
Package ‘quest’
December 5, 2023

Type Package

Title Prepare Questionnaire Data for Analysis

Version 0.2.0

Description Offers a suite of functions to prepare questionnaire data for analysis (per-
haps other types of data as well). By data preparation, I mean data ana-
lytic tasks to get your raw data ready for statistical modeling (e.g., regression). There are func-
tions to investigate missing data, reshape data, validate responses, recode variables, score ques-
tionnaires, center variables, aggregate by groups, shift scores (i.e., leads or lags), etc. It pro-
vides functions for both single level and multilevel (i.e., grouped) data. With a few excep-
tions (e.g., ncases()), functions without an ``s'' at the end of their primary word (e.g., cen-
ter_by()) act on atomic vectors, while functions with an ``s'' at the end of their pri-
mary word (e.g., centers_by()) act on multiple columns of a data.frame.

Depends R (>= 4.0.0), datasets, stats, utils, methods

Imports str2str, abind, checkmate, plyr, car, psych, boot, MBESS,
nlme, lme4, multilevel, lavaan

Suggests reshape, psychTools, lmeInfo, semTools

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.3

Collate 'quest_functions.R' 'psymet_functions.R'
'describes_functions.R' 'diary_functions.R' 'mia_functions.R'

NeedsCompilation no

Author David Disabato [aut, cre] (<https://orcid.org/0000-0001-7094-4996>)

Maintainer David Disabato <ddisab01@gmail.com>

Repository CRAN

Date/Publication 2023-12-05 00:10:02 UTC

R topics documented:
quest-package . 4
.cronbach . 6

1

https://orcid.org/0000-0001-7094-4996

2 R topics documented:

.cronbachs . 6

.gtheory . 7

.gtheorys . 8
add_sig . 9
add_sig_cor . 11
agg . 13
aggs . 15
agg_dfm . 16
amd_bi . 19
amd_multi . 20
amd_uni . 21
auto_by . 22
ave_dfm . 25
boot_ci . 26
by2 . 27
center . 29
centers . 30
centers_by . 31
center_by . 32
change . 33
changes . 34
changes_by . 35
change_by . 37
colMeans_if . 38
colNA . 39
colSums_if . 40
composite . 41
composites . 44
confint2 . 46
confint2.boot . 47
confint2.default . 49
corp . 50
corp_by . 52
corp_miss . 54
corp_ml . 56
cor_by . 58
cor_miss . 60
cor_ml . 61
covs_test . 62
cronbach . 64
cronbachs . 66
decompose . 68
decomposes . 69
deff . 71
deffs . 72
describe_ml . 74
dum2nom . 75
freq . 77

R topics documented: 3

freqs . 79
freqs_by . 80
freq_by . 82
gtheory . 84
gtheorys . 86
gtheorys_ml . 88
gtheory_ml . 90
iccs_11 . 92
icc_11 . 93
icc_all_by . 94
lengths_by . 97
length_by . 98
long2wide . 99
make.dummy . 101
make.dumNA . 102
make.fun_if . 103
make.latent . 104
make.product . 105
means_change . 107
means_compare . 110
means_diff . 113
means_test . 116
mean_change . 119
mean_compare . 121
mean_diff . 124
mean_if . 127
mean_test . 129
mode2 . 131
ncases . 132
ncases_by . 133
ncases_desc . 134
ncases_ml . 136
ngrp . 138
nhst . 139
nom2dum . 140
nrow_by . 141
nrow_ml . 142
n_compare . 143
partial.cases . 144
pomp . 145
pomps . 146
props_compare . 148
props_diff . 151
props_test . 154
prop_compare . 157
prop_diff . 160
prop_test . 163
recode2other . 165

4 quest-package

recodes . 167
renames . 168
reorders . 170
revalid . 171
revalids . 172
reverse . 173
reverses . 174
rowMeans_if . 175
rowNA . 176
rowsNA . 177
rowSums_if . 178
score . 179
scores . 181
shift . 182
shifts . 184
shifts_by . 185
shift_by . 186
summary_ucfa . 187
sum_if . 190
tapply2 . 191
ucfa . 193
valids_test . 195
valid_test . 196
vecNA . 197
wide2long . 198
winsor . 201
winsors . 202

Index 204

quest-package Pre-processing Questionnaire Data

Description

quest is a package for pre-processing questionnaire data to get it ready for statistical modeling. It
contains functions for investigating missing data (e.g., rowNA), reshaping data (e.g., wide2long),
validating responses (e.g., revalids), recoding variables (e.g., recodes), scoring (e.g., scores),
centering (e.g., centers), aggregating (e.g., aggs), shifting (e.g., shifts), etc. Functions whose
first phrases end with an s are vectorized versions of their functions without an s at the end of the
first phrase. For example, center inputs a (atomic) vector and outputs a atomic vector to center
and/or scale a single variable; centers inputs a data.frame and outputs a data.frame to center and/or
scale multiple variables. Functions that end in _by are calculated by group. For example, center
does grand-mean centering while center_by does group-mean centering. Putting the two together,
centers_by inputs a data.frame and outputs a data.frame to center and/or scale multiple variables
by group. Functions that end in _ml calculate a "multilevel" result with a within-group result and
between-group result. Functions that end in _if are calculated dependent on the frequency of

quest-package 5

observed values (aka amount of missing data). The quest package uses the str2str package
internally to convert R objects from one structure to another. See str2str for details.

Types of functions

There are three main types of functions. 1) Helper functions that primarily exist to save a few lines of
code and are primarily for convenience (e.g., vecNA). 2) Functions for wrangling questionnaire data
(e.g., nom2dum, reverses). 3) Functions for preliminary statistical calculation (e.g., means_diff,
corp_by).

Abbreviations

See the table below

vrb variable

grp group

nm names

NA missing values

ov observed values

prop proportion

sep separator

cor correlations

id identifier

rtn return

fun function

dfm data.frame

fct factor

nom nominal variable

bin binary variable

dum dummy variable

pomp percentage of maximum possible

std standardize

wth within-groups

btw between-groups

Author(s)

Maintainer: David Disabato <ddisab01@gmail.com> (ORCID)

https://orcid.org/0000-0001-7094-4996

6 .cronbachs

.cronbach Bootstrap Function for cronbach() Function

Description

.cronbach is the function used by the boot function within the cronbach function. It is primar-
ily created to increase the computational efficiency of bootstrap confidence intervals within the
cronbach function by doing only the minimal computations needed to compute cronbach’s alpha.

Usage

.cronbach(dat, i, use)

Arguments

dat data.frame with only the items you wish to include in the cronbach’s alpha com-
putation and no other variables.

i integer vector of length = nrow(dat) specifying which rows should be included
in the computation. When used by the boot::boot function this argument will
change with every new bootstrapped resample.

use character vector of length 1 specifying how missing data should be handled
when computing covariances. See cov for details.

Value

double vector of length 1 providing cronbach’s alpha

Examples

.cronbach(dat = attitude,
i = sample(x = 1:nrow(attitude), size = nrow(attitude), replace = TRUE), use = "pairwise")

.cronbachs Bootstrap Function for cronbachs() Function

Description

.cronbachs is the function used by the boot function within the cronbachs function. It is pri-
marily created to increase the computational efficiency of bootstrap confidence intervals within the
cronbachs function by doing only the minimal computations needed to compute cronbach’s alpha
for each set of variables/items.

Usage

.cronbachs(dat, i, nm.list, use)

.gtheory 7

Arguments

dat data.frame of data. It can contain variables other than those used for cronbach’s
alpha calculation.

i integer vector of length = nrow(dat) specifying which rows should be included
in the computation. When used by the boot::boot function this argument will
change with every new bootstrapped resample.

nm.list list of character vectors specifying the sets of variables/items associated with
each of the cronbach’s alpha calculations.

use character vector of length 1 specifying how missing data should be handled
when computing covariances. See cov for details.

Value

double vector of length = length(nm.list) providing cronbach’s alpha for each set of variables/items.

Examples

dat0 <- psych::bfi[1:250,]
dat1 <- str2str::pick(x = dat0, val = c("A1","C4","C5","E1","E2","O2","O5",

"gender","education","age"), not = TRUE, nm = TRUE)
vrb_nm_list <- lapply(X = str2str::sn(c("E","N","C","A","O")), FUN = function(nm) {

str2str::pick(x = names(dat1), val = nm, pat = TRUE)})
.cronbachs(dat = dat1,

i = sample(x = 1:nrow(dat1), size = nrow(dat1), replace = TRUE),
nm.list = vrb_nm_list, use = "pairwise")

.gtheory Bootstrap Function for gtheory() Function

Description

.gtheory is the function used by the boot function within the gtheory function. It is primarily cre-
ated to increase the computational efficiency of bootstrap confidence intervals within the gtheory
function by doing only the minimal computations needed to compute the generalizability theory
coefficient.

Usage

.gtheory(dat, i, cross.vrb)

Arguments

dat data.frame with only the variables/items you wish to include in the generaliz-
ability theory coefficient and no other variables/items.

8 .gtheorys

i integer vector of length = nrow(dat) specifying which rows should be included
in the computation. When used by the boot::boot function this argument will
change with every new bootstrapped resample.

cross.vrb logical vector of length 1 specifying whether the variables/items should be crossed
when computing the generalizability theory coefficient. If TRUE, then only the
covariance structure of the variables/items will be incorperated into the estimate
of reliability. If FALSE, then the mean structure of the variables/items will be
incorperated.

Value

double vector of length 1 providing the generalizability theory coefficient.

See Also

.gtheorys gtheory

Examples

.gtheory(dat = attitude,
i = sample(x = 1:nrow(attitude), size = nrow(attitude), replace = TRUE),
cross.vrb = TRUE)

.gtheory(dat = attitude,
i = sample(x = 1:nrow(attitude), size = nrow(attitude), replace = TRUE),
cross.vrb = FALSE)

.gtheorys Bootstrap Function for gtheorys() Function

Description

.gtheorys is the function used by the boot function within the gtheorys function. It is primar-
ily created to increase the computational efficiency of bootstrap confidence intervals within the
gtheorys function by doing only the minimal computations needed to compute the generalizability
theory coefficient.

Usage

.gtheorys(dat, i, nm.list, cross.vrb)

Arguments

dat data.frame of data. It can contain variables other than those used for generaliz-
ability theory coefficient calculation.

i integer vector of length = nrow(dat) specifying which rows should be included
in the computation. When used by the boot::boot function this argument will
change with every new bootstrapped resample.

add_sig 9

nm.list list of character vectors specifying the sets of variables/items associated with
each of the generalizability theory coefficient calculations.

cross.vrb logical vector of length 1 specifying whether the variables/items should be crossed
when computing the generalizability theory coefficient. If TRUE, then only the
covariance structure of the variables/items will be incorperated into the estimate
of reliability. If FALSE, then the mean structure of the variables/items will be
incorperated.

Value

double vector of length = length(nm.list) providing the generalizability theory coefficients.

See Also

.gtheory gtheorys

Examples

dat0 <- psych::bfi[1:250,]
dat1 <- str2str::pick(x = dat0, val = c("A1","C4","C5","E1","E2","O2","O5",

"gender","education","age"), not = TRUE, nm = TRUE)
vrb_nm_list <- lapply(X = str2str::sn(c("E","N","C","A","O")), FUN = function(nm) {

str2str::pick(x = names(dat1), val = nm, pat = TRUE)})
.gtheorys(dat = dat1,

i = sample(x = 1:nrow(dat1), size = nrow(dat1), replace = TRUE),
nm.list = vrb_nm_list, cross.vrb = TRUE)

.gtheorys(dat = dat1,
i = sample(x = 1:nrow(dat1), size = nrow(dat1), replace = TRUE),
nm.list = vrb_nm_list, cross.vrb = FALSE)

add_sig Add Significance Symbols to a (Atomic) Vector, Matrix, or Array

Description

add_sig adds symbols for various p-values cutoffs of statistical significance. The function inputs
a numeric vector, matrix, or array of effect sizes (e.g., correlation matrix) and a numeric vector,
matrix, or array of p-values that correspond to the effect size (i.e., each row and column match) and
then returns a character vector, matrix, or array of effect sizes with appended significance symbols.
One of the primary applications of this function is use within corp corp_by, and corp_ml for
correlation matrices.

Usage

add_sig(
x,
p,
digits = 3,

10 add_sig

p.10 = "",
p.05 = "*",
p.01 = "**",
p.001 = "***",
lead.zero = FALSE,
trail.zero = TRUE,
plus = FALSE

)

Arguments

x double numeric vector of effect sizes for which statistical significance is avail-
able.

p double matrix of p-values for the effect sizes in x that are matched by element
index for vectors, by row and column index with matrices, by row, column, and
layer index for 3D arrays, etc. For example, the p-value in the first row and
second column of p is associated with the effect size in the first row and second
column of x. If x and p do not have the same dimensions, an error is returned.

digits integer vector of length 1 specifying the number of decimals to round to.

p.10 character vector of length 1 specifying which symbol to append to the end of
any effect size significant at the p < .10 level.

p.05 character vector of length 1 specifying which symbol to append to the end of
any effect size significant at the p < .05 level.

p.01 character vector of length 1 specifying which symbol to append to the end of
any effect size significant at the p < .01 level.

p.001 character vector of length 1 specifying which symbol to append to the end of
any effect size significant at the p < .001 level.

lead.zero logical vector of length 1 specifying whether to retain a zero in front of the
decimal place if the effect size is within 1 or -1.

trail.zero logical vector of length 1 specifying whether to retain zeros after the decimal
place (due to rounding).

plus logical vector of length 1 specifying whether to include a plus sign in front of
positive effect sizes (minus signs are always in front of negative effect sizes).

Details

There are several functions out there that do similar things. Here is one posted to R-bloggers that
does it for correlation matrices using the corr function from the Hmisc package: https://www.
r-bloggers.com/2020/07/create-a-publication-ready-correlation-matrix-with-significance-levels-in-r/.

Value

character vector, matrix, or array with the same dimensions as x and p containing the effect sizes
with their significance symbols appended to the end of each value.

https://www.r-bloggers.com/2020/07/create-a-publication-ready-correlation-matrix-with-significance-levels-in-r/
https://www.r-bloggers.com/2020/07/create-a-publication-ready-correlation-matrix-with-significance-levels-in-r/

add_sig_cor 11

Examples

corr_test <- psych::corr.test(mtcars[1:5])
r <- corr_test[["r"]]
p <- corr_test[["p"]]
add_sig(x = r, p = p)
add_sig(x = r, p = p, digits = 2)
add_sig(x = r, p = p, lead.zero = TRUE, trail.zero = FALSE)
add_sig(x = r, p = p, plus = TRUE)
noquote(add_sig(x = r, p = p)) # no quotes for character elements

add_sig_cor Add Significance Symbols to a Correlation Matrix

Description

add_sig_cor adds symbols for various p-values cutoffs of statistical significance. The function
inputs a correlation matrix and a numeric matrix of p-values that correspond to the correlations
(i.e., each row and column match) and then returns a data.frame of correlations with appended
significance symbols. One of the primary applications of this function is use within corp corp_by,
and corp_ml for correlation matrices.

Usage

add_sig_cor(
r,
p,
digits = 3,
p.10 = "",
p.05 = "*",
p.01 = "**",
p.001 = "***",
lead.zero = FALSE,
trail.zero = TRUE,
plus = FALSE,
diags = FALSE,
lower = TRUE,
upper = FALSE

)

Arguments

r double numeric matrix of correlation coefficients for which statistical signifi-
cance is available. Since its a correlation matrix, it must be symmetrical and is
expected to be a full matrix with all elements included (not just lower or upper
diagonals values included).

12 add_sig_cor

p double matrix of p-values for the correlations in r that are matched by row and
column index. For example, the p-value in the first row and second column of p
is associated with the correlation in the first row and second column of r. If r
and p do not have the same dimensions, an error is returned.

digits integer vector of length 1 specifying the number of decimals to round to.

p.10 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .10 level.

p.05 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .05 level.

p.01 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .01 level.

p.001 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .001 level.

lead.zero logical vector of length 1 specifying whether to retain a zero in front of the
decimal place.

trail.zero logical vector of length 1 specifying whether to retain zeros after the decimal
place (due to rounding).

plus logical vector of length 1 specifying whether to include a plus sign in front of
positive correlations (minus signs are always in front of negative correlations).

diags logical vector of length 1 specifying whether to retain the values in the diagonal
of the correlation matrix. If TRUE, then the diagonal will be 1s with digits
number of zeros after the decimal place (and no significant symbols). If FALSE,
then the diagonal will be NA.

lower logical vector of length 1 specifying whether to retain the lower triangle of the
correlation matrix. If TRUE, then the lower triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the lower triangle will all be NA.

upper logical vector of length 1 specifying whether to retain the upper triangle of the
correlation matrix. If TRUE, then the upper triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the upper triangle will all be
NA.

Details

There are several functions out there that do similar things. Here is one posted to R-bloggers
that uses the corr function from the Hmisc package: https://www.r-bloggers.com/2020/07/
create-a-publication-ready-correlation-matrix-with-significance-levels-in-r/.

Value

data.frame with the same dimensions as r containing the correlations and their significance symbols.
Elements may or may not contain NA values depending on the arguments diags, lower, and upper.

Examples

corr_test <- psych::corr.test(mtcars[1:5])

https://www.r-bloggers.com/2020/07/create-a-publication-ready-correlation-matrix-with-significance-levels-in-r/
https://www.r-bloggers.com/2020/07/create-a-publication-ready-correlation-matrix-with-significance-levels-in-r/

agg 13

r <- corr_test[["r"]]
p <- corr_test[["p"]]
add_sig_cor(r = r, p = p)
add_sig_cor(r = r, p = p, digits = 2)
add_sig_cor(r = r, p = p, diags = TRUE)
add_sig_cor(r = r, p = p, lower = FALSE, upper = TRUE)
add_sig_cor(r = r, p = p, lead.zero = TRUE, trail.zero = FALSE)
add_sig_cor(r = r, p = p, plus = TRUE)

agg Aggregate an Atomic Vector by Group

Description

agg evaluates a function separately for each group and combines the results back together into an
atomic vector of data.frame that is returned. Depending on the argument rep, the results of fun
are repeated for each element of x in the group (TRUE) or only once for each group (FALSE).
Depending on the argument rtn.grp, the return object is a data.frame and the groups within grp
are included in the data.frame as columns (TRUE) or the return object is an atomic vector and the
groups are the names (FALSE).

Usage

agg(x, grp, rep = TRUE, rtn.grp = !rep, sep = "_", fun, ...)

Arguments

x atomic vector.

grp atomic vector or list of atomic vectors (e.g., data.frame) specifying the groups.
The atomic vector(s) must be the length of x or else an error is returned.

rep logical vector of length 1 specifying whether the result of fun should be re-
peated for every instance of the group in x (TRUE) or only once for each group
(FALSE).

rtn.grp logical vector of length 1 specifying whether the groups (i.e., grp) should be
included in the return object as columns. The default is the opposite of rep
as traditionally it is most important to return the group columns when rep =
FALSE.

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if grp
is a list of atomic vectors (e.g., data.frame) AND rep = FALSE AND rtn.grp
= FALSE.

fun function to use for aggregation. This function is expected to return an atomic
vector of length 1.

... additional named arguments to fun.

14 agg

Details

If rep = TRUE, then agg calls ave; if rep = FALSE, then agg calls aggregate.

Value

result of fun applied to x for each group within grp. The structure of the return object depends on
the arguments rep and rtn.grp:

If rep = TRUE and rtn.grp = TRUE: then the return object is a data.frame with nrow = nrow(data)
where the first columns are grp and the last column is the result of fun. If grp is not a list with
names, then its colnames will be "Group.1", "Group.2", "Group.3" etc. similar to aggregate’s
return object. The colname for the result of fun will be "x".

If rep = TRUE and rtn.grp = FALSE: then the return object is an atomic vector with length =
length(x) where the values are the result of fun and the names = names(x).

If rep = FALSE and rtn.grp = TRUE: then the return object is a data.frame with nrow = length(levels(interaction(grp)))
where the first columns are the unique group combinations in grp and the last column is the
result of fun. If grp is not a list with names, then its colnames will be "Group.1", "Group.2",
"Group.3" etc. similar to aggregate’s return object. The colname for the result of fun will be
"x".

If rep = FALSE and rtn.grp = FALSE: then the return object is an atomic vector with length
length(levels(interaction(grp))) where the values are the result of fun and the names
are each group value pasted together by sep if there are multiple grouping variables within
grp (i.e., is.list(grp) && length(grp) > 2).

See Also

aggs, agg_dfm, ave, aggregate,

Examples

one grouping variable
agg(x = airquality$"Solar.R", grp = airquality$"Month", fun = mean)
agg(x = airquality$"Solar.R", grp = airquality$"Month", fun = mean,

na.rm = TRUE) # ignoring missing values
agg(x = setNames(airquality$"Solar.R", nm = row.names(airquality)), grp = airquality$"Month",

fun = mean, na.rm = TRUE) # keeps the names in the return object
agg(x = airquality$"Solar.R", grp = airquality$"Month", rep = FALSE,

fun = mean, na.rm = TRUE) # do NOT repeat aggregated values
agg(x = airquality$"Solar.R", grp = airquality$"Month", rep = FALSE, rtn.grp = FALSE,

fun = mean, na.rm = TRUE) # groups are the names of the returned atomic vector

two grouping variables
tmp_nm <- c("vs","am") # Roxygen2 doesn't like a c() within a []
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = TRUE, fun = sd)
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = FALSE,

fun = sd) # do NOT repeat aggregated values
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = FALSE, rtn.grp = FALSE,

fun = sd) # groups are the names of the returned atomic vector
agg(x = mtcars$"mpg", grp = mtcars[tmp_nm], rep = FALSE, rtn.grp = FALSE,

aggs 15

sep = ".", fun = sd) # change the separater for naming

error messages
Not run:

agg(x = airquality$"Solar.R", grp = mtcars[tmp_nm]) # error returned
b/c atomic vectors within \code{grp} not having the same length as \code{x}

End(Not run)

aggs Aggregate Data by Group

Description

aggs evaluates a function separately for each group and combines the results back together into a
data.frame that is returned. Depending on rep, the results of fun are repeated for each element of
data[vrb.nm] in the group (TRUE) or only once for each group (FALSE). Note, aggs evaluates
fun separately for each variable vrb.nm within data. If instead, you want to evaluate fun for
variables as a set data[vrb.nm], then use agg_dfm.

Usage

aggs(
data,
vrb.nm,
grp.nm,
rep = TRUE,
rtn.grp = !rep,
sep = "_",
suffix = "_a",
fun,
...

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

rep logical vector of length 1 specifying whether the result of fun should be repeated
for every instance of the group in data[vrb.nm] (TRUE) or only once for each
group (FALSE).

rtn.grp logical vector of length 1 specifying whether the group columns (i.e., data[grp.nm])
should be included in the return object as columns. The default is the opposite
of rep as traditionally it is most important to return the group columns when
rep = FALSE.

16 agg_dfm

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if
grp.nm has length > 1 AND rep = FALSE AND rtn.grp = FALSE.

suffix character vector of length 1 specifying the string to append to the end of the
colnames in the return object.

fun function to use for aggregation. This function is expected to return an atomic
vector of length 1.

... additional named arguments to fun.

Details

If rep = TRUE, then agg calls ave; if rep = FALSE, then agg calls aggregate.

Value

data.frame of aggregated values. If rep is TRUE, then nrow = nrow(data). If rep = FALSE, then
nrow = length(levels(interaction(data[grp.nm]))). The names are specified by paste0(vrb.nm,
suffix). If rtn.grp = TRUE, then the group columns are appended to the begining of the
data.frame.

See Also

agg, agg_dfm, ave, aggregate,

Examples

aggs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",
fun = mean, na.rm = TRUE)

aggs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",
rtn.grp = TRUE, fun = mean, na.rm = TRUE) # include the group columns

aggs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",
rep = FALSE, fun = mean, na.rm = TRUE) # do NOT repeat aggregated values

aggs(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),
rep = FALSE, fun = mean, na.rm = TRUE) # with multiple group columns

aggs(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),
rep = FALSE, rtn.grp = FALSE, fun = mean, na.rm = TRUE) # without returning groups

agg_dfm Data Information by Group

Description

agg_dfm evaluates a function on a set of variables in a data.frame separately for each group and
combines the results back together. The rep and rtn.grp arguments determine exactly how the
results are combined together. If rep = TRUE, then the result of fun is repeated for every row of
the group in data[grp.nm]; If rep = FALSE, then the result of fun for each unique combination of
data[grp.nm] is returned once. If rtn.grp = TRUE, then the results are returned in a data.frame

agg_dfm 17

where the first columns are the groups from data[grp.nm]; If rtn.grp = FALSE, then the results
are returned in an atomic vector. Note, agg_dfm evaluates fun on all the variables in data[vrb.nm]
as a whole, If instead, you want to evaluate fun separately for variable vrb.nm in data, then use
Agg.

Usage

agg_dfm(
data,
vrb.nm,
grp.nm,
rep = FALSE,
rtn.grp = !rep,
sep = ".",
rtn.result.nm = "result",
fun,
...

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the set of variables to evalu-
ate fun on.

grp.nm character vector of colnames from data specifying the groups.

rep logical vector of length 1 specifying whether the result of fun should be repeated
for every instance of the group in data[vrb.nm] (TRUE) or only once for each
group (FALSE).

rtn.grp logical vector of length 1 specifying whether the group columns (i.e., data[grp.nm])
should be included in the return object as columns. The default is the opposite
of rep as traditionally it is most important to return the group columns when
rep = FALSE.

sep character vector of length 1 specifying the string to paste the group values to-
gether with when there are multiple grouping variables (i.e., length(grp.nm) >
1). Only used if rep = FALSE and rtn.grp = FALSE.

rtn.result.nm character vector of length 1 specifying the name for the column of results in the
return object. Only used if rtn.grp = TRUE.

fun function to evaluate each grouping of data[vrb.nm] by. This function must re-
turn an atomic vector of length 1. If not, then consider using by2 or plyr::dlply.

... additional named arguments to fun.

Details

If rep = TRUE, then agg_dfm calls ave_dfm; if rep = FALSE, then agg_dfm calls by. When rep =
FALSE and rtn.grp = TRUE, agg_dfm is very similar to plyr::ddply; when rep = FALSE and
rtn.grp = FALSE, then agg_dfm is very similar to plyr::daply.

18 agg_dfm

Value

result of fun applied to each grouping of data[vrb.nm]. The structure of the return object depends
on the arguments rep and rtn.grp.

If rep = TRUE and rtn.grp = TRUE: then the return object is a data.frame with nrow = nrow(data)
where the first columns are data[grp.nm] and the last column is the result of fun with col-
name = rtn.result.nm.

If rep = TRUE and rtn.grp = FALSE: then the return object is an atomic vector with length =
nrow(data) where the values are the result of fun and the names = row.names(data).

If rep = FALSE and rtn.grp = TRUE: then the return object is a data.frame with nrow = length(levels(interaction(data[grp.nm])))
where the first columns are the unique group combinations in data[grp.nm] and the last col-
umn is the result of fun with colname = rtn.result.nm.

If rep = FALSE and rtn.grp = FALSE: then the return object is an atomic vector with length
length(levels(interaction(data[grp.nm]))) where the values are the result of fun and
the names are each group value pasted together by sep if there are multiple grouping variables
(i.e., length(grp.nm) > 2).

See Also

agg aggs by2 ddply daply

Examples

one grouping variable

by in base R
by(data = airquality[c("Ozone","Solar.R")], INDICES = airquality["Month"],

simplify = FALSE, FUN = function(dat) cor(dat, use = "complete")[1,2])

rep = TRUE

rtn.group = TRUE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

rep = TRUE, rtn.grp = TRUE, fun = function(dat) cor(dat, use = "complete")[1,2])

rtn.group = FALSE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

rep = TRUE, rtn.grp = FALSE, fun = function(dat) cor(dat, use = "complete")[1,2])

rep = FALSE

rtn.group = TRUE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

rep = FALSE, rtn.grp = TRUE, fun = function(dat) cor(dat, use = "complete")[1,2])
suppressWarnings(plyr::ddply(.data = airquality[c("Ozone","Solar.R","Month")],

.variables = "Month", .fun = function(dat) cor(dat, use = "complete")[1,2]))

rtn.group = FALSE
agg_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

amd_bi 19

rep = FALSE, rtn.grp = FALSE, fun = function(dat) cor(dat, use = "complete")[1,2])
suppressWarnings(plyr::daply(.data = airquality[c("Ozone","Solar.R","Month")],

.variables = "Month", .fun = function(dat) cor(dat, use = "complete")[1,2]))

two grouping variables

by in base R
by(data = mtcars[c("mpg","cyl","disp")], INDICES = mtcars[c("vs","am")],

FUN = nrow, simplify = FALSE) # with multiple group columns

rep = TRUE

rtn.grp = TRUE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = TRUE, rtn.grp = TRUE, fun = nrow)

rtn.grp = FALSE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = TRUE, rtn.grp = FALSE, fun = nrow)

rep = FALSE

rtn.grp = TRUE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = TRUE, fun = nrow)
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = TRUE, rtn.result.nm = "value", fun = nrow)

rtn.grp = FALSE
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = FALSE, fun = nrow)
agg_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

rep = FALSE, rtn.grp = FALSE, sep = "_", fun = nrow)

amd_bi Amount of Missing Data - Bivariate (Pairwise Deletion)

Description

amd_bi by default computes the proportion of missing data for pairs of variables in a data.frame,
with arguments to allow for counts instead of proportions (i.e., prop) or observed data rather than
missing data (i.e., ov). It is bivariate in that each pair of variables is treated in isolation.

Usage

amd_bi(data, vrb.nm, prop = TRUE, ov = FALSE)

20 amd_multi

Arguments

data data.frame of data.

vrb.nm character vector of the colnames from data specifying the variables.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

data.frame of nrow = ncol = length(vrb.nm) and rowames = colnames = vrb.nm providing the
frequency of missing (or observed if ov = TRUE) values per pair of variables. If prop = TRUE, the
values will range from 0 to 1. If prop = FALSE, the values will range from 0 to nrow(data).

See Also

amd_bi amd_multi

Examples

amd_bi(data = airquality, vrb.nm = names(airquality)) # proportion of missing data
amd_bi(data = airquality, vrb.nm = names(airquality),

ov = TRUE) # proportion of observed data
amd_bi(data = airquality, vrb.nm = names(airquality),

prop = FALSE) # count of missing data
amd_bi(data = airquality, vrb.nm = names(airquality),

prop = FALSE, ov = TRUE) # count of observed data

amd_multi Amount of Missing Data - Multivariate (Listwise Deletion)

Description

amd_multi by default computes the proportion of missing data from listwise deletion for a set of
variables in a data.frame, with arguments to allow for counts instead of proportions (i.e., prop) or
observed data rather than missing data (i.e., ov). It is multivariate in that the variables are treated
together as a set.

Usage

amd_multi(data, vrb.nm, prop = TRUE, ov = FALSE)

amd_uni 21

Arguments

data data.frame of data.

vrb.nm character vector of the colnames from data specifying the variables.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length 1 providing the frequency of missing (or observed if ov = TRUE) rows
from listwise deletion for the set of variables vrb.nm. If prop = TRUE, the value will range from 0
to 1. If prop = FALSE, the value will range from 0 to nrow(data).

See Also

amd_uni amd_bi

Examples

amd_multi(airquality, vrb.nm = names(airquality)) # proportion of missing data
amd_multi(airquality, vrb.nm = names(airquality),

ov = TRUE) # proportion of observed data
amd_multi(airquality, vrb.nm = names(airquality),

prop = FALSE) # count of missing data
amd_multi(airquality, vrb.nm = names(airquality),

prop = FALSE, ov = TRUE) # count of observed data

amd_uni Amount of Missing Data - Univariate

Description

amd_uni by default computes the proportion of missing data for variables in a data.frame, with
arguments to allow for counts instead of proportions (i.e., prop) or observed data rather than missing
data (i.e., ov). It is univariate in that each variable is treated in isolation. amd_uni is a simple
wrapper for colNA.

