
Package ‘raem’
August 23, 2024

Title Analytic Element Modeling of Steady Single-Layer Groundwater
Flow

Version 0.1.0

Description A model of single-layer groundwater flow in steady-state
under the Dupuit-Forchheimer assumption can be created by placing
elements such as wells, area-sinks and line-sinks at arbitrary
locations in the flow field. Output variables include hydraulic head
and the discharge vector. Particle traces can be computed numerically
in three dimensions. The underlying theory is described in Haitjema
(1995) <doi:10.1016/B978-0-12-316550-3.X5000-4> and references
therein.

License MIT + file LICENSE

URL https://github.com/cneyens/raem, https://cneyens.github.io/raem/

BugReports https://github.com/cneyens/raem/issues

Imports deSolve, graphics, parallel, stats

Suggests isoband, knitr, rmarkdown, sf, terra, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.1

Collate 'aem.R' 'areasink.R' 'constant.R' 'flow-variables.R'
'linesink.R' 'tracelines.R' 'plot.R' 'state-variables.R'
'uniformflow.R' 'utils.R' 'well.R'

NeedsCompilation no

Author Cas Neyens [aut, cre, cph]

Maintainer Cas Neyens <cas.neyens@gmail.com>

Repository CRAN

Date/Publication 2024-08-23 09:00:02 UTC

1

https://doi.org/10.1016/B978-0-12-316550-3.X5000-4
https://github.com/cneyens/raem
https://cneyens.github.io/raem/
https://github.com/cneyens/raem/issues

2 add_element

Contents
add_element . 2
aem . 3
areasink . 7
capzone . 8
constant . 9
contours . 10
dirflow . 11
element_discharge . 13
flow . 14
flow_through_line . 17
headareasink . 18
headlinesink . 20
headwell . 21
head_to_potential . 22
linesink . 23
satthick . 24
state-variables . 25
tracelines . 28
uniformflow . 32
well . 33

Index 34

add_element Add or remove an element from an existing aem object

Description

add_element() adds a new element to an aem object.

remove_element() removes an element from an aem object based on its name or type.

Usage

add_element(aem, element, name = NULL, solve = FALSE, ...)

remove_element(aem, name = NULL, type = NULL, solve = FALSE, ...)

Arguments

aem aem object.

element analytic element of class element.

name optional name of the element as character. Duplicate element names in aem are
not allowed..

solve logical, should the model be solved after adding or removing the element? De-
faults to FALSE.

aem 3

... ignored
type class of the element(s) to remove. Either name or type should be specified in

remove_element().

Value

The aem model with the addition of element or with the removal of element(s). If solve = TRUE,
the model is solved using solve.aem(). The name of the new element is taken from the name
argument, the object name or set to element_1 with 1 being the index of the new element in the
element list. See examples.

See Also

aem()

Examples

m <- aem(k = 10, top = 10, base = 0, n = 0.2)
mnew <- add_element(m, constant(xc = 0, yc = 1000, hc = 12), name = 'rf')

if name not supplied, tries to obtain it from object name
rf <- constant(xc = 0, yc = 1000, hc = 12)
mnew <- add_element(m, rf)

or else sets it sequentially from number of elements
mnew <- add_element(m, constant(xc = 0, yc = 1000, hc = 12))

add_element() adn remove_element() are pipe-friendly
mnew <- aem(k = 10, top = 10, base = 0, n = 0.2) |>

add_element(rf, name = 'rf') |>
add_element(headwell(xw = 0, yw = 100, rw = 0.3, hc = 8),

name = 'headwell', solve = TRUE)

removing elements
mnew <- remove_element(mnew, name = 'rf')
mnew <- remove_element(mnew, type = 'headwell')

aem Create an analytic element model

Description

aem() creates an analytic element model to which elements can be added

solve.aem() solves the system of equations as constructed by the elements in the aem model

plot.element() plots the location of an analytic element with point or line geometry.

plot.aem() plots the locations of all analytic elements with a point or line geometry in an aem
object by calling plot.element() on them, or adds them to an existing plot.

4 aem

Usage

aem(
k,
top,
base,
n,
...,
type = c("variable", "confined"),
verbose = FALSE,
maxiter = 10

)

S3 method for class 'aem'
solve(a, b, maxiter = 10, verbose = FALSE, ...)

S3 method for class 'element'
plot(
x,
y = NULL,
add = FALSE,
pch = 16,
cex = 0.75,
use.widths = TRUE,
col = "black",
xlim,
ylim,
...

)

S3 method for class 'aem'
plot(x, y = NULL, add = FALSE, xlim, ylim, ...)

Arguments

k numeric, hydraulic conductivity of the aquifer.
top numeric, top elevation of the aquifer.
base numeric, bottom elevation of the aquifer.
n numeric, effective porosity of the aquifer as a fraction of total unit volume. Used

for determining flow velocities with velocity().
... for aem(), objects of class element, or a single (named) list with element ob-

jects. Otherwise, ignored.
type character specifying the type of flow in the aquifer, either variable (default) or

confined. See details.
verbose logical indicating if information during the solving process should be printed.

Defaults to FALSE.
maxiter integer specifying the maximum allowed iterations for a non-linear solution.

Defaults to 10. See details.

aem 5

a aem object.

b ignored

x aem object, or analytic element of class element to plot. If not a point or line
geometry, nothing is plotted.

y ignored

add logical, should the plot be added to the existing plot? Defaults to FALSE.

pch numeric point symbol value, defaults to 16. For a reference point, a value of 4
is used.

cex numeric symbol size value, defaults to 0.75.

use.widths logical, if line elements with non-zero width are plotted, should they be plotted
as polygons including the width (TRUE; default) or as infinitesimally thin lines
(FALSE)?

col color of element. Defaults to 'black'.

xlim numeric, plot limits along the x-axis. Required if add = FALSE.

ylim numeric, plot limits along the y-axis. Required if add = FALSE.

Details

The default type = 'variable' allows for unconfined/confined flow, i.e. flow with variable satu-
rated thickness. If type = 'confined', the saturated thickness is always constant and equal to the
aquifer thickness. This results in a linear model when head-specified elements with a resistance are
used, whereas type = 'variable' would create a non-linear model in that case.

solve.aem() is called on the aem object before it is returned by aem(), which solves the system of
equations.

Solving:
solve.aem() sets up the system of equations, and calls solve() to solve. If head-specified el-
ements are supplied, an element of class constant as created by constant() (also called the
reference point), should be supplied as well. Constructing an aem object by a call to aem() auto-
matically calls solve.aem().
If the system of equations is non-linear, i.e. when the flow system is unconfined (variable satu-
rated thickness) and elements with hydraulic resistance are specified, a Picard iteration is entered.
During each Picard iteration step (outer iteration), the previously solved model parameters are
used to set up and solve a linear system of equations. The model parameters are then updated and
the next outer iteration step is entered, until maxiter iterations are reached. For an linear model,
maxiter is ignored.

