Package ‘rSHAPE’

October 14, 2022

Type Package

Title Simulated Haploid Asexual Population Evolution
Version 0.3.2

Author Jonathan Dench

Maintainer Jonathan Dench <jdenc@17@gmail.com>

Description In silico experimental evolution offers a cost-and-time effective means to test evolution-
ary hypotheses. Existing evolutionary simulation tools focus on simulations in a limited experi-
mental framework, and tend to report on only the results presumed of interest by the tools de-
signer. The R-package for Simulated Haploid Asexual Population Evolution (rSHAPE') ad-
dresses these concerns by implementing a robust simulation framework that outputs com-
plete population demographic and genomic information for in silico evolving communities. Al-
lowing more than 60 parameters to be specified, TSHAPE'
simulates evolution across discrete time-steps for an evolving community of haploid asexual pop-
ulations with binary state genomes. These settings are for the current state of TSHAPE' and fu-
ture steps will be to increase the breadth of evolutionary conditions permit-
ted. At present, most effort was placed into permitting varied growth models to be simu-
lated (such as constant size, exponential growth, and logistic growth) as well as various fit-
ness landscape models to reflect the evolutionary landscape (e.g.: Additive, House of Cards -
Stuart Kauffman and Simon Levin (1987) <doi:10.1016/S0022-5193(87)80029-2>, NK - Stu-
art A. Kauffman and Edward D. Weinberger (1989) <doi:10.1016/S0022-5193(89)80019-
0>, Rough Mount Fuji - Neidhart, Johannes and Szen-
dro, Ivan G and Krug, Joachim (2014) <doi:10.1534/genetics.114.167668>). This package in-
cludes numerous functions though users will only need defineSHAPE(), runSHAPE(), shapeEx-
periment() and summariseExperiment(). All other functions are called by these main func-
tions and are likely only to be on interest for someone wishing to develop 'TSHAPE'. Simula-
tion results will be stored in files which are exported to the directory refer-
enced by the shape_workDir option (defaults to tempdir() but do change this by passing a folder-
path argument for workDir when calling defineSHAPE() if you plan to make use of your re-
sults beyond your current session). TSHAPE' will generate numerous replicate simula-
tions for your defined range of experimental parameters. The experiment will be built un-
der the experimental working directory (i.e.: referenced by the option shape_workDir set using de-
fineSSHAPE()) where individual replicate simulation results will be stored as well as processed re-
sults which I have made in an effort to facilitate analyses by automating collection and process-
ing of the potentially thousands of files which will be created. On that note, TSHAPE' imple-
ments a robust and flexible framework with highly detailed output at the cost of computational ef-

1

https://doi.org/10.1016/S0022-5193(87)80029-2
https://doi.org/10.1016/S0022-5193(89)80019-0
https://doi.org/10.1016/S0022-5193(89)80019-0
https://doi.org/10.1534/genetics.114.167668

2 R topics documented:

ficiency and potentially requiring significant disk space (generally gigabytes but up to tera-

bytes for very large simulation efforts). So, while TSHAPE' offers a single frame-

work in which we can simulate evolution and directly compare the impacts of a wide range of pa-
rameters, it is not as quick to run as other in silico simulation tools which focus on a single sce-
nario with limited output. There you have it, TSHAPE' offers you a less restrictive in silico evolu-

tionary playground than other tools and I hope you enjoy testing your hypotheses.
License GPL-3
Depends R (>=3.2)

Imports abind, graphics, sn, VGAM, evd, stats, utils, RSQLite, DBI,
foreach, parallel, doParallel

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-19 09:40:02 UTC

R topics documented:

addDrift 3
addQuotes e e 4
adjustBirths 5
birthFunction e 6
buildPedigree 7
calc_relativeFitness e 8
compute_distGrowth 9
CreateGenotYPeSs . . .« v v v vt e e e e e e e e e e e e e 10
create_genotypeFrame 11
deathFunction 12
defineNeighbours 13
defineSHAPE 15
expGrowth L e 20
extractInfo_focallD 21
extract_popDemographics 23
findParent 24
find_neededNeighbours 25
fitnessDist 26
fitnessLandscape 27
growthFunction 28
logisticGrowth 30
logisticMap o e 32
lossSampling 33
mutationFunctiono 33
nameEnvirono 34

nameObject e 35

addDrift 3
nameTable 36
nameTable_neighbourhood L 37
nameTable_step 38
name_batchString 38
name_batchSubmit e 39
name_bodyScript L e e e 40
name_parameterSCript e e e e e 40
name_subScript L. e 41
querryEstablished 41
reportPopulations L 42
reset_shapeDB 43
retrieve_binaryString L. L e e e 44
runProcessing L e e 45
runReplicate 46
runSHAPE e 47
set_const_NK interactionsMat e 49
set_const_ RMF_globalOptima 49
set_DepbySite_ancestFitness 50
set RMF _indWeight 51
set_siteByState_fitnessMat L 52
shapeCombinations 53
shapeExperiment e e e 54
SOPEITOr e e 56
summariseExperiment L oL 56
summarise_evolRepeatability L 57
summarise_experimentFiles o Lo 59
summarise_experimentParameterso 60
summarise_popDemographics 60
trimQUOLES e e e e e e e e e e e e e e e e e 61
updatelines L. e e e 62
writeParameters L 63
Write_subScript e 64

Index 66

addDrift This is a simple little function used to represent drift by introducing
stochasticity to the vector passed by making poisson distribution calls.
At present it forces values to integers because I've not been able to
implement an appropriate continuous distribution for such calls that
works with tested models and expected outcome.

Description

This is a simple little function used to represent drift by introducing stochasticity to the vector
passed by making poisson distribution calls. At present it forces values to integers because I’ve not
been able to implement an appropriate continuous distribution for such calls that works with tested
models and expected outcome.

4 addQuotes

Usage

addDrift(func_inVector, func_integerValues = TRUE)

Arguments

func_inVector A vector of value to which stochasticity is to be added, integer values will be
returned.

func_integerValues
Logical toggle if a discrete or continous distribution is to be used for draws.
DISABLED - as testing could not identify a continuous distribution which works
for obtaining expected results from established models.

Value

A vector of values, with same length as func_inVector

Examples

This adds drift by making draws from the Poisson distribution with a location parameter based on
the elements to which drift is to be added.
replicate(10,addDrift(c(0.5,1,5,10,14.1)))

addQuotes This is a function to add quotation marks around each element of a
character string vector

Description

This is a function to add quotation marks around each element of a character string vector

Usage

addQuotes(funclIn)
Arguments

funcIn a vector of character strings which you want padded by quotation marks
Value

character vector of length equal to the input

adjustBirths 5

adjustBirths This function ensures that a vector of values will sum to a given num-
ber. It’s implemented in certain growth forms (curently.: constant and
logistic)
Description

This function ensures that a vector of values will sum to a given number. It’s implemented in certain
growth forms (curently: constant and logistic)

Usage

adjustBirths(func_adjVector, func_sumTotal,
func_roundValues = getOption("shape_track_asWhole"))

Arguments

func_adjVector Vector of values which must sum to the func_sumTotal.

func_sumTotal A single integer value which is to be the target summed value.

func_roundValues
Logical toggle to control in values must be rounded to integers.

Value

A vector of values adjusted to sum to a single value. These may have been forced to be rounded or
could still contain decimals.

Examples

In the event we're enforcing a vector to sum to a particular value, this function will
force that vector to the sum and adjust proportionally to elements. You can force values
to become integers.
adjustBirths(func_adjVector = c(9,70,20), func_sumTotal = 100, func_roundValues = FALSE)
When rounding, this is stochastic
replicate(10,adjustBirths(func_adjVector = ¢(9,70,20),
func_sumTotal = 100,
func_roundValues = TRUE))
Same idea, different input vectors
adjustBirths(func_adjVector = c(10,75,20), func_sumTotal = 100, func_roundValues = FALSE)
replicate(10,adjustBirths(func_adjVector = c(10,75,20),
func_sumTotal = 100,
func_roundValues = TRUE))

birthFunction

birthFunction This function calculates the number of births for the vector of popu-
lations which are expected to be passed. The number of parameters
which can be passed may be more than the number required to use
one of the growth forms.
Description

This function calculates the number of births for the vector of populations which are expected to be
passed. The number of parameters which can be passed may be more than the number required to
use one of the growth forms.

Usage

birthFunction(func_inSize, func_inFitness, func_bProb, func_sizeStep,
func_growthForm = c("logistic”, "exponential”, "constant”, "poisson"),

func_deaths

NULL, func_carryingCapacity = NULL,

func_basalRate = NULL, func_deathScale = FALSE, func_drift = TRUE,
func_roundValues = TRUE)

Arguments
func_inSize
func_inFitness
func_bProb

func_sizeStep

func_growthForm

func_deaths

This is the vector of population sizes within the community

This is the vector of fitness value for the community

This is the general bith probability defined for this run of SHAPE

This is a proportional scalar that will control what proportion of a standard "gen-
eration" is simulated for each step within a SHAPE run. NOTE: This parameter

is not perfectly validated to run as may be expected with all models. For now, it
should be left as a value of "1", but exists for future implementation and testing.

This is the implemeted growth model to be simulated in this run. Currently this

can be one of "logistic','' exponential'','' constant'',''poisson''.

This is the vector of deaths for the genotypes within the community

func_carryingCapacity

func_basalRate

func_deathScale

func_drift

This is the maximum community size supported by tge simulated environment.

This is the basal growth rate, otherwise definable as the number of offspring an
individual will produce from a single birth event.

This is a logical toggle to define if the number of births should be scaled by the
number of deaths. The exact interpretation of this varies by growth model, but in
general it forces growth to follow rates expected by standard pure birth models
while still simulating deaths within the community.

This is a logical toggle as to whether or not stochasticity is introduced into the
deterministic calculations that may be encountered within the growth function.
Its exact implementation varies based on the growth model being simulated.

buildPedigree 7

func_roundValues
This is a logical toggle to define if the number of births and deaths are forced
to be tracked as integer values. If TRUE, then any fractional amounts will be
stochastically rounded to the nearest integer with a probability of being rounded
up equal to the decimal value —ie: 0.32 means 32% chance of being rounded up

Value

A vector of births with the same length as the vector of population sizes passed.

Imagine you’ve got an evolving community of three populations where in each time step individ-
uals with # relateive fitness of 1 produce 2 offspring. birthFunction(func_inSize = ¢(100,100,100),
func_inFitness = ¢(1,2,1.05), func_bProb = 1, func_sizeStep = 1, func_growthForm = "exponen-
tial", func_drift = FALSE) # Now with evolutionary drift birthFunction(func_inSize = ¢(100,100,100),
func_inFitness = c(1,2,1.05), func_bProb = 1, func_sizeStep = 1, func_growthForm = "exponen-
tial", func_drift = TRUE)

buildPedigree This is a convenience script to build an named list of empty lists, where
the names are based on the genotype IDs being passed.

Description

This is a convenience script to build an named list of empty lists, where the names are based on the
genotype IDs being passed.

Usage

buildPedigree(func_focallD)

Arguments
func_focalID This should be any vector, that can be interpreted as character, and faithfully
represent the genotype IDs of interest for your pedigree.
Value

a named list of empty lists.

Examples

this creates a named list, this trivial function exists for future flexibility and method design.
buildPedigree(c(1,"zebra", "walrus”,4))

8 calc_relativeFitness

calc_relativeFitness This is a function to calculate the relative fitness for a vector of fit-
nesses. As a frame of reference it can use either an ancestral fitness
value or the mean fitness of the passed vector. If the frame of reference
is a value of zero - OR - the func_absDistance is set to TRUE then in-
stead the vector is centered around a value of 1 where negative values
will be set to zero.

Description

This is a function to calculate the relative fitness for a vector of fitnesses. As a frame of reference
it can use either an ancestral fitness value or the mean fitness of the passed vector. If the frame of
reference is a value of zero - OR - the func_absDistance is set to TRUE then instead the vector is
centered around a value of 1 where negative values will be set to zero.

Usage

calc_relativeFitness(func_fitVector, func_ancestFit = NULL,
func_weights = NULL, func_absDistance = (getOption("”shape_simModel")
e HRMFH))

Arguments

func_fitVector anumeric vector of values to be interpreted as fitnesses

func_ancestFit An optional single numeric value to be used as a frame of reference for calcu-
lating relative fitness.

func_weights An optional vector of weights to be used for calculating relative fitness as an
absolute distance from the mean of the func_fitVector vector.
func_absDistance
A logical toggle to override if relative fitnesses are to be calculated as the ab-
solute distance from 1. Will be overrode if either the mean of func_fitVector or
func_ancestFit are zero.

Value

A vector of relative fitness values of length equal to the input vector.