Usage

amd_uni(data, vrb.nm, prop = TRUE, ov = FALSE)

22 auto_by

Arguments

data data.frame of data.

vrb.nm character vector of the colnames from data specifying the variables.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length = length(vrb.nm) and names = vrb.nm providing the frequency of miss-
ing (or observed if ov = TRUE) values per variable. If prop = TRUE, the values will range from 0
to 1. If prop = FALSE, the values will range from 0 to nrow(data).

See Also

amd_bi amd_multi

Examples

amd_uni(data = airquality, vrb.nm = names(airquality)) # proportion of missing data
amd_uni(data = airquality, vrb.nm = names(airquality),

ov = TRUE) # proportion of observed data
amd_uni(data = airquality, vrb.nm = names(airquality),

prop = FALSE) # count of missing data
amd_uni(data = airquality, vrb.nm = names(airquality),

prop = FALSE, ov = TRUE) # count of observed data

auto_by Autoregressive Coefficient by Group

Description

auto_by computes the autoregressive coefficient by group for longitudinal data where each obser-
vation within the group represents a different timepoint. The function assumes the data are already
sorted by time.

Usage

auto_by(
x,
grp,
n = -1L,
how = "cor",

auto_by 23

cw = TRUE,
method = "pearson",
use = "na.or.complete",
REML = TRUE,
control = NULL,
sep = "."

)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list.

n integer vector with length 1. Specifies the direction and magnitude of the shift.
See shift for details. The default is -1L, which is a one-lag autoregressive
coefficient’ +2L would be a two-lead autoregressive coefficient. The sign of n
only affects the results for how = "lm", "lme", or "lmer".

how character vector of length 1 specifying how to compute the autoregressive coef-
ficients. The options are 1) "cor" for correlation with the cor function, 2) "cov"
for covariance with the cov function, 3) "lm" for the linear regression slope with
the lm function, 4) "lme" for empirical Bayes estimates from a linear mixed ef-
fects model with the lme function, 5) "lmer" for empirical Bayes estimates from
a linear mixed effects model with the lmer function.

cw logical vector of length 1 specifying whether the shifted vector should be group-
mean centered (TRUE) or not (FALSE). This only affects the results for how =
"lme" or "lmer".

method character vector of length 1 specifying the type of correlation or covariance to
compute. Only used when how = "cor" or "cov". See cor for details.

use character vector of length 1 specifying how to handle missing data. Only used
when how = "cor" or "cov". See cor for details.

REML logical vector of length 1 specifying whether to use restricted estimated max-
imum liklihood (TRUE) rather than traditional maximum likelihood (FALSE).
Only used when how = "lme" or "lmer".

control list of control parameters for lme or lmer when how = "lme" or "lmer", respec-
tively. See lmeControl and lmerControl for details.

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if
grp is a list of atomic vectors (e.g., data.frame).

Details

There are several different ways to estimate the autoregressive parameter. This function offers a
variety of ways with the how and cw arguments. Note, that a recent simulation suggests that group-
mean centering via cw is the best approach when using linear mixed effects modeling via how =
"lme" or "lmer" (Hamaker & Grasman, 2015).

24 auto_by

Value

numeric vector of autoregressive coefficients with length = length(levels(interaction(grp)))
and names = pasteing of the grouping value(s) together separated by sep.

References

Hamaker, E. L., & Grasman, R. P. (2015). To center or not to center? Investigating inertia with a
multilevel autoregressive model. Frontiers in Psychology, 5, 1492.

Examples

cor
auto_by(x = airquality$"Ozone", grp = airquality$"Month", how = "cor")
auto_by(x = airquality$"Ozone", grp = airquality$"Month",

n = -2L, how = "cor") # lag across 2 timepoints
auto_by(x = airquality$"Ozone", grp = airquality$"Month",

n = +1L, how = "cor") # lag and lead identical for cor
auto_by(x = airquality$"Ozone", grp = airquality$"Month", how = "cor",

cw = FALSE) # centering within-person identical for cor

cov
auto_by(x = airquality$"Ozone", grp = airquality$"Month", how = "cov")
auto_by(x = airquality$"Ozone", grp = airquality$"Month",

n = -2L, how = "cov") # lag across 2 timepoints
auto_by(x = airquality$"Ozone", grp = airquality$"Month",

n = +1L, how = "cov") # lag and lead identical for cov
auto_by(x = airquality$"Ozone", grp = airquality$"Month", how = "cov",

cw = FALSE) # centering within-person identical for cov

lm
auto_by(x = airquality$"Ozone", grp = airquality$"Month", how = "lm")
auto_by(x = airquality$"Ozone", grp = airquality$"Month",

n = -2L, how = "lm") # lag across 2 timepoints
auto_by(x = airquality$"Ozone", grp = airquality$"Month",

n = +1L, how = "lm") # lag and lead NOT identical for lm
auto_by(x = airquality$"Ozone", grp = airquality$"Month", how = "lm",

cw = FALSE) # centering within-person identical for lm

lme
chick_weight <- as.data.frame(ChickWeight)
auto_by(x = chick_weight$"weight", grp = chick_weight$"Chick", how = "lme")
control_lme <- nlme::lmeControl(maxIter = 250L, msMaxIter = 250L,

tolerance = 1e-3, msTol = 1e-3) # custom controls
auto_by(x = chick_weight$"weight", grp = chick_weight$"Chick", how = "lme",

control = control_lme)
auto_by(x = chick_weight$"weight", grp = chick_weight$"Chick",

n = -2L, how = "lme") # lag across 2 timepoints
auto_by(x = chick_weight$"weight", grp = chick_weight$"Chick",

n = +1L, how = "lme") # lag and lead NOT identical for lme
auto_by(x = chick_weight$"weight", grp = chick_weight$"Chick", how = "lme",

cw = FALSE) # centering within-person NOT identical for lme

ave_dfm 25

lmer
bryant_2016 <- as.data.frame(lmeInfo::Bryant2016)
Not run:
auto_by(x = bryant_2016$"outcome", grp = bryant_2016$"case", how = "lmer")
control_lmer <- lme4::lmerControl(check.conv.grad = lme4::.makeCC("stop",

tol = 2e-3, relTol = NULL), check.conv.singular = lme4::.makeCC("stop",
tol = formals(lme4::isSingular)$"tol"), check.conv.hess = lme4::.makeCC(action = "stop",
tol = 1e-6)) # custom controls

auto_by(x = bryant_2016$"outcome", grp = bryant_2016$"case", how = "lmer",
control = control_lmer) # TODO: for some reason lmer doesn't like this
and is not taking into account the custom controls

auto_by(x = bryant_2016$"outcome", grp = bryant_2016$"case",
n = -2L, how = "lmer") # lag across 2 timepoints

auto_by(x = bryant_2016$"outcome", grp = bryant_2016$"case",
n = +1L, how = "lmer") # lag and lead NOT identical for lmer

auto_by(x = bryant_2016$"outcome", grp = bryant_2016$"case", how = "lmer",
cw = FALSE) # centering within-person NOT identical for lmer

End(Not run)

ave_dfm Repeated Group Statistics for a Data-Frame

Description

ave_dfm evaluates a function on a set of variables vrb.nm separately for each group within grp.nm.
The results are combined back together in line with the rows of data similar to ave. ave_dfm is
different than ave or agg because it operates on a data.frame, not an atomic vector.

Usage

ave_dfm(data, vrb.nm, grp.nm, fun, ...)

Arguments

data data.frame of data.

vrb.nm character vector of colnames in data specifying the variables to use for the
aggregation function fun.

grp.nm character vector of colnames in data specifying the grouping variables.

fun function that returns an atomic vector of length 1. Probably makes sense to
ensure the function always returns the same typeof as well.

... additional named arguments to fun.

26 boot_ci

Value

atomic vector of length = nrow(data) providing the result of the function fun for the subset of data
with that group value (i.e., data[levels(interaction(data[grp.nm]))[i], vrb.nm]) for that
row.

See Also

ave for the same functionality with atomic vector inputs agg_dfm for similar functionality with
data.frames, but can return the result for each group once rather than repeating the result for each
group value in the data.frame

Examples

one grouping variables
ave_dfm(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month",

fun = function(dat) cor(dat, use = "complete")[1,2])

two grouping variables
ave_dfm(data = mtcars, vrb.nm = c("mpg","cyl","disp"), grp.nm = c("vs","am"),

fun = nrow) # with multiple group columns

boot_ci Bootstrapped Confidence Intervals from a Matrix of Coefficients

Description

boot_ci computes bootstrapped confidence intervals from a matrix of coefficients (or any statistical
information of interest). The function is an alternative to confint2.boot for when the user does
not have an object of class boot, but rather creates their own matrix of coefficients. It has limited
types of bootstrapped confidence intervals at the moment, but future versions are expected to have
more options.

Usage

boot_ci(coef, est = colMeans(coef), boot.ci.type = "perc2", level = 0.95)

Arguments

coef numeric matrix (or data.frame of numeric columns) of coefficients. The rows
correspond to each bootstrapped resample and the columns to different coeffi-
cients. This is the equivalent of the "t" element in a boot object.

est numeric vector of observed coefficients from the full sample. This is the equiv-
alent of the "t0" element in a boot object. The default takes the mean of each
coefficient across bootstrapped resamples; however, this usually results in small
amount of bias in the coefficients.

by2 27

boot.ci.type character vector of length 1 specifying the type of bootstrapped confidence in-
terval to compute. The options are 1) "perc2" for the naive percentile method us-
ing quantile, and 2) "norm2" for the normal method that uses the bootstrapped
standard error to construct symmetrical confidence intervals with the classic for-
mula around the estimate, The options have a "2" after them because, although
they are conceptually similar to the "perc" and "norm" methods in the boot.ci
function, they are slightly different mathematically.

level double vector of length 1 specifying the confidence level. Must be between 0
and 1.

Value

data.frame will be returned with nrow equal to the number of coefficients bootstrapped and columns
specified below. The rownames are the colnames in the coef argument or the names in the est
argument (default data.frame rownames if neither have any names). The columns are the following:

est original parameter estimates

se bootstrapped standard errors (does not differ by boot.ci.type)

lwr lower bound of the bootstrapped confidence intervals

upr upper bound of the bootstrapped confidence intervals

See Also

boot.ci for the confidence interval function in the boot package, confint.boot for an alternative
function with boot objects

Examples

tmp <- replicate(n = 100, expr = {
i <- sample.int(nrow(attitude), replace = TRUE)
colMeans(attitude[i,])

}, simplify = FALSE)
mat <- str2str::lv2m(tmp, along = 1)
boot_ci(mat, est = colMeans(attitude))

by2 Apply a Function to Data by Group

Description

by2 applies a function to data by group and is an alternative to the base R function by. The function
is apart of the split-apply-combine type of function discussed in the plyr R package and is very
similar to dlply. It splits up one data.frame .data[.vrb.nm]into a data.frame for each group
in .data[.grp.nm], applies a function .fun to each data.frame, and then returns the results as a
list with names equal to the group values unique(interaction(.data[.grp.nm], sep = .sep)).

28 by2

by2 is simply split.data.frame + lapply. Similar to dlply, The arguments all start with . so
that they do not conflict with arguments from the function .fun. If you want to apply a function a
(atomic) vector rather than data.frame, then use tapply2.

Usage

by2(.data, .vrb.nm, .grp.nm, .sep = ".", .fun, ...)

Arguments

.data data.frame of data.

.vrb.nm character vector specifying the colnames of .data to select the set of variables
to apply .fun to.

.grp.nm character vector specifying the colnames of .data to select the grouping vari-
ables.

.sep character vector of length 1 specifying the string to combine the group values
together with. .sep is only used if there are multiple grouping variables (i.e.,
length(.grp.nm) > 1).

.fun function to apply to the set of variables .data[.vrb.nm] for each group.

... additional named arguments to pass to .fun.

Value

list of objects containing the return object of .fun for each group. The names are the unique com-
binations of the grouping variables (i.e., unique(interaction(.data[.grp.nm], sep = .sep))).

See Also

by tapply2 dlply

Examples

one grouping variable
by2(mtcars, .vrb.nm = c("mpg","cyl","disp"), .grp.nm = "vs",

.fun = cov, use = "complete.obs")

two grouping variables
x <- by2(mtcars, .vrb.nm = c("mpg","cyl","disp"), .grp.nm = c("vs","am"),

.fun = cov, use = "complete.obs")
print(x)
str(x)

compare to by
vrb_nm <- c("mpg","cyl","disp") # Roxygen runs the whole script if I put a c() in a []
grp_nm <- c("vs","am") # Roxygen runs the whole script if I put a c() in a []
y <- by(mtcars[vrb_nm], INDICES = mtcars[grp_nm],

FUN = cov, use = "complete.obs", simplify = FALSE)
str(y) # has dimnames rather than names

center 29

center Centering and/or Standardizing a Numeric Vector

Description

center centers and/or standardized a numeric vector. It is an alternative to scale.default that
returns a numeric vector rather than a numeric matrix.

Usage

center(x, center = TRUE, scale = FALSE)

Arguments

x numeric vector.

center logical vector with length 1 specifying whether grand-mean centering should be
done.

scale logical vector with length 1 specifying whether grand-SD scaling should be
done.

Details

center first coerces x to a matrix in preparation for the call to scale.default. If the coercion
results in a non-numeric matrix (e.g., x is a character vector or factor), then an error is returned.

Value

numeric vector of x centered and/or standardized with the same names as x.

See Also

centers center_by centers_by scale.default

Examples

center(x = mtcars$"disp")
center(x = mtcars$"disp", scale = TRUE)
center(x = mtcars$"disp", center = FALSE, scale = TRUE)
center(x = setNames(mtcars$"disp", nm = row.names(mtcars)))

30 centers

centers Centering and/or Standardizing Numeric Data

Description

centers centers and/or standardized data. It is an alternative to scale.default that returns a
data.frame rather than a numeric matrix.

Usage

centers(data, vrb.nm, center = TRUE, scale = FALSE, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

center logical vector with length 1 specifying whether grand-mean centering should be
done.

scale logical vector with length 1 specifying whether grand-SD scaling should be
done.

suffix character vector with a single element specifying the string to append to the
end of the colnames of the return object. The default depends on the center
and scale arguments: 1)if center = TRUE and scale = FALSE, then suffix
= "_c", 2) if center = FALSE and scale = TRUE, then suffix = "_s", 3) if
center = TRUE and scale = TRUE, then suffix = "_z", 4) if center = FALSE
and scale = FALSE, then suffix = "".

Details

centers first coerces data[vrb.nm] to a matrix in preparation for the call to scale.default. If
the coercion results in a non-numeric matrix (e.g., any columns in data[vrb.nm] are character
vectors or factors), then an error is returned.

Value

data.frame of centered and/or standardized variables with colnames specified by paste0(vrb.nm,
suffix).

See Also

center centers_by center_by scale.default

centers_by 31

Examples

centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"))
centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"),

scale = TRUE)
centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"),

center = FALSE, scale = TRUE)
centers(data = mtcars, vrb.nm = c("disp","hp","drat","wt","qsec"),

scale = TRUE, suffix = "_std")

centers_by Centering and/or Standardizing Numeric Data by Group

Description

centers_by centers and/or standardized data by group. This is sometimes called group-mean cen-
tering and/or group-SD standardizing. The groups can be specified by multiple columns in data
(e.g., grp.nm with length > 1), and interaction will be implicitly called to create the groups.

Usage

centers_by(data, vrb.nm, grp.nm, center = TRUE, scale = FALSE, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

center logical vector with length 1 specifying whether group-mean centering should be
done.

scale logical vector with length 1 specifying whether group-SD scaling should be
done.

suffix character vector with a single element specifying the string to append to the end
of the colnames of the return object. The default depends on the center and
scale arguments: 1)if center = TRUE and scale = FALSE, then suffix =
"_cw", 2) if center = FALSE and scale = TRUE, then suffix = "_sw", 3)
if center = TRUE and scale = TRUE, then suffix = "_zw", 4) if center =
FALSE and scale = FALSE, then suffix = "".

Details

centers_by first coerces data[vrb.nm] to a matrix in preparation for the core of the function,
which is essentially lapply(X = split(x = data[vrb.nm], f = data[grp.nm]), FUN = scale.default)
If the coercion results in a non-numeric matrix (e.g., any columns in data[vrb.nm] are character
vectors or factors), then an error is returned.

32 center_by

Value

data.frame of centered and/or standardized variables by group with colnames specified by paste0(vrb.nm,
suffix).

See Also

center_by centers center scale.default

Examples

ChickWeight2 <- as.data.frame(ChickWeight) # because the "groupedData" class calls
`[.groupedData`, which is different than `[.data.frame`

row.names(ChickWeight2) <- as.numeric(row.names(ChickWeight)) / 1000
centers_by(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick")
centers_by(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick",

scale = TRUE, suffix = "_within")
centers_by(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), scale = TRUE) # multiple grouping columns

center_by Centering and/or Standardizing a Numeric Vector by Group

Description

center_by centers and/or standardized a numeric vector by group. This is sometimes called group-
mean centering and/or group-SD standardizing.

Usage

center_by(x, grp, center = TRUE, scale = FALSE)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame) containing the groups.
They should each have same length as x. It can also be an atomic vector or
factor, which will then be made the first element of a list internally.

center logical vector with length 1 specifying whether group-mean centering should be
done.

scale logical vector with length 1 specifying whether group-SD scaling should be
done.

Details

center_by first coerces x to a matrix in preparation for the core of the function, which is essen-
tially: lapply(X = split(x = x, f = grp), FUN = scale.default). If the coercion results in a
non-numeric matrix (e.g., x is a character vector or factor), then an error is returned. An error is
also returned if x and the elements of grp do not have the same length.

change 33

Value

numeric vector of x centered and/or standardized by group with the same names as x.

See Also

centers_by center centers scale.default

Examples

chick_data <- as.data.frame(ChickWeight) # because the "groupedData" class calls
`[.groupedData`, which is different than `[.data.frame`

center_by(x = ChickWeight[["weight"]], grp = ChickWeight[["Chick"]])
center_by(x = setNames(obj = ChickWeight[["weight"]], nm = row.names(ChickWeight)),

grp = ChickWeight[["Chick"]]) # with names
tmp_nm <- c("Type","Treatment") # b/c Roxygen2 doesn't like a c() within a []
center_by(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

scale = TRUE) # multiple grouping vectors

change Change Score from a Numeric Vector

Description

change creates a change score (aka difference score) from a numeric vector. It is assumed that the
vector is already sorted by time such that the first element is earliest in time and the last element is
the latest in time.

Usage

change(x, n, undefined = NA)

Arguments

x numeric vector.
n integer vector with length 1. Specifies how the change score is calculated. If n is

positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n de-
termines how many elements are shifted for the lead/lag within the calculation.
If n is zero, then change simply returns a vector or zeros. See details of shift.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shift.

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift tries to circumvent this issue by a call to round within shift if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shift truncates
rather than rounds. See details of shift.

34 changes

Value

an atomic vector of the same length as x that is the change score. If x and undefined are differ-
ent typeofs, then the return will be coerced to the most complex typeof (i.e., complex to simple:
character, double, integer, logical).

See Also

changes change_by changes_by shift

Examples

change(x = attitude[[1]], n = -1L) # use L to prevent problems with floating point numbers
change(x = attitude[[1]], n = -2L) # can specify any integer up to the length of `x`
change(x = attitude[[1]], n = +1L) # can specify negative or positive integers
change(x = attitude[[1]], n = +2L, undefined = -999) # user-specified indefined value
change(x = attitude[[1]], n = -2L, undefined = -999) # user-specified indefined value
change(x = attitude[[1]], n = 0L) # returns a vector of zeros
Not run:
change(x = setNames(object = letters, nm = LETTERS), n = 3L) # character vector returns an error

End(Not run)

changes Change Scores from Numeric Data

Description

changes creates change scores (aka difference scores) from numeric data. It is assumed that the
data is already sorted by time such that the first row is earliest in time and the last row is the latest
in time. changes is a multivariate version of change that operates on multiple variabes rather than
just one.

Usage

changes(data, vrb.nm, n, undefined = NA, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

n integer vector with length 1. Specifies how the change score is calculated. If n is
positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n
determines how many rows are shifted for the lead/lag within the calculation.
See details of shifts.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shifts.

changes_by 35

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1) if n < 0,
then suffix = paste0("_hg", -n), 2) if n > 0, then suffix = paste0("_hd",
+n), 3) if n = 0, then suffix = "".

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts tries to circumvent this issue by a call to round within shifts if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts truncates
rather than rounds. See details of shifts.

Value

data.frame of change scores with colnames specified by paste0(vrb.nm, suffix).

See Also

change changes_by change_by shifts

Examples

changes(attitude, vrb.nm = names(attitude),
n = -1L) # use L to prevent problems with floating point numbers

changes(attitude, vrb.nm = names(attitude),
n = -2L) # can specify any integer up to the length of `x`

changes(attitude, vrb.nm = names(attitude),
n = +1L) # can specify negative or positive integers

changes(attitude, vrb.nm = names(attitude),
n = +2L, undefined = -999) # user-specified indefined value

changes(attitude, vrb.nm = names(attitude),
n = -2L, undefined = -999) # user-specified indefined value

Not run:
changes(str2str::d2d(InsectSprays), names(InsectSprays),

n = 3L) # character vector returns an error

End(Not run)

changes_by Change Scores from Numeric Data by Group

Description

changes_by creates change scores (aka difference scores) from numeric data separately for each
group. It is assumed that the data is already sorted within each group by time such that the first row
for that group is earliest in time and the last row for that group is the latest in time.

Usage

changes_by(data, vrb.nm, grp.nm, n, undefined = NA, suffix)

36 changes_by

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

n integer vector with length 1. Specifies how the change score is calculated. If n is
positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n
determines how many rows are shifted for the lead/lag within the calculation.
See details of shifts_by.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shifts_by.

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1)
if n < 0, then suffix = paste0("_hgw", -n), 2) if n > 0, then suffix =
paste0("_hdw", +n), 3) if n = 0, then suffix = "".

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts_by tries to circumvent this issue by a call to round within shifts_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts_by
truncates rather than rounds. See details of shifts_by.

Value

data.frame of change scores by group with colnames specified by paste0(vrb.nm, suffix).

See Also

change_by changes change shifts_by

Examples

changes_by(data = ChickWeight, vrb.nm = c("weight","Time"), grp.nm = "Chick", n = -1L)
changes_by(data = mtcars, vrb.nm = c("disp","mpg"), grp.nm = c("vs","am"), n = 1L)
changes_by(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), n = 2L) # multiple grouping columns

change_by 37

change_by Change Scores from a Numeric Vector by Group

Description

change_by creates a change score (aka difference score) from a numeric vector separately for each
group. It is assumed that the vector is already sorted within each group by time such that the first
element for that group is earliest in time and the last element for that group is the latest in time.

Usage

change_by(x, grp, n, undefined = NA)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list internally.

n integer vector with length 1. Specifies how the change score is calculated. If n is
positive, then the change score is calculated from lead - original; if n is negative,
then the change score is calculated from original - lag. The magnitude of n
determines how many rows are shifted for the lead/lag within the calculation.
See details of shift_by.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details of shift_by.

Details

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift_by tries to circumvent this issue by a call to round within shift_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shift_by
truncates rather than rounds. See details of shift_by.

Value

an atomic vector of the same length as x that is the change score by group. If x and undefined
are different typeofs, then the return will be coerced to the more complex typoof (i.e., complex to
simple: character, double, integer, logical).

See Also

changes_by change changes shift_by

38 colMeans_if

Examples

change_by(x = ChickWeight[["Time"]], grp = ChickWeight[["Chick"]], n = -1L)
tmp_nm <- c("vs","am") # multiple grouping vectors
change_by(x = mtcars[["disp"]], grp = mtcars[tmp_nm], n = +1L)
tmp_nm <- c("Type","Treatment") # multiple grouping vectors
change_by(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm], n = 2L)

colMeans_if Column Means Conditional on Frequency of Observed Values

Description

colMeans_if calculates the mean of every column in a numeric or logical matrix conditional on
the frequency of observed data. If the frequency of observed values in that column is less than (or
equal to) that specified by ov.min, then NA is returned for that row.

Usage

colMeans_if(x, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.

ov.min minimum frequency of observed values required per column. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and nrow(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the mean should be calculated if
the frequency of observed values in a column is exactly equal to ov.min.

Details

Conceptually this function does: apply(X = x, MARGIN = 2, FUN = mean_if, ov.min = ov.min, prop
= prop, inclusive = inclusive). But for computational efficiency purposes it does not because
then the missing values conditioning would not be vectorized. Instead, it uses colMeans and then
inserts NAs for columns that have too few observed values.

Value

numeric vector of length = ncol(x) with names = colnames(x) providing the mean of each column
or NA depending on the frequency of observed values.

See Also

colSums_if rowMeans_if rowSums_if colMeans

colNA 39

Examples

colMeans_if(airquality)
colMeans_if(x = airquality, ov.min = 150, prop = FALSE)

colNA Frequency of Missing Values by Column

Description

rowNA compute the frequency of missing values in a matrix by column. This function essentially
does apply(X = x, MARGIN = 2, FUN = vecNA). It is also used by other functions in the quest pack-
age related to missing values (e.g., colMeans_if).

Usage

colNA(x, prop = FALSE, ov = FALSE)

Arguments

x matrix with any typeof. If not a matrix, it will be coerced to a matrix via
as.matrix. The function allows for colnames to carry over for non-matrix ob-
jects (e.g., data.frames).

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length = ncol(x), and names = colnames(x) providing the frequency of missing
values (or observed values if ov = TRUE) per column. If prop = TRUE, the values will range from
0 to 1. If prop = FALSE, the values will range from 1 to nrow(x).

See Also

is.na vecNA rowNA rowsNA

Examples

colNA(as.matrix(airquality)) # count of missing values
colNA(as.matrix(airquality), prop = TRUE) # proportion of missing values
colNA(as.matrix(airquality), ov = TRUE) # count of observed values
colNA(as.data.frame(airquality), prop = TRUE, ov = TRUE) # proportion of observed values

40 colSums_if

colSums_if Column Sums Conditional on Frequency of Observed Values

Description

colSums_if calculates the sum of every column in a numeric or logical matrix conditional on the
frequency of observed data. If the frequency of observed values in that column is less than (or equal
to) that specified by ov.min, then NA is returned for that column. It also has the option to return
a value other than 0 (e.g., NA) when all columns are NA, which differs from colSums(x, na.rm =
TRUE).

Usage

colSums_if(
x,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
allNA = NA_real_

)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.
ov.min minimum frequency of observed values required per column. If prop = TRUE,

then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and nrow(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the sum should be calculated if the
frequency of observed values in a column is exactly equal to ov.min.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values of x[, i]. If TRUE (default), this will make sums
over the same rows with different amounts of observed data comparable.

allNA numeric vector of length 1 specifying what value should be returned for columns
that are all NA. This is most applicable when ov.min = 0 and inclusive =
TRUE. The default is NA, which differs from colSums with na.rm = TRUE where
0 is returned. Note, the value is overwritten by NA if the frequency of observed
values in that column is less than (or equal to) that specified by ov.min.

Details

Conceptually this function does: apply(X = x, MARGIN = 2, FUN = sum_if,ov.min = ov.min, prop
= prop, inclusive = inclusive). But for computational efficiency purposes it does not because
then the observed values conditioning would not be vectorized. Instead, it uses colSums and then
inserts NAs for columns that have too few observed values.

composite 41

Value

numeric vector of length = ncol(x) with names = colnames(x) providing the sum of each column
or NA depending on the frequency of observed values.

See Also

colMeans_if rowSums_if rowMeans_if colSums

Examples

colSums_if(airquality)
colSums_if(x = airquality, ov.min = 150, prop = FALSE)
x <- data.frame("x" = c(1, 2, NA), "y" = c(1, NA, NA), "z" = c(NA, NA, NA))
colSums_if(x)
colSums_if(x, ov.min = 0)
colSums_if(x, ov.min = 0, allNA = 0)
identical(x = colSums(x, na.rm = TRUE),

y = colSums_if(x, impute = FALSE, ov.min = 0, allNA = 0)) # identical to
colSums(x, na.rm = TRUE)

composite Composite Reliability of a Score

Description

composite computes the composite reliability coefficient (sometimes referred to as omega) for a
set of variables/items. The composite reliability computed in composite assumes a undimensional
factor model with no error covariances. In addition to the coefficient itself, its standard error and
confidence interval are returned, the average standardized factor loading from the factor model and
number of variables/items, and (optional) model fit indices of the factor model. Note, any reverse
coded items need to be recoded ahead of time so that all variables/items are keyed in the same
direction.

Usage

composite(
data,
vrb.nm,
level = 0.95,
std = FALSE,
ci.type = "delta",
boot.ci.type = "bca.simple",
R = 200L,
fit.measures = c("chisq", "df", "tli", "cfi", "rmsea", "srmr"),
se = "standard",
test = "standard",
missing = "fiml",
...

)

42 composite

Arguments

data data.frame of data.
vrb.nm character vector of colnames in data specifying the set of variables/items.
level double vector of length 1 with a value between 0 and 1 specifying what confi-

dence level to use.
std logical element of length 1 specifying if the composite reliability should be com-

puted for the standardized version of the variables data[vrb.nm].
ci.type character vector of length 1 specifying which type of confidence interval to com-

pute. The "delta" option uses the delta method to compute a standard error and a
symmetrical confidence interval. The "boot" option uses bootstrapping to com-
pute an asymmetrical confidence interval as well as a (pseudo) standard error.

boot.ci.type character vector of length 1 specifying which type of bootstrapped confidence
interval to compute. The options are: 1) "norm", 2) "basic", 3) "perc", 4)
"bca.simple". Only used if ci.type = "boot". See parameterEstimates and
its boot.ci.type argument for details.

R integer vector of length 1 specifying how many bootstrapped resamples to com-
pute. Note, as the number of bootstrapped resamples increases, the computation
time will increase. Only used if ci.type is "boot".

fit.measures character vector specifying which model fit indices to include in the return
object. The default option includes the chi-square test statistic ("chisq"), de-
grees of freedom ("df"), tucker-lewis index ("tli"), comparative fit index ("cfi"),
root mean square error of approximation ("rmsea"), and standardized root mean
residual ("srmr"). If NULL, then no model fit indices are included in the return
object. See fitMeasures for details.

se character vector of length 1 specifying which type of standard errors to compute.
If ci.type = "boot", then the input value is ignored and set to "bootstrap". See
lavOptions and its se argument for details.

test character vector of length 1 specifying which type of test statistic to compute.
If ci.type = "boot", then the input value is ignored and set to "bootstrap". See
lavOptions and its test argument for details.

missing character vector of length 1 specifying how to handle missing data. The default
is "fiml" for full information maximum likelihood). See lavOptions and its
missing argument for details.

... other arguments passed to cfa. Use at your own peril as some argument values
could cause the function to break.

Details

The factor model is estimated using the R package lavaan. The reliability coefficients are calcu-
lated based on the square of the sum of the factor loadings divided by the sum of the square of the
sum of the factors loadings and the sum of the error variances (Raykov, 2001).

composite is only able to use the "ML" estimator at the moment and cannot model items as categor-
ical/ordinal. However, different versions of standard errors and test statistics are possible. For ex-
ample, the "MLM" estimator can be specified by se = "robust.sem" and test = "satorra.bentler"; the
"MLR" estimator can be specified by se = "robust.huber.white" and test = "yuan.bentler.mplus".
See lavOptions and scroll down to Estimation options.

composite 43

Value

double vector where the first element is the composite reliability coefficient ("est") followed by its
standard error ("se"), then its confidence interval ("lwr" and "upr"), the average standardized factor
loading of the factor model ("average_l") and number of variables ("nvrb"), and finally any of the
fit.measures requested.

References

Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analy-
sis with nonlinear constraints. British Journal of Mathematical and Statistical Psychology, 54(2),
315–323.