Plotting:
If the analytic element has a point geometry and has a collocation point (e.g. headwell()), that
point is also plotted with pch = 1.

A reference point (as created by constant()) is never plotted when plotting the model as it is not
a hydraulic feature. Area-sinks (as created by areasink() or headareasink()) are also never
plotted as they would clutter the plot. These elements can be plotted by calling plot() on them
directly.

6 aem

Value

aem() returns an object of class aem which is a list consisting of k, top, base, n, a list containing
all elements with the names of the objects specified in ..., and a logical solved indicating if the
model is solved.

solve.aem() returns the solved aem object, i.e. after finding the solution to the system of equations
as constructed by the contained elements.

See Also

add_element() contours()

Examples

k <- 10
top <- 10
base <- 0
n <- 0.2
TR <- k * (top - base)

w <- well(xw = 50, yw = 0, Q = 200)
rf <- constant(xc = -500, yc = 0, h = 20)
uf <- uniformflow(gradient = 0.002, angle = -45, TR = TR)
hdw <- headwell(xw = 0, yw = 100, rw = 0.3, hc = 8)
ls <- linesink(x0 = -200, y0 = -150, x1 = 200, y1 = 150, sigma = 1)

Creating aem ----
m <- aem(k, top, base, n, w, rf, uf, hdw, ls)

or with elements in named list
m <- aem(k, top, base, n,

list('well' = w, 'constant' = rf, 'flow' = uf, 'headwell' = hdw, 'river' = ls),
type = 'confined')

Solving ----
m <- solve(m)

solving requires a reference point (constant) element if head-specified elements are supplied
try(

m <- aem(k = k, top = top, base = base, n = n, w, uf, hdw)
)

Plotting ----
plot(ls)
plot(w, add = TRUE)
plot(uf) # empty

plot(m, xlim = c(-500, 500), ylim = c(-250, 250))

xg <- seq(-500, 500, length = 200)
yg <- seq(-250, 250, length = 100)

areasink 7

contours(m, x = xg, y = yg, col = 'dodgerblue', nlevels = 20)
plot(m, add = TRUE)

areasink Create a circular area-sink analytic element with specified recharge

Description

areasink() creates a circular area-sink analytic element with constant, uniform specified recharge.

Usage

areasink(xc, yc, N, R, location = c("top", "base"), ...)

Arguments

xc numeric, x location of the center of the area-sink.
yc numeric, y location of the center of the area-sink.
N numeric, uniform constant leakage value (positive is into aquifer) in length per

time.
R numeric, radius of the circular area-sink.
location character, either top (default) or base specifying the vertical position of the

area-sink.
... ignored

Details

Area-sinks can be used to simulate areal recharge or seepage at the aquifer top, or leakage into or
out of the aquifer at its base. The location argument is used when calculating the vertical flow
component.

Value

Circular area-sink analytic element which is an object of class areasink and inherits from element.

See Also

headareasink()

Examples

as <- areasink(xc = -500, yc = 0, N = 0.001, R = 500)

flux assuming a constant head difference over a confining unit
dh <- 3
res <- 10 / 0.0001
as <- areasink(xc = -500, yc = 0, N = -dh/res, R = 500, location = 'base')

8 capzone

capzone Calculate the capture zone of a well element

Description

capzone() determines the capture zone of a well element in the flow field by performing backward
particle tracking until the requested time is reached.

Usage

capzone(aem, well, time, npar = 15, dt = time/10, zstart = aem$base, ...)

Arguments

aem aem object.

well analytic element of class well.

time numeric, time of the capture zone.

npar integer, number of particles to use in the backward tracking. Defaults to 15.

dt numeric, time step length used in the particle tracking. Defaults time / 10.

zstart numeric value with the starting elevation of the particles. Defaults to the base of
the aquifer.

... additional arguments passed to tracelines().

Details

capzone() is a thin wrapper around tracelines(). Backward particle tracking is performed us-
ing tracelines() and setting forward = FALSE. Initial particle locations are computed by equally
spacing npar locations at the well radius at the zstart elevation. To obtain a sharper delineation
of the capture zone envelope, try using more particles or decreasing dt.

Note that different zstart values only have an effect in models with vertical flow components.

Value

capzone() returns an object of class tracelines.

See Also

tracelines()

constant 9

Examples

A model with vertical flow components
k <- 10
top <- 10; base <- 0
n <- 0.3

uf <- uniformflow(TR = 100, gradient = 0.001, angle = -10)
rf <- constant(TR, xc = -1000, yc = 0, hc = 20)
w1 <- well(200, 50, Q = 250)
w2 <- well(-200, -100, Q = 450)
as <- areasink(0, 0, N = 0.001, R = 1500)

m <- aem(k, top, base, n = n, uf, rf, w1, w2, as)

5-year capture zone at two different starting levels
here, the number of particles are set to small values to speed up the examples
increase the number of particles to obtain a sharper delineation of the envelope
cp5a <- capzone(m, w1, time = 5 * 365, zstart = base, npar = 6, dt = 365 / 4)
cp5b <- capzone(m, w1, time = 5 * 365, zstart = 8, npar = 6, dt = 365 / 4)

xg <- seq(-800, 800, length = 100)
yg <- seq(-500, 500, length = 100)
contours(m, xg, yg, col = 'dodgerblue', nlevels = 20)
plot(cp5a, add = TRUE)
plot(cp5b, add = TRUE, col = 'forestgreen') # smaller zone

plot the convex hull of the endpoints as a polygon
endp <- endpoints(cp5b)
hull <- chull(endp[, c('x', 'y')])
polygon(endp[hull, c('x', 'y')], col = adjustcolor('forestgreen', alpha.f = 0.7))

constant Create a constant-head analytic element

Description

constant() creates an analytic element containing a constant head, often referred to as the refer-
ence point.

Usage

constant(xc, yc, hc, ...)

Arguments

xc numeric, x location of the reference point.
yc numeric, y location of the reference point.
hc numeric, hydraulic head at the reference point.
... ignored

10 contours

Value

Constant-head analytic element point which is an object of class constant and inherits from
element.

Examples

rf <- constant(xc = -100, yc = 0, hc = 10)

contours Plot contours of a state-variable of the analytic element model

Description

contours() creates a contour plot of a state-variable computed by the analytic element model aem,
or adds the contour lines to an existing plot.