Examples

This calculates relative fitness values either based on the mean of the community or
based on an ancestral fitness value.

defineSHAPE()

calc_relativeFitness(c(0.9,1,1.1))

calc_relativeFitness(c(0.9,1,1.1),func_ancestFit = @)
calc_relativeFitness(c(0.9,1,1.1),func_ancestFit = 1)
calc_relativeFitness(c(0.95,1,1.1))

’

compute_distGrowth 9

compute_distGrowth This function is used to calculate the effect size and timing of the next
stochastic population disturbance in a SHAPE run.

Description

This function is used to calculate the effect size and timing of the next stochastic population distur-
bance in a SHAPE run.

Usage

compute_distGrowth(func_distFactor, func_growthType, func_distType,
func_growthRate, func_popSize, func_focalSize,
func_manualGenerations = NULL, func_stepDivs)

Arguments

func_distFactor
This is the expected effect size of the disturbance, it should be a named vector
with elements factor, random which are each used as per the func_distType
func_growthType
This is the growth model of the SHAPE run

func_distType This is the type of disturbance to be simulated. Currently I've implemented
bottleneck, random options for constant bottlenecks or normally distributed
random effect sizes

func_growthRate
This is the basal growth rate of the SHAPE run

func_popSize This is a vector of the number of individuals in each of the populations

func_focalSize This only matters if the growth model is exponential in which case the distur-
bance is always such that the community size is reduced to the func_focalSize
value

func_manualGenerations
If not NULL, it will be rounded to an integer value and taken as the manually
controlled number of generations between disturbances. Otherwise, the distur-
bance factor and growth rate are used to estimate the number of steps required
for a community with relative fitness 1 to rebound.

func_stepDivs This is the value that controls what proportion of a standard biological "genera-
tion" is simulated in each step of a SHAPE run.

Value

A named vector with three elements describing the simulated reduction factor of populations, the
number of individuals lost, and the number of steps estimated until the next disturbance.

createGenotypes

Examples

This calculates the information for the next planned stochastic disturbance event.
Consider a situation where there is a disturbance reducing populations 100 fold,
and it occurs either in a proscriptive number of steps, or we calculate it based
on recovery time as per the growth rate and growth model parameters.
compute_distGrowth("bottleneck”, "exponential”, "bottleneck”,
2,1e4,1e2,5,1)

compute_distGrowth("bottleneck”, "exponential”, "bottleneck”,

2,1e4,1e2,NULL, 1)
If growth is constant or Poisson, then disturbances are effectively supressed
compute_distGrowth("bottleneck”,"poisson”, "bottleneck”,

2,1e4,1e2,NULL, 1)

createGenotypes This function searches the nearby mutational space of a focal geno-
type, identifies which genotypes in that space have not yet been identi-
fied, and create new database entries for any new genotypes.

Description

This function searches the nearby mutational space of a focal genotype, identifies which genotypes
in that space have not yet been identified, and create new database entries for any new genotypes.

Usage

createGenotypes(tmp_focalGenotype, tmp_focalFitness, maxHamming,
tmp_landModel = "HoC", tmp_sepString = getOption("shape_sepString”),
tmpDirection = getOption("”shape_allow_backMutations"”),
tmp_relativeFitness = getOption("shape_const_relativeFitness"),
tmp_currNeighbours = NULL, tmp_genCon,
tmp_tableSplit = getOption("shape_db_splitTables"),
tmp_maxRows = getOption(”shape_maxRows"),
tmp_genomelLength = getOption(”shape_genomeLength”),
tmp_distAsS = getOption("shape_const_distAsS"), ...)

Arguments

tmp_focalGenotype
This is the focal genotype for which we want to create missing mutational neigh-
bours.

tmp_focalFitness
This is the fitness value of the tmp_focalGenotype.

maxHamming The maximum number of sites that could be changed by mutation of the tmp_focalGenotype.

NOTE: At present I’ve not made the code work for anything other than a value
of 1. So do not update without updating associated code. where appropriate.

create_genotypeFrame

tmp_landModel

tmp_sepString

tmpDirection

11

This is the character string that defines the fitness landscape model being sim-
ulated in this SHAPE run. At present it can be one of: Additive, Fixed, HoC,
NK, RMF

This is a character string used to collapse vectors of characters.

This is a logical which controls if reversions are allowed (ie: if TRUE sites can
revert from mutated to WT)

tmp_relativeFitness

This is a logical which controls if fitness values are to be calculated as relative
and no absolute values that would otherwise be calculated via calls to the fitness
landscape model.

tmp_currNeighbours

tmp_genCon

tmp_tableSplit

tmp_maxRows

This is an optinal vector that would define the genotype of all neighbours within
the 1 step mutational neighbourhood of the tmp_focalGenotype genotype. If
NULL then this vector will be calculated within the function.

This is the filepath for the database file that contains the fitness landscape infor-
mation.

This is a logical which controls if the tables which report on all genotypes with
X mutations should be forced into a single table or it SHAPE is allowed to split
them into multiple tables.

The maximum number of rows allowed in a database table before a new table is
created. This has no meaning if tmp_tableSplit is FALSE.

tmp_genomelLength

tmp_distAsS

Value

The length of the genomes, or number of mutable sites/positions, being simu-
lated.

This arugment is passed through to downstream function, but will control if the
stochastic portion of fitness effect will be considered as selection coefficients
(meaning subtracting 1 from the initially drawn value).

Additional arguments that may get passed to internal functions.

This invisibly returns NULL, this function is to perform work on databases.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

create_genotypeFrame This is a convenience function to ensure that we have a standard

shaped data.frame. It is used to initiate a new table for the fitness
landscape.

12 deathFunction

Description

This is a convenience function to ensure that we have a standard shaped data.frame. It is used to
initiate a new table for the fitness landscape.

Usage

create_genotypeFrame(tmpID, tmpStrings, tmpFitnesses)

Arguments
tmpID A numeric vector of the ungiue identifiers for genotypes
tmpStrings A vector of the character strings that represent the binary string of genotypes

tmpFitnesses A vector of the numeric fitness values to be input

Value

A 4 column data frame with column names of genotypelD, binaryString, fitness, isExplored

Examples

This is just a convenience function for outputting vectors in a data.frame with
standard named columns.
create_genotypeFrame(c(1,10,50),c("1","1_7","6_12"),c(1,0.25,1.57))

deathFunction This allows SHAPE to simulate the death process as a deterministic
value, and may be density dependent.

Description

This allows SHAPE to simulate the death process as a deterministic value, and may be density
dependent.

Usage

deathFunction(func_inSize, func_inProb = @, func_roundValues = TRUE,
func_depDensity = FALSE, func_densityMax = NULL,
func_densityPower = 4)

Arguments

func_inSize This is the vector of population sizes within the community

func_inProb This is the general death probability defined for this run of SHAPE

defineNeighbours 13

func_roundValues
This is a logical toggle to define if the number of births and deaths are forced
to be tracked as integer values. If TRUE, then any fractional amounts will be
stochastically rounded to the nearest integer with a probability of being rounded
up equal to the decimal value —ie: 0.32 means 32% chance of being rounded up

func_depDensity
This is a logical toggle as to whether or not the calculation is density dependent.
If TRUE, then func_densityMax reugires a value.

func_densityMax
This is the community size at which maximum density dependent deaths (ie:
100% of func_inSize) occur.

func_densityPower
This is a scaling factor that controls the rate of transition between minimal and
maximal values of the density dependent deaths. Higher values mean a steeper
transition such that there are fewer deaths until higher densities are reached.

Value

A vector of the number of deaths caluclated for each of the populations represented by the func_inSize
vector

Examples

Imagine you've got an evolving community of three populations where in each time step

100% of individuals die.

deathFunction(func_inSize = c(100,50,200), func_inProb = 1)

What if their deaths were scaled based on population density,

or an environmental carrying capacity?

deathFunction(func_inSize = c(100,50,200), func_inProb = 1,
func_depDensity = TRUE, func_densityMax = 400)

deathFunction(func_inSize = c(100,50,200), func_inProb = 1,
func_depDensity = TRUE, func_densityMax = 500)

deathFunction(func_inSize = c(100,50,200), func_inProb = 1,
func_depDensity = TRUE, func_densityMax = 350)

defineNeighbours The function will identify the binary string of all possible neighbours to
a focal genotype. It is important when querrying the fitness landscape.

Description

The function will identify the binary string of all possible neighbours to a focal genotype. It is
important when querrying the fitness landscape.

14 defineNeighbours

Usage

defineNeighbours(func_tmpGenotype, func_tmpDirection,
func_maxHamming = getOption("shape_max_numMutations"”),
func_sepString = getOption("”shape_sepString"),
func_genomeLength = getOption("”shape_genomelLength"))

Arguments

func_tmpGenotype
This is the binary string of the focal genotype for which we want to define pos-
sible neighbours.

func_tmpDirection

This is a logical which controls if reversions are allowed (ie: if TRUE sites can
revert from mutated to WT)

func_maxHamming

The maximum number of sites that could be changed by mutation of the tmp_focalGenotype.

NOTE: At present I've not made the code work for anything other than a value
of 1. So do not update without updating associated code, where appropriate.

func_sepString This is a character string used to collapse vectors of characters.

func_genomeLength

The length of the genomes, or number of mutable sites/positions, being simu-
lated.

Value

Vector of all the genotypes in the neighbouring mutational space accessible within 1 mutation event

Examples

If you had some individuals with a genome length of 10 sites, and an

individual with no mutations, as well as one with a single mutation at

position 7, each had a mutant. This would define the possible one step

mutational neighbours. I also allow back mutations

defineNeighbours(c(""), func_tmpDirection = FALSE, func_maxHamming = 1,
func_sepString = "_", func_genomelLength = 10)

defineNeighbours(c("7"), func_tmpDirection = FALSE, func_maxHamming = 1,
func_sepString = "_", func_genomelLength = 10)

#' # Same idea, but if we allow back-mutations (ie: reversions)

defineNeighbours(c("7"), func_tmpDirection = TRUE, func_maxHamming = 1,

non

func_sepString = "_", func_genomelLength = 10)

defineSHAPE 15

defineSHAPE These are some global reference options that SHAPE will use and 1
consider the defaults. SHAPE parameters can be changed by call-
ing this function and changing values OR by using the accessory
SHAPE_parameters script, called in the SHAPE_runBody script. This
second approach is considered more practical for building and run-
ning experiments.

Description

These are some global reference options that SHAPE will use and I consider the defaults. SHAPE
parameters can be changed by calling this function and changing values OR by using the acces-
sory SHAPE_parameters script, called in the SHAPE_runBody script. This second approach is
considered more practical for building and running experiments.

Usage

defineSHAPE (shape_allow_backMutations = TRUE,
shape_collapseString = "__:__", shape_constDist = "exp"”,
shape_const_relativeFitness = TRUE,
shape_const_hoodDepth = "limited"”,
shape_const_focal_popValue = 1e+05, shape_const_mutProb = 0.001,
shape_const_distParameters = 20, shape_const_distAsS = FALSE,
shape_const_RMF_initiDistance = 5, shape_const_RMF_theta = 0.35,
shape_const_numInteractions = 4, shape_const_fixedFrame = NULL,
shape_const_birthProb = 1, shape_const_deathProb = 1,
shape_const_ancestFitness = @, shape_const_estProp = 0.001,
shape_const_hoodThresh = 1000, shape_const_distType = "bottleneck”,
shape_const_growthForm = "logistic", shape_const_growthRate = 2,
shape_const_growthGenerations = NULL, shape_db_splitTables = TRUE,
shape_death_byDensity = TRUE, shape_death_densityCorrelation = 4,
shape_death_densityCap = NULL, shape_envString = "shapeEnvir",
shape_externalSelfing = FALSE,
shape_external_stopFile = "someNamed.file", shape_finalDir = NULL,
shape_genomeLength = 100, shape_includeDrift = TRUE,
shape_init_distPars = c(factor = 100, random = 1),
shape_maxReplicates = 30, shape_maxRows = 2.5e+07,
shape_muts_onlyBirths = FALSE, shape_nextID = 0,
shape_numGenerations = 100, shape_objectStrings = c(popDemographics =
"popDemo”, repeatability = "evoRepeat"), shape_postDir = NULL,
shape_recycle_repStart = 1, shape_results_removeSteps = TRUE,
shape_run_isRecycling = c(Landscape = TRUE, Steps = FALSE, Parameters =
TRUE, Neighbourhood = FALSE), shape_save_batchBase = "yourJob",
shape_save_batchSet = 1, shape_save_batchJob = 1,
shape_scaleGrowth_byDeaths = TRUE, shape_sepString =
shape_seplLines = "__and__", shape_serverFarm = FALSE,
shape_simModel = "HoC", shape_size_timeStep = 1,

n on
-

16 defineSHAPE

shape_stringsAsFactors = FALSE, shape_string_lineDescent = "_->_",
shape_string_tableNames = "numMutations”, shape_thisRep = 1,
shape_tmpGenoTable = NULL,

shape_tmp_selfScript = "~/random_nullFile.txt"”, shape_use_sigFig = 4,

shape_toggle_forceCompletion = FALSE, shape_track_asWhole = FALSE,
shape_track_distSize = NULL, shape_workDir = NULL)

