Package ‘rFerns’

October 14, 2022
Type Package

Title Random Ferns Classifier
Version 5.0.0

Description Provides the random ferns classifier by Ozuysal, Calonder, Lep-
etit and Fua (2009) <doi:10.1109/TPAMI.2009.23>, modified for generic and multi-label classi-
fication and featuring OOB error approximation and importance measure as intro-
duced in Kursa (2014) <doi:10.18637/jss.v061.110>.

Encoding UTF-8
URL https://gitlab.com/mbq/rFerns

BugReports https://gitlab.com/mbq/rFerns/-/issues
License GPL (>=2)

Suggests testthat

RoxygenNote 7.1.1

NeedsCompilation yes

Author Miron Bartosz Kursa [aut, cre]
(<https://orcid.org/0000-0001-7672-648X>)

Maintainer Miron Bartosz Kursa <M.Kursa@icm.edu.pl>
Repository CRAN
Date/Publication 2021-09-22 10:00:13 UTC

R topics documented:

merge.rFerns L L Lo 2
NAIVeWrapper e e
predictrFerns L 5
rFerns L L 6
Index 9

https://doi.org/10.1109/TPAMI.2009.23
https://doi.org/10.18637/jss.v061.i10
https://gitlab.com/mbq/rFerns
https://gitlab.com/mbq/rFerns/-/issues
https://orcid.org/0000-0001-7672-648X

2 merge.rFerns

merge.rFerns Merge two random ferns models

Description

This function combines two compatible (same decision, same training data structure and same
depth) models into a single ensemble. It can be used to distribute model training, perform it on
batches of data, save checkouts or precisely investigate its course.

Usage

S3 method for class 'rFerns'
merge (
X!
Y,
dropModel = FALSE,
ignoreObjectConsistency = FALSE,

trueY = NULL,

)

Arguments

X Object of a class rFerns; a first model to be merged.

y Object of a class rFerns; a second model to be merged. Can also be NULL, x
is immediately returned in that case. Has to have be built on the same kind of
training data as x, with the same depth.

dropModel If TRUE, model structure will be dropped to save size. This disallows prediction

using the merged model, but retains importance and OOB approximations.
ignoreObjectConsistency

If TRUE, merge will be done even if both models were built on a different sets of

objects. This drops OOB approximations.

trueY Copy of the training decision, used to re-construct OOB error and confusion
matrix. Can be omitted, OOB error and confusion matrix will disappear in that
case; ignored when ignoreObjectConsistency is TRUE.

Ignored, for S3 gerneric/method consistency.

Value

An object of class rFerns, which is a list with the following components:

model The merged model in case both x and y had model structures included and
dropModel was FALSE. Otherwise NULL.

OObErr OOB approximation of accuracy, if can be computed. Namely, when oobScores
could be and trueY is provided.

naive Wrapper 3

importance The merged importance scores in case both x and y had importance calculated.
Shadow importance appears only if both models had it enabled.

oobScores OOB scores, if can be computed; namely if both models had it calculated and
ignoreObjectConsistency was not used.

oobPreds A vector of OOB predictions of class for each object in training set, if can be
computed.

oobConfusionMatrix

OOB confusion matrix, if can be computed. Namely, when oobScores could be
and trueY is provided.

timeTaken Time used to train the model, calculated as a sum of training times of x and y.
parameters Numerical vector of three elements: classes, depth and ferns.
classLabels Copy of levels(Y) after purging unused levels.
isStruct Copy of the train set structure.
merged Set to TRUE to mark that merging was done.

Note

In case of different training object sets were used to build the merged models, merged importance
is calculated but mileage may vary; for substantially different sets it may become biased. Your have
been warned.

Shadow importance is only merged when both models have shadow importance and the same
consistentSeed value; otherwise shadow importance would be biased down.

The order of objects in x and y is not important; the only exception is merging with NULL, in which
case x must be an rFerns object for R to use proper merge method.

Examples

set.seed(77)

#Fetch Iris data

data(iris)

#Build models
rFerns(Species~.,data=iris)->modelA
rFerns(Species~.,data=iris)->modelB
modelAB<-merge(modelA,modelB)
print(modelA)

print(modelAB)

naiveWrapper Naive feature selection method utilising the rFerns shadow imporance

Description

Proof-of-concept ensemble of rFerns models, built to stabilise and improve selection based on
shadow importance. It employs a super-ensemble of iterations small rFerns forests, each built
on a subspace of size attributes, which is selected randomly, but with a higher selection probability
for attributes claimed important by previous sub-models. Final selection is a group of attributes
which hold a substantial weight at the end of the procedure.