Usage

contours(
aem,
x,
y,
variable = c("heads", "streamfunction", "potential"),
asp = 1,
...

)

Arguments

aem aem object.

x numeric, vector or marginal x coordinates at which the gridded values are com-
puted. These must be in ascending order.

y numeric, vector or marginal y coordinates at which the gridded values are com-
puted. These must be in ascending order.

variable character indicating which state-variable to plot. Possible values are heads (de-
fault), streamfunction and potential.

asp the y/x aspect ratio, see plot.window(). Defaults to 1 (equal unit lengths).

... additional arguments passed to contour().

Details

contours() is a wrapper around contour(). It obtains the values of variable at the grid points
defined by marginal vectors x and y and constructs the matrix supplied to contour() by reversing
the rows and transposing the matrix (see also the documentation of image()).

dirflow 11

Value

A contour plot of the selected variable.

See Also

aem() contour() image() heads()

Examples

w <- well(xw = 50, yw = 0, Q = 200)
wi <- well(xw = -200, yw = 0, Q = -100)
uf <- uniformflow(gradient = 0.002, angle = -45, TR = 100)
rf <- constant(-1000, 0, hc = 10)
ml <- aem(k = 10, top = 10, base = 0, n = 0.2, w, wi, uf, rf)

grid points
xg <- seq(-350, 200, length = 100)
yg <- seq(-125, 125, length = 100)

contours(ml, xg, yg, nlevels = 20, col = 'dodgerblue', labcex = 1)
contours(ml, xg, yg, 'streamfunction', nlevels = 20, col = 'orange',

drawlabels = FALSE, add = TRUE)

Not to be confused by contour()
try(
contour(ml, xg, yg, nlevels = 20, col = 'dodgerblue', labcex = 1)
)

For image() or filled.contour()
library(graphics)
h <- heads(ml, xg, yg, as.grid = TRUE)
h_im <- t(h[dim(h)[1]:1,])
image(xg, yg, h_im, asp = 1)
contour(xg, yg, h_im, asp = 1, add = TRUE) # contours() is a wrapper for this
filled.contour(xg, yg, h_im, asp = 1)

dirflow Compute flow in the direction of a given angle

Description

dirflow() computes a flow variable at the given points in the direction of the supplied angle.

Usage

dirflow(
aem,
x,

12 dirflow

y,
angle,
flow = c("discharge", "darcy", "velocity"),
as.grid = FALSE,
...

)

Arguments

aem aem object.

x numeric x coordinates to evaluate flow at.

y numeric y coordinates to evaluate flow at.

angle numeric, angle of the direction to evaluate flow, in degrees counterclockwise
from the x-axis.

flow character specifying which flow variable to use. Possible values are discharge
(default), darcy and velocity. See flow().

as.grid logical, should a matrix be returned? Defaults to FALSE. See details.

... additional arguments passed to discharge(), darcy() or velocity().

Details

The x and y components of flow are used to calculate the directed value using angle. The z
coordinate in discharge(), darcy() or velocity() is set at the aquifer base. Under Dupuit-
Forchheimer, the x and y components of the flow vector do not change along the vertical axis.

Value

A vector of length(x) (equal to length(y)) with the flow values at x and y in the direction
of angle. If as.grid = TRUE, a matrix of dimensions c(length(y), length(x)) described by
marginal vectors x and y containing the directed flow values at the grid points.

See Also

flow(), flow_through_line()

Examples

rf <- constant(-1000, 0, hc = 10)
uf <- uniformflow(TR = 100, gradient = 0.001, angle = -45)
w <- well(10, -50, Q = 200)

m <- aem(k = 10, top = 10, base = 0, n = 0.2, rf, uf)
dirflow(m, x = c(0, 100), y = 50, angle = -45)

m <- aem(k = 10, top = 10, base = 0, n = 0.2, rf, uf, w, type = 'confined')
dirflow(m, x = c(0, 50, 100), y = c(0, 50), angle = -90,
flow = 'velocity', as.grid = TRUE)

element_discharge 13

element_discharge Get the computed discharge from an element

Description

element_discharge() obtains the computed discharge into or out of the aquifer for a individual
analytic element or all elements of a given type.

Usage

element_discharge(aem, name = NULL, type = NULL, ...)

Arguments

aem aem object.

name character vector with the name of the element(s) as available in aem$elements.

type character with the type (class) of element to obtain the summed discharge from.
See details.

... ignored

Details

Either name or type should be specified. If type is specified, only one type is allowed. Possible val-
ues are 'headwell', 'well', 'linesink', 'headlinesink', 'areasink' or 'headareasink'.

Only elements that add or remove water from the aquifer will return a non-zero discharge value.

Value

A numeric named vector of length length(name) with the discharge into (negative) or out of (pos-
itive) the aquifer. If type is specified, a single named numeric value with the total discharge into
(negative) or out of (positive) the aquifer which is the sum of all individual elements of class type.

Examples

k <- 10
top <- 10
base <- 0
n <- 0.2
TR <- k * (top - base)

rf <- constant(xc = -500, yc = 0, h = 20)
uf <- uniformflow(gradient = 0.002, angle = -45, TR = TR)
w1 <- well(xw = 50, yw = 0, Q = 200)
w2 <- well(xw = 0, yw = 100, Q = 400)
hw <- headwell(xw = -100, yw = 0, hc = 7.5)
hls <- headlinesink(x0 = -200, y0 = -150, x1 = 200, y1 = 150, hc = 8)
as <- areasink(xc = 0, yc = 0, N = 0.0005, R = 500)

14 flow

m <- aem(k, top, base, n, rf, uf, w1, w2, hw, hls, as)

element_discharge(m, name = c('hls', 'as'))
element_discharge(m, type = 'well')

zero discharge for uniform flow element as it does not add or remove water
element_discharge(m, name = 'uf')

flow Calculate flow variables

Description

discharge() computes the x, y and z components of the discharge vector for an aem object at the
given x, y and z coordinates.

darcy() computes the x, y and z components of the Darcy flux vector (also called specific dis-
charge vector) for an aem object at the given x, y and z coordinates.

velocity() computes the x, y and z components of the average linear groundwater flow velocity
vector for an aem object at the given x, y and z coordinates.

domega() computes the complex discharge for an aem or element object at the given x and y
coordinates.

Usage

discharge(...)

darcy(...)

velocity(...)

domega(...)

S3 method for class 'aem'
discharge(
aem,
x,
y,
z,
as.grid = FALSE,
magnitude = FALSE,
verbose = TRUE,
...