Arguments

shape_allow_backMutations
This is a logical toggle controlling if revertant mutants are allowed.

shape_collapseString
This is a string to collapse the progenitor and number of mutants pieces of in-
formation.
shape_constDist
This is a character string to control the distribution used for drawing fitness value
random components.
shape_const_relativeFitness
This is a logical toggle which controls if the absolute fitness values calculated
should be reinterpreted as relative fitness values.
shape_const_hoodDepth
shape_const_hoodDepth This is an object to control which strains we get deep
neighbourhood information for It should be one of ''none'',"'limited"," priority''," full"'
setting this higher will cost more and more in post analysis runtime.
shape_const_focal_popValue
This is the focal population value which has different meanings based on the
growth model implemented.
shape_const_mutProb
This is the probability of a mutation event - occuring relative to the number of
mutable events - in a standard biological generation.
shape_const_distParameters
This allows a single parameter to be passed for use in the distribution of fitness
fitness effects. NOTE: you are likely going to want to pass multiple values in
which case simply set this value prior to a run’s start but after loading the library.
shape_const_distAsS
This is a logical toggle controlling if fitness landscape values calculated should
be interpreted as selection coefficients rather than relative fitness values.
shape_const_RMF_initiDistance
This is the distance of the independent global fitness optima away from the WT
genotype. It matters for the Rough Mount Fuji landscapes.
shape_const_RMF_theta
This is the Rough Mount Fuji value that controls the scalar of the independent
fitness contribution.
shape_const_numInteractions

This is the number of sites which interact with respect to fitness calculations in
models such as the NK.

defineSHAPE 17

shape_const_fixedFrame
This defines the fitness landscape when our model is "Fixed", it must be user
defined and be explicit to all genotypes possible.
shape_const_birthProb
This is the proportion of individuals with fitness == 1 having births events in a
standard biological generation.
shape_const_deathProb
This is the proportion of individuals having a death event in a standard biological
generation.
shape_const_ancestFitness
This is the fitness value of the ancestral genotype.
shape_const_estProp
This is the value controlling when SHAPE considers a population to be estab-
lished.
shape_const_hoodThresh
This is the numeric value controlling when a population is of sufficient size for
SHAPE to consider it worth having the genotype’s mutational neighbourhood to
be stored in a convenience DB for easier access - ie: this can save computational
time but will cost diskspace during the run.
shape_const_distType
This is the type of stochastic disturbance events to be simulated.
shape_const_growthForm
This is the growth form model to be simulated
shape_const_growthRate
This is the number of offspring from every division event where 1 would mean
replacement, 2 is normal binary fission, etc....
shape_const_growthGenerations
This is an optional integer value controlling if you want a standard number of
time steps between each stochastic disturbance function call. Not defining this
means it will be calculated based on other paratmerts defined.
shape_db_splitTables
This is a logical toggle as to whether or not fitness landscape tables - for geno-
types with the same number of mutations - are allowed to be split into sub-tables.
shape_death_byDensity
This is the logical toggle controlling if deaths are density dependent.
shape_death_densityCorrelation
This is a positive numeric controlling the rate at which density dependent deaths
increase from minimal to maximal effect. Where 1 is linear, > 1 creates an
exponential form of curve and values < 1 will create a root function curve.
shape_death_densityCap
If deaths are density dependent this is the maximal community size for when
deaths are 100% expected.
shape_envString

This is a string used for programatically creating workspace environments for
rSHAPE

18

defineSHAPE

shape_externalSelfing
This is the logical toggle controlling if replicates are to be handled as individual
external calls rather than through the normal internal for loop. It has limited
value and was desgined for when you work on compute nodes with limited wall
time.

shape_external_stopFile
This is the filename for a file which is used to control self-replciation of SHAPE
when selfing is external.

shape_finalDir This is the directory where file from a remote server’s compute node are to be
back ported regularly. Only matters under the correct conditions.

shape_genomelLength
This is the length of a simulant’s genome, or in other words the number of sites
where mutations can occur.

shape_includeDrift
This is a logical toggle as to whether or not we should add stochasticity to the
growth function calculations. It is meant to simulate drift in calculations that
would otherwise be deterministic.

shape_init_distPars
This is the vector of initial values of the dilution factor and random component
of the stochastic disturbance function. It needs to be set with a number and range
of values approriate to the distribution to be simulated.

shape_maxReplicates
This is the number of replicates to be run.

shape_maxRows This is the integer number of rows stored in a single table of the fitness landscape
DB. Only matters is tables are aplit/

shape_muts_onlyBirths
This is a logical flag to control if mutants only appear as a result of birth events.

shape_nextID This is the next genotype ID to be assigned for a genotype that get’s created.
shape_numGenerations

This is the number of generations to be simulated in the run.
shape_objectStrings

This is a named character vector which are the string prefixes used when pro-

gramatically naming objects.
shape_postDir This is the filepath to the directory where post-analysis results will be stored.
shape_recycle_repStart

This is the first replicate being simulated once a SHAPE call is made.
shape_results_removeSteps

This is a logical flag controlling if the steps log is removed after being processed.
shape_run_isRecycling

This is a named vector of four logicals which control which parts of a run is

meant to be recycled between replicates.
shape_save_batchBase

This is a character string for naming your experiment.
shape_save_batchSet

This is an integer value for the set of this experiment associated to this job.

defineSHAPE 19

shape_save_batchJob
This is an integer value for the batch of this experiment associated to this job.
shape_scaleGrowth_byDeaths
This is a logical flag that controls if growth is scaled by deaths so that the growth
form follows standard expectations.
shape_sepString
This is a string character that is used for collpasing vectors of information into
a single character string, and subsequently splitting that information back out.

shape_sepLines This is a string character that is used in collapsing multiple elements into a single
character string though namely employed in the summariseExperiment function.
shape_serverFarm
This is a logical flag of whether or not your simulations are going to be run on a
remote server or other situation with compute and host nodes where you might
want to handle particularities I experienced and thus accounted for.

shape_simModel This is the fitness landscape model to be simulated.
shape_size_timeStep
This is the proportion of a standard biological generation to be simulated in a
single time step of a SHAPE run. Values greater than 1 are not guaranteed to
work as expected. Negative numbers will cause errors.
shape_stringsAsFactors
I don’t like strings to be factors and so SHAPE will avoid treating them as so.
shape_string_lineDescent
This is a string that will be used to collapse vectors of character strings into a
single string It get’s used when we are tracking sequential genotypes through
the line of descent
shape_string_tableNames
This is a string value used as the prefix when naming table in the fitness land-
scape DB.

shape_thisRep This is the replicate number of the first replicate processed in the called run.
shape_tmpGenoTable
This is a temporary object of a table of genotype information that is to be passed
along different functions of SHAPE. It’s stored as an option since it can be build
within a function where it is not returned as an object but then used later. There
is little value in setting this manually.
shape_tmp_selfScript
This is an optionally defined filepath location for a file that will exist to signal
that an externally replicating SHAPE run can stop. This only matters if selfing
is external.
shape_use_sigFig
This is the number of significant figures that will be kept for processed output.
shape_toggle_forceCompletion
This is a logical toggle controlling if a run crashes when it is ended prior to the
maximum number of replicates being completed.
shape_track_asWhole
This is a logical toggle controlling if population sizes must be tracked as integer
values

20 expGrowth

shape_track_distSize
This is a numeric, the size of a disturbance caused by stochastic events. It is the
dilution factor or the divisor of the community size. It must be > 1 or is forced
to that value.

shape_workDir This is the main working directory relative to which your SHAPE experiment
will be built and run. It defaults to the — tempdir — of R when this value is NULL,
I strongly recommend

Warning

Please pass a directory filepath to the argument of shape_workDir, rSHAPE will create this so it
needn’t exist yet. If you leave it as the default — ie NULL — whatever is created will simply be lost
in the temporary folder of this R sessions’ workspace.

Examples

This function builds the basic parameters for a run of SHAPE and I recommend as
the most convenient wayfor setting your own parameters since this function will
make appropriate derived settings based on values passed.

You must at least call it before using runSHAPE() or shapeExperiment().

You can see there are a lot of parameters for SHAPE
args(defineSHAPE)
Here are some default values that were just loaded as options

non

sapply(c(”shape_workDir","shape_save_batchJob","shape_save_batchBase”, "shape_simModel"”),getOption)

As an exmaple we change your working directory, the ID of the job and the fitness landscape model
options(list("shape_workDir" = paste(tempdir(),"~/alternativeFolder/",sep=""),
"shape_save_batchJob"” = 3, "shape_save_batchBase” = "non_default_Experiment”,
"shape_simModel” = "NK"))

non

sapply(c("shape_workDir","shape_save_batchJob", "shape_save_batchBase”, "shape_simModel”),getOption)

NOTE: that manually setting the options will not create a new working directory for rSHAPE,
you would need to do this yourself or could simply pass these arguments through a call
to defineSHAPE().

expGrowth This function uses the exponential growth model and can either cal-
culated the expected growth for a single time step OR it can work
backwards to calculated what was the expected starting population
size prior to a step of exponential growth.

Description

This function uses the exponential growth model and can either calculated the expected growth for a
single time step OR it can work backwards to calculated what was the expected starting population
size prior to a step of exponential growth.

extractInfo_focallD 21

Usage

expGrowth(func_rate, func_step, func_startPop = NULL,
func_endPop = NULL)

Arguments
func_rate This is the number of offpsring expected to be produced by an individual. When
calculating the expected population size after a time step, we force this rate to
be no less than 1 since this function has meaning only in the birth function and
so we do not want to calculate negative births (which would mean deaths).
func_step This is a proportional scalar that will control what proportion of a standard "gen-

eration" is simulated for each step within a SHAPE run. NOTE: This parameter
is not perfectly validated to run as may be expected with all models. For now, it
should be left as a value of "1", but exists for future implementation and testing.

func_startPop This is the initial population size(s) for which you want to calculate a final size.
Leave NULL if trying to calculated the expected initial size from a final popu-
lation.

func_endPop This is the final population size(s) for which you want to calculate a initial size.
Leave NULL if trying to calculated the expected final size from an initial popu-
lation.

Value

numeric value

Examples

Exponential growth equation implemented but allowing either the final or initial population
to be calculated based on whethere the initial or final community size is input.
expGrowth(func_rate = 2, func_step = 1,func_startPop = 100)

expGrowth(func_rate = 2, func_step = 1,func_endPop = 200)

expGrowth(func_rate = 2, func_step = 7,func_startPop = 100)

You cannot set a growth rate less than 1 as this would then simulate deaths which is not
allowed in this calculation.

expGrowth(func_rate = ¢(0.9,1,1.1), func_step = 1,func_startPop = 100)

extractInfo_focallD This is a function to extract genotype/lineage specific information.
This info will be mostly through time style of information but will also
include information about it’s line of descent, growth pressures pre-
establishment, and population size.

Description

This is a function to extract genotype/lineage specific information. This info will be mostly through
time style of information but will also include information about it’s line of descent, growth pres-
sures pre-establishment, and population size.

22 extractInfo_focallD

Usage

extractInfo_focalID(func_focallD, func_estValue, func_stepsCon,
func_landscapeCon, func_hoodCon, func_refMatrix, func_subNaming,
func_genomeLength = getOption("shape_genomelLength"),
func_max_numMutations = getOption(”shape_max_numMutations”),
func_allow_backMutations = getOption("shape_allow_backMutations”),
func_descentSep = getOption("shape_string_lineDescent"),
func_hoodExplore = getOption("shape_const_hoodDepth”),
func_stringSep = getOption("shape_sepString"))

Arguments

func_focalID This is the vector of genotype ID(s) of the focal lineage(s) for which information
is to be extracted.

func_estValue This value is used to define the threshold size required for a population before it
is considered established.

func_stepsCon This is the filepath to an SQLite database storing information for the stepwise
changes of a SHAPE run.

func_landscapeCon
This is the filepath to an SQLite database storing information for the complete
explored and neighbouring fitness landscape of a SHAPE run.

func_hoodCon This is the filepath to an SQLite database storing information for high priority
mutational neighbourhood information

func_refMatrix Is a matrix of a SHAPE run’s population demographics at a step in time. I will
be querried for information regarding a genotype’s number of mutations and
fitness value. of genotypes, but is not required but is also required

func_subNaming This is a logical which controls if the tables which report on all genotypes with
X mutations should be forced into a single table or it SHAPE is allowed to split
them into multiple tables.

func_genomelLength
The number of positions simulated within the individual’s genomes.

func_max_numMutations
The maximum number of mutations that could occur in a single mutation event
— CAUTION: This should never be anything other than 1 as per how SHAPE is
currently implemented.

func_allow_backMutations
This is a logical toggle controlling if reversions are allowed — meaning loss of
mutations.

func_descentSep
This is the standard string used to collapse line of descent information.

func_hoodExplore
This is an object to control which strains we get deep neighbourhood informa-
tion for It should be one of '"none","limited",''priority","full' setting this
higher will cost more and more in post analysis runtime. NOTE: That use of
limited requires that you pass a func_refMatrix of expected shape (has a "geno-
typeID" column)!

func_stringSep A common string separator used to merge information.

extract_popDemographics 23

Value

This returns a list object with several pieces of summary information for the focal genotype ID.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

extract_popDemographics

This is a function that steps forward through time steps of a SHAPE
run and extracts population demographic information. This includes
Fitness, Number of Lineages, and Transitions between dominant geno-
types. Most important it will also return the information related to
which lineages will eventually establish in the population, a piece of
information that will be critical for downstream lineage specific infor-
mation extraction.

