Package ‘rLDCP’

October 14, 2022

Type Package
Title Text Generation from Data

Version 1.0.2

Date 2017-11-10

Author Patricia Conde-Clemente [aut, cre], Jose M. Alonso [aut], Gracian Trivino [aut]
Maintainer Patricia Conde-Clemente <patricia.condeclemente@gmail.com>

Description Linguistic Descriptions of Complex Phenomena (LDCP) is an architecture and methodol-
ogy that allows us to model complex phenomena, interpreting input data, and generating auto-
matic text reports cus-
tomized to the user needs (see <doi:10.1016/j.ins.2016.11.002> and <doi:10.1007/s00500-016-
2430-5>). The proposed package contains a set of methods that facilitates the develop-
ment of LDCP systems. It main goal is increasing the visibility and practical use of this re-
search line.

License GPL (>=2) | file LICENSE

URL http://phedes.com/rLDCP
LazyData FALSE

NeedsCompilation no

RoxygenNote 6.0.1

Suggests testthat

Imports XML (>= 3.98-1.4), methods
Repository CRAN

Date/Publication 2017-11-10 16:42:11 UTC

R topics documented:

o3 o O 2
data_structure . . . . . . . . . . e e e e e 3
degree_mf . . . . . .. L e 4
fuzzy_partitions . . . . . . . ... e e e e e e 5
fuzzy_rule . . . . .. 5


https://doi.org/10.1016/j.ins.2016.11.002
https://doi.org/10.1007/s00500-016-2430-5
https://doi.org/10.1007/s00500-016-2430-5
http://phedes.com/rLDCP

fuzzy_rules . . . . . . e e e 6
generate_code . . . . ... Ll e 7
glmp . . . e e 7
infer_rules . . . . ... e e e e e 8
Idep . . . e 9
Idep_run . . . . L e e 10
OPETALOT .« . v v v v e i e e e e e e e e e e e e e e e e e e 10
PIM . oo e e e e 11
pm_infer. . . ... 13
pm_multidimensional . . . . . . ... Lo 14
PIN_TEPOTIT . . o v v v i i e e e e e e e e e e e e e e e e e e e e 15
report_template . . . . .. L. L 16
trapezoid_mf . . . . . L. 17
triangle_mf . . . ... L e 17
validate_xml . . . . . . . o e 18
xml2rldep . ... 19

Index 20

cp Define the CP
Description

In general, CP corresponds with specific parts of the analyzed phenomenon at a certain degree of
granularity. To create a computational model of the analyzed phenomenon, the designer analyzes
the everyday use of natural language about the monitored phenomenon with the aim of identifying
different parts (units of information or granules) based on his/her subjective perceptions. According
with Zadeh (1996), a granule is a clump of elements which are drawn together by indistinguishabil-
ity, similarity, proximity or functionality. The GLMP handles granules by using CPs.

Usage

cp(name, a, b = NULL, r = NULL)

Arguments

name is the identifier of the CP.

a is a vector A = (al, a2,... , an) of linguistic expressions that represents the
whole linguistic domain of CP, e.g. we have the linguistic domain "statistical
data" that is represented with three linguistic variables (bad, good, very good).

b is a vector B= (b1, b2, ..., bn) of linguistic expressions (words or sentences

in natural language) that represents the reliability of the CP, e.g., the reliability
of the "statistical data" are (low, moderate, high). By default (b = NULL), the CP
does not manage information about reliability.



data_structure 3

r isavectorR=(r1, r2,..., rn) of relevance degrees 0 <=ri <=1 assigned to
each ai in the specific context, e.g., the relevance of the linguistic expressions
(bad, good, very good) is (0.5, 0.5, 1) means the perception of "very good" is
more relevant than the other two choices. By default (r = NULL), the function
create a r vector with the maximum degree of relevance for all linguistic expres-
sion, e.g., (1,1,1).

Value

The generated CP = 1list(a, w, r, b, wb) where w and wb are vectors with the validity degrees (wi
and wbi in [0,1]) of the linguistic expressions in a and b respectively. These vectors are initialized
with 0.

