Package ‘rTRNG’

October 14, 2022
Title Advanced and Parallel Random Number Generation via "TRNG'
Version 4.23.1-2

Description Embeds sources and headers from Tina's Random
Number Generator ('TRNG') C++ library. Exposes some functionality for
easier access, testing and benchmarking into R. Provides examples of
how to use parallel RNG with 'RcppParallel'. The methods and
techniques behind "TRNG' are illustrated in the package vignettes and
examples. Full documentation is available in Bauke (2021)
<https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf>.

License GPL-3

URL https://github.com/miraisolutions/rTRNG#readme,

https://mirai-solutions.ch

BugReports https://github.com/miraisolutions/rTRNG/issues
SystemRequirements GNU make

Imports methods, Repp (>=0.11.6), RcppParallel

Suggests covr, knitr, R.rsp, rmarkdown, testthat (>= 2.0.0)

LinkingTo Rcpp, ReppParallel

VignetteBuilder knitr, R.rsp

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.1.2

Collate 'LdFlags.R' 'ReppExports.R' TRNG.Engine.R' " TRNG.Random.R’
'TRNGkind.R' TRNGseed.R' TRNGjump.R' TRNGsplit.R'
"TRNG.Random.seed.R' "TRNG. Version.R' 'currentEngine.R’
'defaultKind.R' 'inline.R' T'TRNG-package.R' 'tbinom_trng.R'
‘tlnorm_trng.R' 'morm_trng.R' 'rpois_trng.R' 'runif trng.R’

'zzz.R'

Author Riccardo Porreca [aut, cre],
Roland Schmid [aut],
Mirai Solutions GmbH [cph],
Heiko Bauke [ctb, cph] (TRNG sources and headers)

1

https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf
https://github.com/miraisolutions/rTRNG#readme
https://mirai-solutions.ch
https://github.com/miraisolutions/rTRNG/issues

2 rTRNG-package

Maintainer Riccardo Porreca <riccardo.porreca@mirai-solutions.com>
Repository CRAN
Date/Publication 2022-03-14 15:20:02 UTC

R topics documented:

rTRNG-package e 2
check rTRNG_linking e 4
defaultKind 4
LdFlags 5
thinOM_trng o e e e e e 5
rlnorm_trng e e e e e 6
TNOIM_EINE . . v v v v e e e e e e e e e e e e e e e e e e 8
TPOIS_LINE « « « o v v vt e e e e e e e e e e e e e e e 9
runif trng e e e e 10
TRNG.Engine 11
TRNG.Random e e 15
TRNG.Version e e e e e e e 18

Index 19

rTRNG-package TRNG C++ library functionality exposed to R.
Description

Tina’s Random Number Generator Library (TRNG) is a state-of-the-art C++ pseudo-random num-

ber generator library for sequential and parallel Monte Carlo simulations (https://www.numbercrunch.
de/trng/). It provides a variety of random number engines (pseudo-random number generators)

and distributions. In particular, parallel random number engines provided by TRNG support tech-
niques such as block-splitting and leapfrogging suitable for parallel algorithms. See ‘References’

for an introduction to the concepts and details around (parallel) random number generation.

Package rTRNG provides the R users with access to the functionality of the underlying TRNG
C++ library in different ways and at different levels.

* Base-R Random-like usage via TRNG.Random functions, for selecting and manipulating the
current engine. This is the simplest and more immediate way for R users to use rTRNG.

» Reference Objects wrapping the underlying C++ TRNG random number engines can be cre-
ated and manipulated in OOP-style. This allows greater flexibility in using TRNG engines in
R.

* TRNG C++ library and headers are made available to other R projects and packages using
C++.

— Standalone C++ code sourced via sourceCpp can rely on the Rcpp: : depends attribute
to correctly set up building against rTRNG, with Rcpp: :plugins(cpp11) enforcing the
C++11 standard required by TRNG >= 4.22:

https://www.numbercrunch.de/trng/
https://www.numbercrunch.de/trng/

rTRNG-package 3

// [[Rcpp: :depends(rTRNG) 1]
// [[Rcpp::plugins(cpp11)1]

— Creating an R package with C++ code using the TRNG library is achieved by LinkingTo:
rTRNG in the DESCRIPTION file, adding importFrom(rTRNG, TRNG.Version) in the
NAMESPACE file, and setting relevant linker flags (via LdFlags) and C++11 compila-
tion (CXX_STD = CXX11) in Makevars[.win].