Description

This is a function that steps forward through time steps of a SHAPE run and extracts population
demographic information. This includes Fitness, Number of Lineages, and Transitions between
dominant genotypes. Most important it will also return the information related to which lineages
will eventually establish in the population, a piece of information that will be critical for downstream
lineage specific information extraction.

Usage

extract_popDemographics(func_stepsCon, func_estValue, func_landscapeCon,
func_hoodCon, func_size_timeStep)

Arguments

func_stepsCon This is the filepath to an SQLite database storing information for the stepwise
changes of a SHAPE run.

func_estValue This value is used to define the threshold size required for a population before it
is considered established.

func_landscapeCon
This is the filepath to an SQLite database storing information for the complete
explored and neighbouring fitness landscape of a SHAPE run.

func_hoodCon This is the filepath to an SQLite database storing information for high prior-
ity mutational neighbourhood information (which is simply a subset of the full
mutational landscape).

func_size_timeStep
This is the proportion of a standard biological generation which is to be simu-
lated in a single time step.

24 findParent

Value

This return a list object that contains various pieces of usefull summary demographic information.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

findParent This function will look through a pedigree data.frame and recursively
continue building that back through the history of the SHAPE run be-
ing processed.
Description

This function will look through a pedigree data.frame and recursively continue building that back
through the history of the SHAPE run being processed.

Usage

findParent(func_focalGenotype, func_startStep, func_stepMatrix,
func_progenitorList, func_demoArray, func_pedigreeAll,
func_lineString = getOption("shape_string_lineDescent"))

Arguments

func_focalGenotype
a vector of genotype IDs whose lineage you wish to identify.

func_startStep this is the first step in the SHAPE run from which you wish to consider re-tracing
the lineage.
func_stepMatrix
this is the matrix that represent what happened at each step in the SHAPE run.
func_progenitorList
this is a list of the known progenitor(s) for our func_focalGenotypes

func_demoArray this is the whole array of step-wise SHAPE records for population demographics
and feeds func_stepMatrix.

func_pedigreeAll
this is a data.frame which contains all currently known pedigree information and
informs our step-wise focus.

func_lineString
this is the string that will be used to collapse the vector of progenitor genotype’s
into a single charater string. This collapse is done as a convenience for storage
and retrieval.

find_neededNeighbours 25

Value

a vector of character strings, each of which is the found lineage of the func_focalGenotypes

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

find_neededNeighbours This function querries if a suite of genotypes exist within the fitness

landscape database.

Description

This function querries if a suite of genotypes exist within the fitness landscape database.

Usage

find_neededNeighbours(tmp_possibleNeighbours, tmp_focal_numMuts,
tmp_refTables, maxHamming = getOption("”shape_max_numMutations”),
tmp_tableSplit = getOption("shape_db_splitTables"),
tmp_genomelLength = getOption("shape_genomeLength”),

tmpDirection

= getOption("shape_allow_backMutations"),

tmpRange_numMuts = NULL, tmp_genCon)

Arguments

tmp_possibleNeighbours

This is a vector of all possible mutants that we’re trying to querry within the
fitness landscape database.

tmp_focal_numMuts

tmp_refTables

maxHamming

tmp_tableSplit

This is the number of mutations in the focal genotype, it controls - along with
other parameters - what tables of the fitness landscape database are querried.

This is the a vector of named tables that exist within the fitness landscape. It
can not be passed in which case the database at tmp_genCon is querried for this
information.

The maximum number of sites that could be changed by mutation of the tmp_focalGenotype.

This is a logical which controls if the tables which report on all genotypes with
X mutations should be forced into a single table or it SHAPE is allowed to split
them into multiple tables.

tmp_genomelLength

tmpDirection

The length of the genomes, or number of mutable sites/positions, being simu-
lated.

This is a logical which controls if reversions are allowed (ie: if TRUE sites can
revert from mutated to WT)

26 fitnessDist

tmpRange_numMuts
This is the range of number of mutations which a mutant neighbour may posses.
If not supplied that will be calculated in line via other parameters passed to the
function.

tmp_genCon This is the filepath for the database file that contains the fitness landscape infor-
mation.
Value
A vector of the genotypes that need to be created as they’ve not yet been defined within the fitness
landscape.
Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

fitnessDist This is the function that will call for draws from distributions.

Description

This is the function that will call for draws from distributions.

Usage

fitnessDist(tmpDraws, tmpDistribution, tmpParameters)

Arguments

tmpDraws This is the number of draws sought from the distribution being called

tmpDistribution
This is the character string that represents the implemented distribution you want
called. It must be one of: Fixed, Gamma, Uniform, Normal, Chi2, beta, exp,
evd, rweibull, frechet, skewNorm

tmpParameters This is the ordered vector of parameters to be passed in order to parameterise
the distribution from which you want to draw

Value

A vector of values with length equal to tmpDraws

Examples

This draws from distributions
fitnessDist(10, "Uniform”, c(0,1))
fitnessDist (10, "Normal”, c(0@,1))
fitnessDist(10, "exp", 1)

fitnessLandscape 27

fitnessLandscape This function will calculate the fitness values for genotypes being
newly recorded to the fitness landscape.

Description

This function will calculate the fitness values for genotypes being newly recorded to the fitness
landscape.

Usage

fitnessLandscape(tmpGenotypes, tmp_focalFitness, landscapeModel = "HoC",
tmp_ancestralFitness = getOption("shape_const_ancestFitness"),
tmp_weightsRMF = getOption("shape_const_RMF_theta”),
tmp_optimaRMF = getOption("shape_const_RMF_globalOptima"),
tmp_correlationsNK = getOption("”shape_const_NK_interactionMat”),
tmp_const_numInteractionsNK = getOption("”shape_const_numInteractions”),
tmp_NK_ancestDep = getOption(”shape_const_DepbySite_ancestFitness”),
relativeFitness = TRUE,
func_genomeLength = getOption("shape_genomelLength"),
func_distribution = getOption("”shape_constDist"),
func_distParameters = getOption("shape_const_distParameters”),
func_distAsS = getOption("shape_const_distAsS"),
func_sepString = getOption("”shape_sepString"))

Arguments

tmpGenotypes This is a vector of the binaryString values that represent the genotype(s) for
which you want to calculate new fitness values.

tmp_focalFitness
This argument has different meaning depending upon the fitness landscape model
being simulated. It can be a vector of fitness values, a matrix, a single value,
etc...

landscapeModel This is the character string that defines the fitness landscape model being sim-
ulated in this SHAPE run. At present it can be one of: Additive, Fixed, HoC,
NK, RMF

tmp_ancestralFitness
This is the fitness value of the pure WT genotype, it does not always have mean-
ing.

tmp_weightsRMF This is the weighting of the constant/deterministic term calculated in the RMF
fitness landscape equation.

tmp_optimaRMF This is the binary string genotype of the optimal genotype in the current RMF
fitness landscape. It needn’t yet have been yet explored, it is simply the genotype
that will be the deterministic global optimum.

28

growthFunction

tmp_correlationsNK
This is the matrix of fitness values and interactions between mutational states
for the NK fitness lanscape model

tmp_const_numInteractionsNK
This is the "K" value of the NK fitness landscape value and represents the num-

ber of other sites correlated to the fitness of a focal site.
tmp_NK_ancestDep

This is the fitness value of the WT mutant for an NK fitness landscape, it is
passed as a computational ease so that it needn’t be calculated each time this
function is called.

relativeFitness
This is a logical toggle controlling if the fitness values returned should be relative
fitness values

func_genomeLength
This is the genome length of individuals.

func_distribution
This is a character string representing which of the allowed distribution func-
tions can be called for draws of stochastic values when calculating fitness values.
See fitnessDist for those implemented.

func_distParameters
This is a vector of the ordered distribution parameters expected by the distribu-
tion referenced by func_distribution

func_distAsS This is a logical toggle to control in the final returned values should be consid-
ered as selection coefficients, which is achieved by subtracting the calculated
value by 1.

func_sepString This is a character string used for collapsing vectors of information, and expand-
ing the collpased information back into a vector of values.

Value

A vector of fitness values to be assgined for each of the newly explored genotypes defined in the
vector tmpGenotypes

Note

There is no example as this does not have meaning outisde of a runSHAPE call.

growthFunction This is a wrapper function where the birth and death related parame-

ters of a SHAPE run are passed before the appropriate functions (and
their associated methods) are called. This function will be called once
per time step of a SHAPE run.

Description

This is a wrapper function where the birth and death related parameters of a SHAPE run are passed
before the appropriate functions (and their associated methods) are called. This function will be
called once per time step of a SHAPE run.

growthFunction 29

Usage

growthFunction(func_inSize, func_inFitness, func_bProb, func_dProb,
func_deathDen_logical = FALSE, func_deathDen_max = NULL,
func_deathDen_power = 4, func_sizeStep,
func_growthForm = c("logistic”, "exponential”, "constant”, "poisson”),
func_carryingCapacity = NULL, func_basalRate = NULL,
func_deathScale = FALSE, func_drift = TRUE,
func_roundValues = FALSE, func_inIDs = NULL)

Arguments

func_inSize This is the vector of population sizes within the community
func_inFitness This is the vector of fitness value for the community
func_bProb This is the general bith probability defined for this run of SHAPE

func_dProb This is the general death probability defined for this run of SHAPE

func_deathDen_logical
This is a logical toggle to define if deaths are calculated in a density dependent
manner.

func_deathDen_max
This is the community size at which maximum density dependent deaths (ie:
100% of func_inSize) occur.

func_deathDen_power
This is a scaling factor that controls the rate of transition between minimal and
maximal values of the density dependent deaths. Higher values mean a steeper
transition such that there are fewer deaths until higher densities are reached.

func_sizeStep This is a proportional scalar that will control what proportion of a standard "gen-
eration" is simulated for each step within a SHAPE run. NOTE: This parameter
is not perfectly validated to run as may be expected with all models. For now, it
should be left as a value of "1", but exists for future implementation and testing.

func_growthForm
This is the implemeted growth model to be simulated in this run. Currently this

can be one of "logistic','' exponential'','' constant'','' poisson''.

func_carryingCapacity
This is the maximum community size supported by tge simulated environment.

func_basalRate This is the basal growth rate, otherwise definable as the number of offspring an
individual will produce from a single birth event.

func_deathScale
This is a logical toggle to define if the number of births should be scaled by the
number of deaths. The exact interpretation of this varies by growth model, but in
general it forces growth to follow rates expected by standard pure birth models
while still simulating deaths within the community.

func_drift This is a logical toggle as to whether or not stochasticity is introduced into the
deterministic calculations that may be encountered within the growth function.
Its exact implementation varies based on the growth model being simulated.

30 logisticGrowth

func_roundValues
This is a logical toggle to define if the number of births and deaths are forced
to be tracked as integer values. If TRUE, then any fractional amounts will be
stochastically rounded to the nearest integer with a probability of being rounded
up equal to the decimal value —ie: 0.32 means 32% chance of being rounded up

func_inIDs This is a vector of the genotype IDs passed to this function, its order should be
representative of the ordered genotypelDs passed for func_inSize and func_inFitness.

Value

A 2 column matrix of numeric values with columns "births" and "deaths", and rownames equal to
func_inIDs (as.character).