See Also

composites cronbach

Examples

data
dat <- psych::bfi[1:250, 2:5] # the first item is reverse coded

delta method CI
composite(data = dat, vrb.nm = names(dat), ci.type = "delta")
composite(data = dat, vrb.nm = names(dat), ci.type = "delta", level = 0.99)
composite(data = dat, vrb.nm = names(dat), ci.type = "delta", std = TRUE)
composite(data = dat, vrb.nm = names(dat), ci.type = "delta", fit.measures = NULL)
composite(data = dat, vrb.nm = names(dat), ci.type = "delta",

se = "robust.sem", test = "satorra.bentler", missing = "listwise") # MLM estimator
composite(data = dat, vrb.nm = names(dat), ci.type = "delta",

se = "robust.huber.white", test = "yuan.bentler.mplus", missing = "fiml") # MLR estimator

Not run:
bootstrapped CI
composite(data = dat, vrb.nm = names(dat), level = 0.95,

ci.type = "boot") # slightly different estimate for some reason...
composite(data = dat, vrb.nm = names(dat), level = 0.95, ci.type = "boot",
boot.ci.type = "perc", R = 250L) # probably want to use more resamples - this is just an example

End(Not run)

compare to semTools::reliability
psymet_obj <- composite(data = dat, vrb.nm = names(dat))
psymet_est <- unname(psymet_obj["est"])
lavaan_obj <- lavaan::cfa(model = make.latent(names(dat)), data = dat,

std.lv = TRUE, missing = "fiml")
semTools_obj <- semTools::reliability(lavaan_obj)
semTools_est <- semTools_obj["omega", "latent"]
all.equal(psymet_est, semTools_est)

44 composites

composites Composite Reliability of Multiple Scores

Description

composites computes the composite reliability coefficient (sometimes referred to as omega) for
multiple sets of variables/items. The composite reliability computed in composites assumes a
undimensional factor model for each set of variables/items with no error covariances. In addition to
the coefficients themselves, their standard errors and confidence intervals are returned, the average
standardized factor loading from the factor models and number of variables/items in each set, and
(optional) model fit indices of the factor models. Note, any reverse coded items need to be recoded
ahead of time so that all items are keyed in the same direction for each set of variables/items.

Usage

composites(
data,
vrb.nm.list,
level = 0.95,
std = FALSE,
ci.type = "delta",
boot.ci.type = "bca.simple",
R = 200L,
fit.measures = c("chisq", "df", "tli", "cfi", "rmsea", "srmr"),
se = "standard",
test = "standard",
missing = "fiml",
...

)

Arguments

data data.frame of data.

vrb.nm.list list of character vectors containing colnames in data specifying the multiple
sets of variables/items.

level double vector of length 1 with a value between 0 and 1 specifying what confi-
dence level to use.

std logical element of length 1 specifying if the composite reliability should be com-
puted for the standardized version of the variables/items data[unlist(vrb.nm.list)].

ci.type character vector of length 1 specifying which type of confidence interval to com-
pute. The "delta" option uses the delta method to compute a standard error and a
symmetrical confidence interval. The "boot" option uses bootstrapping to com-
pute an asymmetrical confidence interval as well as a (pseudo) standard error.

boot.ci.type character vector of length 1 specifying which type of bootstrapped confidence
interval to compute. The options are: 1) "norm", 2) "basic", 3) "perc", 4)

composites 45

"bca.simple". Only used if ci.type = "boot". See parameterEstimates and
its boot.ci.type argument for details.

R integer vector of length 1 specifying how many bootstrapped resamples to com-
pute. Note, as the number of bootstrapped resamples increases, the computation
time will increase. Only used if ci.type is "boot".

fit.measures character vector specifying which model fit indices to include in the return
object. The default option includes the chi-square test statistic ("chisq"), de-
grees of freedom ("df"), tucker-lewis index ("tli"), comparative fit index ("cfi"),
root mean square error of approximation ("rmsea"), and standardized root mean
residual ("srmr"). If NULL, then no model fit indices are included in the return
object. See fitMeasures for details.

se character vector of length 1 specifying which type of standard errors to com-
pute. If ci.type = "boot", then the input value is ignored and implicitly set to
"bootstrap". See lavOptions and its se argument for details.

test character vector of length 1 specifying which type of test statistic to compute. If
ci.type = "boot", then the input value is ignored and implicitly set to "bootstrap".
See lavOptions and its test argument for details.

missing character vector of length 1 specifying how to handle missing data. The default
is "fiml" for full information maximum likelihood. See lavOptions and its
missing argument for details.

... other arguments passed to cfa. Use at your own peril as some argument values
could cause the function to break.

Details

The factor models are estimated using the R package lavaan. The reliability coefficients are calcu-
lated based on the square of the sum of the factor loadings divided by the sum of the square of the
sum of the factors loadings and the sum of the error variances (Raykov, 2001).

composites is only able to use the "ML" estimator at the moment and cannot model items as cat-
egorical/ordinal. However, different versions of standard errors and test statistics are possible. For
example, the "MLM" estimator can be specified by se = "robust.sem" and test = "satorra.bentler";
the "MLR" estimator can be specified by se = "robust.huber.white" and test = "yuan.bentler.mplus".
See lavOptions and scroll down to Estimation options for details.

Value

data.frame containing the composite reliability of each set of variables/items.

est estimate of the reliability coefficient

se standard error of the reliability coefficient

lwr lower bound of the confidence interval of the reliability coefficient

upr upper bound of the confidence interval of the reliability coefficient

average_l average standardized factor loading from the factor model

nvrb number of variables/items

??? any model fit indices requested by the fit.measures argument

46 confint2

References

Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analy-
sis with nonlinear constraints. British Journal of Mathematical and Statistical Psychology, 54(2),
315–323.

See Also

composite cronbachs

Examples

dat0 <- psych::bfi[1:250,]
dat1 <- str2str::pick(x = dat0, val = c("A1","C4","C5","E1","E2","O2","O5",

"gender","education","age"), not = TRUE, nm = TRUE)
vrb_nm_list <- lapply(X = str2str::sn(c("E","N","C","A","O")), FUN = function(nm) {

str2str::pick(x = names(dat1), val = nm, pat = TRUE)})
composites(data = dat1, vrb.nm.list = vrb_nm_list)
Not run:
start_time <- Sys.time()
composites(data = dat1, vrb.nm.list = vrb_nm_list, ci.type = "boot",

R = 5000L) # the function is not optimized for speed at the moment
since it will bootstrap separately for each set of variables/items

end_time <- Sys.time()
print(end_time - start_time) # takes 10 minutes on my laptop

End(Not run)
composites(data = attitude,

vrb.nm.list = list(names(attitude))) # also works with only one set of variables/items

confint2 Confidence Intervals from Statistical Information

Description

confint2 is a generic function for creating confidence intervals from various statistical informa-
tion (e.g., confint2.default) or object classes (e.g., confint2.boot). It is an alternative to the
original confint generic function in the stats package.

Usage

confint2(obj, ...)

Arguments

obj object of a particular class (e.g., "boot") or the first argument in the default
method (e.g., the obj argument in confint2.default)

... additional arguments specific to the particular method of confint2.

confint2.boot 47

Value

depends on the particular method of confint2, but usually a data.frame with a column for the
parameter estimate ("est"), standard error ("se"), lower bound of the confidence interval ("lwr"),
and upper bound of the confidence interval ("upr").

See Also

confint2.default for the default method, confint2.boot for the boot method,

confint2.boot Bootstrapped Confidence Intervals from a boot Object

Description

confint2.boot is the boot method for the generic function confint2 and computes bootstrapped
confidence intervals from an object of class boot (aka an object returned by the function boot. The
function is a simple wrapper for the car boot methods for the summary and confint generics. See
hist.boot for details on those methods.

Usage

S3 method for class 'boot'
confint2(obj, boot.ci.type = "perc", level = 0.95, ...)

Arguments

obj an object of class boot (aka an object returned by the function boot).

boot.ci.type character vector of length 1 specifying the type of bootstrapped confidence in-
terval to compute. The options are 1) "perc" for the regular percentile method,
2) "bca" for bias-corrected and accelerated percentile method, 3) "norm" for
the normal method that uses the bootstrapped standard error to construct sym-
metrical confidence intervals with the classic formula around the bias-corrected
estimate, and 4) "basic" for the basic method. Note, "stud" for the studentized
method is NOT an option. See boot.ci for details. Although a more informative
link is the following blogpost on bootstrapped confidence intervals with the boot
package https://www.r-bloggers.com/2019/09/understanding-bootstrap-confidence-interval-output-from-the-r-boot-package/.

level double vector of length 1 specifying the confidence level. Must be between 0
and 1.

... This argument has no use. Technically, it is additional arguments for confint2.boot,
but is only included for Roxygen2 to satisfy "checking S3 generic/method con-
sistency".

https://www.r-bloggers.com/2019/09/understanding-bootstrap-confidence-interval-output-from-the-r-boot-package/

48 confint2.boot

Details

The bias-corrected and accelerated percentile method (boot.ci.type = "bca") will often fail if the
number of bootstrapped resamples is less than the sample size. Even still, it can fail for other rea-
sons. Following car:::confint.boot, confint2.boot gives a warning if the bias-corrected and
accelerated percentile method fails for any statistic, and implicitly switches to the regular percentile
method to prevent an error. When multiple statistics were bootstrapped, it might be that the bias-
corrected and accelerated percentile method succeeded for most of the statistics and only failed for
one statistic; however, confint2.boot will switch to using the regular percentile method for ALL
the statistics. This may change in the future.

Value

data.frame will be returned with nrow equal to the number of statistics bootstrapped and columns
specified below. The rownames are the names in the "t0" element of the boot object (default
data.frame rownames if the "t0" element does not have any names). The columns are the following:

est original parameter estimates

se bootstrapped standard errors (does not differ by boot.ci.type)

lwr lower bound of the bootstrapped confidence intervals

upr upper bound of the bootstrapped confidence intervals

See Also

boot.ci hist.boot

Examples

a single statistic
mean2 <- function(x, i) mean(x[i], na.rm = TRUE)
boot_obj <- boot::boot(data = attitude[[1]], statistic = mean2, R = 200L)
confint2.boot(boot_obj)
confint2.boot(boot_obj, boot.ci.type = "bca")
confint2.boot(boot_obj, level = 0.99)

multiple statistics
colMeans2 <- function(dat, i) colMeans(dat[i,], na.rm = TRUE)
boot_obj <- boot::boot(data = attitude, statistic = colMeans2, R = 200L)
confint2.boot(boot_obj)
confint2.boot(boot_obj, boot.ci.type = "bca")
confint2.boot(boot_obj, level = 0.99)

confint2.default 49

confint2.default Confidence Intervals from Parameter Estimates and Standard Errors

Description

confint2.default is the default method for the generic function confint2 and computes the sta-
tistical information for confidence intervals from parameter estimates, standard errors, and degrees
of freedom. If degrees of freedom are not applicable or available, then df can be set to Inf (the
default) and critical z-values rather than critical t-values will be used.

Usage

Default S3 method:
confint2(obj, se, df = Inf, level = 0.95, ...)

Arguments

obj numeric vector of parameter estimates. A better name for this argument would
be est; however, uses of S3 generic functions requires the first argument to be
the same name (i.e., obj) across methods.

se numeric vector of standard errors. Must be the same length as obj.

df numeric vector of degrees of freedom. Must have length 1 or the same length as
obj and se. If degrees of freedom are not applicable or available, then df can
be set to Inf (the default) and critical z-values rather than critical t-values will
be used.

level double vector of length 1 specifying the confidence level. Must be between 0
and 1.

... This argument has no use. Technically, it is additional arguments for confint2.default,
but is only included for Roxygen2 to satisfy "checking S3 generic/method con-
sistency".

Value

data.frame with nrow equal to the lengths of obj and se. The rownames are taken from obj, unless
obj does not have any names and then the rownames are taken from the names of se. If neither
have names, then the rownames are automatic (i.e., 1:nrow()). The columns are the following:

est parameter estimates

se standard errors

lwr lower bound of the confidence intervals

upr upper bound of the confidence intervals

See Also

confint2.boot nhst

50 corp

Examples

single estimate
confint2.default(obj = 10, se = 3)

multiple estimates
est <- colMeans(attitude)
se <- apply(X = str2str::d2m(attitude), MARGIN = 2, FUN = function(vec)

sqrt(var(vec) / length(vec)))
df <- nrow(attitude) - 1
confint2.default(obj = est, se = se, df = df)
confint2.default(obj = est, se = se) # default is df = Inf and use of ctitical z-values
confint2.default(obj = est, se = se, df = df, level = 0.99)

error
Not run:
confint2.default(obj = c(10, 12), se = c(3, 4, 5))

End(Not run)

corp Bivariate Correlations with Significant Symbols

Description

corp computes bivariate correlations and their associated p-values. The function is primarily for
preparing a correlation table for publication: the correlations are appended by significant symbols
(e.g., asterixis), corp is simply corr.test + add_sig_cor.

Usage

corp(
data,
vrb.nm,
use = "pairwise.complete.obs",
method = "pearson",
digits = 3L,
p.10 = "",
p.05 = "*",
p.01 = "**",
p.001 = "***",
lead.zero = FALSE,
trail.zero = TRUE,
plus = FALSE,
diags = FALSE,
lower = TRUE,
upper = FALSE

)

corp 51

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variable columns.

use character vector of length 1 specifying how to handle missing data when com-
puting the correlations. The options are 1) "pairwise.complete.obs", 2) "com-
plete.obs", 3) "na.or.complete", 4) "all.obs", or 5) "everything". See details of
cor.

method character vector of length 1 specifying the type of correlations to be computed.
The options are 1) "pearson", 2) "kendall", or 3) "spearman". See details of cor.

digits integer vector of length 1 specifying the number of decimals to round to.

p.10 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .10 level.

p.05 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .05 level.

p.01 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .01 level.

p.001 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .001 level.

lead.zero logical vector of length 1 specifying whether to retain a zero in front of the
decimal place.

trail.zero logical vector of length 1 specifying whether to retain zeros after the decimal
place (due to rounding).

plus logical vector of length 1 specifying whether to include a plus sign in front of
positive correlations (minus signs are always in front of negative correlations).

diags logical vector of length 1 specifying whether to retain the values in the diagonal
of the correlation matrix. If TRUE, then the diagonal will be 1s with digits
number of zeros after the decimal place (and no significant symbols). If FALSE,
then the diagonal will be NA.

lower logical vector of length 1 specifying whether to retain the lower triangle of the
correlation matrix. If TRUE, then the lower triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the lower triangle will all be NA.

upper logical vector of length 1 specifying whether to retain the upper triangle of the
correlation matrix. If TRUE, then the upper triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the upper triangle will all be
NA.

Value

data.frame with rownames and colnames equal to vrb.nm containing the bivariate correlations with
significance symbols after the correlation value, specified by the arguments p.10, p.05, p.01, and
p.001 arguments. The specific elements of the return object are determined by the other arguments.

52 corp_by

See Also

add_sig_cor for adding significant symbols to a correlation matrix, add_sig for adding significant
symbols to any (atomic) vector, matrix, or (3D+) array, cor for computing only the correlation
coefficients themselves corr.test for a function providing confidence intervals as well

Examples

corp(data = mtcars, vrb.nm = c("mpg","cyl","disp","hp","drat")) # no quotes b/c a data.frame
corp(data = attitude, vrb.nm = colnames(attitude))
corp(data = attitude, vrb.nm = colnames(attitude), p.10 = "'") # advance & privileges
corp(data = airquality, vrb.nm = colnames(airquality), plus = TRUE)

corp_by Bivariate Correlations with Significant Symbols by Group

Description

corp_by computes a correlation data.frame for each group within numeric data. The correlation
coefficients are appended by their significant symbols based on their associated p-values. If only the
correlation coefficients are desired, use cor_by which returns a list of numeric matrices. corp_by
is simply corp + by2.

Usage

corp_by(
data,
vrb.nm,
grp.nm,
use = "pairwise.complete.obs",
method = "pearson",
sep = ".",
digits = 3L,
p.10 = "",
p.05 = "*",
p.01 = "**",
p.001 = "***",
lead.zero = FALSE,
trail.zero = TRUE,
plus = FALSE,
diags = FALSE,
lower = TRUE,
upper = FALSE

)

corp_by 53

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

use character vector of length 1 specifying how to handle missing data when com-
puting the correlations. The options are 1) "pairwise.complete.obs", 2) "com-
plete.obs", 3) "na.or.complete", 4) "all.obs", or 5) "everything". See details of
cor.

method character vector of length 1 specifying the type of correlations to be computed.
The options are 1) "pearson", 2) "kendall", or 3) "spearman". See details of cor.

sep character vector of length 1 specifying the string to combine the group values
together with. sep is only used if there are multiple grouping variables (i.e.,
length(grp.nm) > 1).

digits integer vector of length 1 specifying the number of decimals to round to.

p.10 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .10 level.

p.05 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .05 level.

p.01 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .01 level.

p.001 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .001 level.

lead.zero logical vector of length 1 specifying whether to retain a zero in front of the
decimal place.

trail.zero logical vector of length 1 specifying whether to retain zeros after the decimal
place (due to rounding).

plus logical vector of length 1 specifying whether to include a plus sign in front of
positive correlations (minus signs are always in front of negative correlations).

diags logical vector of length 1 specifying whether to retain the values in the diagonal
of the correlation matrix. If TRUE, then the diagonal will be 1s with digits
number of zeros after the decimal place (and no significant symbols). If FALSE,
then the diagonal will be NA.

lower logical vector of length 1 specifying whether to retain the lower triangle of the
correlation matrix. If TRUE, then the lower triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the lower triangle will all be NA.

upper logical vector of length 1 specifying whether to retain the upper triangle of the
correlation matrix. If TRUE, then the upper triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the upper triangle will all be
NA.

54 corp_miss

Value

list of data.frames containing the correlation coefficients and their appended significance symbols
based upon their associated p-values. The listnames are the unique combinations of the grouping
variables, separated by "sep" if multiple grouping variables (i.e., length(grp.nm) > 1) are input:
unique(interaction(data[grp.nm], sep = sep)). For each data.frame, the rownames and col-
names = vrb.nm. The significance symbols are specified by the arguments p.10, p.05, p.01, and
p.001, after the correlation value. The specific elements of the return object are determined by the
other arguments.

See Also

corp cor_by cor

Examples

one grouping variable
corp_by(airquality, vrb.nm = c("Ozone","Solar.R","Wind"), grp.nm = "Month")
corp_by(airquality, vrb.nm = c("Ozone","Solar.R","Wind"), grp.nm = "Month",

use = "complete.obs", method = "spearman")

two grouping variables
corp_by(mtcars, vrb.nm = c("mpg","disp","drat","wt"), grp.nm = c("vs","am"))
corp_by(mtcars, vrb.nm = c("mpg","disp","drat","wt"), grp.nm = c("vs","am"),

use = "complete.obs", method = "spearman", sep = "_")

corp_miss Point-biserial Correlations of Missingness With Significant Symbols

Description

corp_miss computes (point-biserial) correlations between missingness on data columns and scores
on other data columns. It also appends significance symbols at the end of the correlations.

Usage

corp_miss(
data,
x.nm,
m.nm,
ov = FALSE,
use = "pairwise.complete.obs",
method = "pearson",
m.suffix = if (ov) "_ov" else "_na",
digits = 3L,
p.10 = "",
p.05 = "*",

corp_miss 55

p.01 = "**",
p.001 = "***",
lead.zero = FALSE,
trail.zero = TRUE,
plus = FALSE

)

Arguments

data data.frame of data.

x.nm character vector of colnames in data to be the predictors of missingness.

m.nm character vector of colnames in data to specify missing data on.

ov logical vector of length 1 specifying whether the correlations should be with
"observedness" rather than missingness.

use character vector of length 1 specifying how to deal with missing data in the
predictor columns. See cor.

method character vector of length 1 specifying what type of correlations to compute.
See cor.

m.suffix character vector of length 1 specifying a string to oppend to the end of the col-
names to clarify whether they refer to missingness or "observedness". Default
is "_na" if ov = FALSE and "_ov" if ov = TRUE.

digits integer vector of length 1 specifying the number of decimals to round to.

p.10 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .10 level.

p.05 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .05 level.

p.01 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .01 level.

p.001 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .001 level.

lead.zero logical vector of length 1 specifying whether to retain a zero in front of the
decimal place.

trail.zero logical vector of length 1 specifying whether to retain zeros after the decimal
place (due to rounding).

plus logical vector of length 1 specifying whether to include a plus sign in front of
positive correlations (minus signs are always in front of negative correlations).

Details

cor_miss calls make.dumNA to create dummy vectors representing missingness on the data[m.nm]
columns.

Value

numeric matrix of (point-biserial) correlations between rows of predictors and columns of missing-
ness.

56 corp_ml

Examples

corp_miss(data = airquality, x.nm = c("Wind","Temp","Month","Day"),
m.nm = c("Ozone","Solar.R"))

corp_miss(data = airquality, x.nm = c("Wind","Temp","Month","Day"),
m.nm = c("Ozone","Solar.R"), ov = TRUE) # correlations with "observedness"

corp_miss(data = airquality, x.nm = c("Wind","Temp","Month","Day"),
m.nm = c("Ozone","Solar.R"), use = "complete.obs", method = "kendall")

corp_ml corp_ml decomposes correlations from multilevel data into within-
group and between-group correlations as well as adds significance
symbols to the end of each value. The workhorse of the func-
tion is statsBy. corp_ml is simply a combination of cor_ml and
add_sig_cor.

Description

corp_ml decomposes correlations from multilevel data into within-group and between-group corre-
lations as well as adds significance symbols to the end of each value. The workhorse of the function
is statsBy. corp_ml is simply a combination of cor_ml and add_sig_cor.

Usage

corp_ml(
data,
vrb.nm,
grp.nm,
use = "pairwise.complete.obs",
method = "pearson",
digits = 3L,
p.10 = "",
p.05 = "*",
p.01 = "**",
p.001 = "***",
lead.zero = FALSE,
trail.zero = TRUE,
plus = FALSE,
diags = FALSE,
lower = TRUE,
upper = FALSE

)

Arguments

data data.frame of data.

corp_ml 57

vrb.nm character vector of colnames from data specifying the variable columns.

grp.nm character vector of length 1 of a colname from data specifying the grouping
column.

use character vector of length 1 specifying how to handle missing values when com-
puting the correlations. The options are: 1) "pairwise.complete.obs" which uses
pairwise deletion, 2) "complete.obs" which uses listwise deletion, and 3) "every-
thing" which uses all cases and returns NA for any correlations from columns in
data[vrb.nm] with missing values.

method character vector of length 1 specifying which type of correlations to compute.
The options are: 1) "pearson" for traditional Pearson product-moment correla-
tions, 2) "kendall" for Kendall rank correlations, and 3) "spearman" for Spear-
man rank correlations.

digits integer vector of length 1 specifying the number of decimals to round to.

p.10 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .10 level.

p.05 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .05 level.

p.01 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .01 level.

p.001 character vector of length 1 specifying which symbol to append to the end of
any correlation significant at the p < .001 level.

lead.zero logical vector of length 1 specifying whether to retain a zero in front of the
decimal place.

trail.zero logical vector of length 1 specifying whether to retain zeros after the decimal
place (due to rounding).

plus logical vector of length 1 specifying whether to include a plus sign in front of
positive correlations (minus signs are always in front of negative correlations).

diags logical vector of length 1 specifying whether to retain the values in the diagonal
of the correlation matrix. If TRUE, then the diagonal will be 1s with digits
number of zeros after the decimal place (and no significant symbols). If FALSE,
then the diagonal will be NA.

lower logical vector of length 1 specifying whether to retain the lower triangle of the
correlation matrix. If TRUE, then the lower triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the lower triangle will all be NA.

upper logical vector of length 1 specifying whether to retain the upper triangle of the
correlation matrix. If TRUE, then the upper triangle correlations and their sig-
nificance symbols are retained. If FAlSE, then the upper triangle will all be
NA.

Value

list of two elements that are data.frames with names "within" and "between". The first data.frame
has the within-group correlations with their significance symbols at the end of the statistically signif-
icant correlations based on their associated p-value. The second data.frame has the between-group

58 cor_by

correlations with their significance symbols at the end of the statistically significant correlations
based on their associated p-values. The rownames and colnames of each dataframe are vrb.nm.
The formatting of the two data.frames depends on several of the arguments.

See Also

cor_ml for multilevel correlations without significance symbols, corp_by for correlations with
significance symbols by group, statsBy the workhorse for the corp_ml function, add_sig_cor for
adding significant symbols to correlation matrices,

Examples

traditional use
tmp <- c("outcome","case","session","trt_time") # roxygen2 does not like c() inside []
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp]
stats_by <- psych::statsBy(dat, group = "case") # requires you to include "case" column in dat
corp_ml(data = dat, vrb.nm = c("outcome","session","trt_time"), grp.nm = "case")

varying the `use` and `method` arguments
corp_ml(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind","Temp"), grp.nm = "Month",

use = "pairwise", method = "pearson")
corp_ml(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind","Temp"), grp.nm = "Month",

use = "complete", method = "kendall")
corp_ml(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind","Temp"), grp.nm = "Month",

use = "everything", method = "spearman")

cor_by Correlation Matrix by Group

Description

cor_by computes a correlation matrix for each group within numeric data. Only the correlation
coefficients are determined and not any NHST information. If that is desired, use corp_by which
includes significance symbols. cor_by is simply cor + by2.

Usage

cor_by(
data,
vrb.nm,
grp.nm,
use = "pairwise.complete.obs",
method = "pearson",
sep = ".",
check = TRUE

)

cor_by 59

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

use character vector of length 1 specifying how to handle missing data when com-
puting the correlations. The options are 1) "pairwise.complete.obs", 2) "com-
plete.obs", 3) "na.or.complete", 4) "all.obs", or 5) "everything". See details of
cor.

method character vector of length 1 specifying the type of correlations to be computed.
The options are 1) "pearson", 2) "kendall", or 3) "spearman". See details of cor.

sep character vector of length 1 specifying the string to combine the group values
together with. sep is only used if there are multiple grouping variables (i.e.,
length(grp.nm) > 1).

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether data[vrb.nm] are all mode numeric.
This argument is available to allow flexibility in whether the user values infor-
mative error messages (TRUE) vs. computational efficiency (FALSE).

Value

list of numeric matrices containing the correlations from each group. The listnames are the unique
combinations of the grouping variables, separated by "sep" if multiple grouping variables (i.e.,
length(grp.nm) > 1) are input: unique(interaction(data[grp.nm], sep = sep)). The row-
names and colnames of each numeric matrix are vrb.nm.

See Also

cor for full sample correlation matrixes, corp for full sample correlation data.frames with sig-
nificance symbols, corp_by for full sample correlation data.farmes with significance symbols by
group.

Examples

one grouping variable
cor_by(airquality, vrb.nm = c("Ozone","Solar.R","Wind"), grp.nm = "Month")
cor_by(airquality, vrb.nm = c("Ozone","Solar.R","Wind"), grp.nm = "Month",

use = "complete.obs", method = "spearman")

two grouping variables
cor_by(mtcars, vrb.nm = c("mpg","disp","drat","wt"), grp.nm = c("vs","am"))
cor_by(mtcars, vrb.nm = c("mpg","disp","drat","wt"), grp.nm = c("vs","am"),

use = "complete.obs", method = "spearman", sep = "_")

60 cor_miss

cor_miss Point-biserial Correlations of Missingness

Description

cor_miss computes (point-biserial) correlations between missingness on data columns and scores
on other data columns.

Usage

cor_miss(
data,
x.nm,
m.nm,
ov = FALSE,
use = "pairwise.complete.obs",
method = "pearson"

)

Arguments

data data.frame of data.

x.nm character vector of colnames in data to be the predictors of missingness.

m.nm character vector of colnames in data to specify missing data on.

ov logical vector of length 1 specifying whether the correlations should be with
"observedness" rather than missingness.

use character vector of length 1 specifying how to deal with missing data in the
predictor columns. See cor.

method character vector of length 1 specifying what type of correlations to compute.
See cor.

Details

cor_miss calls make.dumNA to create dummy vectors representing missingness on the data[m.nm]
columns.

Value

numeric matrix of (point-biserial) correlations between rows of predictors and columns of missing-
ness.

cor_ml 61

Examples

cor_miss(data = airquality, x.nm = c("Wind","Temp","Month","Day"),
m.nm = c("Ozone","Solar.R"))

cor_miss(data = airquality, x.nm = c("Wind","Temp","Month","Day"),
m.nm = c("Ozone","Solar.R"), ov = TRUE) # correlations with "observedness"

cor_miss(data = airquality, x.nm = c("Wind","Temp","Month","Day"),
m.nm = c("Ozone","Solar.R"), use = "complete.obs", method = "kendall")

cor_ml Multilevel Correlation Matrices

Description

cor_ml decomposes correlations from multilevel data into within-group and between-group corre-
lations. The workhorse of the function is statsBy.

Usage

cor_ml(data, vrb.nm, grp.nm, use = "pairwise.complete.obs", method = "pearson")

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variable columns.

grp.nm character vector of length 1 of a colname from data specifying the grouping
column.

use character vector of length 1 specifying how to handle missing values when com-
puting the correlations. The options are: 1. "pairwise.complete.obs" which uses
pairwise deletion, 2. "complete.obs" which uses listwise deletion, and 3. "ev-
erything" which uses all cases and returns NA for any correlations from columns
in data[vrb.nm] with missing values.

method character vector of length 1 specifying which type of correlations to compute.
The options are: 1. "pearson" for traditional Pearson product-moment correla-
tions, 2. "kendall" for Kendall rank correlations, and 3. "spearman" for Spear-
man rank correlations.

Value

list with two elements named "within" and "between" each containing a numeric matrix. The
first "within" matrix is the within-group correlation matrix and the second "between" matrix is
the between-group correlation matrix. The rownames and colnames of each numeric matrix are
vrb.nm.

62 covs_test

See Also

corp_ml for multilevel correlations with significance symbols, cor_by for correlation matrices by
group, cor for traditional, single-level correlation matrices, statsBy the workhorse for the cor_ml
function,

Examples

traditional use
tmp <- c("outcome","case","session","trt_time") # roxygen2 does not like c() inside []
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp]
stats_by <- psych::statsBy(dat, group = "case") # requires you to include "case" column in dat
cor_ml(data = dat, vrb.nm = c("outcome","session","trt_time"), grp.nm = "case")

varying the \code{use} and \code{method} arguments
cor_ml(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind","Temp"), grp.nm = "Month",

use = "pairwise", method = "pearson")
cor_ml(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind","Temp"), grp.nm = "Month",

use = "complete", method = "kendall")
cor_ml(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind","Temp"), grp.nm = "Month",

use = "everything", method = "spearman")

covs_test Covariances Test of Significance

Description

covs_test computes sample covariances and tests for their significance with the Pearson method
assuming multivariate normality of the data. Note, the normal-theory significance test for the co-
variance is much more sensitive to departures from normality than the significant test for the mean.
This function is the covariance analogue to the psych::corr.test() function for correlations.

Usage

covs_test(data, vrb.nm, use = "pairwise", ci.level = 0.95, rtn.dfm = FALSE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames specifying the variables in data to conduct the
significant test of the covariances.

use character vector of length 1 specifying how missing values are handled. Cur-
rently, there are only two options: 1) "pairwise" for pairwise deletion (i.e.,
cov(use = "pairwise.complete.obs")), or 2) "complete" for listwise dele-
tion (i.e., cov(use = "complete.obs")).

covs_test 63

ci.level numeric vector of length 1 specifying the confidence level. It must be between 0
and 1 - or it can be NULL in which case confidence intervals are not computed
and the return object does not have "lwr" or "upr" columns.

rtn.dfm logical vector of length 1 specifying whether the return object should be an
array (FALSE) or data.frame (TRUE). If an array, then the first two dimensions
are the matrix dimensions from the covariance matrix and the 3rd dimension
(aka layers) contains the statistical information (e.g., est, se, t). If data.frame,
then the first two columns are the matrix dimensions from the covariance matrix
expanded and the rest of the columns contain the statistical information (e.g.,
est, se, t).