— Note that C++ code using the TRNG library (sourced via Rcpp: : sourceCpp or part of
an R package) might fail on certain systems due to issues with building and linking
against r'TRNG. This is typically the case for macOS, and can generally be checked
using check_rTRNG_linking.

See the package vignettes (browseVignettes("rTRNG")) for an overview and demos and refer to
the examples in the documentation for further use cases.

Author(s)

Maintainer: Riccardo Porreca <riccardo.porreca@mirai-solutions.com>

Authors:
e Roland Schmid <roland.schmid@mirai-solutions.com>
Other contributors:

* Mirai Solutions GmbH <info@mirai-solutions.com> [copyright holder]

* Heiko Bauke (TRNG sources and headers) [contributor, copyright holder]

References

Heiko Bauke, Tina’s Random Number Generator Library, Version 4.23.1, https://github.com/
rabauke/trng4/blob/v4.23.1/doc/trng.pdf.

Stephan Mertens, Random Number Generators: A Survival Guide for Large Scale Simulations,
2009, https://ui.adsabs.harvard.edu/abs/2009arXiv0905.4238M

See Also
Useful links:
* https://github.com/miraisolutions/rTRNG#readme

e https://mirai-solutions.ch

* Report bugs at https://github.com/miraisolutions/rTRNG/issues

https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf
https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf
https://ui.adsabs.harvard.edu/abs/2009arXiv0905.4238M
https://github.com/miraisolutions/rTRNG#readme
https://mirai-solutions.ch
https://github.com/miraisolutions/rTRNG/issues

4 defaultKind

check_rTRNG_linking Check rTRNG linking.

Description

Check whether C++ code using the TRNG library can be built and linked against rTRNG on the
current system.

Usage

check_rTRNG_linking(silent = FALSE)

Arguments

silent logical: should the report of error messages be suppressed?

Value

A scalar logical with the result of the check. If FALSE, using the TRNG library from C++ code
sourced via sourceCpp or part of an R package is not expected to work.

defaultKind Default TRNG kind.

Description

Return the name of the default TRNG random number engine.

Usage

defaultKind()

LdFlags 5

LdFlags Linker flags for rTRNG.

Description

Output the linker flags required to build against rTRNG.

Usage
LdFlags()

Details
LdFlags is typically called from Makevars as
PKG_LIBS += $(shell ${R_HOME}/bin/Rscript -e "rTRNG::LdFlags()")
and from Makevars.win as
PKG_LIBS += $(shell "${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe"” -e "rTRNG::LdFlags()")

Value

Returns NULL invisibly. The function is not called for its return value rather for the side effect of
outputting the flags.

rbinom_trng Binomial random numbers via TRNG.

Description

Random number generation for the binomial distribution using the TRNG C++ library.

Usage

rbinom_trng(n, size, prob, engine = NULL, parallelGrain = QL)

Arguments
n Number of observations.
size, prob Parameters of the distribution, with the same meaning as in rbinom. Note how-
ever that only scalar values are accepted.
engine Optional TRNG engine object; if missing or NULL, the current engine controlled

via TRNG.Random is used.

parallelGrain Optional argument controlling the parallel simulation of random variates (see
‘Parallel Simulation’ below for details).

6 rlnorm_trng

Value

Numeric vector of random variates generated with the given parameters. The length is determined
by n.

Parallel Simulation

When a positive value of argument parallelGrain is supplied, random variates are simulated in
parallel, provided a parallel random number engine is selected. This is done using ReppParallel
via parallelFor, which uses the supplied parallelGrain to control the grain size (the number of
threads being controlled by setThreadOptions). The grain size can greatly affect the overhead of
performing the required block splitting jump operations and should be selected carefully. Note that
TRNG guarantees the outcome of such parallel execution to be equivalent to a purely sequential
simulation.