Examples

myCP <-cp("myCP", c("bad", "good", "very good"))

myCP <- cp("myCP", c("bad”, "good", "very good”), c("low”, "moderate”, "high"))

myCP <- cp("myCP", c("bad", "good", "very good"), r=c(1,0.8,0.9))

myCP <- cp("myCP", c("bad", "good", "very good”), c("low”, "moderate”, "high"), c(1,0.8,0.9))

data_structure Define the data structure

Description

Data structure provides the GLMP input. It constructor receives the input values and the method
that defines the data structure, i.e., the set of preprocesing techniques.

Usage

data_structure(input, method)

Arguments
input is the input data. May be a vector, list or matrix with numbers.
method is the function with the data preprocesing techniques needed to prepare the
GLMP input. The method must have one argument, the input data:
my_method <- function(input)
Value

The generated data_structure = list(input, method)



4 degree_mf

Examples

values <- matrix(c(34,11,9,32), ncol=2)

my_method <- function (input){

output <- c(mean(input[,1]), mean(input[,2]))
output

3

my_data_structure <- data_structure(values,my_method)

degree_mf Define generic calculation of fuzzy membership degrees

Description

It is a generic function in charge of computing fuzzy membership degrees. Namely, it identifies the
specific membership function to consider and run the related method for computing the member-
ship degree for a given input value. It takes as input an object (trapezoid_mf, triangle_mf and
fuzzy_partitions) and the related input values

Usage

degree_mf (shape, input)

Arguments
shape is the object (trapezoid_mf, triangle_mf and fuzzy_partitions) to dis-
patch to.
input is the value to be assess.
Value

the membership degree for a given input values.

Examples

w <- degree_mf(triangle_mf(450,450,550),450)

w <- degree_mf(fuzzy_partitions(triangle_mf(450,450,550),
triangle_mf(450,550,600),
trapezoid_mf (550,600,800,1000),
triangle_mf(800,1000,1300),
trapezoid_mf(1000,1300,1500,1500)),450)



fuzzy_partitions 5

fuzzy_partitions Define the fuzzy parititions

Description

It is a constructor of fuzzy partitions, it defines a set of membership functions. It takes as input a
set of trapezoid_mf or triangle_mf or objects in the shape_mf class.

Usage

fuzzy_partitions(...)

Arguments

are the diferent partitions, e.g., trapezoid_mf or triangle_mf.

Value

the (fuzzy_partitions <- list(...)

Examples

fuzzy_partitions(triangle_mf(450,450,550),
triangle_mf(450,550,600),
trapezoid_mf (550,600,800, 1000),
triangle_mf(800,1000,1300),
trapezoid_mf(1000,1300,1500,1500))

fuzzy_rule Define the fuzzy rule

Description

We define a fuzzy rule using the numbers 1 and 0. rule(0,0,1,0,0, 0,0,1,0,0, 0,0,1,0,0, 0,0,1)

This is an example of fuzzy_rule(0,0,1,0,0,1). In the fuzzy rule the number 1 means that the lin-
guistic expression is included and the number O means that the linguistic expression is not included.

Usage
fuzzy_rule(...)

Arguments

the 0 and 1 that compose the fuzzy rule.



6 fuzzy_rules

Value

the fuzzy_rule <-c(...)

Examples

# For example, the rule "IF CPtemp IS warm THEN CPcomfort IS very comfortable”
#is coded as:

fuzzy_rule(0,1,0,0,0,1)

# Where, the first three values (0,1,0) correspond with the linguistic

# expressions Atemp=(cold, warm, hot) that define the room temperature (CPtemp).
# The last three values (0,0,1) are related to the linguistic expressions

# Acomfort=(uncomfortable, comfortable and very comfortable) that define

# the room comfort (CPcomfort).

#

fuzzy_rules Define the fuzzy rules

Description

It is a constructor of fuzzy rules, the arguments are the diferent fuzzy_rule object.