Value

If rtn.dfm = FALSE, an array where its first two dimensions are the matrix dimensions from the
covariance matrix and the 3rd dimension (aka layers) contains the statistical information detailed
below. If rtn.dfm = TRUE, a data.frame where its first two columns are the expanded matrix di-
mensions from the covariance matrix and the rest of the columns contain the statistical information
detailed below:

cov sample covariances

se standard errors of the covariances

t t-values

df degrees of freedom (n - 2)

p two-sided p-values

lwr lower bound of the confidence intervals (excluded if ci.level = NULL)

upr upper bound of the confidence intervals (excluded if ci.level = NULL)

See Also

cov for covariance matrix estimates, corr.test for correlation matrix significant testing,

Examples

traditional use
covs_test(data = attitude, vrb.nm = names(attitude))
covs_test(data = attitude, vrb.nm = names(attitude),

ci.level = NULL) # no confidence intervals
covs_test(data = attitude, vrb.nm = names(attitude),

rtn.dfm = TRUE) # return object as data.frame

NOT same as simple linear regression slope
covTest <- covs_test(data = attitude, vrb.nm = names(attitude),

ci.level = NULL, rtn.dfm = TRUE)
x <- covTest[with(covTest, rownames == "rating" & colnames == "complaints"),]
lm_obj <- lm(rating ~ complaints, data = attitude)
y <- coef(summary(lm_obj))["complaints", , drop = FALSE]
print(x); print(y)

64 cronbach

z <- x[, "cov"] / var(attitude$"complaints")
print(z) # dividing by variance of the predictor gives you the regression slope
but the t-values and p-values are still different

NOT same as correlation coefficient
covTest <- covs_test(data = attitude, vrb.nm = names(attitude),

ci.level = NULL, rtn.dfm = TRUE)
x <- covTest[with(covTest, rownames == "rating" & colnames == "complaints"),]
cor_test <- cor.test(x = attitude[[1]], y = attitude[[2]])
print(x); print(cor_test)
z <- x[, "cov"] / sqrt(var(attitude$"rating") * var(attitude$"complaints"))
print(z) # dividing by sqrt of the variances gives you the correlation
but the t-values and p-values are still different

cronbach Cronbach’s Alpha of a Set of Variables/Items

Description

cronbach computes Cronbach’s alpha for a set of variables/items as an estimate of reliability for a
score. There are three different options for confidence intervals. Missing data can be handled by ei-
ther pairwise deletion (use = "pairwise.complete.obs") or listwise deletion (use = "complete.obs").
cronbach is a wrapper for the alpha function in the psych package.

Usage

cronbach(
data,
vrb.nm,
ci.type = "delta",
level = 0.95,
use = "pairwise.complete.obs",
stats = c("average_r", "nvrb"),
R = 200L,
boot.ci.type = "perc"

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames of data specifying the variables/items.

ci.type character vector of length 1 specifying the type of confidence interval to com-
pute. The options are 1) "classic" is the Feldt et al. (1987) procedure using
only the mean covariance, 2) "delta" is the Duhhacheck & Iacobucci (2004)
procedure using the delta method of the covariance matrix, or 3) "boot" is boot-
strapped confidence intervals with the method specified by boot.ci.type.

cronbach 65

level double vector of length 1 with a value between 0 and 1 specifying what confi-
dence level to use.

use character vector of length 1 specifying how to handle missing data when com-
puting the covariances. The options are 1) "pairwise.complete.obs", 2) "com-
plete.obs", 3) "na.or.complete", 4) "all.obs", or 5) "everything". See details of
cov.

stats character vector specifying the additional statistical information you could like
related to cronbach’s alpha. Options are: 1) "std.alpha" = cronbach’s alpha of the
standardized variables/items, 2) "G6(smc)" = Guttman’s Lambda 6 reliability,
3) "average_r" = mean correlation between the variables/items, 4) "median_r"
= median correlation between the variables/items, 5) "mean" = mean of the the
score from averaging the variables/items together, 6) "sd" = standard deviation
of the scores from averaging the variables/items together, 7) "nvrb" = number of
variables/items. The default is "average_r" and "nvrb".

R integer vector of length 1 specifying the number of bootstrapped resamples to
do. Only used when ci.type = "boot".

boot.ci.type character vector of length 1 specifying the type of bootstrapped confidence in-
terval to compute. The options are 1) "perc" for the regular percentile method,
2) "bca" for bias-corrected and accelerated percentile method, 3) "norm" for
the normal method that uses the bootstrapped standard error to construct sym-
metrical confidence intervals with the classic formula around the bias-corrected
estimate, and 4) "basic" for the basic method. Note, "stud" for the studentized
method is NOT an option. See boot.ci as well as confint2.boot for details.

Details

When ci.type = "classic" the confidence interval is based on the mean covariance. It is the same
as the confidence interval used by alpha.ci (Feldt, Woodruff, & Salih, 1987). When ci.type =
"delta" the confidence interval is based on the delta method of the covariance matrix. It is based on
the standard error returned by alpha (Duhachek & Iacobucci, 2004).

Value

double vector containing Cronbach’s alpha, it’s standard error, and it’s confidence interval, followed
by any statistics requested via the stats argument.

References

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement (11) 93-103.

Duhachek, A. and Iacobucci, D. (2004). Alpha’s standard error (ase): An accurate and precise
confidence interval estimate. Journal of Applied Psychology, 89(5):792-808.

See Also

cronbachs composite

66 cronbachs

Examples

tmp_nm <- c("A2","A3","A4","A5")
psych::alpha(psych::bfi[tmp_nm])[["total"]]
a <- suppressMessages(psych::alpha(attitude))[["total"]]["raw_alpha"]
a.ci <- psych::alpha.ci(a, n.obs = 30,

n.var = 7, digits = 7) # n.var is optional and only needed to find r.bar
cronbach(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"), ci.type = "classic")
cronbach(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"), ci.type = "delta")
cronbach(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"), ci.type = "boot")
cronbach(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"), stats = NULL)

Not run:
cronbach(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"), ci.type = "boot",

boot.ci.type = "bca") # will automatically convert to "perc" when "bca" fails

End(Not run)

cronbachs Cronbach’s Alpha for Multiple Sets of Variables/Items

Description

cronbachs computes Cronbach’s alpha for multiple sets of variables/items as an estimate of relia-
bility for multiple scores. There are three different options for confidence intervals. Missing data
can be handled by either pairwise deletion (use = "pairwise.complete.obs") or listwise deletion (use
= "complete.obs"). cronbachs is a wrapper for the alpha function in the psych package.

Usage

cronbachs(
data,
vrb.nm.list,
ci.type = "delta",
level = 0.95,
use = "pairwise.complete.obs",
stats = c("average_r", "nvrb"),
R = 200L,
boot.ci.type = "perc"

)

Arguments

data data.frame of data.

vrb.nm.list list of character vectors specifying the sets of variables/items. Each element of
vrb.nm.list provides the colnames of data for that set of variables/items.

cronbachs 67

ci.type character vector of length 1 specifying the type of confidence interval to com-
pute. The options are 1) "classic" = the Feldt et al. (1987) procedure using only
the mean covariance, 2) "delta" = the Duhhacheck & Iacobucci (2004) procedure
using the delta method of the covariance matrix, or 3) "boot" = bootstrapped
confidence intervals with the method specified by boot.ci.type.

level double vector of length 1 with a value between 0 and 1 specifying what confi-
dence level to use.

use character vector of length 1 specifying how to handle missing data when com-
puting the covariances. The options are 1) "pairwise.complete.obs", 2) "com-
plete.obs", 3) "na.or.complete", 4) "all.obs", or 5) "everything". See details of
cov.

stats character vector specifying the additional statistical information you could like
related to cronbach’s alpha. Options are: 1) "std.alpha" = cronbach’s alpha of the
standardized variables/items, 2) "G6(smc)" = Guttman’s Lambda 6 reliability,
3) "average_r" = mean correlation between the variables/items, 4) "median_r"
= median correlation between the variables/items, 5) "mean" = mean of the the
scores from averaging the variables/items together, 6) "sd" = standard deviation
of the scores from averaging the variables/items together, 7) "nvrb" = number of
variables/items. The default is "average_r" and "nvrb".

R integer vector of length 1 specifying the number of bootstrapped resamples to
do. Only used when ci.type = "boot".

boot.ci.type character vector of length 1 specifying the type of bootstrapped confidence in-
terval to compute. The options are 1) "perc" for the regular percentile method,
2) "bca" for bias-corrected and accelerated percentile method, 3) "norm" for
the normal method that uses the bootstrapped standard error to construct sym-
metrical confidence intervals with the classic formula around the bias-corrected
estimate, and 4) "basic" for the basic method. Note, "stud" for the studentized
method is NOT an option. See boot.ci as well as confint2.boot for details.

Details

When ci.type = "classic" the confidence interval is based on the mean covariance. It is the same
as the confidence interval used by alpha.ci (Feldt, Woodruff, & Salih, 1987). When ci.type =
"delta" the confidence interval is based on the delta method of the covariance matrix. It is based on
the standard error returned by alpha (Duhachek & Iacobucci, 2004).

Value

data.frame containing the following columns:

est Cronbach’s alpha itself

se standard error for Cronbach’s alpha

lwr lower bound of the confidence interval of Cronbach’s alpha

upr upper bound for the confidence interval of Cronbach’s alpha,

??? any statistics requested via the stats argument

68 decompose

References

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement (11) 93-103.

Duhachek, A. and Iacobucci, D. (2004). Alpha’s standard error (ase): An accurate and precise
confidence interval estimate. Journal of Applied Psychology, 89(5):792-808.

See Also

cronbach composites

Examples

dat0 <- psych::bfi
dat1 <- str2str::pick(x = dat0, val = c("A1","C4","C5","E1","E2","O2","O5",

"gender","education","age"), not = TRUE, nm = TRUE)
vrb_nm_list <- lapply(X = str2str::sn(c("E","N","C","A","O")), FUN = function(nm) {

str2str::pick(x = names(dat1), val = nm, pat = TRUE)})
cronbachs(data = dat1, vrb.nm.list = vrb_nm_list, ci.type = "classic")
cronbachs(data = dat1, vrb.nm.list = vrb_nm_list, ci.type = "delta")
cronbachs(data = dat1, vrb.nm.list = vrb_nm_list, ci.type = "boot")
suppressMessages(cronbachs(data = attitude, vrb.nm.list =

list(names(attitude)))) # also works with only one set of variables/items

decompose Decompose a Numeric Vector by Group

Description

decompose decomposes a numeric vector into within-group and between-group components via
within-group centering and group-mean aggregation. There is an option to create a grand-mean
centered version of the between-person component as well as lead/lag versions of the original vector
and the within-group component.

Usage

decompose(x, grp, grand = TRUE, n.shift = NULL, undefined = NA)

Arguments

x numeric vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list internally.

grand logical vector of length 1 specifying whether a grand-mean centered version of
the the between-group component should be computed.

decomposes 69

n.shift integer vector specifying the direction and magnitude of the shifts. For example
a one-lead is +1 and a two-lag is -2. See shift details.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
shift details.

Value

data.frame with nrow = length(x) and row.names = names(x). The first two columns correspond
to the within-group component (i.e., "wth") and the between-group component (i.e., "btw"). If grand
= TRUE, then the third column corresponds to the grand-mean centered between-group component
(i.e., "btw_c"). If shift != NULL, then the last columns are the shifts indicated by n.shift, where the
shifts of x are first (i.e., "tot") and then the shifts of the within-group component are second (i.e.,
"wth"). The naming of the shifted columns is based on the default behavior of Shift_by. See the
details of Shift_by. If you don’t like the default naming, then call Decompose instead and use the
different suffix arguments.

See Also

decomposes center_by agg shift_by

Examples

single grouping variable
chick_data <- as.data.frame(ChickWeight) # because the "groupedData" class

calls `[.groupedData`, which is different than `[.data.frame`
decompose(x = ChickWeight[["weight"]], grp = ChickWeight[["Chick"]])
decompose(x = ChickWeight[["weight"]], grp = ChickWeight[["Chick"]],

grand = FALSE) # no grand-mean centering
decompose(x = setNames(obj = ChickWeight[["weight"]],

nm = paste0(row.names(ChickWeight),"_row")), grp = ChickWeight[["Chick"]]) # with names

multiple grouping variables
tmp_nm <- c("Type","Treatment") # b/c Roxygen2 doesn't like c() in a []
decompose(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm])
decompose(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

n.shift = 1)
decompose(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

n.shift = c(+2, +1, -1, -2))

decomposes Decompose Numeric Data by Group

Description

decomposes decomposes numeric data by group into within-group and between- group components
via within-group centering and group-mean aggregation. There is an option to create a grand-mean
centered version of the between-group components.

70 decomposes

Usage

decomposes(
data,
vrb.nm,
grp.nm,
grand = TRUE,
n.shift = NULL,
undefined = NA,
suffix.wth = "_w",
suffix.btw = "_b",
suffix.grand = "c",
suffix.lead = "_dw",
suffix.lag = "_gw"

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

grand logical vector of length 1 specifying whether grand-mean centered versions of
the the between-group components should be computed.

n.shift integer vector specifying the direction and magnitude of the shifts. For example
a one-lead is +1 and a two-lag is -2. See Shift_by details.

undefined atomic vector of length 1 (probably makes sense to be the same typeof as the
vectors in data[vrb.nm]). Specifies what to insert for undefined values after
the shifting takes place. See details of Shift_by.

suffix.wth character vector with a single element specifying the string to append to the end
of the within-group component colnames of the return object.

suffix.btw character vector with a single element specifying the string to append to the end
of the between-group component colnames of the return object.

suffix.grand character vector with a single element specifying the string to append to the end
of the grand-mean centered version of the between-group component colnames
of the return object. Note, this is a string that is appended after suffix.btw has
already been appended.

suffix.lead character vector with a single element specifying the string to append to the end
of the positive shift colnames of the return object. Note, decomposes will add
abs(n.shift) to the end of suffix.lead.

suffix.lag character vector with a single element specifying the string to append to the end
of the negative shift colnames of the return object. Note, decomposes will add
abs(n.shift) to the end of suffix.lag.

Value

data.frame with nrow = nrow(data and rownames = row.names(data). The first set of columns
correspond to the within-group components, followed by the between-group components. If grand

deff 71

= TRUE, then the next set of columns correspond to the grand-mean centered between-group com-
ponents. If shift != NULL, then the last columns are the shifts by group indicated by n.shift, where
the shifts of data[vrb.nm] are first and then the shifts of the within-group components are second.

See Also

decompose centers_by aggs shifts_by

Examples

ChickWeight2 <- as.data.frame(ChickWeight)
row.names(ChickWeight2) <- as.numeric(row.names(ChickWeight)) / 1000
decomposes(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick")
decomposes(data = ChickWeight2, vrb.nm = c("weight","Time"), grp.nm = "Chick",

suffix.wth = ".wth", suffix.btw = ".btw", suffix.grand = ".grand")
decomposes(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment")) # multiple grouping columns
decomposes(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), n.shift = 1) # with lead
decomposes(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"), grp.nm = c("Type","Treatment"),

n.shift = c(+2, +1, -1, -2)) # with multiple lead/lags

deff Design Effect from Multilevel Numeric Vector

Description

deff computes the design effect for a multilevel numeric vector. Design effects summarize how
much larger sampling variances (i.e., squared standard errors) are due to the multilevel structure of
the data. By taking the square root, the value summarizes how much larger standard errors are due
to the multilevel structure of the data.

Usage

deff(x, grp, how = "lme", REML = TRUE)

Arguments

x numeric vector.

grp atomic vector the same length as x providing the grouping variable.

how character vector of length 1 specifying how the ICC(1,1) should be calculated.
There are four options: 1) "lme" uses a linear mixed effects model with the func-
tion lme from the package nlme, 2) "lmer" uses a linear mixed effects modeling
with the function lmer from the package lme4, 3) "aov" uses a one-way analy-
sis of variance with the function aov, and 4) "raw" uses the observed variances,
which provides a biased estimate of the ICC(1,1) and is not recommended (It is
only included for teaching purposes).

72 deffs

REML logical vector of length 1 specifying whether restricted maximum likelihood
estimation (TRUE) should be used rather than traditional maximum likelihood
estimation (FALSE). Only used for linear mixed effects models if how = "lme"
or how = "lmer".

Details

Design effects are a function of both the intraclass correlation (ICC) and the average group size.
Design effects can be large due to large ICCs and small group sizes or small ICCs and large group
sizes. For example, with an ICC = .01 and average group size of 100, the design effect would be
2.0, whose square root is 1.41. For more information, see myths 1 and 2 in Huang (2018).

Value

double vector of lenght 1 providing the design effect.

References

Huang, F. L. (2018). Multilevel modeling myths School Psychology Quarterly, 33(3), 492-499.

See Also

icc_11 deffs

Examples

icc_11(x = airquality$"Ozone", grp = airquality$"Month")
length_by(x = airquality$"Ozone", grp = airquality$"Month", na.rm = TRUE)
deff(x = airquality$"Ozone", grp = airquality$"Month")
sqrt(deff(x = airquality$"Ozone", grp = airquality$"Month")) # how much SE inflated

deffs Design Effects from Multilevel Numeric Data

Description

deffs computes the design effects for multilevel numeric data. Design effects summarize how
much larger sampling variances (i.e., squared standard errors) are due to the multilevel structure of
the data. By taking the square root, the value summarizes how much larger standard errors are due
to the multilevel structure of the data.

Usage

deffs(data, vrb.nm, grp.nm, how = "lme", REML = FALSE)

deffs 73

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variable columns.

grp.nm character vector of length 1 of a colname from data specifying the grouping
column.

how character vector of length 1 specifying how the ICC(1,1) should be calculated.
There are four options: 1) "lme" uses a linear mixed effects model with the func-
tion lme from the package nlme, 2) "lmer" uses a linear mixed effects modeling
with the function lmer from the package lme4, 3) "aov" uses a one-way analy-
sis of variance with the function aov, and 4) "raw" uses the observed variances,
which provides a biased estimate of the ICC(1,1) and is not recommended (It is
only included for teaching purposes).

REML logical vector of length 1 specifying whether restricted maximum likelihood
estimation (TRUE) should be used rather than traditional maximum likelihood
estimation (FALSE). Only used for linear mixed effects models if how = "lme"
or how = "lmer".

Details

Design effects are a function of both the intraclass correlation (ICC) and the average group size.
Design effects can be large due to large ICCs and small group sizes or small ICCs and large group
sizes. For example, with an ICC = .01 and average group size of 100, the design effect would be
2.0, whose square root is 1.41. For more information, see myths 1 and 2 in Huang (2018).

Value

double vector providing the design effects with names = vrb.nm.

References

Huang, F. L. (2018). Multilevel modeling myths School Psychology Quarterly, 33(3), 492-499.

See Also

iccs_11 deff

Examples

iccs_11(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month")
lengths_by(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month", na.rm = TRUE)
deffs(data = airquality, vrb.nm = c("Ozone","Solar.R"), grp.nm = "Month")

74 describe_ml

describe_ml Multilevel Descriptive Statistics

Description

describe_ml decomposes descriptive statistics from multilevel data into within-group and between-
group descriptives. The data is first separated out into within-group components via centers_by
and between-group components via aggs. Then the psych function describe is applied to both.

Usage

describe_ml(
data,
vrb.nm,
grp.nm,
na.rm = TRUE,
interp = FALSE,
skew = TRUE,
ranges = TRUE,
trim = 0.1,
type = 3,
quant = NULL,
IQR = FALSE

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variable columns.

grp.nm character vector of length 1 of a colname from data specifying the grouping
column.

na.rm logical vector of length 1 specifying whether missing values should be removed
before calculating the descriptive statistics. See psych::describe.

interp logical vector of length 1 specifying whether the median should be standard
(FALSE) or interpolated (TRUE).

skew logical vector of length 1 specifying whether skewness and kurtosis should be
calculated (TRUE) or not (FALSE).

ranges logical vector of length 1 specifying whether the minimum, maximum, and
range (i.e., maximum - minimum) should be calculated (TRUE) or not (FALSE).
Note, if ranges = FALSE, the trimmed mean and median absolute deviation is
also not computed as per the psych::describe function behavior.

trim numeric vector of length 1 specifying the top and bottom quantiles of data that
are to be excluded when calculating the trimmed mean. For example, the default
value of 0.1 means that only data within the 10th - 90th quantiles are used for
calculating the trimmed mean.

dum2nom 75

type numeric vector of length 1 specifying the type of skewness and kurtosis coeffi-
cients to compute. See the details of psych::describe. The options are 1, 2,
or 3.

quant numeric vector specifying the quantiles to compute. Foe example, the default
value of c(0.25, 0.75) computes the 25th and 75th quantiles of the group number
of cases. If quant = NULL, then no quantiles are returned.

IQR logical vector of length 1 specifying whether to compute the Interquartile Range
(TRUE) or not (FALSE), which is simply the 75th quantil - 25th quantile.

Value

list of two elements each containing a data.frame of descriptive statistics, the first for the within-
person components ("within") and the second for the between-person components ("between").

See Also

describe

Examples

tmp_nm <- c("outcome","case","session","trt_time")
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp_nm]
stats_by <- psych::statsBy(dat, group = "case") # requires you to include "case" column in dat
describe_ml(data = dat, vrb.nm = c("outcome","session","trt_time"), grp.nm = "case")

dum2nom Dummy Variables to a Nominal Variable

Description

dum2nom converts dummy variables to a nominal variable. The information from the dummy
columns in a data.frame are combined into a character vector (or factor if rtn.fct = TRUE) repre-
senting a nominal variable. The unique values of the nominal variable will be the dummy colnames
(i.e., dum.nm). Note, *all* the dummy variables associated with a nominal variable are required for
this function to work properly. In regression-like models, data analysts will exclude one dummy
variable for the category that is the reference group. If d = number of categories in the nominal
variable, then that leads to d - 1 dummy variables in the model. dum2nom requires all d dummy
variables.

Usage

dum2nom(data, dum.nm, yes = 1L, rtn.fct = FALSE)

76 dum2nom

Arguments

data data.frame of data.

dum.nm character vector of colnames from data specifying the dummy variables.

yes atomic vector of length 1 specifying the unique value of the category in each
dummy column. This must be the same value for all the dummy variables.

rtn.fct logical vector of length 1 specifying whether the return object should be a factor
(TRUE) or a character vector (FALSE).

Details

dum2nom tests to ensure that data[dum.nm] are indeed a set of dummy columns. First, the dummy
columns are expected to have the same mode such that there is one yes unique value across the
dummy columns. Second, each row in data[dum.nm] is expected to have either 0 or 1 instance
of yes. If there is more than one instance of yes in a row, then an error is returned. If there is 0
instances of yes in a row (e.g., all missing values), NA is returned for that row. Note, any value
other than yes will be treated as a no.

Value

character vector (or factor if rtn.fct = TRUE) containing the unique values of dum.nm - one for
each dummy variable.

See Also

nom2dum

Examples

dum <- data.frame(
"Quebec_nonchilled" = ifelse(CO2$"Type" == "Quebec" & CO2$"Treatment" == "nonchilled",

yes = 1L, no = 0L),
"Quebec_chilled" = ifelse(CO2$"Type" == "Quebec" & CO2$"Treatment" == "chilled",

yes = 1L, no = 0L),
"Mississippi_nonchilled" = ifelse(CO2$"Type" == "Mississippi" & CO2$"Treatment" == "nonchilled",

yes = 1L, no = 0L),
"Mississippi_chilled" = ifelse(CO2$"Type" == "Mississippi" & CO2$"Treatment" == "chilled",

yes = 1L, no = 0L)
)
dum2nom(data = dum, dum.nm = names(dum)) # default
dum2nom(data = dum, dum.nm = names(dum), rtn.fct = TRUE) # return as a factor
Not run:
dum2nom(data = npk, dum.nm = c("N","P","K")) # error due to overlapping dummy columns
dum2nom(data = mtcars, dum.nm = c("vs","am"))# error due to overlapping dummy columns

End(Not run)

freq 77

freq Univariate Frequency Table

Description

freq creates univariate frequency tables similar to table. It differs from table by allowing for
custom sorting by something other than the alphanumerics of the unique values as well as returning
an atomic vector rather than a 1D-array.

Usage

freq(
x,
exclude = if (useNA == "no") c(NA, NaN),
useNA = "always",
prop = FALSE,
sort = "frequency",
decreasing = TRUE,
na.last = TRUE

)

Arguments

x atomic vector or list vector. If not a vector, it will be coerced to a vector via
as.vector.

exclude unique values of x to exclude from the returned table. If NULL, then missing
values are always included in the returned table. See table for documentation
on the same argument.

useNA character vector of length 1 specifying how to handle missing values (i.e., whether
to include NA as an element in the returned table). There are three options: 1)
"no" = don’t include missing values in the table, 2) "ifany" = include missing
values if there are any, 3) "always" = include missing values in the table, regard-
less of whether there are any or not. See table for documentation on the same
argument.

prop logical vector of length 1 specifying whether the returned table should include
counts (FALSE) or proportions (TRUE). If NAs are excluded (e.g., useNA =
"no" or exclude = c(NA, NaN)), then the proportions will be based on the num-
ber of observed elements.

sort character vector of length 1 specifying how the returned table will be sorted.
There are three options: 1) "frequency" = the frequency of the unique values
in x, 2) "position" = the position when each unique value first appears in x, 3)
"alphanum" = alphanumeric ordering of the unique values in x (the sorting used
by table). When "frequency" is specified and there are ties, then the ties are
sorted alphanumerically.

decreasing logical vector of length 1 specifying whether the table should be sorted in de-
creasing (TRUE) or increasing (FALSE) order.

78 freq

na.last logical vector of length 1 specifying whether the table should have NAs last or
in whatever position they end up at. This argument is only relevant if NAs exist
in x and are included in the table (e.g., useNA = "always" or exclude = NULL).

Details

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

Value

numeric vector of frequencies as either counts (if prop = FALSE) or proportions (if prop = TRUE)
with the unique values of x as names (missing values have name = "(NA)"). Note, this is different
from table, which returns a 1D-array and has class "table".

See Also

freqs freq_by freqs_by table

Examples

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "frequency", decreasing = TRUE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "frequency", decreasing = TRUE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "frequency", decreasing = FALSE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "frequency", decreasing = FALSE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "position", decreasing = TRUE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "position", decreasing = TRUE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "position", decreasing = FALSE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "position", decreasing = FALSE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "alphanum", decreasing = TRUE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = FALSE,
sort = "alphanum", decreasing = TRUE, na.last = FALSE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "alphanum", decreasing = FALSE, na.last = TRUE)

freq(c(mtcars$"carb", NA, NA, mtcars$"gear"), prop = TRUE,
sort = "alphanum", decreasing = FALSE, na.last = FALSE)

freqs 79

freqs Multiple Univariate Frequency Tables

Description

freqs creates a frequency table for a set of variables in a data.frame. Depending on total, frequen-
cies for all the variables together can be returned. The function probably makes the most sense for
sets of variables with similar unique values (e.g., items from a questionnaire with similar response
options).

Usage

freqs(data, vrb.nm, prop = FALSE, useNA = "always", total = "no")

Arguments

data data.fame of data.

vrb.nm character vector of colnames from data specifying the variables.

prop logical vector of length 1 specifying whether the frequencies should be counts
(FALSE) or proportions (TRUE). Note, whether the proportions include missing
values depends on the useNA argument.

useNA character vector of length 1 specifying how missing values should be handled.
The three options are 1) "no" = do not include NA frequencies in the return
object, 2) "ifany" = only NA frequencies if there are any missing values (in
any variable from data[vrb.nm]), or 3) "always" = do include NA frequencies
regardless of whether there are missing values or not.

total character vector of length 1 specifying whether the frequencies for the set of
variables as a whole should be returned. The name "total" refers to tabulating
the frequencies for the variables from data[vrb.nm] together as a set. The
three options are 1) "no" = do not include a row for the total frequencies in the
return object, 2) "yes" = do include the total frequencies as the first row in the
return object, or 3) "only" = only include the total frequencies as a single row
in the return object and do not include rows for each of the individual column
frequencies in data[vrb.nm].

Details

freqs uses plyr::rbind.fill to combine the results from table applied to each variable into a
single data.frame. If a variable from data[vrb.nm] does not have values present in other variables
from data[vrb.nm], then the frequencies in the return object will be 0.

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

80 freqs_by

Value

data.frame of frequencies for the variables in data[vrb.nm]. Depending on prop, the frequen-
cies are either counts (FALSE) or proportions (TRUE). Depending on total, the nrow is either
1) length(vrb.nm) (if total = "no"), 1 + length(vrb.nm) (if total = "yes"), or 3) 1 (if total
= "only"). The rownames are vrb.nm for each variable in data[vrb.nm] and "_total_" for the
total row (if present). The colnames are the unique values present in data[vrb.nm], potentially
including "(NA)" depending on useNA.

See Also

freq freqs_by freq_by table

Examples

vrb_nm <- str2str::inbtw(names(psych::bfi), "A1","O5")
freqs(data = psych::bfi, vrb.nm = vrb_nm) # default
freqs(data = psych::bfi, vrb.nm = vrb_nm, prop = TRUE) # proportions by row
freqs(data = psych::bfi, vrb.nm = vrb_nm, useNA = "no") # without NA counts
freqs(data = psych::bfi, vrb.nm = vrb_nm, total = "yes") # include total counts

freqs_by Multiple Univariate Frequency Tables

Description

freqs_by creates a frequency table for a set of variables in a data.frame by group. Depending on
total, frequencies for all the variables together can be returned by group. The function probably
makes the most sense for sets of variables with similar unique values (e.g., items from a question-
naire with similar response options).

Usage

freqs_by(
data,
vrb.nm,
grp.nm,
prop = FALSE,
useNA = "always",
total = "no",
sep = "."

)

Arguments

data data.fame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

freqs_by 81

prop logical vector of length 1 specifying whether the frequencies should be counts
(FALSE) or proportions (TRUE). Note, whether the proportions include missing
values depends on the useNA argument.

useNA character vector of length 1 specifying how missing values should be handled.
The three options are 1) "no" = do not include NA frequencies in the return
object, 2) "ifany" = only NA frequencies if there are any missing values (in
any variable from data[vrb.nm]), or 3) "always" = do include NA frequencies
regardless of whether there are missing values or not.

total character vector of length 1 specifying whether the frequencies for the set of
variables as a whole should be returned. The name "total" refers to tabulating
the frequencies for the variables from data[vrb.nm] together as a set. The
three options are 1) "no" = do not include a row for the total frequencies in the
return object, 2) "yes" = do include the total frequencies as the first row in the
return object, or 3) "only" = only include the total frequencies as a single row
in the return object and do not include rows for each of the individual column
frequencies in data[vrb.nm].

sep character vector of length 1 specifying the string to combine the group values
together with. sep is only used if there are multiple grouping variables (i.e.,
length(grp.nm) > 1).

Details

freqs_by uses plyr::rbind.fill to combine the results from table applied to each variable into
a single data.frame for each group. If a variable from data[vrb.nm] for each group does not have
values present in other variables from data[vrb.nm] for that group, then the frequencies in the
return object will be 0.

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

Value

list of data.frames containing the frequencies for the variables in data[vrb.nm] by group. The
number of list elements are the groups specified by unique(interaction(data[grp.nm], sep =
sep)). Depending on prop, the frequencies are either counts (FALSE) or proportions (TRUE) by
group. Depending on total, the nrow for each data.frame is either 1) length(vrb.nm) (if total
= "no"), 1 + length(vrb.nm) (if total = "yes"), or 3) 1 (if total = "only"). The rownames are
vrb.nm for each variable in data[vrb.nm] and "_total_" for the total row (if present). The colnames
for each data.frame are the unique values present in data[vrb.nm], potentially including "(NA)"
depending on useNA.

See Also

freqs freq_by freqs_by table

82 freq_by

Examples

vrb_nm <- str2str::inbtw(names(psych::bfi), "A1","O5")
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender") # default
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender",

prop = TRUE) # proportions by row
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender",

useNA = "no") # without NA counts
freqs_by(data = psych::bfi, vrb.nm = vrb_nm, grp.nm = "gender",

total = "yes") # include total counts
freqs_by(data = psych::bfi, vrb.nm = vrb_nm,

grp.nm = c("gender","education")) # multiple grouping variables

freq_by Univariate Frequency Table By Group

Description

tables_by creates a frequency table for a set of variables in a data.frame by group. Depending on
total, frequencies for all the variables together can be returned by group. The function probably
makes the most sense for sets of variables with similar unique values (e.g., items from a question-
naire with similar response options).