Examples

Imagine you've got an evolving community of three populations where
in each time step 100% of individuals die and individuals with relateive
fitness of 1 produce 2 offspring. This growth function calculates the births
and deaths of that community.
First I show you when births are deterministic (proof of implementation):
growthFunction(func_inSize = ¢(100,100,100), func_inFitness = c¢(1,2,1.05),
func_bProb = 1, func_dProb = 1,
func_sizeStep = 1, func_growthForm = "exponential”,
func_drift = FALSE, func_deathScale = TRUE)
Now same things but with evolutionary drift thrown in
growthFunction(func_inSize = c(100,100,100), func_inFitness = c(1,2,1.05),
func_bProb = 1, func_dProb = 1, func_sizeStep =1,
func_growthForm = "exponential”, func_drift = TRUE,
func_deathScale = TRUE)
Now technically the values in the birth column is really the net population
size and I'd previously set the births to be scaled by deaths but if this were
not the case you'd get final population sizes of:
growthFunction(func_inSize = ¢(100,100,100), func_inFitness = c¢(1,2,1.05),
func_bProb = 1, func_dProb = 1, func_sizeStep = 1,
func_growthForm = "exponential”, func_drift = TRUE,
func_deathScale = FALSE)

logisticGrowth This function is simply an implementation of the logistic growth equa-
tion where: f(x) = K/(I + ((K - N_0)/N_0) *exp-k(x-x_0)) ; Where x_0
is an adjustment to the position of the midpoint of the curve’s maximum
value K = the curves maximum value, k = the steepness of the curve
(growth rate), and N_0 is the starting population it includes param-
eters to change the midpoint as well as change the natural exponent
(ie: exp) to some other value. NOTE: This is for continuous growth,
and since SHAPE is discrete at present this is an unused function.

logisticGrowth 31

Description

This function is simply an implementation of the logistic growth equation where: f(x) = K/ (1 +
((K - N_0)/N_0) *exp-k(x-x_0)) ; Where x_0 is an adjustment to the position of the midpoint of
the curve’s maximum value K = the curves maximum value, k = the steepness of the curve (growth
rate), and N_O is the starting population it includes parameters to change the midpoint as well as
change the natural exponent (ie: exp) to some other value. NOTE: This is for continuous growth,
and since SHAPE is discrete at present this is an unused function.

Usage

logisticGrowth(func_rate, func_step, func_startPop = NULL,
func_maxPop = NULL, func_midAdjust = @,
func_basalExponent = exp(1))

Arguments
func_rate The basal growth rate of individuals in the SHAPE run.
func_step This is the number of steps forward for which you wish to calculate the growth

expected.
func_startPop The sum of the populations in the evolving community.
func_maxPop The carrying capacity of the enviromment being simulated.

func_midAdjust The midpoint which controls the point of inflection for the logistic equation.
Beware, change this at your own risk as its impact will varrying based on the
population sizes being simulated. Ideally, don’t change this value from its de-
fault.

func_basalExponent
This defaults as the natural exponent "e" / "exp". Change it at your own risk.

Value

Returns a single value representing the amount of logistic growth expected by the community

Examples

This calculates logistic growth based on the mathematical continuous time algorithm
logisticGrowth(func_rate = 2, func_step = 1, func_startPop = 1e2, func_maxPop = 1e4)

It normally takes log2(D) steps for a binary fission population to reach carrying capacity,

where D is max/start, in this case D = 100 and so it should take ~ 6.64 turns
logisticGrowth(func_rate = 2, func_step = ¢(1,2,3,6,6.64,7), func_startPop = 1e€2, func_maxPop = 1e4)

32 logisticMap

logisticMap This is the discrete time logistic growth function known as the logistic
map. It calculates the amount of growth expected in a step of time
given by: N_t+1 = N_t + r * (N_t (K - N_t)/K); where N_t is com-
munity size at a time point, r is the per step growth rate, and K is the
environmental carrying capacity.

Description

This is the discrete time logistic growth function known as the logistic map. It calculates the amount
of growth expected in a step of time given by: N_t+1 = N_t + r * (N_t (K - N_t)/K); where N_t is
community size at a time point, r is the per step growth rate, and K is the environmental carrying
capacity.

Usage

logisticMap(func_rate, func_startPop, func_maxPop)

Arguments

func_rate Per time step intrinsic growth rate of individuals
func_startPop The initial summed size of the evolving community

func_maxPop The carrying capacity of the simulated environment

Value

A single value as to the expected summed size of evolving populations in the considered environ-
ment.

Examples

This is the discrete time step form of the logistic equation, known as the logistic map.
It takes a growth rate starting and max possible community size.
stepwise_Size <- 100
for(thisStep in 1:7){
stepwise_Size <- c(stepwise_Size,
logisticMap(2,stepwise_Size[length(stepwise_Size)],1e4))
3
stepwise_Size
When a population overshoots, it will loose members.

lossSampling 33

lossSampling This function actually calculates the stochastic loss to populations.

Description

This function actually calculates the stochastic loss to populations.

Usage

lossSampling(func_inPopulation, func_dilutionFactor)

Arguments

func_inPopulation
This is a vector of the number of individuals in the populations within the com-
munity.

func_dilutionFactor
This is expected proportion of the current population sizes that should remain.

Value

A vector of the resultant population sizes remaining.

Examples

A vector of population sizes is randomly sampled to be around the product of size and factor
replicate(5,lossSampling(c(l1e4,2e4,3e4),0.01))

mutationFunction This allows SHAPE to simulate the mutation process as a determin-
istic value. At present, values must be tracked as integer results for
reasons of how I am passing to functions which identify what mutant
genotype(s) are created.

Description

This allows SHAPE to simulate the mutation process as a deterministic value. At present, values
must be tracked as integer results for reasons of how I am passing to functions which identify what
mutant genotype(s) are created.

Usage

mutationFunction(func_inSize, func_inProb = 0)

34 nameEnviron

Arguments

func_inSize This is the vector of the population sizes, or perhaps number of births, or sum
of both, within the community. Which vector gets passed will depend on which
growth form and other parameters are being implemented by SHAPE.

func_inProb This is the general mutation rate (probability) defined for this run of SHAPE. It
is a per individual considered value, by which I mean that each mutant will have
a single new mutation (or reversion if allowed - handled elsewhere) and so this
probability is based on the vector of individuals passed and any context of if it
is a "per generation" value relates to how time steps and birth probabilities are
handled in the run.

Value

A vector of the number of mutants produced by each of the populations represented by the func_inSize
vector

Examples

The number of mutants generated is forcibly integer but is based

on the stochastic rounding of the product of the number of potentially
mutable individuals and their probability of mutation.
mutationFunction(c(10,50,100),func_inProb = 0.3)
replicate(5,mutationFunction(c(10,50,100),func_inProb = 0.35))

nameEnviron This quick little function is a means for me to create the strings of
environments and subsequently extract information back out.

Description

This quick little function is a means for me to create the strings of environments and subsequently
extract information back out.

Usage

nameEnviron(func_Index, funcSplit = FALSE,
funcBase = getOption("shape_envString"))

Arguments
func_Index This is the vector of numeric, or otherwise unique ID values for the environ-
ments to be created. Or if funcSplit == TRUE, then these are the names to be
split.
funcSplit A logical toggle of whether you are building or splitting the name

funcBase This is the character string used as a prefix to identify environment objects

nameObject 35

Value

A vector of character string of length equal to input.

Examples

Returns a standard named string
test_envNames <- nameEnviron(1:10)
nameEnviron(test_envNames, funcSplit = TRUE)

nameObject This quick little function is a means for me to create the strings of
environments and subsequently extract information back out.

Description

This quick little function is a means for me to create the strings of environments and subsequently
extract information back out.

Usage

nameObject(func_inString, func_inPrefix, func_splitStr = FALSE)

Arguments

func_inString This is the vector of numeric, or otherwise unique ID values for the environ-
ments to be created. Or if funcSplit == TRUE, then these are the names to be
split.

func_inPrefix This is the character string used as a prefix to identify environment objects

func_splitStr A logical toggle of whether you are building or splitting the name

Value

A vector of character string of length equal to input.

Examples

Returns a standard named string
test_objectNames <- nameObject(1:10, "testObject”)
nameObject(test_objectNames, "testObject”, func_splitStr = TRUE)

36 nameTable

nameTable This is a standardising function which allows SHAPE to programati-
ically name tables for the fitness landscape OR split a named table and
extract the embedded information from its naming.

Description

This is a standardising function which allows SHAPE to programatiically name tables for the fitness
landscape OR split a named table and extract the embedded information from its naming.

Usage

nameTable(func_tmpMutations, func_tmpIndex = NULL,
func_baseString = getOption("shape_string_tableNames"),
func_sepString = getOption("shape_sepString"),
func_splitName = FALSE,
func_subNaming = getOption("shape_db_splitTables"))

Arguments

func_tmpMutations
Integer value(s) for the number of mutations to be expected in mutants stored
within the named tables.
func_tmpIndex An optinal element that will be used to insert a unique vector ID
func_baseString
This is the standard prefix character string used in table naming.
func_sepString This is a character string used to collapse vectors of characters.

func_splitName A logical toggle to control if this function is splitting a named table or not. So,
FALSE (default) means we’re creating a table name whereas TRUE is splitting
a named table into it’s parts.

func_subNaming This is a logical which controls if the tables which report on all genotypes with
X mutations should be forced into a single table or it SHAPE is allowed to split
them into multiple tables.

Value

If func_splitName is TRUE, then a vector of table names is returned, it would be best practice to
not assume recycling of passed elements and so pass equally lengthed vectors as input. If FALSE,
we split the table and return the data detailing the number of mutations which ought to be present
for genotypes stored in the named table.

Examples

This creates a table name in a standard way, it can also split table names to extract info.
defineSHAPE ()

nameTable(2,1,"myTest","”_",FALSE,FALSE)

nameTable("myTest_2",func_splitName = TRUE)

nameTable_neighbourhood 37

nameTable_neighbourhood
This is a standardising function which allows SHAPE to programati-
ically name tables for the neighbourhood record OR split a named
table and extract the embedded information from its naming.

Description

This is a standardising function which allows SHAPE to programatiically name tables for the neigh-
bourhood record OR split a named table and extract the embedded information from its naming.

Usage

nameTable_neighbourhood(func_Index, funcSplit = FALSE,
func_sepString = getOption("shape_sepString"))

Arguments
func_Index Integer value(s) for the unique genotype ID whose neighbourhood which will be
recorded by the named table
funcSplit A logical toggle to control if this function is splitting a named table or not. So,

FALSE (default) means we’re creating a table name whereas TRUE is splitting
a named table into it’s parts.

func_sepString This is a character string used to collapse vectors of characters.

Value

If funcSplit is TRUE, then a vector of table names is returned. If FALSE, we split the table and
return the data detailing the genotype ID whose neighbourhood is being recorded on the named
table.

Examples

This creates a table name in a standard way, it can also split table names to extract info.
defineSHAPE ()

nameTable_neighbourhood(2,FALSE)

nameTable_neighbourhood("Step_2",TRUE)

38 name_batchString

nameTable_step This is a standardising function which allows SHAPE to programati-
ically name tables for the step-wise record OR split a named table and
extract the embedded information from its naming.

Description
This is a standardising function which allows SHAPE to programatiically name tables for the step-
wise record OR split a named table and extract the embedded information from its naming.

Usage

nameTable_step(func_Index, funcSplit = FALSE,
func_sepString = getOption("shape_sepString"))

Arguments
func_Index Integer value(s) for the step of a SHAPE run which will be recorded by this table
funcSplit A logical toggle to control if this function is splitting a named table or not. So,

FALSE (default) means we’re creating a table name whereas TRUE is splitting
a named table into it’s parts.

func_sepString This is a character string used to collapse vectors of characters.

Value

If funcSplit is TRUE, then a vector of table names is returned. If FALSE, we split the table and
return the data detailing the step number being recorded on the named table.

Examples

This creates a table name in a standard way, it can also split table names to extract info.
defineSHAPE()

nameTable_step(2,FALSE)

nameTable_step(”Step_2",TRUE)

name_batchString This function is used to build or split character string to be used for
naming batches of SHAPE runs.

Description

This function is used to build or split character string to be used for naming batches of SHAPE runs.

name_batchSubmit 39

Usage

name_batchString(funcBase, func_setID = NULL, func_jobID = NULL,
func_repID = NULL, funcSplit = FALSE,
func_sepString = getOption("”shape_sepString”))

Arguments

funcBase If building names this is the basal string element prefixing the name. If splitting,
it is the vector of names to be split.

func_setID If building names, a vector of the unique set IDs to be named, otherwise a logical
of whether or not the batch naming structure includes sets

func_jobID If building names, a vector of the unique job IDs to be named, otherwise a
logical of whether or not the batch naming structure includes jobs

func_repID If building names, a vector of the unique replicate IDs to be named, otherwise a
logical of whether or not the batch naming structure includes replicates

funcSplit Logical toggle TRUE if splitting names, FALSE to build string characters

func_sepString This is the standard string separator for the SHAPE run

Value

Either a vector of character strings for the created batch names, or a matrix with the decomposed
elements of the split batch name strings

Examples

This simply produces or splits a standard named string.
name_batchString("myTest"”,1,9,3,FALSE,"_")
name_batchString("myTest_1_9_3",TRUE, TRUE, TRUE,TRUE,"_")

name_batchSubmit This is a function to programatically create R batch submission script
names

Description

This is a function to programatically create R batch submission script names

Usage

name_batchSubmit(inVar)

Arguments

invar This is the vector of character string(s) to be used for naming

40 name_parameterScript

Value

A vector of character string of length equal to input.

name_bodyScript This is a function to programatically create R script names

Description

This is a function to programatically create R script names

Usage

name_bodyScript(inVar)

Arguments

invar This is the vector of character string(s) to be used for naming

Value

A vector of character string of length equal to input.