Usage

fuzzy_rules(...)

Arguments

one or more fuzzy_rule objects.

Value

fuzzy_rules <- list(...)
Examples

fuzzy_rules(fuzzy_rule(0,
fuzzy_rule(1,0,0, 1,
fuzzy_rule(0,1,0, @

oo
s
(S
s
s =
A



generate_code 7

generate_code Generate the R code

Description

The function takes as input the path to a XML file that contains a LDCP system. Then it generates
its corresponding in R code. This R code is stored in an output file. The output file path is another
function parameter.

Usage

generate_code(input, output)

Arguments
input is the XML source path file. E.g. "/folder/ldcp_system.xml".
output is the R destination path file. E.g. "/folder/Idcp_system.R".
Value

If the process ends without error, the user will receive a message that indicates that the code has
been generated successfully. Otherwise, the user will receive the detailed list of errors.

Examples

## Not run: generate_code('extdata/comfortableroom', 'comfortableroom')

## The code has been generated successfully

glmp Define the GLMP

Description

Granular Linguistic Model of Phenomena (GLMP) is a network of cp and pm objects. that allows
the designer to model computationally her/his own perceptions. The input data are introduced into
the model through 1PMs which interpret the input data and create CPs. Then, 2PMs take several
CPs as input and generate 2CPs. Of course, following the same scheme, is possible to add additional
upper levels.

The glmp constructor receive as arguments the list of pms and the method with the computational
model.

Usage
glmp(pms, method)



8 infer_rules

Arguments
pms is the list of pm objects included in the glmp.
method is the function with the glmp computational model. The method must have two
arguments: the list of pm objects defined in the glmp and the input data:
my_glmp_method <- function(pm, input)
Value

The generated glmp = 1ist(pm, method)

Examples

## Not run: glmp_method <- function(pm,input){

pm$pm_depth  <- pm_infer(pm$pm_depth, input[1])
pm$pm_height <- pm_infer(pm$pm_height,input[2])
pm$pm_width  <- pm_infer(pm$pm_width, input[3])

pm$pm_frame <- pm_infer(pm$pm_frame, list( pm$pm_depthsy,
pm$pm_height$y,
pm$pm_width$y)

pm
3

my_glmp <- glmp(list(pm_depth = pm_depth,
pm_height = pm_height,
pm_width = pm_width,

pm_frame = pm_frame),
glmp_method)
## End(Not run)
infer_rules Make the inference

Description

Make an inference with the fuzzy rules.

Usage

infer_rules(rules, operator, input)

Arguments
rules the set of fuzzy rules.
operator the operator object.

input is the list of validity degrees related to the input cp objects.



Idcp 9

Value

A vector that containd the result of the inference.

Examples

## In the example the input of the fuzzy rule correspond with two CPs and each CP has 3
## linguistic variables, e.g, {"bad”, "good”, "very good"}. The output also
## correspond with a CP with 3 linguistic variables.

infer_rules(fuzzy_rules(fuzzy_rule(0,0,1, 0,0,1, 0,0,1),
fuzzy_rule(1,0,0, 1,0,0, 1,0,0),
fuzzy_rule(o,1,0, 0,1,0, 0,1,0)),
operator(min, max),
list(c(0,0.5,0.5),c(0.5,0.5,0)))
## [1] 0.0 0.5 0.0

ldcp Define the LDCP system

Description

Linguistic Descriptions of Complex Phenomena (LDCP) is a technology focused on modeling com-
plex phenomena, interpreting input data and generating automatic text reports customized to the
user needs. # The ldcp constructor receive as arguments: the data_structure, the glmp and the
report_template.