See Also

rbinom, TRNG.Engine, TRNG.Random.
Other TRNG distributions: rlnorm_trng(), rnorm_trng(), rpois_trng(), runif_trng()

Examples

generate 10 random variates using the current TRNG engine
rbinom_trng(10, size = 1L, prob = 0.5)

use a TRNG engine reference class object
r <- yarn2$new()
rbinom_trng(10, size = 1L, prob = 0.5, engine = r)

generate 100k random variates in parallel, with 2 threads and 100 grain size
TRNGseed(117)

RcppParallel: :setThreadOptions(numThreads = 2L)

x_parallel <- rbinom_trng(100e3, size = 1L, prob = 0.5, parallelGrain = 100L)
TRNGseed(117)

x_serial <- rbinom_trng(100e3, size = 1L, prob = 0.5)

identical(x_serial, x_parallel)

rlnorm_trng Log-normal random numbers via TRNG.

Description

Random number generation for the log-normal distribution using the TRNG C++ library.

Usage

rlnorm_trng(n, meanlog = @, sdlog = 1, engine = NULL, parallelGrain = L)

rlnorm_trng 7

Arguments

n Number of observations.

meanlog, sdlog Parameters of the distribution, with the same meaning as in rlnorm. Note how-
ever that only scalar values are accepted.

engine Optional TRNG engine object; if missing or NULL, the current engine controlled
via TRNG.Random is used.

parallelGrain Optional argument controlling the parallel simulation of random variates (see
‘Parallel Simulation’ below for details).

Value

Numeric vector of random variates generated with the given parameters. The length is determined
by n.

Parallel Simulation

When a positive value of argument parallelGrain is supplied, random variates are simulated in
parallel, provided a parallel random number engine is selected. This is done using ReppParallel
via parallelFor, which uses the supplied parallelGrain to control the grain size (the number of
threads being controlled by setThreadOptions). The grain size can greatly affect the overhead of
performing the required block splitting jump operations and should be selected carefully. Note that
TRNG guarantees the outcome of such parallel execution to be equivalent to a purely sequential
simulation.

See Also

rlnorm, TRNG.Engine, TRNG.Random.
Other TRNG distributions: rbinom_trng(), rnorm_trng(), rpois_trng(), runif_trng()

Examples

generate 10 random variates using the current TRNG engine
rlnorm_trng(10, meanlog = @, sdlog = 1)

use a TRNG engine reference class object
r <- yarn2$new()
rlnorm_trng(10, meanlog = @, sdlog = 1, engine = r)

generate 100k random variates in parallel, with 2 threads and 100 grain size
TRNGseed(117)

RcppParallel: :setThreadOptions(numThreads = 2L)

x_parallel <- rlnorm_trng(100e3, meanlog = @, sdlog = 1, parallelGrain = 100L)
TRNGseed(117)

x_serial <- rlnorm_trng(100e3, meanlog = @, sdlog = 1)

identical(x_serial, x_parallel)

8 rnorm_trng

rnorm_trng Normal random numbers via TRNG.

Description

Random number generation for the normal distribution using the TRNG C++ library.

Usage

rnorm_trng(n, mean = @, sd = 1, engine = NULL, parallelGrain = QL)

Arguments
n Number of observations.
mean, sd Parameters of the distribution, with the same meaning as in rnorm. Note how-
ever that only scalar values are accepted.
engine Optional TRNG engine object; if missing or NULL, the current engine controlled

via TRNG.Random is used.

parallelGrain Optional argument controlling the parallel simulation of random variates (see
‘Parallel Simulation’ below for details).

Value

Numeric vector of random variates generated with the given parameters. The length is determined
by n.

Parallel Simulation

When a positive value of argument parallelGrain is supplied, random variates are simulated in
parallel, provided a parallel random number engine is selected. This is done using ReppParallel
via parallelFor, which uses the supplied parallelGrain to control the grain size (the number of
threads being controlled by setThreadOptions). The grain size can greatly affect the overhead of
performing the required block splitting jump operations and should be selected carefully. Note that
TRNG guarantees the outcome of such parallel execution to be equivalent to a purely sequential
simulation.