Examples

Returns a standard named string
name_bodyScript(c(”"myJob"”,"otherContent"))

name_parameterScript This is a function to programatically create R script names

Description

This is a function to programatically create R script names

Usage

name_parameterScript(inVar)

Arguments

inVar This is the vector of character string(s) to be used for naming

Value

A vector of character string of length equal to input.

name_subScript 41

Examples

Returns a standard named string
name_parameterScript(c("myJob"”,"otherContent”))

name_subScript This is a function to programatically create R batch submission script
names

Description

This is a function to programatically create R batch submission script names

Usage

name_subScript(inVar)

Arguments

invar This is the vector of character string(s) to be used for naming

Value

A vector of character string of length equal to input.

Examples

Returns a standard named string
name_subScript(c("myJob”, "otherContent”))

querryEstablished This function is used to find which elements of a population matrix are
deemed as established. Established is determined by having a number
of individuals greater than or equal to a definable proportion of the
summed community size.

Description

This function is used to find which elements of a population matrix are deemed as established.
Established is determined by having a number of individuals greater than or equal to a definable
proportion of the summed community size.

Usage

querryEstablished(func_inMatrix, func_sizeCol = "popSize",
func_fitCol = "fitness"”, func_estProp = 0.01)

42

Arguments

func_inMatrix

func_sizeCol

func_fitCol

func_estProp

Value

reportPopulations

This is a matrix which must contain at least one column named as func_sizeCol
which contains the number of individuals in the communities’ populations. But
it may also be required to include a column func_fitCol if func_estProp is "De-

sal .

DO NOT MODIFY - this is the column name that is querried to find population
sizes

DO NOT MODIFY - this is the column name that is querried to find population
fitness - only important if func_estProp is set to "Desai"

If this value is less than 1 - This is the proportion of the current community size
which is used to define a population as established it returns the rows of. If this
value is greater than 1, it is the minimum number of individuals required before
a population is considered as established. Lastly, it can be the character string
"Desai", at which point - as per Desai 2007 - a lineage is established once it has
1/s individuals.

A subset form of the input func_inMatrix matrix object containing the populations which are cal-
culated as established.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

reportPopulations This is a convenience function to ensure that our population demo-
graphics are stored in a data frame and exists because R’s standard
functions can collapse single row frames to named vectors. It requires
that all passed vectors be of the same length
Description

This is a convenience function to ensure that our population demographics are stored in a data
frame and exists because R’s standard functions can collapse single row frames to named vectors.
It requires that all passed vectors be of the same length

Usage

reportPopulations(func_numMuts, func_genotypeID, func_popSizes,
func_fitnesses, func_births, func_deaths, func_mutants, func_progenitor,
func_reportMat_colnames = getOption("shape_reportMat_colnames"))

reset_shapeDB 43

Arguments

func_numMuts This is a vector of the number of mutations held within each tracked genotype.

func_genotypelD
This is a vector of the unique genotype ID for each tracked population in the
community.

func_popSizes This is a vector of the number of individuals for each population of genotypes
in the community.

func_fitnesses This is a vector of the fitness for each genotpe being tracked.

func_births This is a vector of the number of births produced by each population in this time
step.
func_deaths This is a vector of the number of deaths in each population in this time step.

func_mutants This is a vector of the number of mutants produced by each population in this
time step.
func_progenitor
This is a vector of character strings expressing any progenitor genotypes which
generated a mutant that fed into each genotype’s population in this time step.
func_reportMat_colnames
DO NOT MODIFY - This is the vector of character strings to be assigned as the
column names.

Value

A data frame with columns named as per func_reportMat_colnames.

Examples

This returns a data.frame with a standard format

defineSHAPE ()

reportPopulations(1:3,2:4,c(10,50,100),rep(1,3),
rep(9,3),c(10,10,10),c(1,2,0),c("","0_->_1","2"))

reset_shapeDB This is a convenience function to refresh connections to database files.

Description

This is a convenience function to refresh connections to database files.

Usage

reset_shapeDB(func_conName, func_existingCon = NULL,
func_type = "connect”)

44 retrieve_binaryString

Arguments

func_conName The filepath to which an SQLite connection is sought.

func_existingCon
If any value other than NULL, then any existing connection is first dropped prior
to attempting to form a connection to the func_conName filepath.

func_type This should be a character string of either connect, in which case a connection is
made/refreshed to the filepath in func_conName", or any other value will cause
disconnection
Value

An SQLite connection object to an SQLite database.

Examples

This function can be called to set, resset SQL connections
fileName_testCon <- paste(tempdir(),"/testCon.sqlite"”,sep="")
testCon <- reset_shapeDB(fileName_testCon)
reset_shapeDB(testCon, func_type = "disconnect”)

retrieve_binaryString This is a function to search our mutational database and then find the
binary string of the genotypelD passed. This function is more efficient
when the number of mutations for each genotypelD be passed as this
helps reduce the tables of the mutational space that are searched. This
matters when large genotypes are simulated.

Description

This is a function to search our mutational database and then find the binary string of the genotypelD
passed. This function is more efficient when the number of mutations for each genotypelD be passed
as this helps reduce the tables of the mutational space that are searched. This matters when large
genotypes are simulated.

Usage

retrieve_binaryString(func_genotypeID, func_numMuts = NULL,
func_subNaming, func_landscapeCon)

Arguments

func_genotypelD
This is a vector of the unique genotype ID for each tracked population in the
community.

func_numMuts This is a vector of the number of mutations held within each tracked genotype.

runProcessing 45

func_subNaming This is a logical which controls if the tables which report on all genotypes with
X mutations should be forced into a single table or it SHAPE is allowed to split
them into multiple tables.

func_landscapeCon
This is the filepath to an SQLite database storing information for the complete
explored and neighbouring fitness landscape of a SHAPE run.

Value

This returns a vector of character strings that represent the binary strings of the genotypes

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

runProcessing This is a wrapper function to process a SHAPE run and extract mean-
ingful summary information.

Description

This is a wrapper function to process a SHAPE run and extract meaningful summary information.

Usage

runProcessing(func_saveFile, func_subNaming, func_stepsCon,
func_landscapeCon, func_hoodCon, func_estProp, func_size_timeStep,
func_processObjects = getOption("shape_processedObjects"”),
func_hoodPriority = getOption("shape_const_hoodDepth"))

Arguments

func_saveFile This is the filepath where the SHAPE run processed objects are to be saved.

func_subNaming This is a logical which controls if the tables which report on all genotypes with
X mutations should be forced into a single table or it SHAPE is allowed to split
them into multiple tables.

func_stepsCon This is the filepath to an SQLite database storing information for the stepwise
changes of a SHAPE run.

func_landscapeCon
This is the filepath to an SQLite database storing information for the complete
explored and neighbouring fitness landscape of a SHAPE run.

func_hoodCon This is the filepath to an SQLite database storing information for high priority
mutational neighbourhood information

func_estProp This value is used to define the threshold size required for a population before it
is considered established.

46 runReplicate

func_size_timeStep
This is the proportion of a standard biological generation being considered to be
within a single time step.

func_processObjects
This is a vector of character strings which define the names of what objects
will be produced and creates a global objects. DO NOT CHANGE THESE
VALUES.

func_hoodPriority

This is an object to control which strains we get deep neighbourhood informa-
tion for It should be one of '"none","limited'," priority'," ' full" setting this
higher will cost more and more in post analysis runtime.

Value

This returns a string vector stating the result of trying to process for the specified filepath.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

runReplicate This is the function that runs the main body, or meaningful execution,
of SHAPE experiments. In other words this is the main work-horse
function that calls all the other parts and will execute you simulation
run. It has the main parts of: 1. Stochastic Events; 2. Deaths; 3.
Births; 4. Mutations; and during mutations this is where the muta-
tional landscape is queried and updated as required. NOTE: Many
of its internal operations are controlled by options with the suffix
"shape_" and are not explicitly passed as arguments at call to this
function.

Description

This is the function that runs the main body, or meaningful execution, of SHAPE experiments. In
other words this is the main work-horse function that calls all the other parts and will execute you
simulation run. It has the main parts of: 1. Stochastic Events; 2. Deaths; 3. Births; 4. Mutations;
and during mutations this is where the mutational landscape is queried and updated as required.
NOTE: Many of its internal operations are controlled by options with the suffix "shape_" and are
not explicitly passed as arguments at call to this function.

Usage

runReplicate(func_inputFrames, func_currStep, func_stepCounter,
func_growthModel = getOption("shape_const_growthForm”),
func_growthRate = getOption("shape_const_growthRate"),
func_landscapeModel = getOption("shape_simModel"”),
func_fileName_dataBase = getOption("”shape_fileName_dataBase"))

runSHAPE 47

Arguments

func_inputFrames
This is a list of data.frames, either 1 or 2 elements, reporting on the last one or
two steps in the simulation.

func_currStep This is an integer value counting the absolute step in the simulation, its value is
never reset.

func_stepCounter
This is an integer value which is a counter in the most tradititional sense. It’s
job is to track if it’s time for a Stochastic event to trigger and its value is reset at
that point.

func_growthModel
This is the growth model of the SHAPE run, it is passed here as a computational
convenience since it is used numerous times in the function

func_growthRate
This is the growth rate of the SHAPE run, it is passed here as a computational
convenience since it is used numerous times in the function

func_landscapeModel
This is the fitness landscape model of the SHAPE run, it is passed here as a
computational convenience since it is used numerous times in the function

func_fileName_dataBase
This is the filepaths of DBs of the SHAPE run, it is passed here as a computa-
tional convenience since it is used numerous times in the function

Value

Returns a new list of 2 data.frames reporting on the state of SHAPE community for the last 2 time
steps - ie: the one just run, and the most prior step.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

runSHAPE This is the actual running of shape, it will initialise objects and values
which are calculated from the parameters that have been set - see the
options with the suffix ’shape_’. It will establish the database output
files and other initial conditions and then perform replicate simula-
tions as appropriately defined. In essense this is the master wrapper
function for all other functions. If you want to test/see SHAPE'’s de-
fault run then simply call this function after loading the library you’ll
see an experiment built under your root directory. It at least requires
that defineSHAPE have been run, else this is going to fail.

48 runSHAPE

Description

This is the actual running of shape, it will initialise objects and values which are calculated from the
parameters that have been set - see the options with the suffix ’shape_’. It will establish the database
output files and other initial conditions and then perform replicate simulations as appropriately
defined. In essense this is the master wrapper function for all other functions. If you want to
test/see SHAPE’s default run then simply call this function after loading the library you’ll see an
experiment built under your root directory. It at least requires that defineSHAPE have been run,
else this is going to fail.

Usage

runSHAPE (loop_thisRep = getOption("shape_thisRep"),
workingReplicates = seq(getOption("”shape_thisRep”),
getOption("shape_maxReplicates”), by = 1),
tmpEnvir_recycleParms = new.env())

Arguments

loop_thisRep This is the first replicate value to be simulated in this run, it is standard 1 but can
be changed to help with recovery in the middle of a series of replicates.

workingReplicates
This is the maximum replicate number to to simulated in this call. It is meaning-
fully different from the number of replicates to be run only when loop_thisRep
I=1.

tmpEnvir_recycleParms
This is an environment used to temporarily store loaded RData file objects so
that parameters from previous runs, that were stored in RData, can be read back
in as required.

Examples

First step is to set parameters for the run, this could be done manually but I

recommend using the defineSHAPE function which has a default setting for all

possible parameters and will calculate the value of derived/conditional parameters.

defineSHAPE()

Now you can run the simulations, you should get printout to your stdout.
runSHAPE ()

Now go and check the SHAPE working directory, which can be found at:
getOption("”shape_workDir")

list.files(getOption("shape_workDir"))

You'll have an experiment folder as well as post-analysis folder

created each with appropriate output!

set_const_NK_ interactionsMat 49

set_const_NK_interactionsMat
This is a function to just return a matrix that defines the sitewise de-
pendencies for an NK fitness landscape. If K == 0 or, this is not an
NK simulation, it return NULL

Description
This is a function to just return a matrix that defines the sitewise dependencies for an NK fitness

landscape. If K == 0 or, this is not an NK simulation, it return NULL

Usage

set_const_NK_interactionsMat(func_simModel = getOption("”shape_simModel”),
func_genomeLength = getOption("shape_genomelLength"),
func_numInteractions = getOption("shape_const_numInteractions”))

Arguments

func_simModel This is the fitness landscape model being simulated
func_genomelLength

This is the number of sites in the genome being simulated
func_numInteractions

An integer value defining the number of sites that interact with each other site

Value
Either NULL, or a matrix with K + 1 columns, detailing the sites interacting with a focal site -
identified by the row number and the cell values of the columns.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

set_const_RMF_globalOptima
This function samples the space of all possible genotypes and then
defines one that will be considered as the independent fitness contri-
bution global optima.

Description

This function samples the space of all possible genotypes and then defines one that will be consid-
ered as the independent fitness contribution global optima.