Usage

freq_by(
x,
grp,
exclude = if (useNA == "no") c(NA, NaN),
useNA = "always",
prop = FALSE,
sort = "frequency",
decreasing = TRUE,
na.last = TRUE

)

Arguments

x atomic vector.

grp atomic vector or list of atomic vectors (e.g., data.frame) specifying the groups.
The atomic vector(s) must be the length of x or else an error is returned.

exclude unique values of x to exclude from the returned table. If NULL, then missing
values are always included in the returned table. See table for documentation
on the same argument.

useNA character vector of length 1 specifying how to handle missing values (i.e., whether
to include NA as an element in the returned table). There are three options: 1)
"no" = don’t include missing values in the table, 2) "ifany" = include missing

freq_by 83

values if there are any, 3) "always" = include missing values in the table, regard-
less of whether there are any or not. See table for documentation on the same
argument.

prop logical vector of length 1 specifying whether the returned table should include
counts (FALSE) or proportions (TRUE). If NAs are excluded (e.g., useNA =
"no" or exclude = c(NA, NaN)), then the proportions will be based on the num-
ber of observed elements.

sort character vector of length 1 specifying how the returned table will be sorted.
There are three options: 1) "frequency" = the frequency of the unique values
in x, 2) "position" = the position when each unique value first appears in x, 3)
"alphanum" = alphanumeric ordering of the unique values in x (the sorting used
by table). When "frequency" is specified and there are ties, then the ties are
sorted alphanumerically.

decreasing logical vector of length 1 specifying whether the table should be sorted in de-
creasing (TRUE) or increasing (FALSE) order.

na.last logical vector of length 1 specifying whether the table should have NAs last or
in whatever position they end up at. This argument is only relevant if NAs exist
in x and are included in the table (e.g., useNA = "always" or exclude = NULL).

Details

tables_by uses plyr::rbind.fill to combine the results from table applied to each variable
into a single data.frame for each group. If a variable from data[vrb.nm] for each group does not
have values present in other variables from data[vrb.nm] for that group, then the frequencies in
the return object will be 0.

The name for the table element giving the frequency of missing values is "(NA)". This is different
from table where the name is NA_character_. This change allows for the sorting of tables that
include missing values, as subsetting in R is not possible with NA_character_ names. In future
versions of the package, this might change as it should be possible to avoid this issue by subetting
with a logical vector or integer indices instead of names. However, it is convenient to be able to
subset the return object fully by names.

Value

list of numeric vector of frequencies by group. The number of list elements are the groups specified
by unique(interaction(grp, sep = sep)). The frequencies either counts (if prop = FALSE) or
proportions (if prop = TRUE) with the unique values of x as names (missing values have name =
"(NA)"). Note, this is different from table, which returns a 1D-array and has class "table".

See Also

freq freq_by freqs_by table

Examples

x <- freq_by(mtcars$"gear", grp = mtcars$"vs")
str(x)
y <- freq_by(mtcars$"am", grp = mtcars$"vs", useNA = "no")

84 gtheory

str(y)
str2str::lv2m(lapply(X = y, FUN = rev), along = 1) # ready to pass to prop.test()

gtheory Generalizability Theory Reliability of a Score

Description

gtheory uses generalizability theory to compute the reliability coefficient of a score. It assumes
single-level data where the rows are cases and the columns are variables/items. Generaliability
theory coefficients in this case are the same as intraclass correlations (ICC). The default computes
ICC(3,k), which is identical to cronbach’s alpha, from cross.vrb = TRUE. When cross.vrb is
FALSE, ICC(2,k) is computed, which takes mean differences between variables/items into account.
gtheory is a wrapper function for ICC.

Usage

gtheory(
data,
vrb.nm,
ci.type = "classic",
level = 0.95,
cross.vrb = TRUE,
R = 200L,
boot.ci.type = "perc"

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables/items.

ci.type character vector of length = 1 specifying the type of confidence interval to com-
pute. There are currently two options: 1) "classic" = traditional ICC-based con-
fidence intervals (see details), 2) "boot" = bootstrapped confidence intervals.

level double vector of length 1 specifying the confidence level from 0 to 1.

cross.vrb logical vector of length 1 specifying whether the variables/items should be crossed
when computing the generalizability theory coefficient. If TRUE, then only the
covariance structure of the variables/items will be incorperated into the estimate
of reliability. If FALSE, then the mean structure of the variables/items will be
incorperated.

R integer vector of length 1 specifying the number of bootstrapped resamples to
use. Only used if ci.type = "boot".

boot.ci.type character vector of length 1 specifying the type of bootstrapped confidence in-
terval to compute. The options are 1) "perc" for the regular percentile method,
2) "bca" for bias-corrected and accelerated percentile method, 3) "norm" for

gtheory 85

the normal method that uses the bootstrapped standard error to construct sym-
metrical confidence intervals with the classic formula around the bias-corrected
estimate, and 4) "basic" for the basic method. Note, "stud" for the studentized
method is NOT an option. See boot.ci as well as confint2.boot for details.

Details

When ci.type = "classic" the confidence intervals are computed according to the formulas laid
out by McGraw, Kenneth, and Wong, (1996). These are taken from the ICC function in the psych
package. They are appropriately non-symmetrical given ICCs are not unbounded and range from
0 to 1. Therefore, there is no standard error associated with the coefficient. Note, they differ from
the confidence intervals available in the cronbach function. When ci.type = "boot" the standard
deviation of the empirical sampling distribution is returned as the standard error, which may or may
not be trustworthy depending on the value of the ICC and sample size.

Value

double vector containing the generalizability theory coefficient, it’s standard error (if ci.type =
"boot"), and it’s confidence interval.

References

McGraw, Kenneth O. and Wong, S. P. (1996), Forming inferences about some intraclass correlation
coefficients. Psychological Methods, 1, 30-46. + errata on page 390.

See Also

gtheorys gtheory_ml cronbach

Examples

gtheory(attitude, vrb.nm = names(attitude), ci.type = "classic")
Not run:
gtheory(attitude, vrb.nm = names(attitude), ci.type = "boot")
gtheory(attitude, vrb.nm = names(attitude), ci.type = "boot",

R = 250L, boot.ci.type = "bca")

End(Not run)

comparison to cronbach's alpha:
gtheory(attitude, names(attitude))
gtheory(attitude, names(attitude), cross.vrb = FALSE)
a <- suppressMessages(psych::alpha(attitude)[["total"]]["raw_alpha"])
psych::alpha.ci(a, n.obs = 30, n.var = 7, digits = 7) # slightly different confidence interval

86 gtheorys

gtheorys Generalizability Theory Reliability of Multiple Scores

Description

gtheorys uses generalizability theory to compute the reliability coefficient of multiple scores. It
assumes single-level data where the rows are cases and the columns are variables/items. Gen-
eraliability theory coefficients in this case are the same as intraclass correlations (ICC). The de-
fault computes ICC(3,k), which is identical to cronbach’s alpha, from cross.vrb = TRUE. When
cross.vrb is FALSE, ICC(2,k) is computed, which takes mean differences between variables/items
into account. gtheorys is a wrapper function for ICC.

Usage

gtheorys(
data,
vrb.nm.list,
ci.type = "classic",
level = 0.95,
cross.vrb = TRUE,
R = 200L,
boot.ci.type = "perc"

)

Arguments

data data.frame of data.
vrb.nm.list list of character vectors containing colnames from data specifying each set of

variables/items.
ci.type character vector of length = 1 specifying the type of confidence interval to com-

pute. There are currently two options: 1) "classic" = traditional ICC-based con-
fidence intervals (see details), 2) "boot" = bootstrapped confidence intervals.

level double vector of length 1 specifying the confidence level from 0 to 1.
cross.vrb logical vector of length 1 specifying whether the variables/items should be crossed

when computing the generalizability theory coefficients. If TRUE, then only the
covariance structure of the variables/items will be incorperated into the estimates
of reliability. If FALSE, then the mean structure of the variables/items will be
incorperated.

R integer vector of length 1 specifying the number of bootstrapped resamples to
use. Only used if ci.type = "boot".

boot.ci.type character vector of length 1 specifying the type of bootstrapped confidence in-
terval to compute. The options are 1) "perc" for the regular percentile method,
2) "bca" for bias-corrected and accelerated percentile method, 3) "norm" for
the normal method that uses the bootstrapped standard error to construct sym-
metrical confidence intervals with the classic formula around the bias-corrected
estimate, and 4) "basic" for the basic method. Note, "stud" for the studentized
method is NOT an option. See boot.ci as well as confint2.boot for details.

gtheorys 87

Details

When ci.type = "classic" the confidence intervals are computed according to the formulas laid
out by McGraw, Kenneth and Wong (1996). These are taken from the ICC function in the psych
package. They are appropriately non-symmetrical given ICCs are not unbounded and range from
0 to 1. Therefore, there is no standard error associated with the coefficient. Note, they differ from
the confidence intervals available in the cronbachs function. When ci.type = "boot" the standard
deviation of the empirical sampling distribution is returned as the standard error, which may or may
not be trustworthy depending on the value of the ICC and sample size.

Value

data.frame containing the generalizability theory statistical information. The columns are as fol-
lows:

est the generalizability theory coefficient itself

se standard error of the reliability coefficient

lwr lower bound of the confidence interval for the reliability coefficient

lwr lower bound of the confidence interval for the reliability coefficient

References

McGraw, Kenneth O. and Wong, S. P. (1996), Forming inferences about some intraclass correlation
coefficients. Psychological Methods, 1, 30-46. + errata on page 390.

See Also

gtheory gtheorys_ml cronbachs

Examples

dat0 <- psych::bfi[1:100,] # reduce number of rows
to reduce computational time of boot examples

dat1 <- str2str::pick(x = dat0, val = c("A1","C4","C5","E1","E2","O2","O5",
"gender","education","age"), not = TRUE, nm = TRUE)

vrb_nm_list <- lapply(X = str2str::sn(c("E","N","C","A","O")), FUN = function(nm) {
str2str::pick(x = names(dat1), val = nm, pat = TRUE)})

gtheorys(data = dat1, vrb.nm.list = vrb_nm_list)
Not run:
gtheorys(data = dat1, vrb.nm.list = vrb_nm_list, ci.type = "boot") # singular messages
gtheorys(data = dat1, vrb.nm.list = vrb_nm_list, ci.type = "boot",

R = 250L, boot.ci.type = "bca")

End(Not run)
gtheorys(data = attitude,

vrb.nm.list = list(names(attitude))) # also works with only one set of variables/items

88 gtheorys_ml

gtheorys_ml Generalizability Theory Reliability of Multiple Multilevel Scores

Description

gtheorys_ml uses generalizability theory to compute the reliability coefficients of multiple multi-
level score. It computes within-group coefficients that assess the reliability of the group-deviated
scores (e.g., after calling centers_by) and between-group coefficients that assess the reliability of
the mean aggregate scores (e.g., after calling aggs). It assumes two-level data where the rows are in
long format and the columns are the variables/items of the score. Generaliability theory coefficients
with multilevel data are analagous to intraclass correlations (ICC), but add an additional grouping
variable. The default computes a multilevel version of ICC(3,k) from cross.obs = TRUE. When
cross.obs = FALSE, a multilevel version of ICC(2,k) is computed, which takes mean differences
between variables/items into account. gtheorys_ml is a wrapper function for mlr. Note, this func-
tion can take several minutes to run if you have a moderate to large dataset.

Usage

gtheorys_ml(data, vrb.nm.list, grp.nm, obs.nm, cross.obs = TRUE)

Arguments

data data.frame of data.

vrb.nm.list list of character vectors of colnames from data specifying the sets of vari-
ables/items.

grp.nm character vector of length 1 with colname from data specifying the grouping
variable. Because gtheorys_ml is specific to two-level data, this can only be
one variable.

obs.nm character vector of of length 1 with colname from data specifying the obser-
vation variable. In this context, observation refers to comparable cases across
groups. In a longitudinal study, the groups are people and the observations are
timepoints. For example, each person has a timepoint 1, timepoint 2, timepoint
3, etc. In an school study, the groups are classrooms and the observations are
students. For example, each classroom has a student 1, student 2, student 3, etc.
While longitudinal studies often have a time variable in their data, school studies
don’t have always a student variable. You would then have to create a student
variable to be able to use this function.

cross.obs logical vector of length 1 specifying whether the observations should be crossed
when computing the generalizability theory coefficients. If TRUE, the observa-
tions are treated as fixed; if FALSE, they are treated as random. See details.

Details

gtheorys_ml uses mlr, which is based on the formulas in Shrout, Patrick, and Lane (2012). When
cross.obs = TRUE, the within-group coefficient is Rc and the between-group coefficient is RkF.

gtheorys_ml 89

When cross.obs = FALSE, the within-group coefficient is Rcn and the between-group coefficient
is RkRn.

gtheorys_ml does not currently have standard errors or confidence intervals. I am not aware of
mathematical formulas for analytical confidence intervals, and because the generaliability theory
coefficients can take several minutes to estimate, bootstraped confidence intervals seem too time-
intensive to be useful at the moment.

gtheorys_ml does not work with multiple single variable/item scores. You can still use general-
izability theory to estimate between-group reliability in that instance though. To do so, reshape
the multiple single variables/items from long to wide (e.g., long2wide) so that you have a column
for each observation of that single variable/item and the rows are the groups. Then you can use
gtheorys and treat each observation as a "different" variable/item.

Value

list with two elements. The first is named "within" and refers to the within-group reliability. The
second is named "between" and refers to the between-group reliability. Each contains a data.frame
with the following columns:

est generalizability theory reliability coefficient itself

average_r the average correlation at each level of the data based on cor_ml (which is a wrapper
for statsBy)

nvrb number of variables/items that make up that score

The later two columns are included because even though the reliability coefficients are calculated
from variance components, they are indirectly based on the average correlation and number of
variables/items similar to Cronbach’s alpha.

References

Shrout, Patrick and Lane, Sean P (2012), Psychometrics. In M.R. Mehl and T.S. Conner (eds)
Handbook of research methods for studying daily life, (p 302-320) New York. Guilford Press

See Also

gtheory_ml gtheorys

Examples

dat <- psychTools::sai[psychTools::sai$"study" == "VALE",] # 4 timepoints
vrb_nm_list <- list("positive_affect" = c("calm","secure","at.ease","rested",

"comfortable","confident"), # extra: "relaxed","content","joyful"
"negative_affect" = c("tense","regretful","upset","worrying","anxious",

"nervous")) # extra: "jittery","high.strung","worried","rattled"
suppressMessages(gtheorys_ml(data = dat, vrb.nm.list = vrb_nm_list, grp.nm = "id",

obs.nm = "time", cross.obs = TRUE))
suppressMessages(gtheorys_ml(data = dat, vrb.nm.list = vrb_nm_list, grp.nm = "id",

obs.nm = "time", cross.obs = FALSE))
gtheorys_ml(data = dat, vrb.nm.list = vrb_nm_list["positive_affect"], grp.nm = "id",

90 gtheory_ml

obs.nm = "time") # also works with only one set of variables/items

gtheory_ml Generalizability Theory Reliability of a Multilevel Score

Description

gtheory_ml uses generalizability theory to compute the reliability coefficients of a multilevel score.
It computes a within-group coefficient that assesses the reliability of the group-deviated score (e.g.,
after calling center_by) and a between-group coefficient that assess the reliability of the mean ag-
gregate score (e.g., after calling agg). It assumes two-level data where the rows are in long format
and the columns are the variables/items of the score. Generaliability theory coefficients with mul-
tilevel data are analagous to intraclass correlations (ICC), but add an additional grouping variable.
The default computes a multilevel version of ICC(3,k) from cross.obs = TRUE. When cross.obs
= FALSE, a multilevel version of ICC(2,k) is computed, which takes mean differences between vari-
ables/items into account. gtheory_ml is a wrapper function for mlr. Note, this function can take
several minutes to run if you have a moderate to large dataset.

Usage

gtheory_ml(data, vrb.nm, grp.nm, obs.nm, cross.obs = TRUE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables/items.

grp.nm character vector of length 1 with colname from data specifying the grouping
variable. Because gtheory_ml is specific to two-level data, this can only be one
variable.

obs.nm character vector of of length 1 with colname from data specifying the obser-
vation variable. In this context, observation refers to comparable cases across
groups. In a longitudinal study, the groups are people and the observations are
timepoints. For example, each person has a timepoint 1, timepoint 2, timepoint
3, etc. In an school study, the groups are classrooms and the observations are
students. For example, each classroom has a student 1, student 2, student 3, etc.
While longitudinal studies often have a time variable in their data, school studies
don’t always have a student variable. You would then have to create a student
variable to be able to use gtheory_ml.

cross.obs logical vector of length 1 specifying whether the observations should be crossed
when computing the generalizability theory coefficient. If TRUE, the observa-
tions are treated as fixed; if FALSE, they are treated as random. See details.

gtheory_ml 91

Details

gtheory_ml uses mlr, which is based on the formulas in Shrout, Patrick, and Lane (2012). When
cross.obs = TRUE, the within-group coefficient is Rc and the between-group coefficient is RkF.
When cross.obs = FALSE, the within-group coefficient is Rcn and the between-group coefficient
is RkRn.

gtheory_ml does not currently have standard errors or confidence intervals. I am not aware of
mathematical formulas for analytical confidence intervals, and because the generaliability theory
coefficients can take several minutes to estimate, bootstraped confidence intervals seem too time-
intensive to be useful at the moment.

gtheory_ml does not work with a single variable/item. You can still use generalizability theory
to estimate between-group reliability in that instance though. To do so, reshape the variable/item
from long to wide (e.g., unstack2) so that you have a column for each observation of that single
variable/item and the rows are the groups. Then you can use gtheory and treat each observation as
a "different" variable/item.

Value

list with two elements. The first is named "within" and refers to the within-group reliability. The
second is named "between" and refers to the between-group reliability. Each contains a double
vector where the first element is named "est" and contains the generalizability theory coefficient
itself. The second element is named "average_r" and contains the average correlation at that level of
the data based on cor_ml (which is a wrapper for statsBy). The third element is named "nvrb" and
contains the number of variables/items. These later two elements are included because even though
the reliability coefficients are calculated from variance components, they are indirectly based on the
average correlation and number of variables/items, similar to Cronbach’s alpha.

References

Shrout, Patrick and Lane, Sean P (2012), Psychometrics. In M.R. Mehl and T.S. Conner (eds)
Handbook of research methods for studying daily life, (p 302-320) New York. Guilford Press

See Also

gtheorys_ml gtheory

Examples

shrout <- structure(list(Person = c(1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L,
5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L), Time = c(1L, 1L,

1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L), Item1 = c(2L, 3L, 6L, 3L, 7L, 3L, 5L, 6L, 3L, 8L, 4L,

4L, 7L, 5L, 6L, 1L, 5L, 8L, 8L, 6L), Item2 = c(3L, 4L, 6L, 4L,
8L, 3L, 7L, 7L, 5L, 8L, 2L, 6L, 8L, 6L, 7L, 3L, 9L, 9L, 7L, 8L

), Item3 = c(6L, 4L, 5L, 3L, 7L, 4L, 7L, 8L, 9L, 9L, 5L, 7L,
9L, 7L, 8L, 4L, 7L, 9L, 9L, 6L)), .Names = c("Person", "Time",

"Item1", "Item2", "Item3"), class = "data.frame", row.names = c(NA,
-20L))

mlr_obj <- psych::mlr(x = shrout, grp = "Person", Time = "Time",

92 iccs_11

items = c("Item1", "Item2", "Item3"),
alpha = FALSE, icc = FALSE, aov = FALSE, lmer = TRUE, lme = FALSE,
long = FALSE, plot = FALSE)

gtheory_ml(data = shrout, vrb.nm = c("Item1", "Item2", "Item3"),
grp.nm = "Person", obs.nm = "Time", cross.obs = TRUE) # crossed time

gtheory_ml(data = shrout, vrb.nm = c("Item1", "Item2", "Item3"),
grp.nm = "Person", obs.nm = "Time", cross.obs = FALSE) # nested time

iccs_11 Intraclass Correlation for Multiple Variables for Multilevel Analysis:
ICC(1,1)

Description

iccs_11 computes the intraclass correlation (ICC) for multiple variables based on a single rater with
a single dimension, aka ICC(1,1). Traditionally, this is the type of ICC used for multilevel analysis
where the value is interpreted as the proportion of variance accounted for by group membership. In
other words, ICC(1,1) = the proportion of between-group variance; 1 - ICC(1,1) = the proportion of
within-group variance.

Usage

iccs_11(data, vrb.nm, grp.nm, how = "lme", REML = FALSE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variable columns.

grp.nm character vector of length 1 of a colname from data specifying the grouping
column.

how character vector of length 1 specifying how the ICC(1,1) should be calculated.
There are four options: 1) "lme" uses a linear mixed effects model with the func-
tion lme from the package nlme, 2) "lmer" uses a linear mixed effects modeling
with the function lmer from the package lme4, 3) "aov" uses a one-way analy-
sis of variance with the function aov, and 4) "raw" uses the observed variances,
which provides a biased estimate of the ICC(1,1) and is not recommended (It is
only included for teaching purposes).

REML logical vector of length 1 specifying whether restricted maximum likelihood
estimation (TRUE) should be used rather than traditional maximum likelihood
(FALSE). This is only applicable to linear mixed effects models when how is
"lme" or "lmer".

Value

double vector containing ICC(1, 1) of the vrb.nm columns in data with names of the return object
equal to vrb.nm.

icc_11 93

See Also

icc_11 # ICC(1,1) for a single variable, icc_all_by # all six types of ICCs by group, lme # how =
"lme" function, lmer # how = "lmer" function, aov # how = "aov" function,

Examples

tmp_nm <- c("outcome","case","session","trt_time")
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp_nm]
stats_by <- psych::statsBy(dat,

group = "case") # requires you to include "case" column in dat
iccs_11(data = dat, vrb.nm = c("outcome","session","trt_time"), grp.nm = "case")

icc_11 Intraclass Correlation for Multilevel Analysis: ICC(1,1)

Description

icc_11 computes the intraclass correlation (ICC) based on a single rater with a single dimension,
aka ICC(1,1). Traditionally, this is the type of ICC used for multilevel analysis where the value
is interpreted as the proportion of variance accounted for by group membership. In other words,
ICC(1,1) = the proportion of between-group variance; 1 - ICC(1,1) = the proportion of within-group
variance.

Usage

icc_11(x, grp, how = "lme", REML = TRUE)

Arguments

x numeric vector.

grp atomic vector the same length as x providing the grouping variable.

how character vector of length 1 specifying how the ICC(1,1) should be calculated.
There are four options: 1) "lme" uses a linear mixed effects model with the func-
tion lme from the package nlme, 2) "lmer" uses a linear mixed effects modeling
with the function lmer from the package lme4, 3) "aov" uses a one-way analy-
sis of variance with the function aov, and 4) "raw" uses the observed variances,
which provides a biased estimate of the ICC(1,1) and is not recommended (It is
only included for teaching purposes).

REML logical vector of length 1 specifying whether restricted maximum likelihood
estimation (TRUE) should be used rather than traditional maximum likelihood
estimation (FALSE). Only used for linear mixed effects models if how = "lme"
or how = "lmer".

94 icc_all_by

Value

numeric vector of length 1 providing ICC(1,1) and computed based on the how argument.

See Also

iccs_11 # ICC(1,1) for multiple variables, icc_all_by # all six types of ICCs by group, lme #
how = "lme" function, lmer # how = "lmer" function, aov # how = "aov" function,

Examples

BALANCED DATA (how = "aov" and "lme"/"lmer" do YES provide the same value)

str(InsectSprays)
icc_11(x = InsectSprays$"count", grp = InsectSprays$"spray", how = "aov")
icc_11(x = InsectSprays$"count", grp = InsectSprays$"spray", how = "lme")
icc_11(x = InsectSprays$"count", grp = InsectSprays$"spray", how = "lmer")
icc_11(x = InsectSprays$"count", grp = InsectSprays$"spray",

how = "raw") # biased estimator and not recommended. Only available for teaching purposes.

UN-BALANCED DATA (how = "aov" and "lme"/"lmer" do NOT provide the same value)

dat <- as.data.frame(lmeInfo::Bryant2016)
icc_11(x = dat$"outcome", grp = dat$"case", how = "aov")
icc_11(x = dat$"outcome", grp = dat$"case", how = "lme")
icc_11(x = dat$"outcome", grp = dat$"case", how = "lmer")
icc_11(x = dat$"outcome", grp = dat$"case", how = "lme", REML = FALSE)
icc_11(x = dat$"outcome", grp = dat$"case", how = "lmer", REML = FALSE)

how = "lme" does not account for any correlation structure
lme_obj <- nlme::lme(outcome ~ 1, random = ~ 1 | case,

data = dat, na.action = na.exclude,
correlation = nlme::corAR1(form = ~ 1 | case), method = "REML")

var_corr <- nlme::VarCorr(lme_obj) # VarCorr.lme
vars <- as.double(var_corr[, "Variance"])
btw <- vars[1]
wth <- vars[2]
btw / (btw + wth)

icc_all_by All Six Intraclass Correlations by Group

Description

icc_all_by computes each of the six intraclass correlations (ICC) in Shrout & Fleiss (1979) by
group. The ICCs differ by whether they treat dimensions as fixed or random and whether they
are for a single variable in data[vrb.nm] of the set of variables data[vrb.nm]. icc_all_by
also returns information about the linear mixed effects modeling (using lmer) used to compute

icc_all_by 95

the ICCs as well as any warning or error messages by group. For an understanding of the six
different ICCs, see the following blogpost: http://www.daviddisabato.com/blog/2021/10/1/
the-six-different-types-of-intraclass-correlations-iccs. icc_all_by is a combina-
tion of by2 + try_fun + ICC (ICC calls lmer internally).

Usage

icc_all_by(data, vrb.nm, grp.nm, ci.level = 0.95, check = TRUE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

ci.level double vector of length 1 specifying the confidence level. It must range from 0
to 1.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether data[vrb.nm] are all typeof numeric.
This argument is available to allow flexibility in whether the user values infor-
mative error messages (TRUE) vs. computational efficiency (FALSE).

Details

icc_all_by internally suppresses any messages, warnings, or errors returned by lmer (e.g., "bound-
ary (singular) fit: see ?isSingular") because that information is provided in the returned data.frame.

Value

data.frame containing the unique combinations of the grouping variables data[grp.nm] and each
group’s intraclass correlations (ICCs), their confidence intervals, information about the merMod ob-
ject from the linear mixed effects model, and any warning or error messages from lmer. For an
understanding of the six different ICCs, see the following blogpost: http://www.daviddisabato.
com/blog/2021/10/1/the-six-different-types-of-intraclass-correlations-iccs. The
first columns are always unique.data.frame(data[vrb.nm]). All other columns are in the fol-
lowing order with the following colnames:

icc11_est ICC(1,1) parameter estimate

icc11_lwr ICC(1,1) lower bound of the confidence interval

icc11_upr ICC(1,1) lower bound of the confidence interval

icc21_est ICC(2,1) parameter estimate

icc21_lwr ICC(2,1) lower bound of the confidence interval

icc21_upr ICC(2,1) lower bound of the confidence interval

icc31_est ICC(3,1) parameter estimate

icc31_lwr ICC(3,1) lower bound of the confidence interval

icc31_upr ICC(3,1) lower bound of the confidence interval

icc1k_est ICC(1,k) parameter estimate

http://www.daviddisabato.com/blog/2021/10/1/the-six-different-types-of-intraclass-correlations-iccs
http://www.daviddisabato.com/blog/2021/10/1/the-six-different-types-of-intraclass-correlations-iccs
http://www.daviddisabato.com/blog/2021/10/1/the-six-different-types-of-intraclass-correlations-iccs
http://www.daviddisabato.com/blog/2021/10/1/the-six-different-types-of-intraclass-correlations-iccs

96 icc_all_by

icc1k_lwr ICC(1,k) lower bound of the confidence interval

icc1k_upr ICC(1,k) lower bound of the confidence interval

icc2k_est ICC(2,k) parameter estimate

icc2k_lwr ICC(2,k) lower bound of the confidence interval

icc2k_upr ICC(2,k) lower bound of the confidence interval

icc3k_est ICC(3,k) parameter estimate

icc3k_lwr ICC(3,k) lower bound of the confidence interval

icc3k_upr ICC(3,k) lower bound of the confidence interval

lmer_nobs number of observations used for the linear mixed effects model. Note, this is the num-
ber of (non-missing) rows after data[vrb.nm] has been stacked together via stack.

lmer_ngrps number of groups used for the linear mixed effects model. This is the number of
unique combinations of the grouping variables after data[grp.nm].

lmer_logLik logLik of the linear mixed effects model

lmer_sing binary variable where 1 = the linear mixed effects model had a singularity in the random
effects covariance matrix or 0 = it did not

lmer_warn binary variable where 1 = the linear mixed effects model returned a warning or 0 = it
did not

lmer_err binary variable where 1 = the linear mixed effects model returned an error or 0 = it did
not

warn_mssg character vector providing the warning messages for any warnings. If a group did not
generate a warning, then the value is NA

err_mssg character vector providing the error messages for any warnings. If a group did not gen-
erate an error, then the value is NA

References

Shrout, P.E., & Fleiss, J.L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psy-
chological Bulletin, 86(2), 420-428.

See Also

ICC lmer

Examples

one grouping variable
x <- icc_all_by(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"),

grp.nm = "gender")

two grouping variables
y <- icc_all_by(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"),

grp.nm = c("gender","education"))

with errors

lengths_by 97

z <- icc_all_by(data = psych::bfi, vrb.nm = c("A2","A3","A4","A5"),
grp.nm = c("age")) # NA for all ICC columns when there is an error

lengths_by Length of Data Columns by Group

Description

lengths_by computes the the length of multiple columns in a data.frame by group. The argument
na.rm can be used to include (FALSE) or exclude (TRUE) missing values. Through the use of
na.rm = TRUE, the number of observed values for each variable by each group can be computed.

Usage

lengths_by(data, vrb.nm, grp.nm, na.rm = FALSE, sep = ".")

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

na.rm logical vector of length 1 specifying whether to include (FALSE) or exclude
(TRUE) missing values.

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if
grp is a list of atomic vectors (e.g., data.frame).

Value

data.frame with colnames = vrb.nm and rownames = length(levels(interaction(grp))) pro-
viding the number of elements (excluding missing values if na.rm = TRUE) in each column by
group.

See Also

length_by length colNA

Examples

lengths_by(mtcars, vrb.nm = c("mpg","cyl","disp"), grp = "gear")
lengths_by(mtcars, vrb.nm = c("mpg","cyl","disp"),

grp = c("gear","vs")) # can handle multiple grouping variables
lengths_by(mtcars, vrb.nm = c("mpg","cyl","disp"),

grp = c("gear","am")) # can handle zero lengths
lengths_by(airquality, c("Ozone","Solar.R","Wind"), grp = "Month",

98 length_by

na.rm = FALSE) # include missing values
lengths_by(airquality, c("Ozone","Solar.R","Wind"), grp = "Month",

na.rm = TRUE) # exclude missing values

length_by Length of a (Atomic) Vector by Group

Description

length_by computes the the length of a (atomic) vector by group. The argument na.rm can be used
to include (FALSE) or exclude (TRUE) missing values.

Usage

length_by(x, grp, na.rm = FALSE, sep = ".")

Arguments

x atomic vector.

grp atomic vector or list of atomic vectors (e.g., data.frame) specifying the groups.
The atomic vector(s) must be the length of x or else an error is returned.

na.rm logical vector of length 1 specifying whether to include (FALSE) or exclude
(TRUE) missing values.

sep character vector of length 1 specifying what string should separate different
group values when naming the return object. This argument is only used if
grp is a list of atomic vectors (e.g., data.frame).

Value

integer vector of length = length(levels(interaction(grp))) with names = length(levels(interaction(grp)))
providing the number of elements (excluding missing values if na.rm = TRUE) in each group.

See Also

lengths_by length agg

Examples

length_by(x = mtcars$"mpg", grp = mtcars$"gear")
length_by(x = airquality$"Ozone", grp = airquality$"Month", na.rm = FALSE)
length_by(x = airquality$"Ozone", grp = airquality$"Month", na.rm = TRUE)

long2wide 99

long2wide Reshape Multiple Scores From Long to Wide

Description

long2wide reshapes data from long to wide. This if often necessary to do with multilevel data
where variables in the long format seek to be reshaped to multiple sets of variables in the wide
format. If only one column needs to be reshaped, then you can use unstack2 or cast - but that
does not work for *multiple* columns.

