwold Heuristic selection of the dimension of a latent variable model with
the Wold’s criterion
Description
The function helps selecting the dimensionnality of latent variable (LV) models (e.g. PLSR) using

the "Wold criterion".
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The criterion is the "precision gain ratio" R = 1 — r(a 4+ 1)/r(a) where r is an observed error
rate quantifying the model performance (msep, classification error rate, etc.) and a the model
dimensionnality (= nb. LVs). It can also represent other indicators such as the eigenvalues of a
PCA.

R is the relative gain in efficiency after a new LV is added to the model. The iterations continue
until R becomes lower than a threshold value alpha. By default and only as an indication, the
default alpha = .05 is set in the function, but the user should set any other value depending on his
data and parcimony objective.

In the original article, Wold (1978; see also Bro et al. 2008) used the ratio of cross-validated over
training residual sums of squares, i.e. PRESS over SSR. Instead, selwold compares values of
consistent nature (the successive values in the input vector r), e.g. PRESS only . For instance, r
was set to PRESS values in Li et al. (2002) and Andries et al. (2011), which is equivalent to the
"punish factor" described in Westad & Martens (2000).

The ratio R is often erratic, making difficult the dimensionnaly selection. Function selwold pro-
poses to calculate a smoothing of R (argument smooth).

Usage
selwold(
r, indx = seq(length(r)),
smooth = TRUE, f = 1/3,
alpha = .05, digits = 3,
plot = TRUE,
xlab = "Index", ylab = "Value"”, main = "r",
)
Arguments
r Vector of a given error rate (n) or any other indicator.
indx Vector of indexes (n), typically the nb. of Lvs.
smooth Logical. If TRUE (default), the selection is done on the smoothed R.
f Window for smoothing R with function lowess.
alpha Proportion alpha used as threshold for R.
digits Number of digits for R.
plot Logical. If TRUE (default), results are plotted.
xlab x-axis label of the plot of r (left-side in the graphic window).
ylab y-axis label of the plot of r (left-side in the graphic window).
main Title of the plot of r (left-side in the graphic window).

Other arguments to pass in function lowess.
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Value
res matrix with for each number of Lvs: r, the observed error rate quantifying the
model performance; dif f, the difference between r(a + 1) and r(a) ; R, the
relative gain in efficiency after a new LV is added to the model; Rs, smoothing
of R.
opt The index of the minimum for 7.
sel The index of the selection from the R (or smoothed R) threshold.
References

Andries, J.P.M., Vander Heyden, Y., Buydens, L.M.C., 2011. Improved variable reduction in par-
tial least squares modelling based on Predictive-Property-Ranked Variables and adaptation of partial
least squares complexity. Analytica Chimica Acta 705, 292-305. https://doi.org/10.1016/j.aca.2011.06.037

Bro, R., Kjeldahl, K., Smilde, A.K., Kiers, H.A.L., 2008. Cross-validation of component models: A
critical look at current methods. Anal Bioanal Chem 390, 1241-1251. https://doi.org/10.1007/s00216-
007-1790-1

Li, B., Morris, J., Martin, E.B., 2002. Model selection for partial least squares regression. Chemo-
metrics and Intelligent Laboratory Systems 64, 79-89. https://doi.org/10.1016/S0169-7439(02)00051-
5

Westad, F., Martens, H., 2000. Variable Selection in near Infrared Spectroscopy Based on Signifi-
cance Testing in Partial Least Squares Regression. J. Near Infrared Spectrosc., INIRS 8, 117-124.

Wold S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Com-
ponents Models. Technometrics. 1978;20(4):397-405

Examples
data(cassav)

Xtrain <- cassav$Xtrain
ytrain <- cassav$ytrain
X <- cassav$Xtest
y <- cassav$ytest

nlv <- 20
res <- gridscorelv(
Xtrain, ytrain, X, vy,
score = msep, fun = plskern,
nlv = @:nlv
)
selwold(res$yl, res$nlv, f = 2/3)
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snv Standard normal variate transformation (SNV)

Description

SNV transformation of the row observations (e.g. spectra) of a dataset. By default, each observation
is centered on its mean and divided by its standard deviation.

Usage

snv(X, center = TRUE, scale = TRUE)

Arguments
X X-data (n, p).
center Logical. If TRUE (default), the centering in the SNV is done.
scale Logical. If TRUE (default), the scaling in the SNV is done.
Value

A matrix of the transformed data.

Examples
data(cassav)
X <- cassav$Xtest
Xp <= snv(X)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))

plotsp(X, main = "Signal")

plotsp(Xp, main = "Corrected signal”)
abline(h = @, 1ty = 2, col = "grey")
par(oldpar)
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sopls Block dimension reduction by SO-PLS

Description

Function soplsr implements dimension reductions of pre-selected blocks of variables (= set of
columns) of a reference (= training) matrix, by sequential orthogonalization-PLS (said "SO-PLS").

Function soplsrcv perfoms repeteated cross-validation of an SO-PLS model in order to choose the
optimal lv combination from the different blocks.

SO-PLS is described for instance in Menichelli et al. (2014), Biancolillo et al. (2015) and Biancol-
illo (2016).

The block reduction consists in calculating latent variables (= scores) for each block, each block
being sequentially orthogonalized to the information computed from the previous blocks.