4 naive Wrapper

Usage

naiveWrapper(
X)
Y,
iterations = 1000,
depth = 5,
ferns = 100,
size = 30,
lambda = 5,
threads = 0,
saveHistory = FALSE

)

Arguments

X Data frame containing attributes; must have unique names and contain only nu-
meric, integer or (ordered) factor columns. Factors must have less than 31 levels.
No NA values are permitted.

y A decision vector. Must a factor of the same length as nrow(X) for ordinary
many-label classification, or a logical matrix with each column corresponding
to a class for multi-label classification.

iterations Number of iterations i.e., the number of sub-models built.

depth The depth of the ferns; must be in 1-16 range. Note that time and memory
requirements scale with 2*depth.

ferns Number of ferns to be build in each sub-model. This should be a small number,
around 3-5 times size.

size Number of attributes considered by each sub-model.

lambda Lambda parameter driving the re-weighting step of the method.

threads Number of parallel threads, copied to the underlying rFerns call.

saveHistory Should weight history be stored.

Value

An object of class naiveWrapper, which is a list with the following components:

found Names of all selected attributes.
weights Vector of weights indicating the confidence that certain feature is relevant.
timeTaken Time of computation.

weightHistory History of weights over all iterations, present if saveHistory was TRUE.

params Copies of algorithm parameters, iterations, depth, ferns and size, as a
named vector.

References

Kursa MB (2017). Efficient all relevant feature selection with random ferns. In: Kryszkiewicz M.,
Appice A., Slezak D., Rybinski H., Skowron A., Ras Z. (eds) Foundations of Intelligent Systems.
ISMIS 2017. Lecture Notes in Computer Science, vol 10352. Springer, Cham.

predict.rFerns 5

Examples

set.seed(77)

#Fetch Iris data

data(iris)

#Extend with random noise
noisyIris<-cbind(iris[,-5],apply(iris[,-5],2,sample))
names(noisyIris)[5:8]<-sprintf("Nonsense%d"”,1:4)

#Execute selection
naiveWrapper(noisyIris,iris$Species,iterations=50,ferns=20,size=8)

predict.rFerns Prediction with random ferns model

Description

This function predicts classes of new objects with given rFerns object.

Usage
S3 method for class 'rFerns'’
predict(object, x, scores = FALSE, ...)
Arguments
object Object of a class rFerns; a model that will be used for prediction.
X Data frame containing attributes; must have corresponding names to training set

(although order is not important) and do not introduce new factor levels. If this
argument is not given, OOB predictions on the training set will be returned.

scores If TRUE, the result will contain score matrix instead of simple predictions.

Additional parameters.

Value

Predictions. If scores is TRUE, a factor vector (for many-class classification) or a logical data.frame
(for multi-class classification) with predictions, else a data.frame with class’ scores.

Examples

set.seed(77)

#Fetch Iris data

data(iris)

#Split into tRain and tEst set
iris[c(TRUE,FALSE),]->irisR
iris[c(FALSE,TRUE),]->irisE

#Build model

rFerns(Species~. ,data=irisR)->model
print(model)

#Test

predict(model,irisg)->p

print(table(

Predictions=p,
True=irisE[["Species”"1]1))
err<-mean(p!=irist[["Species”]1])
print(paste("Test error”,err,sep=" "))

#Show first OOB scores
head(predict(model, scores=TRUE))

rFerns

rFerns

Classification with random ferns

Description

This function builds a random ferns model on the given training data.

Usage

rFerns(x, ...)

S3 method for class 'formula'
rFerns(formula, data = .GlobalEnv,

S3 method for class 'matrix'
rFerns(x, y, ...)

Default S3 method:

rFerns(
X)
Y,
depth = 5,
ferns = 1000,
importance = "none",

saveForest = TRUE,
consistentSeed = NULL,
threads = 0,

Arguments

X Data frame containing attributes; must have unique names and contain only nu-
meric, integer or (ordered) factor columns. Factors must have less than 31 levels.

No NA values are permitted.