Usage

long2wide(
data,
vrb.nm,
grp.nm,
obs.nm,
sep = ".",
colnames.by.obs = TRUE,
keep.attr = FALSE

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables to be reshaped.
In longitudinal panel data, this would be the scores.

grp.nm character vector of colnames from data specifying the groups. In longitudnal
panel data, this would be the participant ID variable.

obs.nm character vector of length 1 with a colname from data specifying the obser-
vation within each group. In longitudinal panel data, this would be the time
variable.

sep character vector of length 1 specifying the string that separates the name prefix
(e.g., score) from it’s number suffix (e.g., timepoint). If sep = "", then that
implies there is no string separating the name prefix and the number suffix (e.g.,
"outcome1").

colnames.by.obs

logical vector of length 1 specifying whether to sort the return object colnames
by the observation label (TRUE) or by the order of vrb.nm. See the example at
the end of the "MULTIPLE GROUPING VARIABLES" section of the examples.

keep.attr logical vector of length 1 specifying whether to keep the "reshapeWide" attribute
(from reshape) in the return object.

100 long2wide

Details

long2wide uses reshape(direction = "wide") to reshape the data. It attempts to streamline the
task of reshaping long to wide as the reshape arguments can be confusing because the same argu-
ments are used for wide vs. long reshaping. See reshape if you are curious.

Value

data.frame with nrow equal to nrow(unique(data[grp.nm])) and number of reshaped columns
equal to length(vrb.nm) * unique(data[[obs.nm]]). The colnames will have the structure
paste0(vrb.nm, sep, unique(data[[obs.nm]])). The reshaped colnames are sorted by the ob-
servation labels if colnames.by.obs = TRUE and sorted by vrb.nm if colnames.by.obs = FALSE.
Overall, the columns are in the following order: 1) grp.nm of the groups, 2) reshaped columns, 3)
additional columns that were not reshaped.

See Also

wide2long reshape unstack2

Examples

SINGLE GROUPING VARIABLE
dat_long <- as.data.frame(ChickWeight) # b/c groupedData class does weird things...
w1 <- long2wide(data = dat_long, vrb.nm = "weight", grp.nm = "Chick",

obs.nm = "Time") # NAs inserted for missing observations in some groups
w2 <- long2wide(data = dat_long, vrb.nm = "weight", grp.nm = "Chick",

obs.nm = "Time", sep = "_")
head(w1); head(w2)
w3 <- long2wide(data = dat_long, vrb.nm = "weight", grp.nm = "Chick",

obs.nm = "Time", sep = "_T", keep.attr = TRUE)
attributes(w3)

MULTIPLE GROUPING VARIABLE
tmp <- psychTools::sai
grps <- interaction(tmp[1:3], drop = TRUE)
dups <- duplicated(grps)
dat_long <- tmp[!(dups),] # for some reason there are duplicate groups in the data
vrb_nm <- str2str::pick(names(dat_long), val = c("study","time","id"), not = TRUE)
w4 <- long2wide(data = dat_long, vrb.nm = vrb_nm, grp.nm = c("study","id"),

obs.nm = "time")
w5 <- long2wide(data = dat_long, vrb.nm = vrb_nm, grp.nm = c("study","id"),

obs.nm = "time", colnames.by.obs = FALSE) # colnames sorted by `vrb.nm` instead
head(w4); head(w5)

make.dummy 101

make.dummy Make Dummy Columns

Description

make.dummy creates dummy columns (i.e., dichotomous numeric vectors coded 0 and 1) from log-
ical conditions. If you want to make logical conditions from columns of a data.frame, you will
need to call the data.frame and its columns explicitly as this function does not use non-standard
evaluation.

Usage

make.dummy(..., rtn.lgl = FALSE)

Arguments

... logical conditions that evaluate to logical vectors of the same length. If the
logical vectors are not the same length, an error is returned. The names of the
arguments are the colnames in the return object. If unnamed, then default R
data.frame naming is used, which can get ugly.

rtn.lgl logical vector of length 1 specifying whether the dummy columns should be
logical vectors (TRUE) rather than numeric vectors (FALSE).

Value

data.frame of dummy columns based on the logical conditions n If rtn.lgl = TRUE, then the
columns are logical vectors. If out.lgl = FALSE, then the columns are numeric vectors where 0 =
FALSE and 1 = TRUE. The colnames are the names of the arguments in If not specified, then
default data.frame names are created from the logical conditions themselves (which can get ugly).

See Also

make.dumNA

Examples

make.dummy(attitude$"rating" > 50) # ugly colnames
make.dummy("rating_50plus" = attitude$"rating" > 50,

"advance_50minus" = attitude$"advance" < 50)
make.dummy("rating_50plus" = attitude$"rating" > 50,

"advance_50minus" = attitude$"advance" < 50, rtn.lgl = TRUE)
Not run:

make.dummy("rating_50plus" = attitude$"rating" > 50,
"mpg_20plus" = mtcars$"mpg" > 20)

End(Not run)

102 make.dumNA

make.dumNA Make Dummy Columns For Missing Data.

Description

make.dumNA makes dummy columns (i.e., dichomotous numeric vectors coded 0 and 1) for missing
data. Each variable is treated in isolation.

Usage

make.dumNA(data, vrb.nm, ov = FALSE, rtn.lgl = FALSE, suffix = "_m")

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

ov logical vector of length 1 specifying whether the dummy columns should be re-
verse coded such that missing values = 0/FALSE and observed values = 1/TRUE.

rtn.lgl logical vector of length 1 specifying whether the dummy columns should be
logical vectors (TRUE) rather than numeric vectors (FALSE).

suffix character vector of length 1 specifying the string that should be appended to the
end of the colnames in the return object.

Value

data.frame of numeric (logical if rtn.lgl = TRUE) columns where missing = 1 and observed = 0
(flipped if ov = TRUE) for each variable. The colnames are created by paste0(vrb.nm, suffix).

See Also

make.dummy

Examples

make.dumNA(data = airquality, vrb.nm = c("Ozone","Solar.R"))
make.dumNA(data = airquality, vrb.nm = c("Ozone","Solar.R"),

rtn.lgl = TRUE) # logical vectors returned
make.dumNA(data = airquality, vrb.nm = c("Ozone","Solar.R"),

ov = TRUE, suffix = "_o") # 1 = observed value

make.fun_if 103

make.fun_if Make a Function Conditional on Frequency of Observed Values

Description

make.fun_if makes a function that evaluates conditional on a specified minimum frequency of
observed values. Within the function, if the frequency of observed values is less than (or equal to)
ov.min, then false is returned rather than the return value.

Usage

make.fun_if(
fun,
...,
ov.min.default = 1,
prop.default = TRUE,
inclusive.default = TRUE,
false = NA

)

Arguments

fun function that takes an atomic vector as its first argument. The first argument does
not have to be named "x" within fun, but it will be named "x" in the returned
function.

... additional arguments with parameters to fun. This would be similar to impute
in sum_if. However in the current version of make.fun_if, the parameters you
provide will always be used within the returned function and cannot be specified
by the user of the returned function. Unfortunately, I cannot figure out how to
include user-specified arguments (with defaults) within the returned function
other than ov.min.default, prop.default, and inclusive.default.

ov.min.default numeric vector of length 1 specifying what the default should be for the argu-
ment ov.min within the returned function, which specifies the minimum fre-
quency of observed values required. If prop = TRUE, then this is a decimal be-
tween 0 and 1. If prop = FALSE, then this is a integer between 0 and length(x).

prop.default logical vector of length 1 specifying what the default should be for the argument
prop within the returned function, which specifies whether ov.min should refer
to the proportion of observed values (TRUE) or the count of observed values
(FALSE).

inclusive.default

logical vector of length 1 speicfying what the default should be for the argu-
ment inclusive within the returned function, which specifies whether the func-
tion should be evaluated if the frequency of observed values is exactly equal to
ov.min.

false vector of length 1 specifying what should be returned if the observed values con-
dition is not met within the returned function. The default is NA. Whatever the
value is, it will be coerced to the same mode as x within the returned function.

104 make.latent

Value

function that takes an atomic vector x as its first argument, ... as other arguments, ending with
ov.min, prop, and inclusive as final arguments with defaults specified by ov.min.default,
prop.default, and inclusive.default, respectively.

See Also

sum_if mean_if

Examples

SD
sd_if <- make.fun_if(fun = sd, na.rm = TRUE) # always have na.rm = TRUE
sd_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
sd_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observed values
sd_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min values itself

skewness
skew_if <- make.fun_if(fun = psych::skew, type = 1) # always have type = 1
skew_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
skew_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observed values
skew_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min values itself

mode
popular <- function(x) names(sort(table(x), decreasing = TRUE))[1]
popular_if <- make.fun_if(fun = popular) # works with character vectors too
popular_if(x = c(unlist(dimnames(HairEyeColor)), rep.int(x = NA, times = 10)),

ov.min = .50)
popular_if(x = c(unlist(dimnames(HairEyeColor)), rep.int(x = NA, times = 10)),

ov.min = .60)

make.latent Make Model Syntax for a Latent Factor in Lavaan

Description

make.latent makes the model syntax for a latent factor in lavaan. The return object can be used
as apart of the model syntax for calls to lavaan, sem, cfa, etc.

Usage

make.latent(
x,
nm.latent = "latent",

make.product 105

error.var = FALSE,
nm.par = FALSE,
suffix.load = "_l",
suffix.error = "_e"

)

Arguments

x character vector specifying the colnames in your data that correspond to the
variables indicating the latent factor (e.g., questionnaire items).

nm.latent character vector of length 1 specifying what the latent factor should be labeled
as in the return object.

error.var logical vector of length 1 specifying whether the model syntax for the error
variances should be included in the return object.

nm.par logical vector of length 1 specifying whether the model syntax should include
names for the factor loading (and error variance) parameters.

suffix.load character vector of length 1 specifying what string should be appended to the
end of the elements of x when creating names for the factor loading parameters.
Only used if nm.par is TRUE.

suffix.error character vector of length 1 specifying what string should be appended to the
end of the elements of x when creating names for the error variance parameters.
Only used if nm.par is TRUE.

Value

character vector of length 1 providing the model syntax. The regular expression "\n" is used to
delineate new lines within the model syntax.

Examples

make.latent(x = names(psych::bfi)[1:5], error.var = FALSE, nm.par = FALSE)
make.latent(x = names(psych::bfi)[1:5], error.var = FALSE, nm.par = TRUE)
make.latent(x = names(psych::bfi)[1:5], error.var = TRUE, nm.par = FALSE)
make.latent(x = names(psych::bfi)[1:5], error.var = TRUE, nm.par = TRUE)

make.product Make Product Terms (e.g., interactions)

Description

make.product creates product terms (i.e., interactions) from various components. make.product
uses Center for the optional of centering and/or scaling the predictors and/or moderators before
making the product terms.

106 make.product

Usage

make.product(
data,
x.nm,
m.nm,
center.x = FALSE,
center.m = FALSE,
scale.x = FALSE,
scale.m = FALSE,
suffix.x = "",
suffix.m = "",
sep = ":",
combo = TRUE

)

Arguments

data data.frame of data.

x.nm character vector of colnames from data specifying the predictor columns.

m.nm character vector of colnames from data specifying the moderator columns.

center.x logical vector of length 1 specifying whether the predictor columns should be
grand-mean centered before making the product terms.

center.m logical vector of length 1 specifying whether the moderator columns should be
grand-mean centered before making the product terms.

scale.x logical vector of length 1 specifying whether the predictor columns should be
grand-SD scaled before making the product terms.

scale.m logical vector of length 1 specifying whether the moderator columns should be
grand-SD scaled before making the product terms.

suffix.x character vector of length 1 specifying any suffix to add to the end of the predic-
tor colnames x.nm when creating the colnames of the return object.

suffix.m character vector of length 1 specifying any suffix to add to the end of the mod-
erator colnames m.nm when creating the colnames of the return object.

sep character vector of length 1 specifying the string to connect x.nm and m.nm when
specifying the colnames of the return object.

combo logical vector of length 1 specifying whether all combinations of the predic-
tors and moderators should be calculated or only those in parallel to each other
(i.e., x.nm[i] and m.nm[i]). This argument is only applicable when multiple
predictors AND multiple moderators are given.

Value

data.frame with product terms (e.g., interactions) as columns. The colnames are created by paste(paste0(x.nm,
suffix.x), paste0(m.nm, suffix.m), sep = sep).

means_change 107

Examples

make.product(data = attitude, x.nm = c("complaints","privileges"),
m.nm = "learning", center.x = TRUE, center.m = TRUE,
suffix.x = "_c", suffix.m = "_c") # with grand-mean centering

make.product(data = attitude, x.nm = c("complaints","privileges"),
m.nm = c("learning","raises"), combo = TRUE) # all possible combinations

make.product(data = attitude, x.nm = c("complaints","privileges"),
m.nm = c("learning","raises"), combo = FALSE) # only combinations "in parallel"

means_change Mean Changes Across Two Timepoints For Multiple PrePost Pairs of
Variables (dependent two-samples t-tests)

Description

means_change tests for mean changes across two timepoints for multiple prepost pairs of variables
via dependent two-samples t-tests. The function also calculates the descriptive statistics for the
timepoints and the standardized mean differences (i.e., Cohen’s d) based on either the standard
deviation of the pre-timepoint, pooled standard deviation of the pre-timepoint and post-timepoint,
or the standard deviation of the change score (post - pre). means_change is simply a wrapper for
t.test plus some extra calculations.

Usage

means_change(
data,
prepost.nm.list,
standardizer = "pre",
d.ci.type = "unbiased",
ci.level = 0.95,
check = TRUE

)

Arguments

data data.frame of data.
prepost.nm.list

list of length-2 character vectors specifying the colnames from data correspond-
ing to the prepost pairs of variables. For each element of the list, the char-
acter vector should have length 2 where the first element corresponds to the
pre-timepoint variable colname of that prepost pair and the second element cor-
responds to the post-timepoint variable colname of that prepost pair. The names
of the list will be the rownames in the data.frames of the return object. See ex-
amples. prepost.nm.list can also be a single length-2 character vector for the
case of a single pre-post pair of variables, which is functionally equivalent to
mean_change.

108 means_change

standardizer chararacter vector of length 1 specifying what to use for standardization when
computing the standardized mean difference (i.e., Cohen’s d). There are three
options: 1. "pre" for the standard deviation of the pre-timepoint, 2. "pooled"
for the pooled standard deviation of the pre-timepoint and post-timepoint, 3.
"change" for the standard deviation of the change score (post - pre). The default
is "pre", which I believe makes the most theoretical sense (see Cumming, 2012);
however, "change" is the traditional choice originally proposed by Jacob Cohen
(Cohen, 1988).

d.ci.type character vector of lenth 1 specifying how to compute the confidence intervals
(and standard errors) of the standardized mean differences. There are currently
two options: 1. "unbiased" which calculates the unbiased standard error of
Cohen’s d based on the formulas in Viechtbauer (2007). If standardizer =
"pre" or "pooled", then equation 36 from Table 2 is used. If standardizer =
"change", then equation 25 from Table 1 is used. A symmetrical confidence
interval is then calculated based on the standard error. 2. "classic" which cal-
culates the confidence interval of Cohen’s d based on the confidence interval
of the mean change itself. The lower and upper confidence bounds are divided
by the standardizer. Technically, this confidence interval is biased due to not
taking into account the uncertainty of the standardizer. No standard error is
calculated for this option and NA is returned for "d_se" in the return object.

ci.level double vector of length 1 specifying the confidence level. ci.level must range
from 0 to 1.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, checking whether prepost.nm.list is a list of
length-2 character vectors. This is a tradeoff between computational efficiency
(FALSE) and more useful error messages (TRUE).

Details

For each prepost pair of variables, means_change calculates the mean change as data[[prepost.nm.list[[i]][2]
]] - data[[prepost.nm.list[[i]][1]]] (which corresponds to post - pre) such that increases
over time have a positive mean change estimate and decreases over time have a negative mean
change estimate. This would be as if the post-timepoint was x and the pre-timepoint y in t.test(paired
= TRUE).

Value

list of data.frames containing statistical information about the mean change for each prepost pair
of variables (the rownames of the data.frames are the names of prepost.nm.list): 1) nhst =
dependent two-samples t-test stat info in a data.frame, 2) desc = descriptive statistics stat info in a
data.frame, 3) std = standardized mean difference stat info in a data.frame,

1) nhst = dependent two-samples t-test stat info in a data.frame

est mean change estimate (i.e., post - pre)

se standard error

t t-value

df degrees of freedom

means_change 109

p two-sided p-value

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a data.frame

mean_post mean of the post variable

mean_pre mean of the pre variable

sd_post standard deviation of of the post variable

sd_pre standard deviation of the pre variable

n sample size of the change score

r Pearson correlation between the pre and post variables

3) std = standardized mean difference stat info in a data.frame

d_est Cohen’s d estimate

d_se Cohen’s d standard error

d_lwr Cohen’s d lower bound of the confidence interval

d_upr Cohen’s d upper bound of the confidence interval

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ:
Erlbaum.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and
meta-analysis. New York, NY: Rouledge.

Viechtbauer, W. (2007). Approximate confidence intervals for standardized effect sizes in the two-
independent and two-dependent samples design. Journal of Educational and Behavioral Statistics,
32(1), 39-60.

See Also

mean_change for a single pair of prepost variables, t.test fixes the table of contents for some un-
known reason, means_diff for multiple independent two-sample t-tests, means_test for multiple
one-sample t-tests,

Examples

dependent two-sample t-tests
prepost_nm_list <- list("first_pair" = c("disp","hp"), "second_pair" = c("carb","gear"))
means_change(mtcars, prepost.nm.list = prepost_nm_list)
means_change(mtcars, prepost.nm.list = prepost_nm_list, d.ci.type = "classic")
means_change(mtcars, prepost.nm.list = prepost_nm_list, standardizer = "change")
means_change(mtcars, prepost.nm.list = prepost_nm_list, ci.level = 0.99)

same as intercept-only regression with the change score

110 means_compare

means_change(data = mtcars, prepost.nm.list = c("disp","hp"))
lm_obj <- lm(hp - disp ~ 1, data = mtcars)
coef(summary(lm_obj))

means_compare Mean differences for multiple variables across 3+ independent groups
(one-way ANOVAs)

Description

means_compare compares means across 3+ independent groups with a separate one-way ANOVA
for each variable. The function also calculates the descriptive statistics for each group and the
variance explained (i.e., R^2 - aka eta^2) by the nominal grouping variable. means_compare is
simply a wrapper for oneway.test plus some extra calculations. mean_compare will work with 2
independent groups; however it arguably makes more sense to use mean_diff in that case.

Usage

means_compare(
data,
vrb.nm,
nom.nm,
lvl = levels(as.factor(data[[nom.nm]])),
var.equal = TRUE,
r2.ci.type = "classic",
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

data data.frame of data.

vrb.nm character vector of length 1 with colnames from data specifying the variables.

nom.nm character vector of length 1 with colnames from data specifying the nominal
variable. It identifies the 3+ groups with 3+ unique values (other than missing
values).

lvl character vector with length 3+ specifying the unique values for the 3+ groups.
If nom is a factor, then lvl should be the factor levels rather than the underlying
integer codes. This argument allows you to specify the order of the descrip-
tive statistics in the return object, which will be opposite the order of lvl for
consistency with mean_diff and mean_change.

var.equal logical vector of length 1 specifying whether the variances of the groups are
assumed to be equal (TRUE) or not (FALSE). If TRUE, a traditional one-way
ANOVA is computed; if FALSE, Welch’s ANOVA is computed. These two tests
differ by their denominator degrees of freedoms, F-values, and p-values.

means_compare 111

r2.ci.type character vector with length 1 specifying the type of confidence intervals to com-
pute for the variance explained (i.e., R^2 or eta^2). There are currently two op-
tions: 1) "Fdist" which calculates a non-symmetrical confidence interval based
on the non-central F distribution (pg. 38, Smithson, 2003), 2) "classic" which
calculates the confidence interval based on a large-sample theory standard error
(eq. 3.6.3 in Cohen, Cohen, West, & Aiken, 2003), which is taken from Olkin &
Finn (1995) - just above eq. 10. The confidence intervals for R^2-adjusted use
the same formula as R^2, but replace R^2 with R^2 adjusted. Technically, the
R^2 adjusted confidence intervals can have poor coverage (pg. 54, Smithson,
2003)

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of length 1 specifying whether the traditional ANOVA tables
should be returned as the last element of the return object.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if vrb.nm are not colnames within data. This
is a tradeoff between computational efficiency (FALSE) and more useful error
messages (TRUE).

Value

list of data.frames containing statistical information about the mean comparisons for each variable
(the rows of the data.frames are vrb.nm): 1) nhst = one-way ANOVA stat info in a data.frame, 2)
desc = descriptive statistics stat info in a data.frame, 3) std = standardized effect sizes stat info in a
data.frame, 4) anova = traditional ANOVA table in a numeric 3D array (only returned if rtn.table =
TRUE)

1) nhst = one-way ANOVA stat info in a data.frame

diff_avg average mean difference across group pairs

se NA to remind the user there is no standard error for the average mean difference

F F-value

df_num numerator degrees of freedom

df_den denominator degrees of freedom

p two-sided p-value

2) desc = descriptive statistics stat info in a data.frame (note there could be more than 3 groups -
groups i, j, and k are just provided as an example)

mean_‘lvl[k ‘] mean of group k

mean_‘lvl[j ‘] mean of group j

mean_‘lvl[i ‘] mean of group i

sd_‘lvl[k ‘] standard deviation of group k

sd_‘lvl[j ‘] standard deviation of group j

sd_‘lvl[i ‘] standard deviation of group i

n_‘lvl[k ‘] sample size of group k

112 means_compare

n_‘lvl[j ‘] sample size of group j

n_‘lvl[i ‘] sample size of group i

3) std = standardized effect sizes stat info in a data.frame

r2_reg_est R^2 estimate

r2_reg_se R^2 standard error (only available if r2.ci.type = "classic")

r2_reg_lwr R^2 lower bound of the confidence interval

r2_reg_upr R^2 upper bound of the confidence interval

r2_adj_est R^2-adjusted estimate

r2_adj_se R^2-adjusted standard error (only available if r2.ci.type = "classic")

r2_adj_lwr R^2-adjusted lower bound of the confidence interval

r2_adj_upr R^2-adjusted upper bound of the confidence interval

4) anova = traditional ANOVA table in a numeric 3D array (only returned if rtn.table = TRUE).

The dimlabels of the array are "effect" for the rows, "info" for the columns, and "vrb" for the
layers. There are two rows with rownames 1. "nom" and 2. "Residuals" where "nom" refers to the
between-group effect of the nominal variable and "Residuals" refers to the within-group residual
errors. There are 5 columns with colnames 1. "SS" = sum of squares, 2. "df" = degrees of freedom,
3. "MS" = mean squares, 4. "F" = F-value. and 5. "p" = p-value. Note the F-value and p-value
will differ from the "nhst" returned vector if var.equal = FALSE because the traditional ANOVA
table always assumes variances are equal (i.e. var.equal = TRUE). There are as many layers as
length(vrb.nm) with the laynames equal to vrb.nm.

References

Cohen, J., Cohen, P., West, A. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation
Analysis for the Behavioral Science - third edition. New York, NY: Routledge.

Olkin, I., & Finn, J. D. (1995). Correlations redux. Psychological Bulletin, 118(1), 155-164.

Smithson, M. (2003). Confidence intervals. Thousand Oaks, CA: Sage Publications.

See Also

oneway.test the workhorse for means_compare, mean_compare for a single variable across the
same 3+ groups, ci.R2 for confidence intervals of the variance explained, means_diff for multiple
variables across only 2 groups,

Examples

means_compare(mtcars, vrb.nm = c("mpg","wt","qsec"), nom.nm = "gear")
means_compare(mtcars, vrb.nm = c("mpg","wt","qsec"), nom.nm = "gear",

var.equal = FALSE)
means_compare(mtcars, vrb.nm = c("mpg","wt","qsec"), nom.nm = "gear",

rtn.table = FALSE)
means_compare(mtcars, vrb.nm = "mpg", nom.nm = "gear")

means_diff 113

means_diff Mean differences across two independent groups (independent two-
samples t-tests)

Description

means_diff tests for mean differences across two independent groups with independent two-samples
t-tests. The function also calculates the descriptive statistics for each group and the standardized
mean differences (i.e., Cohen’s d) based on the pooled standard deviations. mean_diff is simply a
wrapper for t.test plus some extra calculations.

Usage

means_diff(
data,
vrb.nm,
bin.nm,
lvl = levels(as.factor(data[[bin.nm]])),
var.equal = TRUE,
d.ci.type = "unbiased",
ci.level = 0.95,
check = TRUE

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames specifying the variables in data to conduct the
independent two-sample t-tests for.

bin.nm character vector of length 1 specifying the binary variable in data. It identi-
fies the two groups with two (and only two) unique values (other than missing
values).

lvl character vector with length 2 specifying the unique values for the two groups.
If data[[bin.nm]] is a factor, then lvl should be the factor levels rather than
the underlying integer codes. This argument allows you to specify the direc-
tion of the mean difference. means_diff calculates the mean differences as
data[[vrb.nm]][data[[bin.nm]] == lvl[2],] - data[[vrb.nm]][data[[bin.nm]]
== lvl[1],] such that it is group 2 - group 1. By changing which group is
group 1 vs. group 2, the direction of the mean difference can be changed. See
details.

var.equal logical vector of length 1 specifying whether the variances of the groups are
assumed to be equal (TRUE) or not (FALSE). If TRUE, a traditional independent
two-samples t-test is computed; if FALSE, Welch’s t-test is computed. These
two tests differ by their degrees of freedom and p-values.

114 means_diff

d.ci.type character vector with length 1 specifying the type of confidence intervals to
compute for the standardized mean difference (i.e., Cohen’s d). There are cur-
rently three options: 1) "unbiased" which calculates the unbiased standard error
of Cohen’s d based on formula 25 in Viechtbauer (2007). A symmetrical con-
fidence interval is then calculated based on the standard error. 2) "tdist" which
calculates the confidence intervals based on the t-distribution using the function
cohen.d.ci, 3) "classic" which calculates the confidence interval of Cohen’s d
based on the confidence interval of the mean difference itself. The lower and
upper confidence bounds are divided by the pooled standard deviation. Techni-
cally, this confidence interval is biased due to not taking into account the uncer-
tainty of the standard deviations. No standard error is calculated for this option
and NA is returned for "d_se" in the return object.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if data[[bin.nm]] has more than 2 unique
values (other than missing values) or if bin.nm is not a colname in data. This
is a tradeoff between computational efficiency (FALSE) and more useful error
messages (TRUE).

Details

means_diff calculates the mean differences as data[[vrb.nm]][data[[bin.nm]] == lvl[2],]
- data[[vrb.nm]][data[[bin.nm]] == lvl[1],] such that it is group 2 - group 1. Group 1 cor-
responds to the first factor level of data[[bin.nm]] (after being coerced to a factor). Group 2 cor-
respond to the second factor level of data[[bin.nm]] (after being coerced to a factor). This was set
up to handle dummy coded treatment variables in a desirable way. For example, if data[[bin.nm]]
is a numeric vector with values 0 and 1, the default factor coersion will have the first factor level be
"0" and the second factor level "1". This would result will correspond to 1 - 0. However, if the first
factor level of data[[bin.nm]] is "treatment" and the second factor level is "control", the result
will correspond to control - treatment. If the opposite is desired (e.g., treatment - control), this can
be reversed within the function by specifying the lvl argument as c("control","treatment").
Note, means_diff diverts from t.test by calculating the mean difference as group 2 - group 1 (as
opposed to the group 1 - group 2 that t.test does). However, group 2 - group 1 is the convention
that psych::cohen.d uses as well.

means_diff calculates the pooled standard deviation in a different way than cohen.d. There-
fore, the Cohen’s d estimates (and confidence intervals if d.ci.type == "tdist") differ from those in
cohen.d. means_diff uses the total degrees of freedom in the denomenator while cohen.d uses the
total sample size in the denomenator - based on the notation in McGrath & Meyer (2006). However,
almost every introduction to statistics textbook uses the total degrees of freedom in the denomenator
and that is what makes more sense to me. See examples.

Value

list of data.frames vectors containing statistical information about the mean differences (the row-
names of each data.frame are vrb.nm): 1) nhst = independent two-samples t-test stat info in a
data.frame, 2) desc = descriptive statistics stat info in a data.frame, 3) std = standardized mean
difference stat info in a data.frame

means_diff 115

1) nhst = independent two-samples t-test stat info in a data.frame

est mean difference estimate (i.e., group 2 - group 1)

se standard error

t t-value

df degrees of freedom

p two-sided p-value

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a data.frame

mean_‘lvl[2 ‘] mean of group 2

mean_‘lvl[1 ‘] mean of group 1

sd_‘lvl[2 ‘] standard deviation of group 2

sd_‘lvl[1 ‘] standard deviation of group 1

n_‘lvl[2 ‘] sample size of group 2

n_‘lvl[1 ‘] sample size of group 1

3) std = standardized mean difference stat info in a data.frame

d_est Cohen’s d estimate

d_se Cohen’s d standard error

d_lwr Cohen’s d lower bound of the confidence interval

d_upr Cohen’s d upper bound of the confidence interval

References

McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: the case of r and d. Psycholog-
ical Methods, 11(4), 386-401.

Viechtbauer, W. (2007). Approximate confidence intervals for standardized effect sizes in the two-
independent and two-dependent samples design. Journal of Educational and Behavioral Statistics,
32(1), 39-60.

See Also

means_diff for independent two-sample t-test of a single variable, t.test the workhorse for
mean_diff, cohen.d for another standardized mean difference function, means_change for de-
pendent two-sample t-tests, means_test for one-sample t-tests,

116 means_test

Examples

independent two-samples t-tests
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs")
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs",

d.ci.type = "classic")
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs",

lvl = c("1","0")) # signs are reversed
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs",

lvl = c(1,0)) # can provide numeric levels for dummy variables

compare to psych::cohen.d()
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs",

d.ci.type = "tdist")
tmp_nm <- c("mpg","cyl","disp","vs") # so that Roxygen2 doesn't freak out
cohend_obj <- psych::cohen.d(mtcars[tmp_nm], group = "vs")
as.data.frame(cohend_obj[["cohen.d"]]) # different estimate of cohen's d

of course, this also leads to different confidence interval bounds as well

same as intercept-only regression when var.equal = TRUE
means_diff(data = mtcars, vrb.nm = "mpg", bin.nm = "vs")
lm_obj <- lm(mpg ~ vs, data = mtcars)
coef(summary(lm_obj))

if levels are not unique values in data[[bin.nm]]
Not run:
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs",

lvl = c("zero", "1")) # an error message is returned
means_diff(data = mtcars, vrb.nm = c("mpg","cyl","disp"), bin.nm = "vs",

lvl = c("0", "one")) # an error message is returned

End(Not run)

means_test Test for Multiple Sample Means Against Mu (one-sample t-tests)

Description

means_test computes sample means and compares them against specified population mu values.
These are sometimes referred to as one-sample t-tests. It provides the same results as t.test, but
provides the confidence intervals for the mean differences from mu rather than the mean itself.
The function also calculates the descriptive statistics and the standardized mean differences (i.e.,
Cohen’s d) based on the sample standard deviations.

Usage

means_test(
data,

means_test 117

vrb.nm,
mu = 0,
d.ci.type = "tdist",
ci.level = 0.95,
check = TRUE

)

Arguments

data data.frame or data.

vrb.nm character vector of colnames specifying the variables in data to conduct the
one-sample t-tests for.

mu numeric vector of length = length(vrb.nm) or length 1 specifying the popula-
tion mean values to compare the sample means against. The order of the values
should be the same as the order in vrb.nm. When length 1, the same population
mean value is used for all the variables.

d.ci.type character vector with length 1 of specifying the type of confidence intervals to
compute for the standardized mean differences (i.e., Cohen’s d). There are cur-
rently two options: 1. "tdist" which calculates the confidence intervals based on
the t-distribution using the function cohen.d.ci. No standard error is calculated
for this option and NA is returned for "d_se" in the return object. 2. "classic"
which calculates the confidence intervals of Cohen’s d based on the confidence
interval of the mean difference itself. The lower and upper confidence bounds
are divided by the sample standard deviation. Technically, this confidence in-
terval is biased due to not taking into account the uncertainty of the standard
deviations. No standard error is calculated for this option and NA is returned for
"d_se" in the return object.

ci.level numeric vector of length 1 specifying the confidence level. It must be between
0 and 1.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, checking whether ci.level is between 0 and
1. This is a tradeoff between computational efficiency (FALSE) and more useful
error messages (TRUE).