The function allows giving a priori weights to the rows of the reference matrix in the calculations.
Auxiliary functions
transform Calculates the LVs for any new matrices list X1ist from the model.

predict Calculates the predictions for any new matrices list X[ist from the model.

Usage

soplsr(Xlist, Y, Xscaling = c("none”, "pareto”, "sd")[1],
Yscaling = c("none", "pareto”, "sd")[1], weights = NULL, nlv)

soplsrcv(Xlist, Y, Xscaling = c("none”, "pareto”, "sd")[1],

Yscaling = c("none”, "pareto”, "sd")[1], weights = NULL, nlvlist = list(),
nbrep = 30, cvmethod = "kfolds”, seed = 123, samplingk = NULL, nfolds = 7,
optimisation = c("global”,"sequential”)[1],

selection = c("localmin”,"globalmin”,"1std")[1], majorityvote = FALSE)

## S3 method for class 'Soplsr'
transform(object, X, ...)

## S3 method for class 'Soplsr'

predict(object, X, ...)
Arguments
Xlist A list of matrices or data frames of reference (= training) observations.
X For the auxiliary functions: list of new X-data, with the same variables than the

training X-data.

Y A nxq matrix or data frame, or a vector of length n, of reference (= training)
responses.
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Xscaling

Yscaling

weights

nlv

nlvlist

nbrep
cvmethod

seed

samplingk

nfolds

optimisation

selection

majorityvote

object

Value

For soplsr:

fm
T

141

vector (of length Xlist) of variable scaling for each datablock, among "none"
(mean-centering only), "pareto” (mean-centering and pareto scaling), "sd" (mean-
centering and unit variance scaling). If "pareto" or "sd", uncorrected standard
deviation is used.

variable scaling for the Y-block, among "none" (mean-centering only), "pareto”
(mean-centering and pareto scaling), "sd" (mean-centering and unit variance
scaling). If "pareto" or "sd", uncorrected standard deviation is used.

a priori weights to the rows of the reference matrix in the calculations.

A vector of same length as the number of blocks defining the number of scores
to calculate for each block, or a single number. In this last case, the same number
of scores is used for all the blocks.

A list of same length as the number of X-blocks. Each component of the list
gives the number of PLS components of the corresponding X-block to test.

An integer, setting the number of CV repetitions. Default value is 30.
"kfolds" for k-folds cross-validation, or "loo" for leave-one-out.

a numeric. Seed used for the repeated resampling, and if cvmethod is "kfolds"
and samplingk is not NULL.

A vector of length n. The elements are the values of a qualitative variable used
for stratified partition creation. If NULL, the first observation is set in the first
fold, the second observation in the second fold, etc...

An integer, setting the number of partitions to create. Default value is 7.

"global" or "sequential" optimisation of the number of components. If "sequen-
tial", the optimal Iv number is found for the first X-block, then for the 2nd one,
etc...

a character indicating the selection method to use to choose the optimal com-
bination of components, among "localmin","globalmin","1std". If "localmin":
the optimal combination corresponds to the first local minimum of the mean
CV rmse. If "globalmin" : the optimal combination corresponds to the mini-
mum mean CV rmse. If "1std" (one standard errror rule): it corresponds to the
first combination after which the mean cross-validated rmse does not decrease
significantly.

only if optimisation is "global" or one X-block. If majorityvote is TRUE, the
optimal combination is chosen for each Y variable, with the chosen selection,
before a majority vote. If majorityvote is "FALSE, the optimal combination is
simply chosen with the chosen selection.

For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

A list of the plsr models.

A matrix with the concatenated scores calculated from the X-blocks.
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pred
Xmeans
ymeans
xscales
yscales
b
weights

nlv

sopls

A matrice nxq with the calculated fitted values.

list of vectors of X-mean values.

vector of Y-mean values.

list of vectors of X-scaling values.

vector of Y-scaling values.

A list of X-loading weights, used in the orthogonalization step.
Weights applied to the training observations.

vector of numbers of latent variables from each X-block.

For transform.Soplsr: the LVs calculated for the new matrices list X[ist from the model.

For predict.Soplsr: predicted values for each observation

For soplsrcv:

lvcombi

optimcombi

rmseCV_byY

ExplVarCV_byY

rmseCV

ExplVarcCVv

References

matrix or list of matrices, of tested component combinations.

the number of PLS components of each X-block allowing the optimisation of
the mean rmseCV.

matrix or list of matrices of mean and sd of cross-validated RMSE in the model
for each combination and each response variable.

matrix or list of matrices of mean and sd of cross-validated explained variances
in the model for each combination and each response variable.

matrix or list of matrices of mean and sd of cross-validated RMSE in the model
for each combination and response variables.

matrix or list of matrices of mean and sd of cross-validated explained variances
in the model for each combination and response variables.

- Biancolillo et al. , 2015. Combining SO-PLS and linear discriminant analysis for multi-block
classification. Chemometrics and Intelligent Laboratory Systems, 141, 58-67.

- Biancolillo, A. 2016. Method development in the area of multi-block analysis focused on food
analysis. PhD. University of copenhagen.

- Menichelli et al., 2014. SO-PLS as an exploratory tool for path modelling. Food Quality and
Preference, 36, 122-134.

- Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

See Also

soplsr_soplsda_allsteps function to help determine the optimal number of latent variables,
perform a permutation test, calculate model parameters and predict new observations.
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Examples

N<-10 ; p<-12
set.seed(1)
X <= matrix(rnorm(N * p, mean = 10), ncol = p, byrow = TRUE)

Y <- matrix(rnorm(N * 2, mean = 10), ncol = 2, byrow = TRUE)
colnames(X) <- paste("”varx”, 1:ncol(X), sep = "")

colnames(Y) <- paste(”vary"”, 1:ncol(Y), sep = "")

rownames(X) <- rownames(Y) <- paste("obs”, 1:nrow(X), sep = "")
set.seed(NULL)

X

Y

n <- nrow(X)

X_list <- list(X[,1:4]1, X[,5:7], X[,9:ncol(X)1)
X_list_2 <- list(X[1:2,1:4]1, X[1:2,5:71, X[1:2,9:ncol(X)])

soplsrcv(X_list, Y, Xscaling = c("none"”, "pareto”, "sd")[1],

Yscaling = c("none”, "pareto”, "sd")[1], weights = NULL,

nlvlist=1list(@:1, 1:2, @:1), nbrep=1, cvmethod="loo", seed = 123, samplingk=NULL,
optimisation="global"”, selection="localmin", majorityvote=FALSE)

ncomp <- 2

fm <- soplsr(X_list, Y, nlv = ncomp)
transform(fm, X_list_2)

predict(fm, X_list_2)

mse(predict(fm, X_list), Y)

# VIP calculation based on the proportion of Y-variance explained by the components
vip(fm$fm[[1]1], X_list[[1]], Y = NULL, nlv = ncomp)
vip(fm$fmL[2]1], X_list[[2]]1, Y = NULL, nlv = ncomp)
vip(fm$fmL[311, X_1ist[[311, Y = NULL, nlv = ncomp)

ncomp <- c(2, 0, 3)

fm <- soplsr(X_list, Y, nlv
transform(fm, X_list_2)
predict(fm, X_list_2)
mse(predict(fm, X_list), Y)

ncomp)

ncomp <- @

fm <- soplsr(X_list, Y, nlv = ncomp)
transform(fm, X_list_2)

predict(fm, X_list_2)

ncomp <- 2

weights <- rep(1 / n, n)

#w <- 1:n

fm <- soplsr(X_list, Y, Xscaling = c("sd","pareto”,"none"), nlv = ncomp, weights = weights)
transform(fm, X_list_2)

predict(fm, X_list_2)
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soplsrda Block dimension reduction by SO-PLS-DA

Description

Function soplsrda implements dimension reductions of pre-selected blocks of variables (= set of
columns) of a reference (= training) matrix, by sequential orthogonalization-PLS (said "SO-PLS")
in a context of discrimination.

Function soplsrdacv perfoms repeteated cross-validation of an SO-PLS-RDA model in order to
choose the optimal v combination from the different blocks.

The block reduction consists in calculating latent variables (= scores) for each block, each block
being sequentially orthogonalized to the information computed from the previous blocks.

The function allows giving a priori weights to the rows of the reference matrix in the calculations.

Insoplslda and soplsqda, probabilistic LDA and QDA are run over the PLS2 LVs, respectively.

Usage

soplsrda(Xlist, y, Xscaling = c("none"”, "pareto"”, "sd")[11],
Yscaling = c("none”, "pareto”, "sd")[1], weights = NULL, nlv)

soplslda(Xlist, y, Xscaling = c("none”, "pareto”, "sd")[1],
Yscaling = c("none"”, "pareto”, "sd")[1], weights = NULL, nlv,
prior = c("unif”, "prop"”))

soplsqda(Xlist, y, Xscaling = c("none"”, "pareto”, "sd")[11,
Yscaling = c("none”, "pareto”, "sd")[1], weights = NULL, nlv,
prior = c("unif”, "prop"))

soplsrdacv(Xlist, y, Xscaling = c("none", "pareto”, "sd")[1],

Yscaling = c("none”, "pareto”, "sd")[1], weights = NULL, nlvlist=list(),
nbrep=30, cvmethod="kfolds", seed = 123, samplingk = NULL, nfolds = 7,
optimisation = c(”"global”, "sequential”)[1],

criterion = c("err”,"rmse")[1], selection = c("localmin”,"globalmin”,"1std")[1])

soplsldacv(Xlist, y, Xscaling = c("none", "pareto”, "sd")[1],

Yscaling = c("none"”, "pareto”, "sd")[1], weights = NULL, nlvlist=list(),

prior = c("unif”, "prop"), nbrep = 30, cvmethod = "kfolds", seed = 123, samplingk = NULL,
nfolds = 7, optimisation = c("global"”,"sequential”)[1],

criterion = c("err”,"rmse")[1], selection = c("localmin”,"globalmin”,"1std")[1])

soplsqdacv(Xlist, y, Xscaling = c("none”, "pareto”, "sd")[1],

Yscaling = c("none”, "pareto”, "sd")[1], weights = NULL, nlvlist = list(),

prior = c("unif", "prop"”), nbrep = 30, cvmethod = "kfolds"”, seed = 123, samplingk = NULL,
nfolds = 7, optimisation = c("global"”,"sequential”)[1],
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criterion = c("err”,"rmse")[1], selection = c("localmin”,"globalmin”,"1std")[1])

## S3 method for class 'Soplsrda’
transform(object, X, ...)

## S3 method for class 'Soplsprobda’
transform(object, X, ...)

## S3 method for class 'Soplsrda’
predict(object, X, ...)

## S3 method for class 'Soplsprobda’

predict(object, X, ...)
Arguments

Xlist For the main functions: A list of matrices or data frames of reference (= training)
observations.