Usage

ldcp(data, glmp, report)

Arguments
data is the data_structure object.
glmp is the glmp object.
report is the report_template object.
Value

The generated system ldcp = list(data, glmp, report)

See Also

cp and pm

Examples

## Not run: my_ldcp <- ldcp(my_data,my_glmp,my_report)



10 operator

ldcp_run Execute the LDCP system

Description

Execute the 1dcp system in order to obtain the linguistic report. This method follows these three
sequential steps 1) Data acquisition, 2) Interpretation and 3) Report generation. Data acquisition
process gets the input data and prepares the data structure. Then, the data are interpreted using the
GLMP. The result is a set of computational perceptions (CP) that are valid to describe these data.
Finally, the report generation process generates a linguistic report using the report template and the
previous set of CPs.

Usage
ldcp_run(ldcp, input = NULL)

Arguments
ldcp is the 1dcp system.
input is the system input data. May be a vector, list, or matrix with numbers. It is a
new input to the data_structure object. By default, is NULL.
Value

The 1dcp object that contains the execution results.

Examples

## Not run: my_ldcp <- ldcp_run(my_ldcp)

operator Define the operator

Description

The operator defines the conjunction and disjunction functions used in the fuzzy rules. It takes as
input parameters the function used to implement the conjunction, and the function used to imple-
ment the disjunction, e.g., "operator(min, max)", where min and max are functions defined by the R
language that calculate the maximum and minimum, respectively, from a set of values received as
input. Note that, we implicitly assign to the fuzzy implication operator (THEN) the function given
for conjunction

Usage

operator(conjunction, disjunction)



pm 11

Arguments
conjunction is the method used to make the conjunction.
disjunction is the method used to make the disjunction.
Value

the opertator object my_op <- list(conjunction, disjunction).

Examples

operator <- operator(min, max)

pm Define the PM

Description
Perception Mapping (PM) is used to create and aggregate cp objects. Each PM receives a set of
inputs (cp objects or numerical values) which are aggregated into a single CP.

Usage

pm(u = NULL, y, g, t = NULL)

Arguments

u is a vector of n input cps u = (ul, u2, ..., un). In the special case of first level
perception mappings (1PM) the inputs are numerical values provided either by
sensors or obtained from a database.

y is the output cp.

g is an aggregation function employed to calculate w from the input cps. For
example, g might be implemented using a set of fuzzy rules. In the case of
1PMs, g is built using a set of membership functions.

t is a text generation algorithm which allows generating the sentences in A. In
simple cases, t is a linguistic template, e.g., cat("Alabama has", value, "the
number of women in the last census".

Value

The generated pm = list(u,y,g,t)

See Also

cp



12 pm

Examples

## Not run: cp_depth <- cp("cp_depth”,c("far",
"bit far”,
"good",
"close”,
"very close"))

g_depth <- function(u,y){
y$w <- degree_mf(fuzzy_partitions(triangle_mf(450,450,550),
triangle_mf( 450,550,600),
trapezoid_mf (550,600,800, 1000),
triangle_mf( 800,1000,1300),
trapezoid_mf( 1000,1300,1500,1500)),u)

pm_depth <- pm(y=cp_depth, g=g_depth)

HHHEHHHEHEE A HEIGHT DEFINITION ##### AR AR
cp_height <- cp("cp_height”, c("high”,

"average high",

"centered”,

"average low",

"low"))

g_height <- function(u,y){
y$w <- degree_mf(fuzzy_partitions(trapezoid_mf(-1000,-1000,-600,-400),
triangle_mf(-600,-400,0),
trapezoid_mf(-400,0,200,400),
triangle_mf(200,400,600),
trapezoid_mf(400,600,1000,1000)),u)

pm_height <- pm(y=cp_height, g=g_height)

HHHHHHHEHEE A WIDTH DEFINITION i ## A A
cp_width <- cp("cp_width”, c("left",
"average left",
"centered”,
"average right”,
"right"))

g_width <- function(u,y){
y$w <- degree_mf (fuzzy_partitions(triangle_mf(-1000,-600,-400),
triangle_mf (-600,-400,0),
triangle_mf(-400,0,400),
triangle_mf (0,400,600),
triangle_mf (400,600,1000,1000)),
u)



pm_infer 13

pm_width <- pm(y=cp_width, g=g_width)
HHHEHEARHEEA A FRAME DEFINITION it # AR R
cp_frame <- cp("cp_frame"”, c("bad",