Value

list of data.frames containing statistical information about the sample means (the rownames of the
data.frames are vrb.nm): 1) nhst = one-sample t-test stat info in a data.frame, 2) desc = descriptive
statistics stat info in a data.frame, 3) std = standardized mean difference stat info in a data.frame

1) nhst = one-sample t-test stat info in a data.frame

est mean - mu estimate

se standard error

t t-value

df degrees of freedom

p two-sided p-value

118 means_test

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a data.frame

mean mean of x

mu population value of comparison

sd standard deviation of x

n sample size of x

3) std = standardized mean difference stat info in a data.frame

d_est Cohen’s d estimate

d_se Cohen’s d standard error

d_lwr Cohen’s d lower bound of the confidence interval

d_upr Cohen’s d upper bound of the confidence interval

See Also

mean_test one-sample t-test for a single variable, t.test same results, means_diff independent
two-sample t-tests for multiple variables, means_change dependent two-sample t-tests for multiple
variables,

Examples

one-sample t-tests
means_test(data = attitude, vrb.nm = names(attitude), mu = 50)
means_test(data = attitude, vrb.nm = c("rating","complaints","privileges"),

mu = c(60, 55, 50))
means_test(data = attitude, vrb.nm = names(attitude), mu = 50, ci.level = 0.90)
means_test(airquality, vrb.nm = names(airquality)) # different df and n due to missing data

compare to t.test
means_test(data = attitude, vrb.nm = "rating", mu = 50, ci.level = .99)
t.test(attitude$"rating", mu = 50, conf.level = .99)

same as intercept-only regression
means_test(data = attitude, vrb.nm = "rating")
lm_obj <- lm(rating ~ 1, data = attitude)
coef(summary(lm_obj))

mean_change 119

mean_change Mean Change Across Two Timepoints (dependent two-samples t-test)

Description

mean_change tests for mean change across two timepoints with a dependent two-samples t-test.
The function also calculates the descriptive statistics for the timepoints and the standardized mean
difference (i.e., Cohen’s d) based on either the standard deviation of the pre-timepoint, pooled
standard deviation of the pre-timepoint and post-timepoint, or the standard deviation of the change
score (post - pre). mean_change is simply a wrapper for t.test plus some extra calculations.

Usage

mean_change(
pre,
post,
standardizer = "pre",
d.ci.type = "unbiased",
ci.level = 0.95,
check = TRUE

)

Arguments

pre numeric vector of the variable at the pre-timepoint.

post numeric vector of the variable at the post-timepoint. The elements must corre-
spond to the same cases in pre as pairs by position. Thus, the length of post
must be the same as pre. Note, missing values in post are expected and handled
with listwise deletion.

standardizer chararacter vector of length 1 specifying what to use for standardization when
computing the standardized mean difference (i.e., Cohen’s d). There are three
options: 1. "pre" for the standard deviation of the pre-timepoint, 2. "pooled"
for the pooled standard deviation of the pre-timepoint and post-timepoint, 3.
"change" for the standard deviation of the change score (post - pre). The default
is "pre", which I believe makes the most theoretical sense (see Cumming, 2012);
however, "change" is the traditional choice originally proposed by Jacob Cohen
(Cohen, 1988).

d.ci.type character vector of lenth 1 specifying how to compute the confidence interval
(and standard error) of the standardized mean difference. There are currently
two options: 1. "unbiased" which calculates the unbiased standard error of
Cohen’s d based on the formulas in Viechtbauer (2007). If standardizer =
"pre" or "pooled", then equation 36 from Table 2 is used. If standardizer =
"change", then equation 25 from Table 1 is used. A symmetrical confidence
interval is then calculated based on the standard error. 2. "classic" which cal-
culates the confidence interval of Cohen’s d based on the confidence interval
of the mean change itself. The lower and upper confidence bounds are divided

120 mean_change

by the standardizer. Technically, this confidence interval is biased due to not
taking into account the uncertainty of the standardizer. No standard error is
calculated for this option and NA is returned for "d_se" in the return object.

ci.level double vector of length 1 specifying the confidence level. ci.level must range
from 0 to 1.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, checking whether post is the same length as
pre. This is a tradeoff between computational efficiency (FALSE) and more
useful error messages (TRUE).

Details

mean_change calculates the mean change as post - pre such that increases over time have a positive
mean change estimate and decreases over time have a negative mean change estimate. This would
be as if the post-timepoint was x and the pre-timepoint was y in t.test(paired = TRUE).

Value

list of numeric vectors containing statistical information about the mean change: 1) nhst = depen-
dent two-samples t-test stat info in a numeric vector, 2) desc = descriptive statistics stat info in a
numeric vector, 3) std = standardized mean difference stat info in a numeric vector

1) nhst = dependent two-samples t-test stat info in a numeric vector

est mean change estimate (i.e., post - pre)

se standard error

t t-value

df degrees of freedom

p two-sided p-value

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a numeric vector

mean_post mean of the post variable

mean_pre mean of the pre variable

sd_post standard deviation of of the post variable

sd_pre standard deviation of the pre variable

n sample size of the change score

r Pearson correlation between the pre and post variables

3) std = standardized mean difference stat info in a numeric vector

d_est Cohen’s d estimate

d_se Cohen’s d standard error

d_lwr Cohen’s d lower bound of the confidence interval

d_upr Cohen’s d upper bound of the confidence interval

mean_compare 121

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ:
Erlbaum.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and
meta-analysis. New York, NY: Rouledge.

Viechtbauer, W. (2007). Approximate confidence intervals for standardized effect sizes in the two-
independent and two-dependent samples design. Journal of Educational and Behavioral Statistics,
32(1), 39-60.

See Also

means_change for multiple sets of prepost pairs of variables, t.test the workhorse for mean_change,
mean_diff for a independent two-samples t-test, mean_test for a one-sample t-test,

Examples

dependent two-sample t-test
mean_change(pre = mtcars$"disp", post = mtcars$"hp") # standardizer = "pre"
mean_change(pre = mtcars$"disp", post = mtcars$"hp", d.ci.type = "classic")
mean_change(pre = mtcars$"disp", post = mtcars$"hp", standardizer = "pooled")
mean_change(pre = mtcars$"disp", post = mtcars$"hp", ci.level = 0.99)
mean_change(pre = mtcars$"hp", post = mtcars$"disp",

ci.level = 0.99) # note, when flipping pre and post, the cohen's d estimate
changes with standardizer = "pre" because the "pre" variable is different.
This does not happen for standardizer = "pooled" or "change". For example...

mean_change(pre = mtcars$"disp", post = mtcars$"hp", standardizer = "pooled")
mean_change(pre = mtcars$"hp", post = mtcars$"disp", standardizer = "pooled")
mean_change(pre = mtcars$"disp", post = mtcars$"hp", standardizer = "change")
mean_change(pre = mtcars$"hp", post = mtcars$"disp", standardizer = "change")

same as intercept-only regression with the change score
mean_change(pre = mtcars$"disp", post = mtcars$"hp")
lm_obj <- lm(hp - disp ~ 1, data = mtcars)
coef(summary(lm_obj))

mean_compare Mean differences for a single variable across 3+ independent groups
(one-way ANOVA)

Description

mean_compare compares means across 3+ independent groups with a one-way ANOVA. The func-
tion also calculates the descriptive statistics for each group and the variance explained (i.e., R^2 aka
eta^2) by the nominal grouping variable. mean_compare is simply a wrapper for oneway.test plus
some extra calculations. mean_compare will work with 2 independent groups; however it arguably
makes more sense to use mean_diff in that case.

122 mean_compare

Usage

mean_compare(
x,
nom,
lvl = levels(as.factor(nom)),
var.equal = TRUE,
r2.ci.type = "Fdist",
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

x numeric vector.

nom atomic vector (e.g., factor) the same length as x that is a nominal variable. It
identifies the 3+ groups with 3+ unique values (other than missing values).

lvl character vector with length 3+ specifying the unique values for the 3+ groups.
If nom is a factor, then lvl should be the factor levels rather than the underlying
integer codes. This argument allows you to specify the order of the descrip-
tive statistics in the return object, which will be opposite the order of lvl for
consistency with mean_diff and mean_change.

var.equal logical vector of length 1 specifying whether the variances of the groups are
assumed to be equal (TRUE) or not (FALSE). If TRUE, a traditional one-way
ANOVA is computed; if FALSE, Welch’s ANOVA is computed. These two tests
differ by their denominator degrees of freedom, F-value, and p-value.

r2.ci.type character vector with length 1 specifying the type of confidence intervals to
compute for the variance explained (i.e., R^2 aka eta^2). There are currently
two options: 1) "Fdist" which calculates a non-symmetrical confidence interval
based on the non-central F distribution (pg. 38, Smithson, 2003), 2) "classic"
which calculates the confidence interval based on a large-sample theory stan-
dard error (eq. 3.6.3 in Cohen, Cohen, West, & Aiken, 2003), which is taken
from Olkin & Finn (1995) - just above eq. 10. The confidence intervals for
R^2-adjusted use the same formula as R^2, but replace R^2 with R^2 adjusted.
Technically, the R^2 adjusted confidence intervals can have poor coverage (pg.
54, Smithson, 2003)

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of length 1 specifying whether the traditional ANOVA table should
be returned as the last element of the return object.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if nom has length different than the length of x.
This is a tradeoff between computational efficiency (FALSE) and more useful
error messages (TRUE).

mean_compare 123

Value

list of numeric vectors containing statistical information about the mean comparison: 1) nhst =
one-way ANOVA stat info in a numeric vector, 2) desc = descriptive statistics stat info in a numeric
vector, 3) std = standardized effect sizes stat info in a numeric vector, 4) anova = traditional ANOVA
table in a numeric matrix (only returned if rtn.table = TRUE).

1) nhst = one-way ANOVA stat info in a numeric vector

diff_avg average mean difference across group pairs
se NA to remind the user there is no standard error for the average mean difference
F F-value
df_num numerator degrees of freedom
df_den denominator degrees of freedom
p two-sided p-value

2) desc = descriptive statistics stat info in a numeric vector (note there could be more than 3 groups
- groups i, j, and k are just provided as an example)

mean_‘lvl[k ‘] mean of group k
mean_‘lvl[j ‘] mean of group j
mean_‘lvl[i ‘] mean of group i
sd_‘lvl[k ‘] standard deviation of group k
sd_‘lvl[j ‘] standard deviation of group j
sd_‘lvl[i ‘] standard deviation of group i
n_‘lvl[k ‘] sample size of group k
n_‘lvl[j ‘] sample size of group j
n_‘lvl[i ‘] sample size of group i

3) std = standardized effect sizes stat info in a numeric vector

r2_reg_est R^2 estimate
r2_reg_se R^2 standard error (only available if r2.ci.type = "classic")
r2_reg_lwr R^2 lower bound of the confidence interval
r2_reg_upr R^2 upper bound of the confidence interval
r2_adj_est R^2-adjusted estimate
r2_adj_se R^2-adjusted standard error (only available if r2.ci.type = "classic")
r2_adj_lwr R^2-adjusted lower bound of the confidence interval
r2_adj_upr R^2-adjusted upper bound of the confidence interval

4) anova = traditional ANOVA table in a numeric matrix (only returned if rtn.table = TRUE).

The dimlabels of the matrix was "effect" for the rows and "info" for the columns. There are two
rows with rownames 1. "nom" and 2. "Residuals" where "nom" refers to the between-group effect
of the nominal variable and "Residuals" refers to the within-group residual errors. There are 5
columns with colnames 1. "SS" = sum of squares, 2. "df" = degrees of freedom, 3. "MS" = mean
squares, 4. "F" = F-value. and 5. "p" = p-value. Note the F-value and p-value will differ from
the "nhst" returned vector if var.equal = FALSE because the traditional ANOVA table always
assumes variances are equal (i.e. var.equal = TRUE).

124 mean_diff

References

Cohen, J., Cohen, P., West, A. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation
Analysis for the Behavioral Science - third edition. New York, NY: Routledge.

Olkin, I., & Finn, J. D. (1995). Correlations redux. Psychological Bulletin, 118(1), 155-164.

Smithson, M. (2003). Confidence intervals. Thousand Oaks, CA: Sage Publications.

See Also

oneway.test the workhorse for mean_compare, means_compare for multiple variables across the
same 3+ groups, ci.R2 for confidence intervals of the variance explained, mean_diff for a single
variable across only 2 groups,

Examples

mean_compare(x = mtcars$"mpg", nom = mtcars$"gear")
mean_compare(x = mtcars$"mpg", nom = mtcars$"gear", var.equal = FALSE)
mean_compare(x = mtcars$"mpg", nom = mtcars$"gear", rtn.table = FALSE)
mean_compare(x = mtcars$"mpg", nom = mtcars$"gear", r2.ci.type = "classic")

mean_diff Mean difference across two independent groups (independent two-
samples t-test)

Description

mean_diff tests for mean differences across two independent groups with an independent two-
samples t-test. The function also calculates the descriptive statistics for each group and the stan-
dardized mean difference (i.e., Cohen’s d) based on the pooled standard deviation. mean_diff is
simply a wrapper for t.test plus some extra calculations.

Usage

mean_diff(
x,
bin,
lvl = levels(as.factor(bin)),
var.equal = TRUE,
d.ci.type = "unbiased",
ci.level = 0.95,
check = TRUE

)

mean_diff 125

Arguments

x numeric vector.

bin atomic vector (e.g., factor) the same length as x that is a binary variable. It
identifies the two groups with two (and only two) unique values (other than
missing values).

lvl character vector with length 2 specifying the unique values for the two groups.
If bin is a factor, then lvl should be the factor levels rather than the underlying
integer codes. This argument allows you to specify the direction of the mean
difference. mean_diff calculates the mean difference as x[bin == lvl[2]] -
x[bin == lvl[1]] such that it is group 2 - group 1. By changing which group
is group 1 vs. group 2, the direction of the mean difference can be changed. See
details.

var.equal logical vector of length 1 specifying whether the variances of the groups are
assumed to be equal (TRUE) or not (FALSE). If TRUE, a traditional independent
two-samples t-test is computed; if FALSE, Welch’s t-test is computed. These
two tests differ by their degrees of freedom and p-values.

d.ci.type character vector with length 1 of specifying the type of confidence intervals
to compute for the standardized mean difference (i.e., Cohen’s d). There are
currently three options: 1) "unbiased" which calculates the unbiased standard
error of Cohen’s d based on formula 25 in Viechtbauer (2007). A symmetrical
confidence interval is then calculated based on the standard error. 2) "tdist"
which calculates the confidence intervals based on the t-distribution using the
function cohen.d.ci, 3) "classic" which calculates the confidence interval of
Cohen’s d based on the confidence interval of the mean difference itself. The
lower and upper confidence bounds are divided by the pooled standard deviation.
Technically, this confidence interval is biased due to not taking into account the
uncertainty of the standard deviations. No standard error is calculated for this
option and NA is returned for "d_se" in the return object.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if bin has more than 2 unique values (other
than missing values) or if bin has length different than the length of x. This
is a tradeoff between computational efficiency (FALSE) and more useful error
messages (TRUE).

Details

mean_diff calculates the mean difference as x[bin == lvl[2]] - x[bin == lvl[1]] such that it
is group 2 - group 1. Group 1 corresponds to the first factor level of bin (after being coerced to a
factor). Group 2 correspond to the second factor level bin (after being coerced to a factor). This
was set up to handle dummy coded treatment variables in a desirable way. For example, if bin
is a numeric vector with values 0 and 1, the default factor coersion will have the first factor level
be "0" and the second factor level "1". This would result will correspond to 1 - 0. However, if
the first factor level of bin is "treatment" and the second factor level is "control", the result will
correspond to control - treatment. If the opposite is desired (e.g., treatment - control), this can

126 mean_diff

be reversed within the function by specifying the lvl argument as c("control","treatment").
Note, mean_diff diverts from t.test by calculating the mean difference as group 2 - group 1 (as
opposed to the group 1 - group 2 that t.test does). However, group 2 - group 1 is the convention
that psych::cohen.d uses as well.

mean_diff calculates the pooled standard deviation in a different way than cohen.d. Therefore, the
Cohen’s d estimates (and confidence intervals if d.ci.type == "tdist") differ from those in cohen.d.
mean_diff uses the total degrees of freedom in the denomenator while cohen.d uses the total
sample size in the denomenator - based on the notation in McGrath & Meyer (2006). However,
almost every introduction to statistics textbook uses the total degrees of freedom in the denomenator
and that is what makes more sense to me. See examples.

Value

list of numeric vectors containing statistical information about the mean difference: 1) nhst = inde-
pendent two-samples t-test stat info in a numeric vector, 2) desc = descriptive statistics stat info in
a numeric vector, 3) std = standardized mean difference stat info in a numeric vector

1) nhst = independent two-samples t-test stat info in a numeric vector

est mean difference estimate (i.e., group 2 - group 1)

se standard error

t t-value

df degrees of freedom

p two-sided p-value

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a numeric vector

mean_‘lvl[2 ‘] mean of group 2

mean_‘lvl[1 ‘] mean of group 1

sd_‘lvl[2 ‘] standard deviation of group 2

sd_‘lvl[1 ‘] standard deviation of group 1

n_‘lvl[2 ‘] sample size of group 2

n_‘lvl[1 ‘] sample size of group 1

3) std = standardized mean difference stat info in a numeric vector

d_est Cohen’s d estimate

d_se Cohen’s d standard error

d_lwr Cohen’s d lower bound of the confidence interval

d_upr Cohen’s d upper bound of the confidence interval

mean_if 127

References

McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: the case of r and d. Psycholog-
ical Methods, 11(4), 386-401.

Viechtbauer, W. (2007). Approximate confidence intervals for standardized effect sizes in the two-
independent and two-dependent samples design. Journal of Educational and Behavioral Statistics,
32(1), 39-60.

See Also

t.test the workhorse for mean_diff, means_diff for multiple variables across the same two
groups, cohen.d for another standardized mean difference function, mean_change for dependent
two-sample t-test, mean_test for one-sample t-test,

Examples

independent two-samples t-test
mean_diff(x = mtcars$"mpg", bin = mtcars$"vs")
mean_diff(x = mtcars$"mpg", bin = mtcars$"vs", lvl = c("1","0"))
mean_diff(x = mtcars$"mpg", bin = mtcars$"vs", lvl = c(1, 0)) # levels don't have to be character
mean_diff(x = mtcars$"mpg", bin = mtcars$"vs", d.ci.type = "classic")

compare to psych::cohen.d()
mean_diff(x = mtcars$"mpg", bin = mtcars$"vs", d.ci.type = "tdist")
tmp_nm <- c("mpg","vs") # because otherwise Roxygen2 gets upset
cohend_obj <- psych::cohen.d(mtcars[tmp_nm], group = "vs")
as.data.frame(cohend_obj[["cohen.d"]]) # different estimate of cohen's d

of course, this also leads to different confidence interval bounds as well

same as intercept-only regression when var.equal = TRUE
mean_diff(x = mtcars$"mpg", bin = mtcars$"vs", d.ci.type = "tdist")
lm_obj <- lm(mpg ~ vs, data = mtcars)
coef(summary(lm_obj))

errors
Not run:
mean_diff(x = mtcars$"mpg",

bin = attitude$"ratings") # `bin` has length different than `x`
mean_diff(x = mtcars$"mpg",

bin = mtcars$"gear") # `bin` has more than two unique values (other than missing values)

End(Not run)

mean_if Mean Conditional on Minimum Frequency of Observed Values

128 mean_if

Description

mean_if calculates the mean of a numeric or logical vector conditional on a specified minimum
frequency of observed values. If the frequency of observed values is less than (or equal to) ov.min,
then NA is returned rather than the mean.

Usage

mean_if(x, trim = 0, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

x numeric or logical vector.

trim numeric vector of length 1 specifying the proportion of values from each end of
x to trim. Trimmed values are recoded to their endpoint for calculation of the
mean. See mean.default.

ov.min minimum frequency of observed values required. If prop = TRUE, then this is
a decimal between 0 and 1. If prop = FALSE, then this is a integer between 0
and length(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the mean should be calculated if
the frequency of observed values is exactly equal to ov.min.

Value

numeric vector of length 1 providing the mean of x or NA conditional on if the frequency of observed
data is greater than (or equal to) ov.min.

See Also

mean.default sum_if make.fun_if

Examples

mean_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
mean_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observe values
mean_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min value itself
mean_if(x = c(TRUE, NA, FALSE, NA),

ov.min = .50) # works with logical vectors as well as numeric

mean_test 129

mean_test Test for Sample Mean Against Mu (one-sample t-test)

Description

mean_test computes the sample mean and compares it against a specified population mu value.
This is sometimes referred to as a one-sample t-test. It provides the same results as t.test, but
provides the confidence interval for the mean difference from mu rather than the mean itself. The
function also calculates the descriptive statistics and the standardized mean difference (i.e., Cohen’s
d) based on the sample standard deviation.

Usage

mean_test(x, mu = 0, d.ci.type = "tdist", ci.level = 0.95, check = TRUE)

Arguments

x numeric vector.

mu numeric vector of length 1 specifying the population mean value to compare the
sample mean against.

d.ci.type character vector with length 1 specifying the type of confidence interval to com-
pute for the standardized mean difference (i.e., Cohen’s d). There are currently
two options: 1. "tdist" which calculates the confidence intervals based on the t-
distribution using the function cohen.d.ci. No standard error is calculated for
this option and NA is returned for "d_se" in the return object. 2. "classic" which
calculates the confidence interval of Cohen’s d based on the confidence interval
of the mean difference itself. The lower and upper confidence bounds are di-
vided by the sample standard deviation. Technically, this confidence interval is
biased due to not taking into account the uncertainty of the standard deviations.
No standard error is calculated for this option and NA is returned for "d_se" in
the return object.

ci.level numeric vector of length 1 specifying the confidence level. It must be between
0 and 1.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, checking whether x is a numeric vector. This
is a tradeoff between computational efficiency (FALSE) and more useful error
messages (TRUE).

Value

list of numeric vectors containing statistical information about the sample mean: 1) nhst = one-
sample t-test stat info in a numeric vector, 2) desc = descriptive statistics stat info in a numeric
vector, 3) std = standardized mean difference stat info in a numeric vector

1) nhst = one-sample t-test stat info in a numeric vector

est mean - mu estimate

130 mean_test

se standard error

t t-value

df degrees of freedom

p two-sided p-value

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a numeric vector

mean mean of x

mu population value of comparison

sd standard deviation of x

n sample size of x

3) std = standardized mean difference stat info in a numeric vector

d_est Cohen’s d estimate

d_se Cohen’s d standard error

d_lwr Cohen’s d lower bound of the confidence interval

d_upr Cohen’s d upper bound of the confidence interval

See Also

means_test one-sample t-tests for multiple variables, t.test same results, mean_diff indepen-
dent two-sample t-test, mean_change dependent two-sample t-test,

Examples

one-sample t-test
mean_test(x = mtcars$"mpg")
mean_test(x = attitude$"rating", mu = 50)
mean_test(x = attitude$"rating", mu = 50, d.ci.type = "classic")

compare to t.test()
mean_test(x = attitude$"rating", mu = 50, ci.level = .99)
t.test(attitude$"rating", mu = 50, conf.level = .99)

same as intercept-only regression when mu = 0
mean_test(x = mtcars$"mpg")
lm_obj <- lm(mpg ~ 1, data = mtcars)
coef(summary(lm_obj))

mode2 131

mode2 Statistical Mode of a Numeric Vector

Description

mode2 calculates the statistical mode - a measure of central tendancy - of a numeric vector. This
is in contrast to mode in base R, which returns the storage mode of an object. In the case multiple
modes exist, the multiple argument allows the user to specify if they want the multiple modes
returned or just one.

Usage

mode2(x, na.rm = FALSE, multiple = FALSE)

Arguments

x atomic vector

na.rm logical vector of length 1 specifying if missing values should be removed from
x before calculating its frequencies.

multiple logical vector of length 1 specifying if multiple modes should be returned in
the case they exist. If multiple modes exist and multiple = TRUE, the multi-
ple modes will be returned in alphanumeric order. If multiple modes exist and
multiple = TRUE, the first mode in alphanumeric order will be returned. Note,
NA is always last in the alphanumeric order. If only one mode exists, then the
multiple argument is not used.

Value

atomic vector of the same storage mode as x providing the statistical mode(s).

See Also

freq table

Examples

ONE MODE
vec <- c(7,8,9,7,8,9,9)
mode2(vec)
mode2(vec, multiple = TRUE)

TWO MODES
vec <- c(7,8,9,7,8,9,8,9)
mode2(vec)
mode2(vec, multiple = TRUE)

WITH NA

132 ncases

vec <- c(7,8,9,7,8,9,NA,9)
mode2(vec)
mode2(vec, na.rm = TRUE)
vec <- c(7,8,9,7,8,9,NA,9,NA,NA)
mode2(vec)
mode2(vec, multiple = TRUE)

ncases Number of Cases in Data

Description

ncases counts how many cases in a data.frame there are that have a specified frequency of observed
values across a set of columns. This function is similar to nrow and is essentially partial.cases
+ sum. The user can have ncases return the number of complete cases by calling ov.min = 1, prop
= TRUE, and inclusive = TRUE (the default).

Usage

ncases(data, vrb.nm = names(data), ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

data data.frame or matrix of data.
vrb.nm a character vector of colnames from data specifying the variables.
ov.min minimum frequency of observed values required per row. If prop = TRUE,

then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.

Value

integer vector of length 1 providing the nrow in data with the given amount of observed values.

See Also

partial.cases nrow

Examples

vrb_nm <- c("Ozone","Solar.R","Wind")
nrow(airquality[vrb_nm]) # number of cases regardless of missing data
sum(complete.cases(airquality[vrb_nm])) # number of complete cases
ncases(data = airquality, vrb.nm = c("Ozone","Solar.R","Wind"),

ov.min = 2/3) # number of rows with at least 2 of the 3 variables observed

ncases_by 133

ncases_by Number of Cases in Data by Group

Description

ncases_by computes the ncases of a data.frame by group. Through the use of the ov.min, prop,
and inclusive arguments, the user can specify how many missing values are allowed in a row for
it to be counted. ncases_by is simply a wrapper for ncases + agg_dfm.

Usage

ncases_by(
data,
vrb.nm = str2str::pick(names(data), val = grp.nm, not = TRUE),
grp.nm,
sep = ".",
ov.min = 1L,
prop = TRUE,
inclusive = TRUE

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the set of variables to base
the ncases on.

grp.nm character vector of colnames from data specifying the grouping variables.

sep character vector of length 1 specifying what string to use to separate the groups
when naming the return object. sep is only used if grp.nm has length > 1 (aka
multiple grouping variables)

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.

Value

atomic vector with names = unique(interaction(data[grp.nm], sep = sep)) and length = length(unique(interaction(data[grp.nm],
sep = sep))) providing the ncases for each group.

See Also

nrow_by ncases agg_dfm

134 ncases_desc

Examples

one grouping variables
tmp_nm <- c("outcome","case","session","trt_time")
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp_nm]
stats_by <- psych::statsBy(dat,

group = "case") # requires you to include "case" column in dat
ncases_by(data = dat, grp.nm = "case")
dat2 <- as.data.frame(ChickWeight)
ncases_by(data = dat2, grp.nm = "Chick")

two grouping variables
tmp <- reshape(psych::bfi[1:10,], varying = 1:25, timevar = "item",

ids = row.names(psych::bfi)[1:10], direction = "long", sep = "")
tmp_nm <- c("id","item","N","E","C","A","O") # Roxygen runs the whole script
dat3 <- str2str::stack2(tmp[tmp_nm], select.nm = c("N","E","C","A","O"),

keep.nm = c("id","item"))
ncases_by(dat3, grp.nm = c("id","vrb_names"))

ncases_desc Describe Number of Cases in Data by Group

Description

ncases_desc computes descriptive statistics about the number of cases by group in a data.frame.
This is often done in diary studies to obtain information about compliance for the sample. Through
the use of the ov.min, prop, and inclusive arguments, the user can specify how many missing val-
ues are allowed in a row for it to be counted. ncases_desc is simply ncases_by + psych::describe.

Usage

ncases_desc(
data,
vrb.nm = str2str::pick(names(data), val = grp.nm, not = TRUE),
grp.nm,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
interp = FALSE,
skew = TRUE,
ranges = TRUE,
trim = 0.1,
type = 3,
quant = c(0.25, 0.75),
IQR = FALSE

)

ncases_desc 135

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the set of variables to base
the ncases on.

grp.nm character vector of colnames from data specifying the grouping variables.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.

interp logical vector of length 1 specifying whether the median should be standard
(FALSE) or interpolated (TRUE).

skew logical vector of length 1 specifying whether skewness and kurtosis should be
calculated (TRUE) or not (FALSE).

ranges logical vector of length 1 specifying whether the minimum, maximum, and
range (i.e., maximum - minimum) should be calculated (TRUE) or not (FALSE).
Note, if ranges = FALSE, the trimmed mean and median absolute deviation is
also not computed as per the psych::describe function behavior.

trim numeric vector of length 1 specifying the top and bottom quantiles of data that
are to be excluded when calculating the trimmed mean. For example, the default
value of 0.1 means that only data within the 10th - 90th quantiles are used for
calculating the trimmed mean.

type numeric vector of length 1 specifying the type of skewness and kurtosis coeffi-
cients to compute. See the details of psych::describe. The options are 1, 2,
or 3.

quant numeric vector specifying the quantiles to compute. Foe example, the default
value of c(0.25, 0.75) computes the 25th and 75th quantiles of the group number
of cases. If quant = NULL, then no quantiles are returned.

IQR logical vector of length 1 specifying whether to compute the Interquartile Range
(TRUE) or not (FALSE), which is simply the 75th quantil - 25th quantile.

Value

numeric vector containing descriptive statistics about number of cases by group. Note, which ele-
ments are returned depends on the arguments. See each argument’s description.

n number of groups

mean mean

sd standard deviation

median median (standard if interp = FALSE, interpolated if interp = TRUE)

trimmed trimmed mean based on trim

136 ncases_ml

mad median absolute difference

min minimum

max maximum

range maximum - minumum

skew skewness

kurtosis kurtosis

se standard error of the mean

IQR 75th quantile - 25th quantile

QX.XX quantiles, which are named by quant (e.g., 0.25 = "Q0.25")

See Also

ncases_by describe

Examples

tmp_nm <- c("outcome","case","session","trt_time")
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp_nm]
stats_by <- psych::statsBy(dat, group = "case") # doesn't include everything you want
ncases_desc(data = dat, grp.nm = "case")
dat2 <- as.data.frame(ChickWeight)
ncases_desc(data = dat2, grp.nm = "Chick")
ncases_desc(data = dat2, grp.nm = "Chick", trim = .05)
ncases_desc(data = dat2, grp.nm = "Chick", ranges = FALSE)
ncases_desc(data = dat2, grp.nm = "Chick", quant = NULL)
ncases_desc(data = dat2, grp.nm = "Chick", IQR = TRUE)

ncases_ml Multilevel Number of Cases

Description

ncases_ml computes the number cases and number of groups in the data that are at least partially
observed, given a specified frequency of observed values across a set of columns. ncases_ml allows
the user to specify the frequency of columns that need to be observed in order to count the case.
Groups can be excluded if no rows in the data for a group have enough observed values to be
counted as cases. This is simply a combination of partial.cases + nrow_ml. Note, ncases_ml is
essentially a version of nrow_ml that accounts for missing data.

Usage

ncases_ml(
data,
vrb.nm = str2str::pick(names(data), val = grp.nm, not = TRUE),
grp.nm,
ov.min = 1L,

ncases_ml 137

prop = TRUE,
inclusive = TRUE

)

Arguments

data data.frame of data.

vrb.nm a character vector of colnames from data specifying the variables which will be
used to determine the partially observed cases.

grp.nm character vector of colnames from data specifying the grouping variables.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.

Value

list with two elements providing the sample sizes (accouning for missing data). The first element
is named "within" and contains the number of cases in the data. The second element is named
"between" and contains the number of groups in the data. Cases are counted if if the frequency of
observed values is greater than (or equal to, if inclusive = TRUE).