)

S3 method for class 'aem'
darcy(aem, x, y, z, as.grid = FALSE, magnitude = FALSE, ...)

flow 15

S3 method for class 'aem'
velocity(aem, x, y, z, as.grid = FALSE, magnitude = FALSE, R = 1, ...)

S3 method for class 'aem'
domega(aem, x, y, as.grid = FALSE, ...)

S3 method for class 'element'
domega(element, x, y, ...)

Arguments

... ignored or arguments passed from velocity() or darcy() to discharge().

aem aem object.

x numeric x coordinates to evaluate the flow at.

y numeric y coordinates to evaluate the flow at.

z numeric z coordinates to evaluate at

as.grid logical, should a matrix be returned? Defaults to FALSE. See details.

magnitude logical, should the magnitude of the flow vector be returned as well? Default to
FALSE. See details.

verbose logical, if TRUE (default), warnings with regards to setting Qz to NA are printed.
See details.

R numeric, retardation coefficient used in velocity(). Defaults to 1 (no retarda-
tion).

element analytic element of class element.

Details

There is no discharge(), darcy() or velocity() method for an object of class element because
an aem object is required to obtain the aquifer base and top.

If the z coordinate is above the saturated aquifer level (i.e. the water-table for unconfined conditions
or the aquifer top for confined conditions), or below the aquifer base, Qz values are set to NA with a
warning (if verbose = TRUE). The Qx and Qy values are not set to NA, for convenience in specifying
the z coordinate when only lateral flow is of interest.

Value

For discharge(), a matrix with the number of rows equal to the number of points to evaluate
the discharge vector at, and with columns Qx, Qy and Qz corresponding to x, y and z compo-
nents of the discharge vector at coordinates x, y and z. If as.grid = TRUE, an array of dimensions
c(length(y), length(x), length(z), 3) described by marginal vectors x, y and z (columns,
rows and third dimension) containing the x, y and z components of the discharge vector (Qx, Qy
and Qz) as the fourth dimension.

The x component of discharge() is the real value of domega(), the y component the negative
imaginary component and the z component is calculated based on area-sink strengths and/or the
curvature of the phreatic surface.

16 flow

If magnitude = TRUE, the last dimension of the returned array is expanded to include the magnitude
of the discharge/Darcy/velocity vector, calculated as sqrt(Qx^2 + Qy^2 + Qz^2) (or sqrt(qx^2 +
qy^2 + qz^2) or sqrt(vx^2 + vy^2 + vz^2), respectively).

For darcy(), the same as for discharge() but with the x, y and z components of the Darcy flux
vector (qx, qy and qz). The values are computed by dividing the values of discharge() by the
saturated thickness at x, y and z.

For velocity(), the same as for discharge() but with the x, y and z components of the average
linear groundwater flow velocity vector (vx, vy and vz). The values are computed by dividing the
darcy() values by the effective porosity (aem$n) and the retardation coefficient R.

For domega(), a vector of length(x) (equal to length(y)) with the complex discharge values
at x and y, If as.grid = TRUE, a matrix of dimensions c(length(y), length(x)) described by
marginal vectors x and y containing the complex discharge values at the grid points. domega() is
the derivative of omega() in the x and y directions.

See Also

state-variables(), satthick(), dirflow(), flow_through_line()

Examples

w <- well(xw = 55, yw = 0, Q = 200)
uf <- uniformflow(gradient = 0.002, angle = -45, TR = 100)
as <- areasink(xc = 0, yc = 0, N = 0.001, R = 500)
rf <- constant(xc = -1000, yc = 1000, hc = 10)
ml <- aem(k = 10, top = 10, base = -15, n = 0.2, w, uf, as, rf)

xg <- seq(-100, 100, length = 5)
yg <- seq(-75, 75, length = 3)

Discharge vector
discharge(ml, c(150, 0), c(80, -80), z = -10)
discharge(ml, c(150, 0), c(80, -80), z = c(2, 5), magnitude = TRUE)
discharge(ml, xg, yg, z = 2, as.grid = TRUE)
discharge(ml, c(150, 0), c(80, -80), z = ml$top + c(-5, 0.5)) # NA for z > water-table

Darcy flux
darcy(ml, c(150, 0), c(80, -80), c(0, 5), magnitude = TRUE)

Velocity
velocity(ml, c(150, 0), c(80, -80), c(0, 5), magnitude = TRUE, R = 5)

Complex discharge
domega(ml, c(150, 0), c(80, -80))

Complex discharge for elements
domega(w, c(150, 0), c(80, -80))

flow_through_line 17

flow_through_line Calculate the total flow passing through a line

Description

flow_through_line() computes the integrated flow passing through a straight line at a right angle.

Usage

flow_through_line(
aem,
x0,
y0,
x1,
y1,
flow = c("discharge", "darcy"),
split = FALSE,
...

)

Arguments

aem aem object

x0 numeric, starting x location of line.

y0 numeric, starting y location of line.

x1 numeric, ending x location of line.

y1 numeric, ending y location of line.

flow character specifying which flow variable to use. Possible values are discharge
(default) and darcy. See flow().

split logical, should the flow be split up into positive and negative flows (TRUE) or
should they be summed (FALSE; default)? See details.

... ignored

Details

The flow is computed normal to the line and integrated along the line length using stats::integrate().
The flow value is positive going to the left when looking in the direction of the line (i.e. to the left
going from x0-y0 to x1-y1).

If split = FALSE (the default), a single value is returned which is the sum of the positive and
negative flows perpendicular to the line. If split = TRUE, both the positive and negative component
of the total flow through the line are returned.

If the line corresponds to a line element, the integration might fail. Try to perturbate the line vertices
slightly in that case.

18 headareasink

Value

If split = FALSE, a single value with the total flow of variable flow passing through the line at a
right angle. If split = TRUE a named vector with the total positive and total negative value of flow
passing through the line.

See Also

flow(), dirflow()

Examples

rf <- constant(-1000, 0, hc = 10)
uf <- uniformflow(TR = 100, gradient = 0.001, angle = -45)
m <- aem(k = 10, top = 10, base = 0, n = 0.2, rf, uf)

xg <- seq(-500, 500, l=100); yg <- seq(-300, 300, l=100)
contours(m, xg, yg, col='dodgerblue', nlevels=20)

x0 <- -200
y0 <- -50
x1 <- 300
y1 <- 100
lines(matrix(c(x0, y0, x1, y1), ncol = 2, byrow = TRUE))

flow_through_line(m, x0, y0, x1, y1)
flow_through_line(m, x1, y1, x0, y0) # reverse direction of line

w <- well(125, 200, 150)
m <- aem(k = 10, top = 10, base = 0, n = 0.2, rf, uf, w)
contours(m, xg, yg, col='dodgerblue', nlevels=20)
lines(matrix(c(x0, y0, x1, y1), ncol = 2, byrow = TRUE))

flow_through_line(m, x0, y0, x1, y1, flow = 'darcy')
flow_through_line(m, x0, y0, x1, y1, flow = 'darcy', split = TRUE)

headareasink Create a head-specified area-sink analytic element

Description

headareasink() creates a circular area-sink analytic element with constant specified head. The
constant leakage flux into or out of the aquifer from the area-sink is computed by solving the corre-
sponding aem model.