See Also

rnorm, TRNG.Engine, TRNG.Random.

Other TRNG distributions: rbinom_trng(), rlnorm_trng(), rpois_trng(), runif_trng()

rpois_trng 9

Examples

generate 10 random variates using the current TRNG engine
rnorm_trng(10, mean = @, sd = 1)

use a TRNG engine reference class object
r <- yarn2$new()
rnorm_trng(10, mean = @, sd = 1, engine = r)

generate 100k random variates in parallel, with 2 threads and 100 grain size
TRNGseed(117)

RcppParallel: :setThreadOptions(numThreads = 2L)

x_parallel <- rnorm_trng(100e3, mean = @, sd = 1, parallelGrain = 100L)
TRNGseed(117)

x_serial <- rnorm_trng(100e3, mean = @, sd = 1)

identical(x_serial, x_parallel)

rpois_trng Poisson random numbers via TRNG.

Description

Random number generation for the Poisson distribution using the TRNG C++ library.

Usage

rpois_trng(n, lambda, engine = NULL, parallelGrain = QL)

Arguments
n Number of observations.
lambda Parameters of the distribution, with the same meaning as in rpois. Note how-
ever that only scalar values are accepted.
engine Optional TRNG engine object; if missing or NULL, the current engine controlled

via TRNG.Random is used.

parallelGrain Optional argument controlling the parallel simulation of random variates (see
‘Parallel Simulation’ below for details).
Value

Numeric vector of random variates generated with the given parameters. The length is determined
by n.

10 runif_trng

Parallel Simulation

When a positive value of argument parallelGrain is supplied, random variates are simulated in
parallel, provided a parallel random number engine is selected. This is done using ReppParallel
via parallelFor, which uses the supplied parallelGrain to control the grain size (the number of
threads being controlled by setThreadOptions). The grain size can greatly affect the overhead of
performing the required block splitting jump operations and should be selected carefully. Note that
TRNG guarantees the outcome of such parallel execution to be equivalent to a purely sequential
simulation.

See Also

rpois, TRNG.Engine, TRNG.Random.
Other TRNG distributions: rbinom_trng(), rlnorm_trng(), rnorm_trng(), runif_trng()

Examples

generate 10 random variates using the current TRNG engine
rpois_trng(10, lambda = 4)

use a TRNG engine reference class object
r <- yarn2$new()
rpois_trng(10, lambda = 4, engine = r)

generate 100k random variates in parallel, with 2 threads and 100 grain size
TRNGseed(117)

RcppParallel: :setThreadOptions(numThreads = 2L)

x_parallel <- rpois_trng(100e3, lambda = 4, parallelGrain = 100L)

TRNGseed(117)

x_serial <- rpois_trng(100e3, lambda = 4)

identical(x_serial, x_parallel)

runif_trng Uniform random numbers via TRNG.

Description

Random number generation for the uniform distribution using the TRNG C++ library.

Usage

runif_trng(n, min = @, max = 1, engine = NULL, parallelGrain = 0L)

Arguments
n Number of observations.
min, max Parameters of the distribution, with the same meaning as in runif. Note how-

ever that only scalar values are accepted.

TRNG.Engine

engine

parallelGrain

Value

11

Optional TRNG engine object; if missing or NULL, the current engine controlled
via TRNG.Random is used.

Optional argument controlling the parallel simulation of random variates (see
‘Parallel Simulation’ below for details).

Numeric vector of random variates generated with the given parameters. The length is determined

by n.

Parallel Simulation

When a positive value of argument parallelGrain is supplied, random variates are simulated in
parallel, provided a parallel random number engine is selected. This is done using ReppParallel
via parallelFor, which uses the supplied parallelGrain to control the grain size (the number of
threads being controlled by setThreadOptions). The grain size can greatly affect the overhead of
performing the required block splitting jump operations and should be selected carefully. Note that
TRNG guarantees the outcome of such parallel execution to be equivalent to a purely sequential

simulation.

See Also

runif, TRNG.Engine, TRNG.Random.