X For the auxiliary functions: list of new X-data, with the same variables than the
training X-data.

y Training class membership (n). Note: If y is a factor, it is replaced by a character
vector.

Xscaling vector (of length Xlist) of variable scaling for each datablock, among "none"
(mean-centering only), "pareto” (mean-centering and pareto scaling), "sd" (mean-
centering and unit variance scaling). If "pareto" or "sd", uncorrected standard
deviation is used.

Yscaling variable scaling for the Y-block, among "none" (mean-centering only), "pareto"
(mean-centering and pareto scaling), "sd" (mean-centering and unit variance
scaling). If "pareto" or "sd", uncorrected standard deviation is used.

weights a priori weights to the rows of the reference matrix in the calculations.

nlv A vector of same length as the number of blocks defining the number of scores
to calculate for each block, or a single number. In this last case, the same number
of scores is used for all the blocks.

nlvlist A list of same length as the number of X-blocks. Each component of the list
gives the number of PLS components of the corresponding X-block to test.

nbrep An integer, setting the number of CV repetitions. Default value is 30.

cvmethod "kfolds" for k-folds cross-validation, or "loo" for leave-one-out.

seed a numeric. Seed used for the repeated resampling, and if cvmethod is "kfolds"
and samplingk is not NULL.

samplingk Optional. A vector of length n. The elements are the values of a qualitative
variable used for stratified partition creation.

nfolds An integer, setting the number of partitions to create. Default value is 7.

optimisation "global" or "sequential" optimisation of the number of components. If "sequen-

tial", the optimal Iv number is found for the first X-block, then for the 2nd one,
etc...
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criterion

selection

prior

object

Value

soplsrda

optimisation criterion among "rmse" and "err" (for classification error rate)

a character indicating the selection method to use to choose the optimal com-
bination of components, among "localmin”,"globalmin","1std". If "localmin":
the optimal combination corresponds to the first local minimum of the mean CV
rmse or error rate. If "globalmin" : the optimal combination corresponds to the
minimum mean CV rmse or error rate. If "1std" (one standard error rule) : it
corresponds to the first combination after which the mean cross-validated rmse
or error rate does not decrease significantly.

The prior probabilities of the classes. Possible values are "unif" (default; proba-
bilities are set equal for all the classes) or "prop" (probabilities are set equal to
the observed proportions of the classes in y).

For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

For soplsrda, soplslda, soplsqda:

fm

lev

ni

list with the PLS models: (T): X-scores matrix; (P): X-loading matrix;(R): The
PLS projection matrix (p,nlv); (W): X-loading weights matrix ;(C): The Y-loading
weights matrix; (TT): the X-score normalization factor; (xmeans): the centering
vector of X (p,1); (ymeans): the centering vector of Y (q,1); (weights): vector
of observation weights; (Xscales): X scaling values; (Yscales): Y scaling
values; (U): intermediate output.

classes

number of observations in each class

For transform. Soplsrda, transform.Soplsprobda: the LVs Calculated for the new matrices list
Xlist from the model.

For predict.Soplsrda, predict.Soplsprobda:

pred

posterior

predicted class for each observation

calculated probability of belonging to a class for each observation

For soplsrdacv, soplsldacv, soplsqdacv:

lvcombi

optimCombilLine

optimcombi

optimExplVarcV

rmseCV

matrix or list of matrices, of tested component combinations.

number of the combination line corresponding to the optimal one. In the case of
a sequential optimisation, it is the number of the combination line in the model
with all the X-blocks.

the number of PLS components of each X-block allowing the optimisation of
the mean rmseCV.

cross-validated explained variance for the optimal soplsda model.

matrix or list of matrices of mean and sd of cross-validated rmse in the model
for each combination and response variables.
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ExplVarCv matrix or list of matrices of mean and sd of cross-validated explained variances
in the model for each combination and response variables.

errCV matrix or list of matrices of mean and sd of cross-validated classification error
rates in the model for each combination and response variables.

References

- Biancolillo et al. , 2015. Combining SO-PLS and linear discriminant analysis for multi-block
classification. Chemometrics and Intelligent Laboratory Systems, 141, 58-67.

- Biancolillo, A. 2016. Method development in the area of multi-block analysis focused on food
analysis. PhD. University of copenhagen.

- Menichelli et al., 2014. SO-PLS as an exploratory tool for path modelling. Food Quality and
Preference, 36, 122-134.

- Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

See Also

soplsr_soplsda_allsteps function to help determine the optimal number of latent variables,
perform a permutation test, calculate model parameters and predict new observations.