Usage

headareasink(xc, yc, hc, R, resistance = 0, location = c("top", "base"), ...)

headareasink 19

Arguments

xc numeric, x location of the center of the area-sink.

yc numeric, y location of the center of the area-sink.

hc numeric, specified hydraulic head at the center of the area-sink.

R numeric, radius of the circular area-sink.

resistance numeric, hydraulic resistance of the area-sink at its connection with the aquifer.
Defaults to 0 (no resistance).

location character, either top (default) or base specifying the vertical position of the
area-sink.

... ignored

Details

The constant leakage flux from the area-sink is computed by solving the aem model given the speci-
fied head hc for the area-sink. This head is located at the so-called collocation point, which is placed
at the center of the area-sink. A positive flux is into the aquifer. Note that this head-dependent flux
is constant over the domain and computed only at the collocation point. The flux is therefore deter-
mined by the difference in aquifer head and specified head at that location only, and does not vary
across the domain with varying aquifer head.

The resistance can be increased for a area-sink in poor connection with the aquifer, e.g. because of
a confining unit of low hydraulic conductivity between the aquifer and the area-sink. If the aquifer
is unconfined (i.e. has a variable saturated thickness), the system of equations will then become
non-linear with respect to the hydraulic head and iteration is required to solve the model.

Value

Circular head-specified area-sink analytic element which is an object of class headareasink and
inherits from areasink.

See Also

areasink()

Examples

has <- headareasink(xc = -500, yc = 0, hc = 3, R = 500, res = 1000)
has <- headareasink(xc = -500, yc = 0, hc = 3, R = 500, location = 'base')

20 headlinesink

headlinesink Create a head-specified line-sink analytic element

Description

headlinesink() creates a line-sink analytic element with constant specified head. The discharge
into the line-sink per unit length is computed by solving the corresponding aem model.

Usage

headlinesink(x0, y0, x1, y1, hc, resistance = 0, width = 0, ...)

Arguments

x0 numeric, starting x location of line-sink.

y0 numeric, starting y location of line-sink.

x1 numeric, ending x location of line-sink.

y1 numeric, ending y location of line-sink.

hc numeric, specified hydraulic head of the line-sink.

resistance numeric, hydraulic resistance of the line-sink at its connection with the aquifer.
Defaults to 0 (no resistance).

width numeric, width of the line-sink. Used with resistance to calculate the line-
sink strength, and by tracelines() to determine if a particle has reached the
line. Defaults to zero (infinitesimally narrow line).

... ignored

Details

The strength of the line-sink (discharge per unit length of line-sink) is computed by solving the aem
model given the specified head hc for the line-sink. This head is located at the so-called collocation
point, which is placed at the center of the line-sink.

The resistance can be increased for a line-sink in poor connection with the aquifer. The effect of
a larger or smaller wetted perimeter can be mimicked by adjusting the resistance and/or width
accordingly. If width = 0 (the default) it is removed from the conductance calculation. If the aquifer
is unconfined (i.e. has a variable saturated thickness), the system of equations becomes non-linear
with respect to the hydraulic head and iteration is required to solve the model.

Value

Head-specified line-sink analytic element which is an object of class headlinesink and inherits
from linesink.

See Also

linesink()

headwell 21

Examples

hls <- headlinesink(-75, 50, 100, 50, hc = 10)
hls <- headlinesink(-75, 50, 100, 50, hc = 10, resistance = 10, width = 4)

headwell Create a analytic element of a well with a constant head

Description

headwell() creates an analytic element of a well with a constant, specified head. The discharge
into the well is computed by solving the corresponding aem model. The head can be specified at the
well or at any other location.

Usage

headwell(xw, yw, hc, rw = 0.3, xc = xw, yc = yw, rc = rw, resistance = 0, ...)

Arguments

xw numeric, x location of the well.
yw numeric, y location of the well.
hc numeric, specified hydraulic head at the collocation point.
rw numeric, radius of the well. Defaults to 0.3 (meter).
xc numeric, x location of the collocation point. See details. Defaults to xw.
yc numeric, y location of the collocation point. See details. Defaults to yw.
rc numeric, radius of the collocation point. See details. Defaults to rw.
resistance numeric, hydraulic resistance at the collocation point. Defaults to 0 (no resis-

tance).
... ignored

Details

The discharge from the well at location xw - yw is computed by solving the aem model given the
specified head hc. This head is specified at xc + rc - yc, called the collocation point. This can be
used to compute the discharge of the well by specifying the head at some other location. By default,
the location of the well and the collocation point are the same.

The hydraulic resistance of the well screen at the collocation point can be increased for a well in poor
connection with the aquifer. If the aquifer is unconfined (i.e. has a variable saturated thickness), the
system of equations becomes non-linear with respect to the hydraulic head and iteration is required
to solve the model.

Value

Analytic element of a well with constant head which is an object of class headwell and inherits
from well.

22 head_to_potential

See Also

well()

Examples

hw <- headwell(xw = 400, yw = 300, hc = 20, rw = 0.3)
hw <- headwell(xw = 400, yw = 300, hc = 20, rw = 0.3, resistance = 10)
hw <- headwell(xw = 400, yw = 300, hc = 20, rw = 0.3, xc = 500, yc = 500, rc = 0)

head_to_potential Convert hydraulic head to potential and vice versa

Description

head_to_potential() calculates the discharge potential from the hydraulic head.

potential_to_head() calculates the hydraulic head from the discharge potential.

Usage

head_to_potential(aem, h, ...)

potential_to_head(aem, phi, na.below = TRUE, ...)

Arguments

aem aem object.

h numeric hydraulic head values as vector or matrix.

... ignored

phi numeric discharge potential values as vector or matrix.

na.below logical indicating if calculated head values below the aquifer base should be set
to NA. Defaults to TRUE. See details.

Value

head_to_potential() returns the discharge potentials calculated from h, in the same structure as
h.

potential_to_head() returns the hydraulic heads calculated from phi, in the same structure as
phi.

The conversion of potential to head or vice versa is different for confined (constant saturated thick-
ness) and unconfined (variable saturated thickness) aquifers as set by the type argument in aem().