Other TRNG distributions: rbinom_trng(), rlnorm_trng(), rnorm_trng(), rpois_trng()

Examples

generate 10 random variates using the current TRNG engine
runif_trng(1@, min = @, max = 1)

use a TRNG engine reference class object

r <- yarn2$new()

runif_trng(10, min = @, max = 1, engine = r)

generate 100k random variates in parallel, with 2 threads and 100 grain size

TRNGseed(117)

RcppParallel: :setThreadOptions(numThreads = 2L)
x_parallel <- runif_trng(1@0e3, min = @, max = 1, parallelGrain = 100L)

TRNGseed(117)

x_serial <- runif_trng(100e3, min = @0, max = 1)
identical(x_serial, x_parallel)

TRNG.Engine

TRNG random number engines.

12 TRNG.Engine

Description

Reference Classes exposing random number engines (pseudo-random number generators) in the
TRNG C++ library. Engine objects of a class engineClass are created as r <- engineClass$new(...),
and a method m is invoked as x$m(. . .). The engine object r can be then used for generating ran-
dom variates via any of the r<dist>_trng functions (e.g., runif_trng), specifying the optional
argument engine = r.

Classes
Parallel random number engines lcg64, 1cg64_shift, mrg2, mrg3, mrg3s, mrg4, mrgs, mrgss,
yarn2, yarn3, yarn3s, yarn4, yarn5, yarn5s.

Conventional random number engines lagfib2plus_19937_64, lagfib2xor_19937_64, lagfib4plus_19937_64,
lagfib4xor_19937_64, mt19937_64, mt19937.

Constructors

$new() Construct a random engine object using default seed and internal parameters.

$new(seed) Construct a random engine object with default internal parameters using the provided
seed.

$new(string) Construct a random engine object restoring its internal state and parameters from a
character string, falling back to $new() for empty strings. See method $toString().

Methods

$seed(seed) Use the scalar integer seed to set the engine’s internal state.
$jump(steps) Advance by steps the internal state of the engine. Applies to parallel engines only.

$split(p, s) Update the internal state and parameters of the engine for generating directly the
sth of p subsequences, with s in [1, p], producing one element every s starting from the pth.
Applies to parallel engines only.

$name(), $kind() Return the name of the random number engine (e.g., "yarn2"), also referred to
as kind in rTRNG similarly to base R.

$toString() Return a character representation of the engine’s internal state and parameters.

$copy () Specialization of the generic method for Reference Classes, ensuring the underlying C++
engine object is properly copied.

$show() Specialization of the generic show, displaying $toString() (truncated to 80 characters).

$.Random.seed() Return a two-element character vector with elements $kind() and $toString(),

suitable for use in TRNG.Random. seed (and by a possible function returning an engine object
given a TRNG.Random. seed).

Details

The TRNG C++ library provides a collection of random number engines (pseudo-random number
generators). In particular, compared to conventional engines working in a purely sequential manner,
parallel engines can be manipulated via jump and split operations. Jumping allows to advance
the internal state by a number of steps without generating all intermediate states, whereas split
operations allow to generate directly a subsequence obtained by decimating the original sequence.

TRNG.Engine 13

Please consult the TRNG C++ library documentation (see ‘References’) for an introduction to the
concepts and details around (parallel) random number generation and engines, including details
about the state size and period of the TRNG generators.

Random number engines from the C++ TRNG library are exposed to R using Repp Modules. As
a consequence, the arguments to all Constructors and Methods above are not passed by name but
by order. Moreover, arguments and return values are both defined in terms of C++ data types.
Details can be displayed via the standard Reference Class documentation method $help (e.g.,
yarn2$help(split)).

Most of the Methods above are simple wrappers of analogous methods in the corresponding C++
class provided by the TRNG library. A few differences/details are worth being mentioned.

* Argument s of the split method is exposed to R according to R’s 1-based indexing, thus in
the [1, p] interval, whereas the TRNG C++ implementation follows C++ 0-based indexing,
thus allowing values in [0, p-1].

* Constructor new(string) and method toString() rely on streaming operators >> and <<
available for all C++ TRNG classes.