Examples

N<-10 ; p <= 12

set.seed(1)

X <- matrix(rnorm(N * p, mean = 10), ncol = p, byrow = TRUE)

y <- matrix(sample(c(”1", "4", "10"), size = N, replace = TRUE), ncol=1)
colnames(X) <- paste(”"x", 1:ncol(X), sep = "")

set.seed(NULL)

n <- nrow(X)

X_list <- list(X[,1:41, X[,5:71, X[,9:ncol(X)1)
X_list_2 <- list(X[1:2,1:41, X[1:2,5:71, X[1:2,9:ncol(X)1)

# EXEMPLE WITH SO-PLS-RDA

soplsrdacv(X_list, y, Xscaling = c("none”, "pareto”, "sd")[1],
Yscaling = c("none"”, "pareto”, "sd")[1], weights = NULL,
nlvlist=1list(@:1, 1:2, @:1), nbrep=1, cvmethod="loo", seed = 123,
samplingk = NULL, nfolds = 3, optimisation = "global”,

criterion = c("err”,"rmse")[1], selection = "localmin")

ncomp <- 2

fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)

ncomp <- c(2, 0, 3)

fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)



148 soplsr_soplsda_allsteps

ncomp <- @

fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)

# EXEMPLE WITH SO-PLS-LDA

ncomp <- 2

weights <- rep(1 / n, n)

#w <- 1:n

soplslda(X_list, y, Xscaling = "none”, nlv = ncomp, weights = weights)
soplslda(X_list, y, Xscaling = "pareto”, nlv = ncomp, weights = weights)
soplslda(X_list, y, Xscaling = "sd"”, nlv = ncomp, weights = weights)

non

fm <- soplslda(X_list, y, Xscaling = c("none"”,"pareto”,"sd"”), nlv = ncomp, weights = weights)
predict(fm,X_list_2)
transform(fm,X_list_2)

soplsr_soplsda_allsteps
SOPLSR or SOPLSDA analysis steps

Description

Help determine the optimal number of latent variables by cross-validation, perform a permuta-
tion test, calculate model parameters and predict new observations, for soplsr (soplsr), soplsrda
(soplsrda), soplslda (soplslda) or soplsqda (soplsqda) models.

Usage

soplsr_soplsda_allsteps(Xlist, Xnames = NULL, Xscaling = c("none"”,"pareto”,"sd")[1],
Y, Yscaling = c("none”,"pareto”,"”sd")[1], weights = NULL,
newXlist = NULL, newXnames = NULL,
method = c("soplsr”, "soplsrda”,"soplslda”,"soplsqda”)[1],
prior = c("unif”, "prop")[1],
step = c("nlvtest”,"permutation”, "model”, "prediction”)[1],
nlv = c(),
nlvlist = list(),
modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds”,"loo")[1],
nbrep = 30,

seed = 123,

samplingk = NULL,

nfolds = 10,
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Arguments

Xlist
Xnames

Xscaling

Yscaling

weights

newXlist
newXnames
method

prior

step

nlv

nlvlist

modeloutput

cvmethod
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npermut = 30,

optimisation = c("global”, "sequential”)[11],
criterion = c("err”,"rmse")[11],
selection = c("localmin”, "globalmin”,"1std")[1],

import = c("R","ChemFlow","W4M")[1],
outputfilename = NULL)

list of training X-data (n, p).
name of the X-matrices

vector of Xlist length. X variable scaling among "none" (mean-centering only),
"pareto” (mean-centering and pareto scaling), "sd" (mean-centering and unit
variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.

Training Y-data (n, q) for plsr models, and (n, 1) for plsrda, plslda or plsqda
models.

Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering
and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"
or "sd", uncorrected standard deviation is used.

Weights (n, 1) to apply to the training observations. Internally, weights are "nor-
malized" to sum to 1. Default to NULL (weights are set to 1/n).

list of new X-data (m, p) to consider.

names of the newX-matrices

non non non

method to apply among "plsr", "plsrda","plslda”,"plsqda”

for plslda or plsqda models : The prior probabilities of the classes. Possible
values are "unif" (default; probabilities are set equal for all the classes) or "prop"
(probabilities are set equal to the observed proportions of the classes in y).

step of the analysis among "nlvtest" (cross-validation to help determine the
optimal number of latent variables), "permutation" (permutation test),"model"
(model calculation),"prediction" (prediction of newX-data or X-data if any))

if step is not "nlvtest". A vector of same length as the number of blocks defining
the number of scores to calculate for each block, or a single number. In this last
case, the same number of scores is used for all the blocks.

if step is not "nlvtest". A list of same length as the number of X-blocks. Each
component of the list gives the number of PLS components of the corresponding
X-block to test.

non

if step is "model": outputs among "scores", "loadings", "coef" (regression co-
efficients), "vip" (Variable Importance in Projection; the VIP calculation being
based on the proportion of Y-variance explained by the components, as proposed
by Mehmood et al (2012, 2020).)

if step is "nlvtest" or "permutation": "kfolds" for k-folds cross-validation, or
"loo" for leave-one-out.
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nbrep

seed

samplingk

nfolds

npermut

optimisation

criterion

selection

import

outputfilename

Value

soplsr_soplsda_allsteps

if step is "nlvtest" and cvmethod is "kfolds": An integer, setting the number of
CV repetitions. Default value is 30. Must me set to 1 if cvmethod is "loo"

if step is "nlvtest" and cvmethod is "kfolds", or if step is "permutation: a nu-
meric. Seed used for the repeated resampling

A vector of length n. The elements are the values of a qualitative variable used
for stratified partition creation. If NULL, the first observation is set in the first
fold, the second observation in the second fold, etc...

if cvmethod is "kfolds". An integer, setting the number of partitions to create.
Default value is 10.

if step is "permutation”: An integer, setting the number of Y-Block with permu-
tated responses to create. Default value is 30.

if step is "nlvtest", method for the error optimisation among "global" (the op-
timal number of latent variables is determined after all the ordred block com-
bination have been computed), or "sequential" (the optimal number of latent
variables is determined after each addition of X-block)

"non

if step is "nlvtest" or "permutation” and method is "plsrda”, "plslda" or "plsqda":
optimisation criterion among "rmse" and "err" (for classification error rate)))

if step is "nlvtest": a character indicating the selection method to use to choose
the optimal combination of components, among "localmin","globalmin","1std".
If "localmin": the optimal combination corresponds to the first local minimum
of the mean CV rmse or error rate. If "globalmin" : the optimal combination
corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard
error rule) : it corresponds to the first combination after which the mean cross-

validated rmse or error rate does not decrease significantly.