If na.below = FALSE, negative potentials can be converted to hydraulic heads if flow is unconfined
(aem$type = 'variable'). The resulting heads are below the aquifer base. This may be useful
for some use cases, e.g. in preliminary model construction or for internal functions. In most cases
however, these values should be set to NA (the default behavior) since other analytic elements will

linesink 23

continue to extract or inject water even though the saturated thickness of the aquifer is negative,
which is not realistic. In those cases, setting aem$type = 'confined' might prove useful. Also
note that these heads below the aquifer base will not be correctly re-converted to potentials using
head_to_potential(). As such, caution should be taken when setting na.below = FALSE.

Examples

k <- 10
top <- 10; base <- 0
uf <- uniformflow(TR = 100, gradient = 0.001, angle = -45)
rf <- constant(TR, xc = -1000, yc = 0, hc = 10)
w1 <- well(200, 50, Q = 250)
m <- aem(k, top, base, n = 0.2, uf, rf, w1, type = 'variable') # variable saturated thickness
mc <- aem(k, top, base, n = 0.2, uf, rf, w1, type = 'confined') # constant saturated thickness
xg <- seq(-500, 500, length = 100)
yg <- seq(-250, 250, length = 100)

h <- heads(m, x = xg, y = yg, as.grid = TRUE)
hc <- heads(mc, x = xg, y = yg, as.grid = TRUE)
pot <- head_to_potential(m, h)
potc <- head_to_potential(mc, hc)

phi <- potential(m, x = xg, y = yg, as.grid = TRUE)
phic <- potential(mc, x = xg, y = yg, as.grid = TRUE)
hds <- potential_to_head(m, phi)
hdsc <- potential_to_head(mc, phic)

Converting negative potentials results in NA's with warning
try(
potential_to_head(m, -300)
)

unless na.below = FALSE
potential_to_head(m, -300, na.below = FALSE)

linesink Create a strength-specified line-sink analytic element

Description

linesink() creates a line-sink analytic element with constant specified strength.

Usage

linesink(x0, y0, x1, y1, sigma, width = 0, ...)

24 satthick

Arguments

x0 numeric, starting x location of line-sink.

y0 numeric, starting y location of line-sink.

x1 numeric, ending x location of line-sink.

y1 numeric, ending y location of line-sink.

sigma numeric, specific strength of the line-sink, i.e. discharge per unit length of line-
sink. Positive is out of aquifer.

width numeric, width of the line-sink. Only used in tracelines() to determine if a
particle has reached the line. Defaults to zero (infinitesimally narrow line).

... ignored

Value

Strength-specified line-sink analytic element which is an object of class linesink and inherits from
element.

See Also

headlinesink()

Examples

ls <- linesink(-75, 50, 100, 50, sigma = 1, width = 3)

satthick Compute the saturated thickness

Description

satthick() computes the saturated thickness of the aquifer from an aem object at the given x and
y coordinates.

Usage

satthick(aem, x, y, as.grid = FALSE, ...)

Arguments

aem aem object.

x numeric x coordinates to evaluate at.

y numeric y coordinates to evaluate at.

as.grid logical, should a matrix be returned? Defaults to FALSE. See details.

... additional arguments passed to heads() when aem$type = 'variable'.

state-variables 25

Details

If the aquifer is confined at x and y, the saturated thickness equals the aquifer thickness. For flow
with variable saturated thickness (aem$type = 'variable'), if the aquifer is unconfined at x and y,
the saturated thickness is calculated as the hydraulic head at x and y minus the aquifer base.

Value

A vector of length(x) (equal to length(y)) with the saturated thicknesses at x and y. If as.grid
= TRUE, a matrix of dimensions c(length(y), length(x)) described by marginal vectors x and y
containing the saturated thicknesses at the grid points.

See Also

flow(), state-variables()

Examples

uf <- uniformflow(100, 0.001, 0)
rf <- constant(-1000, 0, 11)
m <- aem(k = 10, top = 10, base = 0, n = 0.2, uf, rf, type = 'confined')

satthick(m, x = c(-200, 0, 200), y = 0) # confined
s <- satthick(m, x = seq(-500, 500, length = 100),

y = seq(-250, 250, length = 100), as.grid = TRUE)
str(s)

mv <- aem(k = 10, top = 10, base = 0, n = 0.2, uf, rf, type = 'variable')
satthick(mv, x = c(-200, 0, 200), y = 0) # variable

state-variables Calculate state-variables

Description

heads() computes the hydraulic head at the given x and y coordinates for an aem object.

omega() computes the complex potential for an aem or element object at the given x and y coordi-
nates.

potential() computes the discharge potential for an aem or element object at the given x and y
coordinates.

streamfunction() computes the stream function for an aem or element object at the given x and
y coordinates.

26 state-variables

Usage

heads(aem, x, y, as.grid = FALSE, na.below = TRUE, ...)

omega(...)

potential(...)

streamfunction(...)

S3 method for class 'aem'
omega(aem, x, y, as.grid = FALSE, ...)

S3 method for class 'aem'
potential(aem, x, y, as.grid = FALSE, ...)

S3 method for class 'aem'
streamfunction(aem, x, y, as.grid = FALSE, ...)

S3 method for class 'element'
omega(element, x, y, ...)

S3 method for class 'element'
potential(element, x, y, ...)

S3 method for class 'element'
streamfunction(element, x, y, ...)

Arguments

aem aem object.

x numeric x coordinates to evaluate the variable at.

y numeric y coordinates to evaluate the variable at.

as.grid logical, should a matrix be returned? Defaults to FALSE. See details.

na.below logical indicating if calculated head values below the aquifer base should be set
to NA. Defaults to TRUE. See potential_to_head().

... ignored

element analytic element of class element.

Details

heads() should not to be confused with utils::head(), which returns the first part of an object.

Value

For heads(), a vector of length(x) (equal to length(y)) with the hydraulic head values at x and
y. If as.grid = TRUE, a matrix of dimensions c(length(y), length(x)) described by marginal

state-variables 27

vectors x and y containing the hydraulic head values at the grid points. The heads are computed
from potential() and the aquifer parameters using potential_to_head().

For omega(), the same as for heads() but containing the complex potential values evaluated at x
and y.

For potential(), the same as for heads() but containing the discharge potential values evaluated
at x and y, which are the real components of omega().

For streamfunction(), the same as for heads() but containing the stream function values evalu-
ated at x and y, which are the imaginary components of omega().