"middle”,

Hgood”))

g_frame <- function(u,y){

operator <- operator(min, max)

y$w<- infer_rules(fuzzy_rules( fuzzy_rule(0,0,1,0,0, 0,0,1,0,0, 0,0,1,0,0, 0,0,1),
fuzzy_rule(1,1,1,1,1, 1,1,1,1,1, 1,1,0,1,1, 1,0,0),
fuzzy_rule(1,1,1,1,1, 1,0,0,0,1, 0,0,1,0,0, 1,0,0),
fuzzy_rule(1,0,0,0,1, 1,1,1,1,1, 0,0,1,0,0, 1,0,0),
fuzzy_rule(o,1,0,1,0, 0,1,0,1,0, 0,0,1,0,0, 0,1,0)),

operator,
list(ul[111$w,ul[2]1$w,ul[31I$w))

y
}

t_frame <- function(y){
templates <- c("It has been taken a bad framed photo”,
"It has been taken a middle framed photo”,

"It has been taken a good framed photo")

return( templates[which.max(y$w)1)
3

pm_frame <- pm(y=cp_frame, g=g_frame, t=t_frame)

## End(Not run)

pm_infer Call the g function

Description

It call the g function in order to make the inference, i.e., map inputs u to output y.

Usage
pm_infer(pm, u = NULL)

Arguments

pm is the pm object.
u is the new pm input. By default is NULL.



14 pm_multidimensional

Value

the pm obtained after calling g.

See Also

cp

Examples

cp_depth <- cp("cp_depth”, c("far",
"bit far”,
"good",
"close”,
"very close"))

g_depth <- function(u,y){
y$w <- degree_mf(fuzzy_partitions(triangle_mf(450,450,550),

triangle_mf( 450,550,600),
trapezoid_mf (550,600,800, 1000),
triangle_mf( 800,1000,1300),
trapezoid_mf( 1000,1300,1500,1500)),u)

y

3

pm_depth <- pm(y=cp_depth, g=g_depth)
pm_depth  <- pm_infer(pm_depth, 650)

pm_multidimensional Define the pm of a multidimensional cp

Description

It is a set of pms that infer a multidimensional cp.

Usage

pm_multidimensional(...)

Arguments

the set of pms

Value

The generated pm_multidimensional <- list(...)



pm_report 15

pm_report Generate the report of y

Description

It call the t function in order to generate the linguistic descriptions that better describe the output y.

Usage

pm_report(pm)

Arguments

pm is the pm object.

Value

the description obtained after calling t.

Examples

cp_frame <- cp("cp_frame"”, c("bad",
"middle”,
"500d"))

g_frame <- function(u,y){

operator <- operator(min, max)

y$w<- infer_rules(fuzzy_rules( fuzzy_rule(0,0,1,0,0, 0,0,1,0,0, 0,0,1,0,0, 0,0,1),
fuzzy_rule(1,1,1,1,1, 1,1,1,1,1, 1,1,0,1,1, 1,0,0),
fuzzy_rule(1,1,1,1,1, 1,0,0,0,1, 0,0,1,0,0, 1,0,0),
fuzzy_rule(1,0,0,0,1, 1,1,1,1,1, 0,0,1,0,0, 1,0,0),
fuzzy_rule(o,1,0,1,0, 0,1,0,1,0, 0,0,1,0,0, 0,1,0)),

operator,
list(ulf[111$w,ul[2]]%w,ul[3]11%w))

t_frame <- function(y){
templates <- c("It has been taken a bad framed photo”,
"It has been taken a middle framed photo”,

"It has been taken a good framed photo")

return( templates[which.max(y$w)1)
}

pm_frame <- pm(y=cp_frame, g=g_frame, t=t_frame)



16 report_template

pm_report (pm_frame)

report_template Define the report template

Description

The text generation algorithm contains the programming code capable of generating the appropriate
report to each specific user. Algorithms must select and order the linguistic expressions to generate
the text included in the report. # The report_template constructor receive as arguments the list
of properties and the method (programming code) capable of generating the appropriate report.