If"R", X and Y are in the global environment, and the observation names are in
rownames. If "ChemFlow", X and Y are tabulated tables (.txt), and the obser-
vation names are in the first column. If "W4M", X and Y are tabulated tables
(.txt), and the observation names are in the headers of X, and in the first column
of Y.

character: If not NULL, name of the tabular file, in which the function outputs
have to be written.)

If step is "nlvtest": table with rmsecv or cross-validated classification error rates. The suggested
optimal number of latent variable combination is indicated by the binary "optimum" variable.

If step is "permutation": table with the dissimilarity between the original and the permutated Y-
block, and the rmsecv or cross-validated classification error rates obtained with the permutated
Y-block by the model and the given number of latent variables.

If step is "model": list of tables of scores, loadings, regression coefficients, and vip values by X-
Block, depending of the "modeloutput” parameter.

If step is "prediction": table of predicted scores and predicted classes or values.
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Examples

n<-50;p<-38
Xtrain <- matrix(rnorm(n x p), ncol = p)
colnames(Xtrain) <- paste@("V",1:p)

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:81)
Xtestlist <- list(Xtest[,1:3], Xtest[,4:81)

nlv <- 5

resnlvtestsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,
Xnames = NULL, Xscaling = c("none”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("soplsr”, "soplsrda”,"soplslda"”,"soplsqda")[2],
prior = c("unif”, "prop”)[1],

step = c("nlvtest”,"permutation”, "model”,"prediction”)[1],
nlvlist = list(1:2, 1:2),
modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

optimisation = "global”,
criterion = c("err”,"rmse")[1],

non

selection = c("localmin”,"globalmin”,"1std")[1],
outputfilename = NULL)

respermutationsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,
Xnames = NULL, Xscaling = c("none”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("soplsr”, "soplsrda”,"”soplslda”,"soplsqda”)[2],
prior = c("unif”, "prop”)[11],

step = c(”"nlvtest”,"permutation”, "model”,"prediction”)[2],
nlv = c(2,1),

modeloutput = c("scores”,"loadings","coef”,"vip"),
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cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],
selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

plotxy(respermutationsoplsrda, pch=16)
abline (h = respermutationsoplsrdalrespermutationsoplsrdal, "permut_dyssimilarity”]==0,"res_permut”])

resmodelsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,
Xnames = NULL, Xscaling = c("none”,"pareto”,"sd")[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("soplsr”, "soplsrda”,"soplslda"”,"soplsqda”)[2],
pr‘ior‘ = C(nunif_*n, npropn)[»l:l’

step = c("nlvtest”,"permutation”,"model”, "prediction”)[3],
nlv = c(2,1),

modeloutput = c("scores”,"loadings”,"coef”,"vip"),

cvmethod = c("kfolds”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],
selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

resmodelsoplsrda$scores
resmodelsoplsrda$loadings
resmodelsoplsrda$coef
resmodelsoplsrda$vip

respredictionsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,
Xnames = NULL, Xscaling = c("none”,"pareto”,"”sd")[1],
Y = ytrain, Yscaling = "none"”, weights = NULL,
newXlist = Xtestlist, newXnames = NULL,

method = c("soplsr”, "soplsrda”,"soplslda"”,"soplsqda”)[2],
prior = c("unif”, "prop”)[1],
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step = c("nlvtest”,"permutation”,"model”, "prediction”")[4],
nlv = c(2,1),
modeloutput = c("scores”,"loadings”, "coef”,"vip"),

cvmethod = c("kfolds"”,"loo")[2],
nbrep = 1,

seed = 123,

samplingk = NULL,

nfolds = 10,

npermut = 5,

criterion = c("err”,"rmse")[1],

non

selection = c("localmin”,"globalmin”,"1std")[1],

outputfilename = NULL)

sourcedir Source R functions in a directory

Description

Source all the R functions contained in a directory.

Usage
sourcedir(path, trace = TRUE, ...)
Arguments
path A character vector of full path names; the default corresponds to the working
directory, getwd().
trace Logical. Default to TRUE. See the code.
Additional arguments to pass in the function list.files.
Value
Sourcing.
Examples

path <- "D:/Users/Fun”
sourcedir(path, FALSE)
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summ Description of the quantitative variables of a data set

Description

Displays summary statistics for each quantitative column of the data set.