See Also

flow(), satthick(), head_to_potential()

Examples

w <- well(xw = 55, yw = 0, Q = 200)
uf <- uniformflow(gradient = 0.002, angle = -45, TR = 100)
rf <- constant(xc = -1000, yc = 1000, hc = 10)
ml <- aem(k = 10, top = 10, base = -15, n = 0.2, w, uf, rf)

xg <- seq(-100, 100, length = 5)
yg <- seq(-75, 75, length = 3)

Hydraulic heads
heads(ml, c(50, 0), c(25, -25))
heads(ml, xg, yg, as.grid = TRUE)

do not confuse heads() with utils::head, which will give an error
try(
head(ml, c(50, 0), c(25, -25))
)

Complex potential
omega(ml, c(50, 0), c(25, -25))

Discharge potential
potential(ml, c(50, 0), c(25, -25))

Stream function
streamfunction(ml, c(50, 0), c(25, -25))

For elements
omega(w, c(50, 0), c(-25, 25))

potential(w, c(50, 0), c(-25, 25))

streamfunction(w, c(50, 0), c(-25, 25))

28 tracelines

tracelines Compute tracelines of particles

Description

tracelines() tracks particle locations moving forward or backward with the advective groundwa-
ter flow by numerically integrating the velocity vector. The resulting set of connected coordinates
produces the tracelines.

endpoints() obtains the final time and locations of tracked particles.

Usage

tracelines(
aem,
x0,
y0,
z0,
times,
forward = TRUE,
R = 1,
tfunc = NULL,
tol = 0.001,
ncores = 0,
...

)

endpoints(tracelines, ...)

S3 method for class 'tracelines'
plot(x, y = NULL, add = FALSE, type = "l", arrows = FALSE, marker = NULL, ...)

Arguments

aem aem object.

x0 numeric vector with starting x locations of the particles.

y0 numeric vector with starting y locations of the particles.

z0 numeric vector with starting z locations of the particles.

times numeric vector with the times at which particle locations should be registered.

forward logical, should forward (TRUE; default) or backward (FALSE) tracking be per-
formed.

R numeric, retardation coefficient passed to velocity(). Defaults to 1 (no retar-
dation).

tfunc function or list of functions with additional termination events for particles. See
details. Defaults to NULL.

tracelines 29

tol numeric tolerance used to define when particles have crossed a line element.
Defaults to 0.001 length units.

ncores integer, number of cores to use when running in parallel. Defaults to 0 (no
parallel computing). See details.

... additional arguments passed to plot() or arrows() when plotting. Otherwise
ignored.

tracelines object of class tracelines as returned by tracelines().

x object of class tracelines.

y ignored

add logical, should the plot be added to the existing plot? Defaults to FALSE.

type character indicating what type of plot to draw. See plot(). Defaults to 'l'
(lines).

arrows logical indicating if arrows should be drawn using arrows(). Defaults to FALSE.

marker numeric, time interval at which to plot point markers. Defaults to NULL (no
markers). See details.

Details

deSolve::lsoda() is used to numerically integrate the velocity vector.

Particles are terminated prematurely when they have reached the inner annulus of well elements,
when they have crossed a line element (or enter half its non-zero width on either side) or when they
travel above the saturated aquifer level (i.e. the water-table for unconfined conditions or the aquifer
top for confined conditions), or below the aquifer base. Note that these last two conditions can only
occur in models with vertical flow components. The returned time value is the time of termination.

The tfunc argument can be used to specify additional termination events. It is a function (or a list
of functions) that takes arguments t, coords and parms. These are, respectively, a numeric value
with the current tracking time, a numeric vector of length 3 with the current x, y and z coordinate
of the particle, and a list with elements aem and R (named as such). It should return a single logical
value indicating if the particle should terminate. See examples.

If initial particle locations are above the saturated aquifer level, they are reset to this elevation with
a warning. Initial particle locations below the aquifer base are reset at the aquifer base with a
warning. A small perturbation is added to these elevations to avoid the particle tracking algorithm
to get stuck at these locations. If the algorithm does get stuck (i.e. excessive run-times), try resetting
the z0 values to elevations well inside the saturated domain.

Initial particle locations inside a termination point are dropped with a warning.

Backward particle tracking is performed by reversing the flow field (i.e. multiplying the velocities
with -1).

Traceline computation is embarrassingly parallel. When ncores > 0, the parallel package is used
to set up the cluster with the requested nodes and the tracelines are computed using parallel::parLapplyLB().
ncores should not exceed the number of available cores as returned by parallel::detectCores().

Plotting:
The marker value can be used to plot point markers at given time intervals, e.g. every 365 days
(see examples). The x and y locations of each particle at the marked times are obtained by linearly
interpolating from the computed particle locations.

30 tracelines

Value

tracelines() returns an object of class tracelines which is a list with length equal to the number
of particles where each list element contains a matrix with columns time, x, y and z specifying the
registered time and coordinates of the particle as it is tracked through the flow field.

The final row represents either the location at the maximum times value or, if the particle terminated
prematurely, the time and location of the termination.

The matrices are ordered in increasing time. By connecting the coordinates, the tracelines can be
produced.

endpoints() returns a matrix with columns time, x, y and z specifying the final time and coordi-
nates of the particles in the tracelines object.

See Also

capzone()

Examples

create a model with uniform background flow
k <- 10
top <- 10; base <- 0
n <- 0.2
R <- 5
hc <- 20

uf <- uniformflow(TR = 100, gradient = 0.001, angle = -10)
rf <- constant(TR, xc = -1000, yc = 0, hc = hc)

m <- aem(k, top, base, n = n, uf, rf)

calculate forward particle traces
x0 <- -200; y0 <- seq(-200, 200, 200)
times <- seq(0, 25 * 365, 365 / 4)
paths <- tracelines(m, x0 = x0, y0 = y0, z = top, times = times)
endp <- endpoints(paths)

xg <- seq(-500, 500, length = 100)
yg <- seq(-300, 300, length = 100)

plot
contours(m, xg, yg, col = 'dodgerblue', nlevels = 20)
plot(paths, add = TRUE, col = 'orange')
points(endp[, c('x', 'y')])

Backward tracking with retardation; plot point marker every 5 years
paths_back <- tracelines(m, x0 = x0, y0 = y0, z0 = top, times = times, R = R, forward = FALSE)
plot(paths_back, add = TRUE, col = 'forestgreen', marker = 5*365, cex = 0.5)

Termination at wells, line-sinks and user-defined zone
w1 <- well(200, 50, Q = 250)

tracelines 31

w2 <- well(-200, -100, Q = 450)
ls <- headlinesink(x0 = -100, y0 = 100, x1 = 400, y1 = -300, hc = 7)

m <- aem(k, top, base, n = n, uf, rf, w1, w2, ls)