For formula and matrix methods, a place to state parameters to be passed to

default method. For the print method, arguments to be passed to print.

rFerns

formula

data

y

depth

ferns

importance

saveForest

consistentSeed

threads

Value

alternatively, formula describing model to be analysed.
in which to interpret formula.

A decision vector. Must a factor of the same length as nrow(X) for ordinary
many-label classification, or a logical matrix with each column corresponding
to a class for multi-label classification.

The depth of the ferns; must be in 1-16 range. Note that time and memory
requirements scale with 2*depth.

Number of ferns to be build.

Set to calculate attribute importance measure (VIM); "simple” will calculate
the default mean decrease of true class score (MDTS, something similar to Ran-
dom Forest’s MDA/MeanDecreaseAccuracy), "shadow” will calculate MDTS
and additionally MDTS of this attribute shadow, an implicit feature build by
shuffling values within it, thus stripping it from information (which is slightly
slower). Shadow importance is useful as a reference to judge significance of a
regular importance. "none” turns importance calculation off, for a slightly faster
execution. For compatibility with pre-1.2 rFerns, TRUE will resolve to "simple”
and FALSE to "none"”. Abbreviation can be used instead of a full value.

Should the model be saved? It must be TRUE if you want to use the model
for prediction; however, if you are interested in importance or OOB error only,
setting it to FALSE significantly improves memory requirements, especially for
large depth and ferns.

PRNG seed used for shadow importance only. Must be either a 2-element inte-
ger vector or NULL, which corresponds to seeding from the default PRNG.

Number or OpenMP threads to use. The default value of @ means all available
to OpenMP. It should be set to the same value in two merged models to make
shadow importance meaningful.

An object of class rFerns, which is a list with the following components:

model

OObErr

importance

oobScores

The built model; NULL if saveForest was FALSE.

OOB approximation of accuracy. Ignores never-OOB-tested objects (see oob-
Scores element).

The importance scores or NULL if importance was set to "none”. In a first
case it is a data. frame with two or three columns: MeanScorelLoss which is a
mean decrease of a score of a correct class when a certain attribute is permuted,
Tries which is number of ferns which utilised certain attribute, and, only when
importance was set to "shadow”, Shadow, which is a mean decrease of accuracy
for the correct class for a permuted copy of an attribute (useful as a baseline for
normal importance). The rownames are set and equal to the names (x).

A matrix of OOB scores of each class for each object in training set. Rows
correspond to classes in the same order as in levels(Y). If the ferns is too
small, some columns may contain NAs, what means that certain objects were
never in test set.

8 rFerns

oobPreds A vector of OOB predictions of class for each object in training set. Never-
OOB-tested objects (see above) have predictions equal to NA.
oobConfusionMatrix
Confusion matrix build from oobPreds and y.
timeTaken Time used to train the model (smaller than wall time because data preparation

and model final touches are excluded; however it includes the time needed to
compute importance, if it applies). An object of difftime class.

parameters Numerical vector of three elements: classes, depth and ferns, containing
respectively the number of classes in decision and copies of depth and ferns
parameters.

classLabels Copy of levels(Y) after purging unused levels.

consistentSeed Consistent seed used; only present for importance="shadow”. Can be used to
seed a new model via consistentSeed argument.

isStruct Copy of the train set structure, required internally by predict method.

Note

The unused levels of the decision will be removed; on the other hand unused levels of categorical
attributes will be preserved, so that they could be present in the data later predicted with the model.
The levels of ordered factors in training and predicted data must be identical.

Do not use formula interface for a data with large number of attributes; the overhead from handling
the formula may be significant.

References

Ozuysal M, Calonder M, Lepetit V & Fua P. (2009). Fast Keypoint Recognition using Random
Ferns, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 448-461.

Kursa MB (2014). rFerns: An Implementation of the Random Ferns Method for General-Purpose
Machine Learning, Journal of Statistical Software, 61(10), 1-13.

Examples

set.seed(77)

#Fetch Iris data

data(iris)

#Build model

rFerns(Species~.,data=iris)

##Importance

rFerns(Species~.,data=iris, importance="shadow")->model
print(model$imp)

Index

merge.rFerns, 2
naiveWrapper, 3
predict.rFerns, 5

rFerns, 6

	merge.rFerns
	naiveWrapper
	predict.rFerns
	rFerns
	Index