Usage

summ(X, nam = NULL, digits = 3)

Arguments
X A matrix or data frame containing the variables to summarize.
nam Names of the variables to summarize (vector of character strings). Default to
NULL (all the columns are considered).
digits Number of digits for the numerical outputs.
Value
tab A dataframe of summary statistics : NbVal, Mean, Min., Max., Stdev,
Median, X1st.Qu., X3rd.Qu., NODN A
ntot number of observations
Examples

dat <- data.frame(

vl = rnorm(10),
v2 = c(NA, rnorm(8), NA),
v3 = c(NA, NA, NA, rnorm(7))
)

dat

summ(dat)

summ(dat, nam = c("v1", "v3"))
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svmr SVM Regression and Discrimination

Description

SVM models with Gaussian (RBF) kernel.

svmr: SVM regression (SVMR).

svmda: SVM discrimination (SVMCO).

The SVM models are fitted with parameterization 'C”, not the ‘nu’ parameterization.
The RBF kernel is defined by: exp(-gamma * [x - yl*2).

For tuning the model, usual preliminary ranges are for instance:

- cost = 10/ (-5:15)

- epsilon = seq(.1, .3, by =.1)

- gamma = 10/(-6:3)

The functions uses function svm of package 1071 (Meyer et al. 2021) available on CRAN (e1071
uses the tool box LIVSIM; Chang & Lin, http://www.csie.ntu.edu.tw/~cjlin/libsvm).

Usage
svmr(X, y, cost = 1, epsilon = .1, gamma = 1, scale = FALSE)
svmda(X, y, cost = 1, epsilon = .1, gamma = 1, scale = FALSE)

## S3 method for class 'Svm'
predict(object, X, ...)

## S3 method for class 'Svm'

summary (object, ...)
Arguments
X For the main functions: Training X-data (n, p). — For the auxiliary functions:
New X-data (m, p) to consider.
y Training Y-data (n).
cost The cost of constraints violation cost parameter. See svm.
epsilon The epsilon parameter in the insensitive-loss function. See svm.
gamma The gamma parameter in the RBF kernel.
scale Logical. If TRUE, X and Y are scaled internally.
object For the auxiliary functions: A fitted model, output of a call to the main function.

For the auxiliary functions: Optional arguments.
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Value

For svmr and svmda:

fm list of outputs such as: call; type; kernel; cost; degree; gamma; coef@; nu;
epsilon; sparse; scaled; x.scale; y.scale; nclasses; levels; tot.nSV;
nSV; labels; SV: The resulting support vectors (possibly scaled); index: The in-
dex of the resulting support vectors in the data matrix. Note that this index refers
to the preprocessed data (after the possible effect of na.omit and subset); rho:
The negative intercept; compprob; probA, probB: numeric vectors of length
k(k-1)/2, k number of classes, containing the parameters of the logistic distribu-
tions fitted to the decision values of the binary classifiers (1 / (1 + exp(a X + b)));
sigma: In case of a probabilistic regression model, the scale parameter of the hy-
pothesized (zero-mean) laplace distribution estimated by maximum likelihood;
coefs: The corresponding coefficients times the training labels; na.action;
fitted; decision.values; residuals; isnum.

For predict.Svm:
pred predictions for each observation.

For summary . Svm:display of call, parameters, and number of support vectors.

Note

The first example illustrates SVMR. The second one is the example of fitting the function sinc(x)
described in Rosipal & Trejo 2001 p. 105-106. The third one illustrates SVMC.

References

Meyer, M. 2021 Support Vector Machines - The Interface to libsvm in package e1071. FH Tech-
nikum Wien, Austria, David.Meyer @R-Project.org. https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf

Chang, cost.-cost. & Lin, cost.-J. (2001). LIBSVM: a library for support vector machines. Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Detailed documentation (algorithms,
formulae, . . . ) can be found in http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz

Examples

## EXAMPLE 1 (SVMR)

n<-5; p<-4

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]
ytest <- ytrain[1:m]

fm <- svmr(Xtrain, ytrain)
predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred
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msep(pred, ytest)
summary (fm)
## EXAMPLE 2

x <- seq(-10, 10, by = .2)
x[x == 0] <- le-5

n <- length(x)

zy <- sin(abs(x)) / abs(x)
y <= zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)

X <- matrix(x, ncol = 1)

fm <- svmr(X, y, gamma = .5)
pred <- predict(fm, X)$pred
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
## EXAMPLE 3 (SVMC)

n<-50;p<-38

Xtrain <- matrix(rnorm(n x p), ncol = p)

ytrain <- sample(c(”a", "10", "d"), size = n, replace = TRUE)
m<-5

Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]

cost <- 100 ; epsilon <- .1 ; gamma <- 1
fm <- svmda(Xtrain, ytrain,

cost = cost, epsilon = epsilon, gamma = gamma)
predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred
err(pred, ytest)

summary (fm)

transform Generic transform function

Description

Transformation of the X-data by a fitted model.

Usage

transform(object, X, ...)



Arguments
object A fitted model, output of a call to a fitting function.
X New X-data to consider.
Optional arguments.
Value

the transformed X-data

Examples

## EXAMPLE 1

n<-6;p<-4
X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

fm <- pcaeigen(X, nlv = 3)

fm$T
transform(fm, X[1:2, ], nlv = 2)

## EXAMPLE 2

n<-6;p<-4
X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

fm <- plskern(X, y, nlv = 3)
fm$T
transform(fm, X[1:2, ], nlv = 2)

vip

vip

Variable Importance in Projection (VIP)

Description

vip calculates the Variable Importance in Projection (VIP) for a PLS model.