* TRNG C++ random number engine objects are copy-constructible and assignable, whereas
their R counterparts in rTRNG are purely reference-based. In particular, as for any R Refer-
ence Object, engines are not copied upon assignment but via the $copy () method.

Random number engines details

Parallel engines:

lcg64 Linear congruential generator with modulus 264,
lcgb4_shift Linear congruential generator with modulus 264 and bit-shift transformation.

mrg2, mrg3, mrg4, mrg5 Multiple recurrence generators based on a linear feedback shift register
sequence with prime modulus 23! — 1.

mrg3s, mrg5s Multiple recurrence generators based on a linear feedback shift register with Sophie-
Germain prime modulus.

yarn2, yarn3, yarn4, yarn5 YARN generators based on the delinearization of a linear feedback
shift register sequence with prime modulus 23! — 1.

yarn3s, yarn5s YARN generators based on the delinearization of a linear feedback shift register
sequence with Sophie-Germain prime modulus.

Conventional engines:
lagfib2plus_19937_64, lagfib4plus_19937_64 Lagged Fibonacci generator with 2 or 4 feed-
back taps and addition.

lagfib2xor_19937_64, lagfib4xor_19937_64 Lagged Fibonacci generator with 2 or 4 feed-
back taps and exclusive-or operation.

mt19937 Mersenne-Twister generating 32 random bit.
mt19937_64 Mersenne-Twister generating 64 random bit.

References

Heiko Bauke, Tina’s Random Number Generator Library, Version 4.23.1, https://github.com/
rabauke/trng4/blob/v4.23.1/doc/trng.pdf.

https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf
https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf

14 TRNG.Engine

See Also

ReferenceClasses, TRNG.Random.

TRNG distributions: rbinom_trng, rlnorm_trng, rnorm_trng, rpois_trng, runif_trng.

Examples

Class yarn2 used in the examples below can be replaced by any other TRNG
engine class (only of a parallel kind for jump and split examples).

basic constructor with default internal state (and parameters)
r <- yarn2$new()

show the internal parameters and state

r

return internal parameters and state as character string
r$toString()

seed the random number engine
ré¢seed(117)

r

construct with given initial seed
s <- yarn2$new(117)
identical(s$toString(), r$toString())

construct from string representation
s <- yarn2$new(r$toString()) # implicitly creates a copy
identical(s$toString(), r$toString())
s <- yarn2$new("") # same as yarn2$new()
identical(s$toString(), yarn2$new()$toString())
Not run:

error if the string is not a valid representation

s <- yarn2$new("invalid")

End(Not run)

copy vs. reference

r_ref <- r # reference to the same engine object

r_cpy <- r$copy() # copy an engine

identical (r_cpy$toString(), r$toString())

rbind(c(runif_trng(4, engine = r), runif_trng(6, engine = r_ref)),
runif_trng(10, engine = r_cpy))

jump (and draw from reference)

runif_trng(10, engine = r_cpy)

r_ref$jump(7) # jump 7 steps ahead

runif_trng(3, engine = r) # jump has effect on the original r

split

r_cpy <- r$copy()

runif_trng(10, engine = r)

r_cpy$split(5, 2) # every 5th element starting from the 2nd
runif_trng(2, engine = r_cpy)

TRNG.Random 15

seed, jump and split can be used in c(...) as they return NULL
r <- yarn2$new()
r_cpy <- rs$copy()
r$seed(117)
runif_trng(10, engine = r)
c(r_cpy$seed(117),
r_cpy$jump(2), runif_trng(2, engine = r_cpy),
r_cpy$split(3,2), runif_trng(2, engine = r_cpy))

TRNG engine name/kind
r$kind()
r$name()

use $.Random.seed() to set the current engine (as a copy)
r$.Random. seed()
TRNG.Random. seed(r$.Random.seed())

TRNG.Random TRNG random number generation.

Description

The functions below allow setting and manipulating the current TRNG random number engine
(pseudo-random number generator), similar to base-R Random. The current engine is then used for
generating random variates via any of the r<dist>_trng functions (e.g., runif_trng).