User-defined termination in rectangular zone
tzone <- cbind(x = c(-300, -200, -200, -300), y = c(150, 150, 100, 100))
termf <- function(t, coords, parms) {

x <- coords[1]
y <- coords[2]
in_poly <- x <= max(tzone[,'x']) & x >= min(tzone[,'x']) &

y <= max(tzone[,'y']) & y >= min(tzone[,'y'])
return(in_poly)

}

x0 <- c(-300, -200, 0, 200, 300)
y0 <- 200
times <- seq(0, 5 * 365, 365 / 15)
paths <- tracelines(m, x0 = x0, y0 = y0, z0 = top, times = times, tfunc = termf)

contours(m, xg, yg, col = 'dodgerblue', nlevels = 20)
plot(m, add = TRUE)
polygon(tzone)
plot(paths, add = TRUE, col = 'orange')

model with vertical flow due to area-sink
as <- areasink(xc = 0, yc = 0, N = 0.001, R = 1500)
m <- aem(k, top, base, n = n, uf, rf, w1, w2, as)

starting z0 locations are above aquifer top and will be reset to top with warning
x0 <- seq(-400, 200, 200); y0 <- 200
times <- seq(0, 5 * 365, 365 / 4)
paths <- tracelines(m, x0 = x0, y0 = y0, z0 = top + 0.5, times = times)

contours(m, xg, yg, col = 'dodgerblue', nlevels = 20)
plot(m, add = TRUE)
plot(paths, add = TRUE, col = 'orange')

plot vertical cross-section of traceline 4 along increasing y-axis (from south to north)
plot(paths[[4]][,c('y', 'z')], type = 'l')

parallel computing by setting ncores > 0
mp <- aem(k, top, base, n = n, uf, rf)
pathsp <- tracelines(mp, x0 = x0, y0 = y0, z = top, times = times, ncores = 2)

plot arrows
contours(m, xg, yg, col = 'dodgerblue', nlevels = 20)
plot(paths, add = TRUE, col = 'orange', arrows = TRUE, length = 0.05)

32 uniformflow

plot point markers every 2.5 years
contours(m, xg, yg, col = 'dodgerblue', nlevels = 20)
plot(paths, add = TRUE, col = 'orange', marker = 2.5 * 365, pch = 20)

plot point markers every 600 days
plot(paths, add = TRUE, col = 'forestgreen', marker = 600, pch = 1)

uniformflow Create an analytic element with uniform flow

Description

uniformflow() creates an analytic element of constant uniform background flow.

Usage

uniformflow(TR, gradient, angle, ...)

Arguments

TR numeric, constant transmissivity value used to define the discharge.

gradient numeric, hydraulic gradient. Positive in the direction of flow.

angle numeric, angle of the primary direction of background flow in degrees counter-
clockwise from the x-axis.

... ignored

Details

TR and gradient are multiplied to obtain the discharge which remains constant throughout the
system, independent of the saturated thickness of the aquifer.

Groundwater flow is always in the direction of the negative hydraulic gradient. Note that gradient
is specified here as positive in the direction of flow for convenience.

Value

Analytic element of constant uniform flow which is an object of class uniformflow and inherits
from element.

Examples

uf <- uniformflow(TR = 100, gradient = 0.002, angle = -45) # South-eastern direction

well 33

well Create an analytic element of a constant-discharge well

Description

well() creates an analytic element of a well with constant discharge.

Usage

well(xw, yw, Q, rw = 0.3, ...)

Arguments

xw numeric, x location of the well.

yw numeric, y location of the well.

Q numeric, volumetric discharge of the well (positive is out of aquifer).

rw numeric, radius of well. Defaults to 0.3 length units.

... ignored

Details

The inner annulus of a well element constitutes a singularity in the equations as the hydraulic head is
undefined at a distance smaller than rw from the well center. If a state- or flow-variable is calculated
within this annulus, its location is reset to its nearest location on the well screen.

The well is assumed to fully penetrate the saturated aquifer.

Value

Analytic element of a well with constant discharge which is an object of class well and inherits
from element.

See Also

headwell()

Examples

w <- well(xw = 50, yw = 0, Q = 200, rw = 0.3)

Index

add_element, 2
add_element(), 2, 6
aem, 3
aem(), 3, 5, 6, 11
areasink, 7
areasink(), 5, 7, 19
arrows(), 29

capzone, 8
capzone(), 8, 30
constant, 9
constant(), 5, 9
contour(), 10, 11
contours, 10
contours(), 6, 10

darcy (flow), 14
darcy(), 12, 14–16
deSolve::lsoda(), 29
dirflow, 11
dirflow(), 11, 16, 18
discharge (flow), 14
discharge(), 12, 14–16
domega (flow), 14
domega(), 14–16

element_discharge, 13
element_discharge(), 13
endpoints (tracelines), 28
endpoints(), 28, 30

flow, 14
flow(), 12, 17, 18, 25, 27
flow_through_line, 17
flow_through_line(), 12, 16, 17

head_to_potential, 22
head_to_potential(), 22, 23, 27
headareasink, 18
headareasink(), 5, 7, 18
headlinesink, 20

headlinesink(), 20, 24
heads (state-variables), 25
heads(), 11, 24–27
headwell, 21
headwell(), 5, 21, 33

image(), 10, 11

linesink, 23
linesink(), 20, 23

omega (state-variables), 25
omega(), 16, 25, 27

parallel::detectCores(), 29
parallel::parLapplyLB(), 29
plot(), 29
plot.aem (aem), 3
plot.aem(), 3
plot.element (aem), 3
plot.element(), 3
plot.tracelines (tracelines), 28
plot.window(), 10
potential (state-variables), 25
potential(), 25, 27
potential_to_head (head_to_potential),

22
potential_to_head(), 22, 26, 27

remove_element (add_element), 2
remove_element(), 2, 3

satthick, 24
satthick(), 16, 24, 27
solve(), 5
solve.aem (aem), 3
solve.aem(), 3, 5, 6
state-variables, 25
stats::integrate(), 17
streamfunction (state-variables), 25
streamfunction(), 25, 27

34

INDEX 35

tracelines, 28
tracelines(), 8, 20, 24, 28–30

uniformflow, 32
uniformflow(), 32
utils::head(), 26

velocity (flow), 14
velocity(), 4, 12, 14–16, 28

well, 33
well(), 22, 33

	add_element
	aem
	areasink
	capzone
	constant
	contours
	dirflow
	element_discharge
	flow
	flow_through_line
	headareasink
	headlinesink
	headwell
	head_to_potential
	linesink
	satthick
	state-variables
	tracelines
	uniformflow
	well
	Index