Usage

vip(object, X, Y = NULL, nlv = NULL)
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Arguments
object A fitted model, output of a call to a fitting function among plskern, plsnipals,
plsrannar, plsrda, plslda), plsqda).
X-data involved in the fitted model

Y Y-data involved in the fitted model. If Y is NULL (default value), the VIP calcu-
lation is based on the proportion of Y-variance explained by the components, as
proposed by Mehmood et al (2012, 2020). If Y is not NULL, the VIP calculation
is based on the redundancy, as proposed by Tenenhaus (1998).

nlv Number of components (LVs) to consider.

Value

matrix ((¢g, nlv)) with VIP values, for models with 1 to nlv latent variables.

References

Mehmood, T.,Liland, K.H.,Snipen, L.,S&bg, S., 2012. A review of variable selection methods in
Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 118, 62-69.

Mehmood, T., Sebg, S.,Liland, K.H., 2020. Comparison of variable selection methods in partial
least squares regression. Journal of Chemometrics, 34, €3226.

Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

Examples

## EXAMPLE OF PLS

n<-50;p<-4

Xtrain <- matrix(rnorm(n x p), ncol = p)

ytrain <- rnorm(n)

Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)

m<- 3

Xtest <- Xtrain[1:m, , drop = FALSE]

Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

nlv <- 3

fm <- plskern(Xtrain, Ytrain, nlv = nlv)
vip(fm, Xtrain, Ytrain, nlv = nlv)
vip(fm, Xtrain, nlv = nlv)

fm <- plskern(Xtrain, ytrain, nlv = nlv)
vip(fm, Xtrain, ytrain, nlv = nlv)
vip(fm, Xtrain, nlv = nlv)

## EXAMPLE OF PLSDA
n<-50;p<-8

Xtrain <- matrix(rnorm(n x p), ncol = p)
ytrain <- sample(c(”1", "4", "10"), size = n, replace = TRUE)
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Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]

nlv <- 5
fm <- plsrda(Xtrain, ytrain, nlv = nlv)
vip(fm, Xtrain, ytrain, nlv = nlv)

wdist Distance-based weights

Description

Calculation of weights from a vector of distances using a decreasing inverse exponential function.
Let d be a vector of distances.

1- Preliminary weights are calculated by w = exp(—d/(h * mad(d))) , where h is a scalar > 0
(scale factor).

2- The weights corresponding to distances higher than median(d) + cri * mad(d), where cri is a
scalar > 0, are set to zero. This step is used for removing outliers.

3- Finally, the weights are "normalized" between 0 and 1 by w = w/maz(w).

Usage
wdist(d, h, cri = 4, squared = FALSE)

Arguments
d A vector of distances.
h A scaling factor (positive scalar). Lower is h, sharper is the decreasing function.
See the examples.
cri A positive scalar used for defining outliers in the distances vector.
squared Logical. If TRUE, distances d are replaced by the squared distances in the de-
creasing function, which corresponds to a Gaussian (RBF) kernel function. De-
faultto FALSE).
Value

A vector of weights.

Examples

x1 <- sqgrt(rchisq(n = 100, df = 10))
x2 <- sqgrt(rchisq(n = 10, df = 40))
d <- c(x1, x2)

h<-2; cri<-3

w <- wdist(d, h = h, cri = cri)
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oldpar <- par(mfrow = c(1, 1))

par(mfrow = c(2, 2))

plot(d)

hist(d, n = 50)

plot(w, ylim = c(@, 1)) ; ablineth =1, 1ty = 2)
plot(d, w, ylim = c(@, 1)) ; ablineth =1, 1ty = 2)
par(oldpar)

d <- seq(@, 15, by = .5)
h <- c¢(.5, 1, 1.5, 2.5, 5, 10, Inf)
for(i in 1:1length(h)) {
w <- wdist(d, h = h[i])
z <- data.frame(d = d, w = w, h = rep(h[i], length(d)))

if(i == 1) res <- z else res <- rbind(res, z)
}

res$h <- as.factor(res$h)

headm(res)

noon

plotxy(res[, c("d", "w")], asp = @, group = res$h, pch = 16)

xfit Matrix fitting from a PCA or PLS model

Description

Function xfit calculates an approximate of matrix X (X yit) from a PCA or PLS fitted on X.

Function xresid calculates the residual matrix £ = X — X it.
Usage
xfit(object, X, ...)

## S3 method for class 'Pca'
xfit(object, X, ..., nlv = NULL)

## S3 method for class 'Plsr'

xfit(object, X, ..., nlv = NULL)
xresid(object, X, ..., nlv = NULL)

Arguments
object A fitted model, output of a call to a fitting function.
X The X-data that was used to fit the model object.
nlv Number of components (PCs or LVs) to consider.

Optional arguments.
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Value

For xfit:matrix of fitted values.

For xresid:matrix of residuals.

Examples

n<-6;p<-4
X <= matrix(rnorm(n * p), ncol = p)
y <= rnorm(n)

nlv <- 3

fm <- pcasvd(X, nlv = nlv)
xfit(fm, X)

xfit(fm, X, nlv = 1)
xfit(fm, X, nlv = @)

X - xfit(fm, X)
xresid(fm, X)

X - xfit(fm, X, nlv = 1)
xresid(fm, X, nlv = 1)
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ozone, 97

adjustcolor, 102, 108
aggmean, 4
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aicplsr, 5

asdgap, 7

axis, 108
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