50 set_DepbySite_ancestFitness

Usage

set_const_RMF_globalOptima(func_simModel = getOption(”shape_simModel"),
func_genomelLength = getOption("”shape_genomelLength”),
func_initDistance = getOption("shape_const_RMF_initiDistance"”),
func_sepString = getOption("shape_sepString"))

Arguments

func_simModel This is the fitness landscape model being simulated

func_genomeLength
The number of sites in the genome being simulated

func_initDistance
This is the number of mutations found in the global optimal genotype

func_sepString This is the string collapse separator used in the run

Value

A character string of genome positions at which there ought to be mutations to be optimal

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

set_DepbySite_ancestFitness
This is a convenience function for setting the dependent fitness values
of sites in an NK fitness landscape model. This allows the dependent
fitness of sites to be calculated once and then referenced as mutations
occur. It makes exploring this style of fitness landscape a bit more
computationally friendly - as it generally isn’t.

Description

This is a convenience function for setting the dependent fitness values of sites in an NK fitness land-
scape model. This allows the dependent fitness of sites to be calculated once and then referenced
as mutations occur. It makes exploring this style of fitness landscape a bit more computationally
friendly - as it generally isn’t.

Usage

set_DepbySite_ancestFitness(func_simModel = getOption("shape_simModel"”),
func_const_siteBystate_fitnessMat = getOption("”shape_const_siteBystate_fitnessMat"),
func_const_NK_interactionMat = getOption("shape_const_NK_interactionMat"”))

set_RMF_indWeight 51

Arguments

func_simModel This is the fitness landscape model being simulated
func_const_siteBystate_fitnessMat

This is the sitewise independent fitness contributions in the fitness landscape
func_const_NK_interactionMat

This defines the sitewise dependencies based on the K interactions.

Value

Either the dependent sitewise fitness contributions in an NK fitness landscape, or NA.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

set_RMF_indWeight In a RMF fitness landscape model, there is a weighting value applied
to the independent fitness contribution term. This function calculates
that value for the run

Description

In a RMF fitness landscape model, there is a weighting value applied to the independent fitness
contribution term. This function calculates that value for the run

Usage

set_RMF_indWeight (func_simModel = getOption("shape_simModel”),
func_numDraws = 1e+08, func_distType = getOption("shape_constDist"),
func_distParms = getOption("shape_const_distParameters”),
func_const_RMF_theta = getOption("shape_const_RMF_theta"))

Arguments

func_simModel This is the model of fitness landscape being considered

func_numDraws This is the number of draws taken from the independent term’s distribution so
that we can identify the amount of variance in that distribution. It should be a
large integer — eg 5e7

func_distType This is the distribution string reference for this run

func_distParms These are the parameters for this runs distribution function
func_const_RMF_theta
This is the theta value which is multiplied to the variance in the distribution. The
value returned will be a product of this numeric and the variance calulated. From
Neidhart 2014 theta is measured as: theta = ¢ / sqrt var random_component and
so if we want to calculate "c" we return the product of theta and sqrt of variance
in the distribution

52 set_siteByState_fitnessMat

Value

A single numeric value, which may be NA if a non Rough Mount Fuji model is being simulated

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

set_siteByState_fitnessMat

This function is designed to establish an initial object which maps the
fitness values of genome positions based on the state of that site. At
present, this has no meaning if the model of simulation is no NK, Ad-
ditive, or Fixed. Where the first is Kauffman’s NK model and form of
calculations, Additive is what that word would make you think for fit-
ness effects of mutations at sites, and Fixed is when user supplied a de-
fined fitness matrix that describes the entire fitness landscape. NOTE:
This function should likely be called without supplying any non-default
arguments as it will use the shape_ options defined.

Description

This function is designed to establish an initial object which maps the fitness values of genome
positions based on the state of that site. At present, this has no meaning if the model of simulation
is no NK, Additive, or Fixed. Where the first is Kauffman’s NK model and form of calculations,
Additive is what that word would make you think for fitness effects of mutations at sites, and Fixed
is when user supplied a defined fitness matrix that describes the entire fitness landscape. NOTE:
This function should likely be called without supplying any non-default arguments as it will use the
shape_ options defined.

Usage

set_siteByState_fitnessMat(func_simModel = getOption("shape_simModel"),
func_const_fixedFrame = getOption(”shape_const_fixedFrame"),
func_const_siteStates = getOption("shape_const_siteStates”))

Arguments

func_simModel This is the fitness landscape model being simulated
func_const_fixedFrame
This is a contextual object that described constant fitness effects

func_const_siteStates

These are the posibble states for genome sites, at present this ought to be "0"
and/or "1"

shapeCombinations 53

Value
A contextually meaningful matrix describing fitness effects of mutations/genotypes, where based
on the context NULL may be returned.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

shapeCombinations This is a function to take the input parameters and build the parameter
combinations

Description

This is a function to take the input parameters and build the parameter combinations

Usage

shapeCombinations(func_inLines, func_comboRef, func_indepRef, func_condRef)

Arguments

func_inLines These are the template lines of text to be updated.
func_comboRef This is the reference identifiers for grouped as pairwise parameter combinations

func_indepRef This is the reference identifiers for independent parameter values not to be done
pairwise

func_condRef This is the reference indetifiers for grouped parameter combinations which are
conditional on others.
Value
A table of parameter combinations which represents the combination of experimental parameters
for a SHAPE experiment.
Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

54 shapeExperiment

shapeExperiment This is a function used to read the SHAPE_experimentalDesign type
input file and then build a SHAPE experiment by creating all the folder
structure, .R and .sh scripts required to programatically run your ex-
periment — excluding post-analysis, that’s a you problem.

Description

This is a function used to read the SHAPE_experimentalDesign type input file and then build a
SHAPE experiment by creating all the folder structure, .R and .sh scripts required to programatically
run your experiment — excluding post-analysis, that’s a you problem.

Usage

shapeExperiment (func_filepath_toDesign, func_templateDir,
func_maxGrouped_perShell = 2, func_filePath_R = NULL,
func_baseCall = "CMD BATCH",
func_rArgs = "\"--args shape_thisRep=1 shape_outDir="'fake_serverPath/fakeDir/'\"",

func_remotelLocation = "$TMPDISK"”, func_submitArgs = c(number_ofCores
="-c 1", memory = "--mem=8192", jobName = "-J fakeJob", wallTime =
"-t 14-00:00:00", fileOut = "-o fakeOut"”), func_processingCores = 1,

func_suppress0ld_summaryFiles = FALSE)

Arguments

func_filepath_toDesign
This is the absolute filepath which points to the SHAPE_experimentalDesign
like template you’d like used to identify parameter combinations for building
your experiment.

func_templateDir
This is the absolute filepath to a directory on your machine where the SHAPE
template scripts/files have been saved. They are used by this function to help
build your experiment.

func_maxGrouped_perShell
Integer value defining the maximal number of jobs that an output shell script
will try to have run in parallel once executed. This is related to your parallel
computing potential.

func_filePath_R
This is the absolute path to the R application on the system where SHAPE would
be run via BATCH MODE, its value is applied in shell scripts written for running
the experiment. If left NULL then this function will try to use standard R install
paths of which I’'m aware.

func_baseCall Thisis a string element of arguments when calling BATCH MODE if R via shell
script.

func_rArgs This is a character string which represent additional arguments to be passed via
shell script BATCH mode call of R. I consider it most practicable to set the
replicate and output directory of SHAPE.

shapeExperiment 55

func_remotelLocation
The filepath of the compute node on a remote server where your job would
be run. The default is based on the environment variable value used in CAC’s
SLURM submission system.

func_submitArgs
This is information concerning sheel script lines for automatic submission of
jobs to a remote server’s submission system. I’m basing this off of the SLURM
system of the Center for Advanced Computing Queen’s University computing
platform. If your system is different you may need to tweak this. Sorry? This
should be a vector of arguments passed for job submissions on a remote server
The example here would call 1 core with 8§ Gb RAM and a wall time of 14 days
and an outFile be named You can add more arguments if your server requires
this, they’ll get used. BUT where the job’s name MUST be identified as —
fakeJob —- and the output log as — fakeOut —, you can change the argument
queues I also assume your remote server will create a local directory on the
compute nodes whre your job once submitted, and that there will be the location
defined by func_remoteLocation.

func_processingCores
This is the number of parallel cores you would like the summairseExperiment()
to call when trying to process your experimental output.

func_suppress0ld_summaryFiles
Logical flag controlling if your summariseExperiment() will delete old output
summary files. setting to FALSE (default) is ideal if you could ever expect you
might need to restart whereas TRUE becomes practical if you are worried you’d
have updated output to process and you want to ensure a fresh processing start.

Value

If no error is encountered, a message will be returned suggesting the build was successful. SHAPE
makes no effort to perform validation of this effort to build the experiment and presumes no fatal
errors is sufficient evidence.

Examples
This function relies on script templates which can be found at:
'https://github.com/JDench/SHAPE_library/tree/master/SHAPE_templates'
Once these have been downloaded you can pass the appropriate filepath values
to the first two arguments. For this example, I'll assume you've installed
them to a folder position that is now just under the root of your
R-environment working directory.
However, before runing the function we need to parameterise your run of SHAPE,
here I call the default parameters:

defineSHAPE ()

Now using the default templates we design an experiment folder complete with
shell scripts to submit our work programatically.

NOTE: Again, this example assumes you've downloaded the templates and placed

them at the next filepath and directory-path locations
shapeExperiment (func_filepath_toDesign = "~/SHAPE_templates/SHAPE_experimentalDesign.v.1.r",
func_templateDir = "~/SHAPE_templates/")

You should be greeted with a message suggesting your experiment is built.

56 summariseExperiment

You can find the files now at that script's SHAPE workingDirectory.
list.files(getOption("shape_workDir"))
Voila! You can go see the spread of variable evolutionary parameters that were
considered by looking at -- yourJob_parameterCombos.table -- which is a tab
delimated file.
Lastly, you may have R installed elsewhere and so want to have that noted while
your experiment is built because the shell scripts will need to point to the correct place.
shapeExperiment (func_filepath_toDesign = "~/SHAPE_templates/SHAPE_experimentalDesign.v.1.r",
func_templateDir = "~/SHAPE_templates/",
func_filePath_R = "~/your_R_folder/R_app/bin/R")
Now obviously the above location likely is not where you installed R,
but ideally you get the point. The difference is in how the shell scripts were written.

stopError This is a convenience wrapper for sending an error and ending the
SHAPE run as well as the R environment. It will print a message and
then traceback() report before pausing and quiting the R session. This
exists to help debugging when SHAPE is run in batch-mode.

Description

This is a convenience wrapper for sending an error and ending the SHAPE run as well as the R
environment. It will print a message and then traceback() report before pausing and quiting the R
session. This exists to help debugging when SHAPE is run in batch-mode.

Usage

stopError(func_message)

Arguments

func_message The message to be sent to screen prior to ending the R session.

Note

There is no example as this functions role is to print a message and then quit the R run.

summariseExperiment This function is a wrapper for getting a summary of the results of an
rSHAPE run and/or experiment as a whole. The former is presumed
to be of greater use but either is fine as per your needs. This wrapper
will cause RData files to be created which contain the summarised
experimental details that you can then use more easily for analysis.

summarise_evolRepeatability 57

Description

This function is a wrapper for getting a summary of the results of an rfSHAPE run and/or experiment
as a whole. The former is presumed to be of greater use but either is fine as per your needs. This
wrapper will cause RData files to be created which contain the summarised experimental details
that you can then use more easily for analysis.

Usage

summariseExperiment(func_processingTypes = c("fileList”, "parameters”,
"popDemographics”, "repeatability”), func_numCores = 1,
func_suppress0ld = FALSE)

Arguments

func_processingTypes
A vector of character strings which define the type of processing to be performed
when callign this experimental analysis wrapper function. At present, the types

include: "fileList", "parameters”, "popDemographics","repeatability" as per the
rSHAPE option - shape_procExp_filenames

func_numCores Integer number of computer cores to be requested for performing parallel pro-
cessing of experiment files. It defaults as 1, which effectively means in tandem
- ie: not parallel.

func_suppress0ld
This is a logical toggle if files which exist in the expected location should be

deleted. Default is FALSE and the function will simply not process alraedy pro-
cessed output. TRUE might be useful as a means to forcibly re-run the summary
fresh.
Value
A message detailing if the requested processed files can be found, either affirmative for all or a note
when at least one is missing.

Note

There is no example as this cannot work without a complete rSHAPE experiment to be analysed.

summarise_evolRepeatability

This function will use output from summarise_experimentFiles and
summarise_experimentParameters to help with expectations concern-
ing run output and handling. This will save an RData file which will
contain one object: all_popSets, which is a list of relevant control
information about I/0 and then a series of other RData files which
contain the demographics information as a matrix with the mean and
standard deviation of demographics for all replicates.