TRNGkind allows to query or set the kind of TRNG engine in use. See ‘Random number engines
details’ for the available engines.

TRNGseed specifies the seed for the current engine.

If the current engine is of a parallel kind, TRNGjump advances its internal state without generating
all intermediate steps.

If the current engine is of a parallel kind, TRNGsplit updates its internal state and parameters
in order to generate directly a subsequence obtained by decimation, producing every sth element
starting from the pth.

TRNG.Random. seed allows to get a full representation of the current state of the engine in use, and
to restore the current engine from such representation.

Usage
TRNGkind(kind = NULL)

TRNGseed(seed)
TRNGjump(steps)
TRNGsplit(p, s)

TRNG.Random. seed(engspec)

16 TRNG.Random

Arguments
kind Character string or NULL. If kind is not NULL, it defines the TRNG random num-
ber engine to be used. Use "default” for the rTRNG default kind ("yarn2").
seed Scalar integer seed, determining the internal state of the current engine.
steps Number of steps to jump ahead.
p Number of subsequences to split the engine by.
s Index of the desired subsequence between 1 and p.
engspec Optional two-element character vector c(kind, state), where the second el-
ement is a character representation of the current engine’s internal state and
parameters.
Value

TRNGkind returns the TRNG kind selected before the call, invisibly if argument kind is not NULL.

TRNG.Random. seed() called with no arguments returns a two-element character vector c(kind,
state) fully representing the current state of the engine in use. When argument engspec = c(kind,
state) is provided, it is used to set an engine of the given kind with internal state and parameters
restored from state.

Details

The TRNG C++ library provides a collection of random number engines (pseudo-random number
generators). In particular, compared to conventional engines working in a purely sequential manner,
parallel engines can be manipulated via jump and split operations. Jumping allows to advance
the internal state by a number of steps without generating all intermediate states, whereas split
operations allow to generate directly a subsequence obtained by decimating the original sequence.
Please consult the TRNG C++ library documentation (see ‘References’) for an introduction to the
concepts and details around (parallel) random number generation and engines, including details
about the state size and period of the TRNG generators.

The current engine is an instance of one TRNG engine class provided by rTRNG, and is stored
as "TRNGengine” global option. If not explicitly set via TRNGkind, an engine of default kind is
implicitly created upon the first call to any TRNG* or r<dist>_trng function. Note that the current
engine is not persistent across R sessions. Function TRNG.Random. seed can be used to extract and
restore the current engine and its internal state.

Random number engines details

Parallel engines:

lcg64 Linear congruential generator with modulus 24,

264 and bit-shift transformation.

lcg64_shift Linear congruential generator with modulus

mrg2, mrg3, mrg4, mrg5 Multiple recurrence generators based on a linear feedback shift register
sequence with prime modulus 23! — 1.

mrg3s, mrgbs Multiple recurrence generators based on a linear feedback shift register with Sophie-
Germain prime modulus.

yarn2, yarn3, yarn4, yarn5 YARN generators based on the delinearization of a linear feedback
shift register sequence with prime modulus 23! — 1.

TRNG.Random 17

yarn3s, yarn5s YARN generators based on the delinearization of a linear feedback shift register
sequence with Sophie-Germain prime modulus.

Conventional engines:

lagfib2plus_19937_64, lagfib4plus_19937_64 Lagged Fibonacci generator with 2 or 4 feed-
back taps and addition.

lagfib2xor_19937_64, lagfib4xor_19937_64 Lagged Fibonacci generator with 2 or 4 feed-
back taps and exclusive-or operation.

mt19937 Mersenne-Twister generating 32 random bit.
mt19937_64 Mersenne-Twister generating 64 random bit.

References

Heiko Bauke, Tina’s Random Number Generator Library, Version 4.23.1, https://github.com/
rabauke/trng4/blob/v4.23.1/doc/trng.pdf.

See Also

TRNG distributions: rbinom_trng, rlnorm_trng, rnorm_trng, rpois_trng, runif_trng.