Usage

report_template(properties = NULL, method, description = NULL)

Arguments
properties may be a vector, list or matrix with the user’s needs, preferences and goals. By
default properties = NULL.
method is the function that generates the appropriate report. The method must have two

arguments: the list of properties and the list of pms: my_report_method <-
function(properties, pm){...J}.

description is the result of call the report template. By default is NULL

Value

The generated report_template= list(properties, method,description)

Examples

properties = NULL
report_method <- function(properties,pm){
pm_report (pm$pm_frame)
3
my_report <- report_template(properties,
report_method)



trapezoid_mf 17

trapezoid_mf Define the trapezoid membership function

Description
It is a constructor of trapezoidal shapes. They take as input the numerical values which define the
anchor points in membership functions.

Usage

trapezoid_mf(a, b, c, d)

Arguments
a the trapezoid point a.
b the trapezoid point b.
c the trapezoid point c.
d the trapezoid point d.
Value

the (trapezoid_mf <-1list(a,b,c,d))

Examples

trapezoid_mf (0, 1, 2, 3)

triangle_mf Define the triangle membership function

Description
It is a constructor of triangular shapes. They take as input the numerical values which define the
anchor points in membership functions.

Usage

triangle_mf(a, b, c)

Arguments
a the trapezoid point a.
b the trapezoid point b.

c the trapezoid point c.



18 validate_xml
Value

the (triangle_mf <- list(a,b,c))

Examples

triangle_mf(@, 1, 2)

validate_xml Validate the XML file

Description

The function takes as input the path to a XML file that contains a LDCP system. Then it validates
the LDCP system.

Usage

validate_xml(xmlfile, schema = NULL)

Arguments
xmlfile is the XML source path file. E.g. "/folder/ldcp_system.xml".
schema is the 1dcp schema path file. By default is "ldcpSchema.xsd".
Value

If the process ends without error, the user will receive the message that indicates that the XML is
valid. Otherwise, the user will receive the detailed list of errors.

Examples
## Not run: validate_xml('extdata/comfortableroom.xml"')

## The xml is valid



xml2rldcp 19

xml2rldcp XML to rLDCP

Description

The function takes as input the path to a XML file that contains a LDCP system. Then it validates
the LDCP system and generates its corresponding in R code. This R code is stored in an output file.
The output file path is another function parameter.

Usage
xml2rldcp(input, output)

Arguments
input is the XML source path file. E.g. "/folder/ldcp_system.xml".
output is the R destination path file. E.g. "/folder/ldcp_system.R".
Value

If the process ends without error, the user will receive two messages: one indicates that the XML is
valid and the other indicates that the code has been generated successfully. Otherwise, the user will
receive the detailed list of errors.

Examples

## Not run: xml2rldcp('extdata/comfortableroom.xml’,'comfortableroom.R"')

## The xml is valid
## The code has been generated successfully



Index

cp,2,7-9, 11,14

data_structure, 3,9, 10
degree_mf, 4

fuzzy_partitions, 5
fuzzy_rule, 5,6
fuzzy_rules, 6

generate_code, 7
glmp, 7,9

infer_rules, 8

ldcp, 9, 10
ldcp_run, 10

operator, 8, 10

pm, 7-9, 11, 14
pm_infer, 13
pm_multidimensional, 14
pm_report, 15
report_template, 9, 16

trapezoid_mf, 17
triangle_mf, 17

validate_xml, 18

xml2rldcp, 19

20



	cp
	data_structure
	degree_mf
	fuzzy_partitions
	fuzzy_rule
	fuzzy_rules
	generate_code
	glmp
	infer_rules
	ldcp
	ldcp_run
	operator
	pm
	pm_infer
	pm_multidimensional
	pm_report
	report_template
	trapezoid_mf
	triangle_mf
	validate_xml
	xml2rldcp
	Index