58 summarise_evolRepeatability

Description

This function will use output from summarise_experimentFiles and summarise_experimentParameters
to help with expectations concerning run output and handling. This will save an RData file which
will contain one object: all_popSets, which is a list of relevant control information about I/O and
then a series of other RData files which contain the demographics information as a matrix with the
mean and standard deviation of demographics for all replicates.

Usage

summarise_evolRepeatability(funcSave_jobExpression,
func_saveFile = getOption("shape_procExp_filenames"”)["repeatability”],
func_experimentDir = getOption("shape_workDir"),
func_saveDir = getOption("shape_postDir"),
func_refFile = getOption("shape_procExp_filenames”)[c("filelList",
"parameters”)], func_workEnvir = new.env(),
func_objPrefix = "Repeat_ ",
func_sepString = getOption("”shape_sepString"),
func_string_line_ofDescent = getOption("shape_string_lineDescent”),
func_processedPattern = getOption("shape_processedData_filePattern”),
func_sepLines = getOption("shape_sepLines"))

Arguments

funcSave_jobExpression
This is a string expression that can be used to find elements of the experiment
being analysed. It should be some robust unique string or regular expression.
func_saveFile This is the filepath and filename (ending in .RData please) to which the results
of this step will be saved.
func_experimentDir
This is the filepath to the root directoy under which all your experimental files
can be found.
func_saveDir This is the directory to which output will be saved.
func_refFile This is the filepath to the reference file that contains information regarding all
the processed files for the rSHAPE experiment.
func_workEnvir This is an environment used to load files with the load function. It’s used to
encapsulate the loaded information to a controlled space.
func_objPrefix This is a character string for programatic naming of objects of this type.
func_sepString This is ISHAPE’s sepString option but here to be passed into foreach
func_string_line_ofDescent
This is rISHAPE’s option of similar name to be passed into foreach
func_processedPattern
This is rISHAPE’s option of the similar name to be passed into foreach
func_sepLines This is rSHAPE’s option of the similar name passed into foreach

Note

There is no example as this cannot work without a complete rSHAPE experiment to be analysed.

summarise_experimentFiles 59

summarise_experimentFiles
This function will find all initially processed output files from in-
dividual replicates and return summary information. That infor-
mation is saved to an RData file which will contain 3 objects:
all_proccessedFiles, all_jobInfo, all_dividedFiles

Description

This function will find all initially processed output files from individual replicates and return
summary information. That information is saved to an RData file which will contain 3 objects:
all_proccessedFiles, all_joblnfo, all_dividedFiles

Usage

summarise_experimentFiles(func_experimentDir = getOption("shape_workDir"),
func_saveFile = getOption("”shape_procExp_filenames")["filelList"],
func_search_filePattern = getOption("shape_processedData_filePattern”),
func_sepString = getOption("shape_sepString"))

Arguments

func_experimentDir
This is the filepath to the root directoy under which all your experimental files
can be found.

func_saveFile This is the filepath and filename (ending in .RData please) to which the results
of this step will be saved.

func_search_filePattern
This is a string which can be used to search and find the files which relate to the
processed output of individual replicates rSHAPE runs.

func_sepString This is the character string which was used for commonly collapsing elements
in the rSHAPE run.

Note

There is no example as this cannot work without a complete rSHAPE experiment to be analysed.

60 summarise_popDemographics

summarise_experimentParameters
This function will use output from summarise_experimentFiles to lo-
cate all parameter files and then report on all those parameters for the
Jjobs that were run. This will save an RData file which will contain one
object: all_parmlInfo

Description

This function will use output from summarise_experimentFiles to locate all parameter files and then
report on all those parameters for the jobs that were run. This will save an RData file which will
contain one object: all_parmInfo

Usage

summarise_experimentParameters(func_workEnvir = new.env(),
func_saveFile = getOption("shape_procExp_filenames"”)["parameters”],
func_experimentDir = getOption("shape_workDir"),
func_refFile = getOption("shape_procExp_filenames”)["fileList"])

Arguments

func_workEnvir This is an environment used to load files with the load function. It’s used to
encapsulate the loaded information to a controlled space.

func_saveFile This is the filepath and filename (ending in .RData please) to which the results
of this step will be saved.

func_experimentDir
This is the filepath to the root directoy under which all your experimental files
can be found.

func_refFile This is the filepath to the reference file that contains information regarding all
the processed files for the rSHAPE experiment.

Note

There is no example as this cannot work without a complete rfSHAPE experiment to be analysed.

summarise_popDemographics

This function will use output from summarise_experimentFiles and
summarise_experimentParameters to help with expectations concern-
ing run output and handling. This will save an RData file which will
contain one object: all_popSets, which is a list of relevant control
information about 1/O and then a series of other RData files which
contain the demographics information as a matrix with the mean and
standard deviation of demographics for all replicates.

trimQuotes 61

Description

This function will use output from summarise_experimentFiles and summarise_experimentParameters
to help with expectations concerning run output and handling. This will save an RData file which
will contain one object: all_popSets, which is a list of relevant control information about I/O and
then a series of other RData files which contain the demographics information as a matrix with the
mean and standard deviation of demographics for all replicates.

Usage

summarise_popDemographics(funcSave_jobExpression,
func_saveFile = getOption("shape_procExp_filenames")["popDemographics”],
func_experimentDir = getOption("shape_workDir"),
func_saveDir = getOption("shape_postDir"),
func_refFile = getOption("shape_procExp_filenames"”)[c("fileList",
"parameters”)], func_workEnvir = new.env(),
func_objPrefix = "popDemo_")

Arguments

funcSave_jobExpression
This is a string expression that can be used to find elements of the experiment
being analysed. It should be some robust unique string or regular expression.

func_saveFile This is the filepath and filename (ending in .RData please) to which the results
of this step will be saved.

func_experimentDir
This is the filepath to the root directoy under which all your experimental files
can be found.

func_saveDir This is the directory to which output will be saved.

func_refFile This is the filepath to the reference file that contains information regarding all
the processed files for the rSHAPE experiment.

func_workEnvir This is an environment used to load files with the load function. It’s used to
encapsulate the loaded information to a controlled space.

func_objPrefix This is a character string for programatic naming of objects of this type.

Note

There is no example as this cannot work without a complete rfSHAPE experiment to be analysed.

trimQuotes This is a function to trim a string by removing the first and last char-
acter, it’s used to trim quotation marks used in the parameter input

Description

This is a function to trim a string by removing the first and last character, it’s used to trim quotation
marks used in the parameter input

62 updateLines

Usage

trimQuotes(funclIn)
Arguments

funcIn a vector of character strings which you want trimmed
Value

character vector of length equal to the input

Examples
It removes leading and trailing string positions, use when quotations are known to exist.
trimQuotes(c('"someWords"', 'otherwords”',"is_changed"))
updatelLines This is a function which is used to update lines that are searched and
replace in a manner conditional to this script’s circumstances The in-
put lines can be a vector of any length, and the search patterns can be
a list of any length where each list vector is used together. The values
should be a list of information used as replacement info.
Description

This is a function which is used to update lines that are searched and replace in a manner conditional
to this script’s circumstances The input lines can be a vector of any length, and the search patterns
can be a list of any length where each list vector is used together. The values should be a list of
information used as replacement info.

Usage

updateLines(func_inLines, func_searchPattern, func_values)

Arguments

func_inLines These are the lines that are to be updated before output

func_searchPattern
These are the string-s- to be searched for replacement

func_values These are the values that are to replace the searched strings.

Value

A vector of character strings that has now been updated.

writeParameters 63

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

writeParameters This is a file for updating the post analysis plotting script and creating
an updated copy in the experiment’s folder

Description

This is a file for updating the post analysis plotting script and creating an updated copy in the
experiment’s folder

Usage

writeParameters(func_infile, func_inParms, func_inCombos, func_outDir,
func_bodyScript, func_ExternalStopper,
func_sepString = getOption("shape_sepString"))

Arguments

func_infile This is the filepath location for the template script to be writte in.
func_inParms These are the parameters to be updated in the plotting file
func_inCombos This is the combination of parameters to be written

func_outDir This is the director filepath to which output should be written.

func_bodyScript
This is a run body of SHAPE script to be read in as template

func_ExternalStopper
This is a file placed externally used as a logical flag that SHAPE should stop
trying to seed new replicates to be run.

func_sepString This is the common string for collapsing information.

Value

A character string indicating that the plotting file-s- have been written

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

64 write_subScript

write_subScript This function is used to programatically take vectors of paramters and
write suites of R parameter scripts that will form part of a SHAPE ex-
periment that is being built for running. This is a wrapper for writting
out the suite of necessary scripts to form a run.

Description

This function is used to programatically take vectors of paramters and write suites of R parameter
scripts that will form part of a SHAPE experiment that is being built for running. This is a wrapper
for writting out the suite of necessary scripts to form a run.

Usage

write_subScript(func_subScipt, func_outDir, func_inCombos, func_inParms,
func_maxJobs, func_applLocation, func_commonArgs, func_submitArgs,
func_remotelLocation, func_passedArgs,
func_externalStopper = getOption("shape_external_stopFile"”),
func_sepString = getOption("”shape_sepString"))

Arguments

func_subScipt This is the template script that needs to be replicated
func_outDir This is the filepath directory where output should be placed
func_inCombos This is the combinations of parameters that are to be used in the experiment.

func_inParms # These are additional parameters to be implemented in writing out combina-
tions.
func_maxJobs This is the maximum number of individual R jobs that should be called at once
by the shell submission scripts, it can affect both local and remote server calls.
func_appLocation
This is the filepath for R so that batch mode runs can be called.
func_commonArgs
These are common arguments important when running the batch mode
func_submitArgs
These are common arguments important when submitting the batch mode
func_remotelLocation
This is a remote server location where an experiment built is to be run it affects
the filepathing called by submission scripts and the associated batch mode runs
performed.
func_passedArgs
These are arguments passed through this wrapper to inner functions.
func_externalStopper
This is a file which exists as a flag for stopping SHAPE from trying to create
additional replicates.

func_sepString This is the common string used to collapse information.

write_subScript 65

Value

A character string that should indicate the experiment has been created. Otheriwse this has failed.

Note

There is no example as this cannot work outisde of a runSHAPE call, it requires data produced by
the simulation experiment.

Index

addDrift, 3
addQuotes, 4
adjustBirths, 5

birthFunction, 6
buildPedigree, 7

calc_relativeFitness, 8
compute_distGrowth, 9
create_genotypeFrame, 11
createGenotypes, 10

deathFunction, 12
defineNeighbours, 13
defineSHAPE, 15

expGrowth, 20

extract_popDemographics, 23

extractInfo_focallD, 21

find_neededNeighbours, 25
findParent, 24
fitnessDist, 26
fitnessLandscape, 27

growthFunction, 28

logisticGrowth, 30
logisticMap, 32
lossSampling, 33

mutationFunction, 33

name_batchString, 38
name_batchSubmit, 39
name_bodyScript, 40
name_parameterScript, 40
name_subScript, 41
nameEnviron, 34
nameObject, 35
nameTable, 36

nameTable_neighbourhood, 37
nameTable_step, 38

querryEstablished, 41

reportPopulations, 42
reset_shapeDB, 43
retrieve_binaryString, 44
runProcessing, 45
runReplicate, 46
runSHAPE, 47

set_const_NK_interactionsMat, 49
set_const_RMF_globalOptima, 49
set_DepbySite_ancestFitness, 50
set_RMF_indWeight, 51
set_siteByState_fitnessMat, 52
shapeCombinations, 53
shapeExperiment, 54

stopError, 56
summarise_evolRepeatability, 57
summarise_experimentFiles, 59
summarise_experimentParameters, 60
summarise_popDemographics, 60
summariseExperiment, 56

trimQuotes, 61
updatelLines, 62

write_subScript, 64
writeParameters, 63

	addDrift
	addQuotes
	adjustBirths
	birthFunction
	buildPedigree
	calc_relativeFitness
	compute_distGrowth
	createGenotypes
	create_genotypeFrame
	deathFunction
	defineNeighbours
	defineSHAPE
	expGrowth
	extractInfo_focalID
	extract_popDemographics
	findParent
	find_neededNeighbours
	fitnessDist
	fitnessLandscape
	growthFunction
	logisticGrowth
	logisticMap
	lossSampling
	mutationFunction
	nameEnviron
	nameObject
	nameTable
	nameTable_neighbourhood
	nameTable_step
	name_batchString
	name_batchSubmit
	name_bodyScript
	name_parameterScript
	name_subScript
	querryEstablished
	reportPopulations
	reset_shapeDB
	retrieve_binaryString
	runProcessing
	runReplicate
	runSHAPE
	set_const_NK_interactionsMat
	set_const_RMF_globalOptima
	set_DepbySite_ancestFitness
	set_RMF_indWeight
	set_siteByState_fitnessMat
	shapeCombinations
	shapeExperiment
	stopError
	summariseExperiment
	summarise_evolRepeatability
	summarise_experimentFiles
	summarise_experimentParameters
	summarise_popDemographics
	trimQuotes
	updateLines
	writeParameters
	write_subScript
	Index