Examples

TRNG kind of the current engine
TRNGkind ()
set a specific TRNG kind
TRNGkind("yarn5s")
TRNGkind ()
Not run:
error if kind is not valid
TRNGkind("invalid")

End(Not run)

set the deafult TRNG kind
TRNGkind("default"”)
TRNGkind ()

seed the current random number engine
TRNGseed(117)

full representation of the current state of the engine in use
s <- TRNG.Random.seed()
s

draw 10 random variates using the current engine
runif_trng(10)

restore the engine and its internal state
TRNG.Random. seed(s)

jump and draw the last 3 variates out of the 10 above
TRNGjump(7) # jump 7 steps ahead

https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf
https://github.com/rabauke/trng4/blob/v4.23.1/doc/trng.pdf

18 TRNG. Version

runif_trng(3)

restore the internal state, split and draw every 5th element starting from
the 2nd

TRNG.Random. seed(s)

TRNGsplit(5, 2)

runif_trng(2)

TRNGseed, TRNGjump and TRNGsplit can be combined with r<dist>_trng in c(...)
as they return NULL
c(TRNGseed(117),

TRNGjump(2), runif_trng(2),

TRNGsplit(3,2), runif_trng(2))

TRNG.Version TRNG library version.

Description

Return the version of the TRNG C++ library embedded in the rTRNG package.

Usage
TRNG.Version()

Index

* TRNG distributions Reference Objects, 2
rbinom_trng, 5 ReferenceClasses, 14
rlnorm_trng, 6 rlnorm, 7
rnorm_trng, 8 rlnorm_trng, 6,6, 8, 10, 11, 14,17
rpois_trng, 9 rnorm, 8
runif_trng, 10 rnorm_trng, 6, 7,8, 10, 11, 14, 17

rpois, 9, 10
base, 12 rpois_trng, 6-8,9, 11, 14, 17

rTRNG (rTRNG-package), 2
rTRNG-package, 2

runif, 10, 11
runif_trng, 6-8, 10, 10, 12, 14, 15, 17

check_rTRNG_linking, 3, 4

default kind, /6
defaultKind, 4

setThreadOptions, 6-8, 10, 11
show, 12
sourceCpp, 2, 4

lagfib2plus_19937_64 (TRNG.Engine), 11
lagfib2xor_19937_64 (TRNG.Engine), 11

lagfib4plus_19937_64 (TRNG.Engine), 11
lagfib4xor_19937_64 (TRNG.Engine), 11

lcg64 (TRNG.Engine), 11

lcgb4_shift (TRNG.Engine), 11

LdFlags, 3,5

TRNG engine class, 16

TRNG engine object, 5, 7-9, 11
TRNG.Engine, 6-8, 10, 11, 11
TRNG.Random, 2, 5-11, 14, 15
TRNG.Random. seed, /2
TRNG.Version, 18

TRNGjump (TRNG.Random), 15
TRNGkind (TRNG.Random), 15
TRNGseed (TRNG.Random), 15
TRNGsplit (TRNG.Random), 15

Module, /3

mrg2 (TRNG.Engine), 11

mrg3 (TRNG.Engine), 11

mrg3s (TRNG.Engine), 11

mrg4 (TRNG.Engine), 11

mrg5 (TRNG.Engine), 11

mrg5s (TRNG.Engine), 11
mt19937 (TRNG.Engine), 11
mt19937_64 (TRNG.Engine), 11

yarn2 (TRNG.Engine), 11
yarn3 (TRNG.Engine), 11
yarn3s (TRNG.Engine), 11
yarn4 (TRNG.Engine), 11

Random, 2, 15 .
rbinom. 5. 6 yarn5 (TRNG.Engine), 11
rbinom_trng, 5,7, 8, 10, 11, 14, 17 yarn5s (TRNG.Engine), 11
Recpp, 13

Rcpp: :depends, 2
RcppParallel, 6-8, 10, 11
Reference Class, I3
Reference Classes, /2
Reference Object, I3

19

	rTRNG-package
	check_rTRNG_linking
	defaultKind
	LdFlags
	rbinom_trng
	rlnorm_trng
	rnorm_trng
	rpois_trng
	runif_trng
	TRNG.Engine
	TRNG.Random
	TRNG.Version
	Index