See Also

nrow_ml ncases_by partial.cases

Examples

NO MISSING DATA

one grouping variable
ncases_ml(data = as.data.frame(ChickWeight), grp.nm = "Chick")

multiple grouping variables
ncases_ml(data = mtcars, grp.nm = c("vs","am"))

YES MISSING DATA

only within
nrow_ml(data = airquality, grp.nm = "Month")
ncases_ml(data = airquality, grp.nm = "Month")

both within and between
airquality2 <- airquality
airquality2[airquality2$"Month" == 6, "Ozone"] <- NA

138 ngrp

nrow_ml(data = airquality2, grp.nm = "Month")
ncases_ml(data = airquality2, grp.nm = "Month")

ngrp Number of Groups in Data

Description

ngrp computes the number of groups in data given one or more grouping variables. This is simply
a combination of unique.data.frame + nrow.

Usage

ngrp(data, grp.nm)

Arguments

data data.frame of data.

grp.nm character vector of colnames from data specifying the grouping variables.

Value

integer vector of length 1 specifying the number of groups.

See Also

nrow_ml ncases_ml nrow_by ncases_by

Examples

one grouping variable
Orthodont2 <- as.data.frame(nlme::Orthodont)
ngrp(Orthodont2, grp.nm = "Subject")
length(unique(Orthodont2$"Subject"))

two grouping variable
co2 <- as.data.frame(CO2)
ngrp(co2, grp.nm = c("Plant"))
grp_nm <- c("Type","Treatment")
ngrp(co2, grp.nm = grp_nm)
unique.data.frame(co2[grp_nm])

#TODO: how does it handle factor levels with no cases?

nhst 139

nhst Null Hypothesis Significance Testing

Description

nhst computes the statistical information for null hypothesis significance testing (NHST), t-values,
p-values, etc., from parameter estimates, standard errors, and degrees of freedom. If degrees of
freedom are not applicable or available, then df can be set to Inf (the default) and z-values rather
than t-values will be computed.

Usage

nhst(est, se, df = Inf, ci.level = 0.95, p.value = "two.sided")

Arguments

est numeric vector of parameter estimates.

se numeric vector of standard errors. Must be the same length as est.

df numeric vector of degrees of freedom. Must be length of 1 or have same length
as est and se. If degrees of freedom are not applicable or available, then df can
be set to Inf (the default) and z-values rather than t-values will be computed.
Note, df can be non-integers with decimals.

ci.level double vector of length 1 specifying the confidence level. Must be between 0
and 1 - or can be NULL in which case no confidence intervals are computed and
the return object does not have the columns "lwr" or "upr".

p.value character vector of length 1 specifying the type of p-values to compute. The op-
tions are 1) "two.sided" which computed non-directional, two-tailed p-values, 2)
"less", which computes negative-directional, one-tailed p-values, or 3) "greater",
which computes positive-directional, one-tailed p-values.

Value

data.frame with nrow equal to the lengths of est and se. The rownames are taken from est, unless
est does not have any names and then the rownames are taken from the names of se. If neither
have names, then the rownames are automatic (i.e., 1:nrow()). The columns are the following:

est parameter estimates

se standard errors

t t-values (z-values if df = Inf)

df degrees of freedom

p p-values

lwr lower bound of the confidence intervals (excluded if ci.level = NULL)

upr upper bound of the confidence intervals (excluded if ci.level = NULL)

140 nom2dum

See Also

confint2.default

Examples

est <- colMeans(attitude)
se <- apply(X = str2str::d2m(attitude), MARGIN = 2, FUN = function(vec)

sqrt(var(vec) / length(vec)))
df <- nrow(attitude) - 1
nhst(est = est, se = se, df = df)
nhst(est = est, se = se) # default is df = Inf resulting in z-values
nhst(est = est, se = se, df = df, ci.level = NULL) # no "lwr" or "upr" columns
nhst(est = est, se = se, df = df, ci.level = 0.99)

nom2dum Nominal Variable to Dummy Variables

Description

nom2dum converts a nominal variable into a set of dummy variables. There is one dummy variable
for each unique value in the nominal variable. Note, base R does this recoding internally through
the model.matrix.default function, but it is used in the context of regression-like models and it
is not clear how to simplify it for general use cases outside that context.

Usage

nom2dum(nom, yes = 1L, no = 0L, prefix = "", rtn.fct = FALSE)

Arguments

nom character vector (or any atomic vector, including factors, which will be then
coerced to a character vector) specifying the nominal variable.

yes atomic vector of length 1 specifying what unique value should represent rows
when the nominal category of interest is present. For a traditional dummy vari-
able this value would be 1.

no atomic vector of length 1 specifying what unique value should represent rows
when the nominal category of interest is absent. For a traditional dummy vari-
able this value would be 0.

prefix character vector of length 1 specifying the string that should be appended to the
beginning of each colname in the return object.

rtn.fct logical vector of length 1 specifying whether the columns of the return object
should be factors where the first level is no and the second level is yes.

nrow_by 141

Details

Note, that yes and no are assumed to be the same typeof. If they are not, then the columns in
the return object will be coerced to the most complex typeof (i.e., most to least: character, double,
integer, logical).

Value

data.frame of dummy columns with colnames specified by paste0(prefix, unique(nom)) and
rownames specified by names(nom) or default data.frame rownames (i.e., c("1","2","3", etc.) if
names(nom) is NULL.

See Also

model.matrix.default dum2nom

Examples

nom2dum(infert$"education") # default
nom2dum(infert$"education", prefix = "edu_") # use of the `prefix` argument
nom2dum(nom = infert$"education", yes = "one", no = "zero",

rtn.fct = TRUE) # returns factor columns

nrow_by Number of Rows in Data by Group

Description

nrow_by computes the nrow of a data.frame by group. nrow_by is simply a wrapper for nrow +
agg_dfm.

Usage

nrow_by(data, grp.nm, sep = ".")

Arguments

data data.frame of data.

grp.nm character vector of colnames from data specifying the grouping variables.

sep character vector of length 1 specifying what string to use to separate the groups
when naming the return object. sep is only used if grp.nm has length > 1 (aka
multiple grouping variables)

Value

atomic vector with names = unique(interaction(data[grp.nm], sep = sep)) and length = length(unique(interaction(data[grp.nm],
sep = sep))) providing the nrow for each group.

142 nrow_ml

See Also

ncases_by nrow agg_dfm

Examples

one grouping variables
tmp_nm <- c("outcome","case","session","trt_time")
dat <- as.data.frame(lmeInfo::Bryant2016)[tmp_nm]
stats_by <- psych::statsBy(dat,

group = "case") # requires you to include "case" column in dat
nrow_by(data = dat, grp.nm = "case")
dat2 <- as.data.frame(ChickWeight)
nrow_by(data = dat2, grp.nm = "Chick")

two grouping variables
tmp <- reshape(psych::bfi[1:10,], varying = 1:25, timevar = "item",

ids = row.names(psych::bfi)[1:10], direction = "long", sep = "")
tmp_nm <- c("id","item","N","E","C","A","O") # Roxygen runs the whole script
dat3 <- str2str::stack2(tmp[tmp_nm], select.nm = c("N","E","C","A","O"),

keep.nm = c("id","item"))
nrow_by(dat3, grp.nm = c("id","vrb_names"))

nrow_ml Multilevel Number of Rows

Description

nrow_ml computes the number rows in the data as well as the number of groups in the data. This
corresponds to the within-group sample size and between-group sample size (ignoring any missing
data). This is simply a combination of nrow + ngrp.

Usage

nrow_ml(data, grp.nm)

Arguments

data data.frame of data.

grp.nm character vector of colnames from data specifying the grouping variables.

Value

list with two elements providing the sample sizes (ignoring missing data). The first element is
named "within" and contains the number of rows in the data. The second element is named "be-
tween" and contains the number of groups in the data.

n_compare 143

See Also

ncases_ml nrow_by ncases_by ngrp

Examples

one grouping variable
nrow_ml(data = as.data.frame(ChickWeight), grp.nm = "Chick")

multiple grouping variables
nrow_ml(data = mtcars, grp.nm = c("vs","am"))

n_compare Test for Equal Frequency of Values (chi-square test of goodness of fit)

Description

n_compare tests whether all the values for a variable have equal frequency with a chi-square test
of goodness of fit. n_compare does not currently allow for user-specified unequal frequencies
of values; this is possible with chisq.test. The function also calculates the counts and overall
percentages for the value frequencies. prop_test is simply a wrapper for chisq.test plus some
extra calculations.

Usage

n_compare(x, simulate.p.value = FALSE, B = 2000)

Arguments

x atomic vector. Probably makes sense to contain relatively few unique values.
simulate.p.value

logial vector of length 1 specifying whether the p-value should be based on a
Monte Carlo simulation rather than the classic formula. See chisq.test for
details.

B integer vector of length 1 specifying how much Monte Carlo simulations run.
Only used if simulate.p.value = TRUE. See chisq.test for details.

Value

list of numeric vectors containing statistical information about the frequency comparison: 1) nhst =
chi-square test of goodness of fit stat info in a numeric vector, 2) count = numeric vector of length
3 with table of counts, 3) percent = numeric vector of length 3 with table of overall percentages

1) nhst = chi-square test of goodness of fit stat info in a numeric vector

diff_avg average difference in subsample sizes (i.e., |ni - nj|)

se NA (to remind the user there is no standard error for the test)

144 partial.cases

X2 chi-square value

df degrees of freedom (# of unique values = 1)

p two-sided p-value

2) count = numeric vector of length 3 with table of counts with an additional element for the total.
The names are 1. "n_‘lvl[k]‘", 2. "n_‘lvl[j]‘", 3. "n_‘lvl[i]‘", ..., X = "total"

3) percent = numeric vector of length 3 with table of overall percentages with an additional element
for the total. The names are 1. "n_‘lvl[k]‘", 2. "n_‘lvl[j]‘", 3. "n_‘lvl[i]‘", ..., X = "total"

See Also

chisq.test the workhorse for n_compare, props_test for multiple dummy variables, prop_diff
for chi-square test of independence,

Examples

n_compare(mtcars$"cyl")
n_compare(mtcars$"gear")
n_compare(mtcars$"cyl", simulate.p.value = TRUE)

compare to chisq.test()
n_compare(mtcars$"cyl")
chisq.test(table(mtcars$"cyl"))

partial.cases Find Partial Cases

Description

partial.cases indicates which cases are at least partially observed, given a specified frequency
of observed values across a set of columns. This function builds off complete.cases. While
complete.cases requires completely observed cases, partial.cases allows the user to specify
the frequency of columns required to be observed. The default arguments are equal to complete.cases.

Usage

partial.cases(data, vrb.nm, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

data data.frame or matrix of data.

vrb.nm a character vector of colnames from data specifying the variables which will be
used to determine the partially observed cases.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

pomp 145

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the case should be included if the
frequency of observed values in a row is exactly equal to ov.min.

Value

logical vector of length = nrow(data) with names = rownames(data) specifying if the frequency
of observed values is greater than (or equal to, if inclusive = TRUE) ov.min.

See Also

complete.cases rowNA ncases

Examples

cases2keep <- partial.cases(data = airquality,
vrb.nm = c("Ozone","Solar.R","Wind"), ov.min = .66)

airquality2 <- airquality[cases2keep,] # all cases with 2/3 variables observed
cases2keep <- partial.cases(data = airquality,

vrb.nm = c("Ozone","Solar.R","Wind"), ov.min = 1, prop = TRUE, inclusive = TRUE)
complete_cases <- complete.cases(airquality)
identical(x = unname(cases2keep),

y = complete_cases) # partial.cases(ov.min = 1, prop = TRUE,
inclusive = TRUE) = complete.cases()

pomp Recode a Numeric Vector to Percentage of Maximum Possible (POMP)
Units

Description

pomp recodes a numeric vector to percentage of maximum possible (POMP) units. This can be
useful when data is measured with arbitrary units (e.g., Likert scale).

Usage

pomp(x, mini, maxi, relative = FALSE, unit = 1)

Arguments

x numeric vector.

mini numeric vector of length 1 specifying the minimum numeric value possible.

maxi numeric vector of length 1 specifying the maximum numeric value possible.

relative logical vector of length 1 specifying whether relative POMP scores (rather than
absolute POMP scores) should be created. If TRUE, then the mini and maxi
arguments are ignored. See details for the distinction between absolute and
relative POMP scores.

146 pomps

unit numeric vector of length 1 specifying how many percentage points is desired
for the units. Traditionally, POMP scores use unit = 1 (default) such that one
unit is one percentage point. However, another option is to use unit = 100
such that one unit is all 100 percentage points (i.e., proportion of maximum
possible). This argument also gives the flexibility of specifying units in between
1 and 100 percentage points. For example, unit = 50 would mean that one unit
represents going from low (i.e., 25th percentile) to high (i.e., 75th percentile) on
the variable.

Details

There are too common approaches to POMP scores: 1) absolute POMP units where the minimum
and maximum are the smallest/largest values possible from the measurement instrument (e.g., 1 to
7 on a Likert scale) and 2) relative POMP units where the minimum and maximum are the small-
est/largest values observed in the data (e.g., 1.3 to 6.8 on a Likert scale). Both will be correlated
perfectly with the original units as they are each linear transformations.

Value

numeric vector from recoding x to percentage of maximum possible (pomp) with units specified by
unit.

See Also

pomps

Examples

vec <- psych::bfi[[1]]
pomp(x = vec, mini = 1, maxi = 6) # absolute POMP units
pomp(x = vec, relative = TRUE) # relative POMP units
pomp(x = vec, mini = 1, maxi = 6, unit = 100) # unit = 100
pomp(x = vec, mini = 1, maxi = 6, unit = 50) # unit = 50

pomps Recode Numeric Data to Percentage of Maximum Possible (POMP)
Units

Description

pomps recodes numeric data to percentage of maximum possible (POMP) units. This can be useful
when data is measured with arbitrary units (e.g., Likert scale).

pomps 147

Usage

pomps(
data,
vrb.nm,
mini,
maxi,
relative = FALSE,
unit = 1,
suffix = paste0("_p", unit)

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

mini numeric vector of length 1 specifying the minimum numeric value possible.
Note, this is assumed to be the same for each variable.

maxi numeric vector of length 1 specifying the maximum numeric value possible.
Note, this is assumed to be the same for each variable.

relative logical vector of length 1 specifying whether relative POMP scores (rather than
absolute POMP scores) should be created. If TRUE, then the mini and maxi
arguments are ignored. See details for the distinction between absolute and
relative POMP scores.

unit numeric vector of length 1 specifying how many percentage points is desired
for the units. Traditionally, POMP scores use unit = 1 (default) such that one
unit is one percentage point. However, another option is to use unit = 100
such that one unit is all 100 percentage points (i.e., proportion of maximum
possible). This argument also gives the flexibility of specifying units in between
1 and 100 percentage points. For example, unit = 50 would mean that one unit
represents going from low (i.e., 25th percentile) to high (i.e., 75th percentile) on
the variable.

suffix character vector of length 1 specifying the string to add to the end of the column
names in the return object.

Details

There are too common approaches to POMP scores: 1) absolute POMP units where the minimum
and maximum are the smallest/largest values possible from the measurement instrument (e.g., 1 to
7 on a Likert scale) and 2) relative POMP units where the minimum and maximum are the small-
est/largest values observed in the data (e.g., 1.3 to 6.8 on a Likert scale). Both will be correlated
perfectly with the original units as they are each linear transformations.

Value

data.frame of variables recoded to percentage of maximum possible (pomp) with units specified by
unit and names specified by paste0(vrb.nm, suffix).

148 props_compare

See Also

pomp

Examples

vrb_nm <- names(psych::bfi)[grepl(pattern = "A", x = names(psych::bfi))]
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6) # absolute POMP units
pomps(data = psych::bfi, vrb.nm = vrb_nm, relative = TRUE) # relative POMP units
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6, unit = 100) # unit = 100
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6, unit = 50) # unit = 50
pomps(data = psych::bfi, vrb.nm = vrb_nm, min = 1, max = 6, suffix = "_pomp")

props_compare Proportion Comparisons for Multiple Variables across 3+ Indepen-
dent Groups (Chi-square Tests of Independence)

Description

prop_compare tests for proportion differences across 3+ independent groups with chi-square tests
of independence. The function also calculates the descriptive statistics for each group, Cramer’s V
and its confidence interval as a standardized effect size, and can provide the X by 2 contingency
tables. prop_compare is simply a wrapper for prop.test plus some extra calculations.

Usage

props_compare(
data,
vrb.nm,
nom.nm,
lvl = levels(as.factor(data[[nom.nm]])),
yates = TRUE,
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the dummy variables, in
other words, variables that only have values of 0 or 1 (or missing values).

nom.nm character vector of length 1 specifying the colname in data containing a nominal
variable that takes on three or more unordered values (or missing values).

lvl character vector with length 3+ specifying the unique values for the 3+ indepen-
dent groups. If nom is a factor, then lvl should be the factor levels rather than
the underlying integer codes. This argument allows you to specify order of the
proportions in the return object.

props_compare 149

yates logical vector of length 1 specifying whether the Yate’s continuity correction
should be applied for small samples. See chisq.test for details.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of lengh 1 specifying whether the return object should include the
X by 2 contingency table of counts with totals for each dummy variable and the
X by 2 overall percentages table with totals for each dummy variable. If TRUE,
then the last two elements of the return object are "count" containing an array of
counts and "percent" containing an array of overall percentages.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if lvl has values that are not present in
data[[nom.nm]]. This is a tradeoff between computational efficiency (FALSE)
and more useful error messages (TRUE).

Details

The confidence interval for Cramer’s V is calculated with fisher’s r to z transformation as Cramer’s
V is a kind of multiple correlation coefficient. Cramer’s V is transformed to fisher’s z units, a
symmetric confidence interval for fisher’s z is calculated, and then the lower and upper bounds are
back-transformed to Cramer’s V units.

Value

list of data.frames containing statistical information about the proportion comparisons: 1) nhst =
chi-square test of independence stat info in a data.frame, 2) desc = descriptive statistics stat info in
a data.frame (note there could be more than 3 groups - groups i, j, and k are just provided as an
example), 3) std = standardized effect size and its confidence interval in a data.frame, 4) count =
numeric array with dim = [X+1, 3, length(vrb.nm)] of the X by 2 contingency table of counts
for each dummy variable with an additional row and column for totals (if rtn.table = TRUE), 5)
percent = numeric array with dim = [X+1, 3, length(vrb.nm)] of the X by 2 contingency table
of overall percentages for each dummy variable with an additional row and column for totals (if
rtn.table = TRUE).

1) nhst = chi-square test of independence stat info in a data.frame

est average proportion difference absolute value (i.e., |group j - group i|)

se NA (to remind the user there is no standard error for the test)

X2 chi-square value

df degrees of freedom (of the nominal variable)

p two-sided p-value

2) desc = descriptive statistics stat info in a data.frame (note there could be more than 3 groups -
groups i, j, and k are just provided as an example):

prop_‘lvl[k ‘] proportion of group k

prop_‘lvl[j ‘] proportion of group j

prop_‘lvl[i ‘] proportion of group i

150 props_compare

sd_‘lvl[k ‘] standard deviation of group k

sd_‘lvl[j ‘] standard deviation of group j

sd_‘lvl[i ‘] standard deviation of group i

n_‘lvl[k ‘] sample size of group k

n_‘lvl[j ‘] sample size of group j

n_‘lvl[i ‘] sample size of group i

3) std = standardized effect size and its confidence interval in a data.frame

cramer Cramer’s V estimate

lwr lower bound of Cramer’s V confidence interval

upr upper bound of Cramer’s V confidence interval

4) count = numeric array with dim = [X+1, 3, length(vrb.nm)] of the X by 2 contingency table
of counts for each dummy variable with an additional row and column for totals (if rtn.table =
TRUE).

The 3+ unique observed values of data[[nom.nm]] - plus the total - are the rows and the two unique
observed values of data[[vrb.nm]] (i.e., 0 and 1) - plus the total - are the columns. The variables
in data[vrb.nm] are the layers. The dimlabels are "nom" for the rows and "x" for the columns and
"vrb" for the layers. The rownames are 1. ‘lvl[i]‘, 2. ‘lvl[j]‘, 3. ‘lvl[k]‘, 4. "total". The colnames
are 1. "0", 2. "1", 3. "total". The laynames are vrb.nm.

5) percent = numeric array with dim = [X+1, 3, length(vrb.nm)] of the X by 2 contingency table
of overall percentages for each dummy variable with an additional row and column for totals (if
rtn.table = TRUE).

The 3+ unique observed values of data[[nom.nm]] - plus the total - are the rows and the two unique
observed values of data[[vrb.nm]] (i.e., 0 and 1) - plus the total - are the columns. The variables
in data[vrb.nm] are the layers. The dimlabels are "nom" for the rows, "x" for the columns, and
"vrb" for the layers. The rownames are 1. ‘lvl[i]‘, 2. ‘lvl[j]‘, 3. ‘lvl[k]‘, 4. "total". The colnames
are 1. "0", 2. "1", 3. "total". The laynames are vrb.nm.

See Also

prop.test the workhorse for prop_compare, prop_compare for a single dummy variable, props_diff
for only 2 independent groups (aka binary variable),

Examples

rtn.table = TRUE (default)

multiple variables
tmp <- replicate(n = 10, expr = mtcars, simplify = FALSE)
mtcars2 <- str2str::ld2d(tmp)
mtcars2$"gear_dum" <- ifelse(mtcars2$"gear" > 3, yes = 1L, no = 0L)
mtcars2$"carb_dum" <- ifelse(mtcars2$"carb" > 3, yes = 1L, no = 0L)
vrb_nm <- c("am","gear_dum","carb_dum") # dummy variables
lapply(X = vrb_nm, FUN = function(nm) {

props_diff 151

tmp <- c("cyl", nm)
table(mtcars2[tmp])

})
props_compare(data = mtcars2, vrb.nm = c("am","gear_dum","carb_dum"), nom.nm = "cyl")

single variable
props_compare(mtcars2, vrb.nm = "am", nom.nm = "cyl")

rtn.table = FALSE (no "count" or "percent" list elements)

multiple variables
props_compare(data = mtcars2, vrb.nm = c("am","gear_dum","carb_dum"), nom.nm = "cyl",

rtn.table = FALSE)

single variable
props_compare(mtcars2, vrb.nm = "am", nom.nm = "cyl",

rtn.table = FALSE)

more than 3 groups
airquality2 <- airquality
airquality2$"Wind_dum" <- ifelse(airquality$"Wind" >= 10, yes = 1, no = 0)
airquality2$"Solar.R_dum" <- ifelse(airquality$"Solar.R" >= 100, yes = 1, no = 0)
props_compare(airquality2, vrb.nm = c("Wind_dum","Solar.R_dum"), nom.nm = "Month")
props_compare(airquality2, vrb.nm = "Wind_dum", nom.nm = "Month")

props_diff Proportion Difference of Multiple Variables Across Two Independent
Groups (Chi-square Tests of Independence)

Description

props_diff tests the proportion difference of multiple variables across two independent groups
with chi-square tests of independence. The function also calculates the descriptive statistics for each
group, various standardized effect sizes (e.g., Cramer’s V), and can provide the 2x2 contingency
tables. props_diff is simply a wrapper for prop.test plus some extra calculations.

Usage

props_diff(
data,
vrb.nm,
bin.nm,
lvl = levels(as.factor(data[[bin.nm]])),
yates = TRUE,
zero.cell = 0.05,
smooth = TRUE,
ci.level = 0.95,
rtn.table = TRUE,

152 props_diff

check = TRUE
)

Arguments

data data.frame of data.

vrb.nm character vector specifying the colnames in data for the variables. Since we are
testing proportions, the variables must be dummy codes such that they only have
values of 0 or 1 (or missing values).

bin.nm character vector of length 1 specifying the colname in data for the binary vari-
able that only takes on two values (or missing values), specifying the two inde-
pendent groups.

lvl character vector with length 2 specifying the unique values for the two groups.
If bin is a factor, then lvl should be the factor levels rather than the underlying
integer codes. This argument allows you to specify the direction of the prop
difference. prop_diff calculates the prop differences as x[bin == lvl[2]] -
x[bin == lvl[1]] such that it is group 2 - group 1. By changing which group
is group 1 vs. group 2, the direction of the prop differences can be changed. See
details of prop_diff.

yates logical vector of length 1 specifying whether the Yate’s continuity correction
should be applied for small samples. See chisq.test for details.

zero.cell numeric vector of length 1 specifying what value to impute for zero cell counts
in the 2x2 contingency table when computing the tetrachoric correlations. See
tetrachoric for details.

smooth logical vector of length 1 specifying whether a smoothing algorithm should be
applied when estimating the tetrachoric correlations. See tetrachoric for de-
tails.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of lengh 1 specifying whether the return object should include
the 2x2 contingency table of counts with totals and the 2x2 overall percent-
ages table. If TRUE, then the last two elements of the return object are "count"
containing a 3D array of counts and "percent" containing a 3D array of overall
percentages.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if data[[bin.nm]] has more than 2 unique
values (other than missing values). This is a tradeoff between computational
efficiency (FALSE) and more useful error messages (TRUE).

Value

list of data.frames containing statistical information about the prop differences (the rownames
of each data.frame are vrb.nm): 1) chisqtest = chi-square tests of independence stat info in a
data.frame, 2) describes = descriptive statistics stat info in a data.frame, 3) effects = various stan-
dardized effect sizes in a data.frame, 4) count = numeric 3D array with dim = [3, 3, length(vrb.nm)]
of the 2x2 contingency tables of counts with additional rows and columns for totals (if rtn.table

props_diff 153

= TRUE), 5) percent = numeric 3D array with dim = [3, 3, length(vrb.nm)] of the 2x2 contin-
gency tables of overall percentages with additional rows and columns for totals (if rtn.table =
TRUE).

1) chisqtest = chi-square tests of independence stat info in a data.frame

est mean difference estimate (i.e., group 2 - group 1)
se NA (to remind the user there is no standard error for the test)
X2 chi-square value
df degrees of freedom (will always be 1)
p two-sided p-value
lwr lower bound of the confidence interval
upr upper bound of the confidence interval

2) describes = descriptive statistics stat info in a data.frame

prop_‘lvl[2 ‘] proportion of group 2
prop_‘lvl[1 ‘] proportion of group 1
sd_‘lvl[2 ‘] standard deviation of group 2
sd_‘lvl[1 ‘] standard deviation of group 1
n_‘lvl[2 ‘] sample size of group 2
n_‘lvl[1 ‘] sample size of group 1

3) effects = various standardized effect sizes in a data.frame

cramer Cramer’s V estimate
h Cohen’s h estimate
phi Phi coefficient estimate
yule Yule coefficient estimate
tetra Tetrachoric correlation estimate
OR odds ratio estimate
RR risk ratio estimate calculated as (i.e., group 2 / group 1). Note this value will often differ when

recoding variables (as it should).

4) count = numeric 3D array with dim = [3, 3, length(vrb.nm)] of the 2x2 contingency tables
of counts with additional rows and columns for totals (if rtn.table = TRUE).

The two unique observed values of data[vrb.nm] (i.e., 0 and 1) - plus the total - are the rows and
the two unique observed values of data[[bin.nm]] - plus the total - are the columns. The variables
themselves as the layers (i.e., 3rd dimension of the array). The dimlabels are "bin" for the rows, "x"
for the columns, and "vrb" for the layers. The rownames are 1. "0", 2. "1", 3. "total". The colnames
are 1. ‘lvl[1]‘, 2. ‘lvl[2]‘, 3. "total". The laynames are vrb.nm.

5) percent = numeric 3D array with dim = [3, 3, length(vrb.nm)] of the 2x2 contingency tables
of overall percentages with additional rows and columns for totals (if rtn.table = TRUE).

The two unique observed values of data[vrb.nm] (i.e., 0 and 1) - plus the total - are the rows and
the two unique observed values of data[[bin]] - plus the total - are the columns. The variables
themselves as the layers (i.e., 3rd dimension of the array). The dimlabels are "bin" for the rows, "x"
for the columns, and "vrb" for the layers. The rownames are 1. "0", 2. "1", 3. "total". The colnames
are 1. ‘lvl[1]‘, 2. ‘lvl[2]‘, 3. "total". The laynames are vrb.nm.

154 props_test

See Also

prop.test the workhorse for props_diff, prop_diff for a single dummy variable, phi for an-
other phi coefficient function Yule for another yule coefficient function tetrachoric for another
tetrachoric coefficient function

Examples

rtn.table = TRUE (default)

multiple variables
mtcars2 <- mtcars
mtcars2$"vs_bin" <- ifelse(mtcars$"vs" == 1, yes = "yes", no = "no")
mtcars2$"gear_dum" <- ifelse(mtcars2$"gear" > 3, yes = 1L, no = 0L)
mtcars2$"carb_dum" <- ifelse(mtcars2$"carb" > 3, yes = 1L, no = 0L)
vrb_nm <- c("am","gear_dum","carb_dum") # dummy variables
lapply(X = vrb_nm, FUN = function(nm) {

tmp <- c("vs_bin", nm)
table(mtcars2[tmp])

})
props_diff(data = mtcars2, vrb.nm = c("am","gear_dum","carb_dum"), bin.nm = "vs_bin")

single variable
props_diff(mtcars2, vrb.nm = "am", bin.nm = "vs_bin")

rtn.table = FALSE (no "count" or "percent" list elements)

multiple variables
props_diff(data = mtcars2, vrb.nm = c("am","gear_dum","carb_dum"), bin.nm = "vs",

rtn.table = FALSE)

single variable
props_diff(mtcars, vrb.nm = "am", bin.nm = "vs",

rtn.table = FALSE)

props_test Test for Multiple Sample Proportion Against Pi (Chi-square Tests of
Goodness of Fit)

Description

props_test tests for multiple sample proportion difference from population proportions with chi-
square tests of goodness of fit. The default is that the goodness of fit is consistent with a population
proportion Pi of 0.50. The function also calculates the descriptive statistics, various standardized
effect sizes (e.g., Cramer’s V), and can provide the 1x2 contingency tables. props_test is simply
a wrapper for prop.test plus some extra calculations.

props_test 155

Usage

props_test(
data,
dum.nm,
pi = 0.5,
yates = TRUE,
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

data data.frame of data.

dum.nm character vector of length 1 specifying the colnames in data of the variables
used to calculate the proportions. The variables must only have values of 0 or 1
(or missing values), or be otherwise known as dummy variables. See is.dummy.

pi numeric vector of length = length(dum.nm) or length 1 specifying the popula-
tion proportion values to compare the sample proportions against. The order of
the values should be the same as the order in dum.nm. When length 1, the same
population proportion value is used for all the variables.

yates logical vector of length 1 specifying whether the Yate’s continuity correction
should be applied for small samples. See chisq.test for details.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of lengh 1 specifying whether the return object should include the
rbinded 1x2 contingency table of counts with totals and the rbinded 1x2 overall
percentages table. If TRUE, then the last two elements of the return object are
"count" containing a data.frame of counts and "percent" containing a data.frame
of overall percentages.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if data[dum.nm] are all dummy variables that
only take on values of 0 or 1 (or missing values). This is a tradeoff between
computational efficiency (FALSE) and more useful error messages (TRUE).

Value

list of data.frames containing statistical information about the proportion differences from pi: 1)
nhst = chi-square test of goodness of fit stat info in a data.frame, 2) desc = descriptive statistics stat
info in a data.frame, 3) std = various standardized effect sizes in a data.frame, 4) count = data.frame
containing the rbinded 1x2 tables of counts with an additional column for the total (if rtn.table
= TRUE), 5) percent = data.frame containing the rbinded 1x2 tables of overall percentages with an
additional column for the total (if rtn.table = TRUE)

1) nhst = chi-square test of goodness of fit stat info in a data.frame

est proportion difference estimate (i.e., sample proportion - pi)

156 props_test

se NA (to remind the user there is no standard error for the test)

X2 chi-square value

df degrees of freedom (will always be 1)

p two-sided p-value

2) desc = descriptive statistics stat info in a data.frame

prop sample proportion

pi popularion proportion provided by the user (or 0.50 by default)

sd standard deviation

n sample size

lwr lower bound of the confidence interval of the sample proportion itself

upr upper bound of the confidence interval of the sample proportion itself

3) std = various standardized effect sizes in a data.frame

cramer Cramer’s V estimate

h Cohen’s h estimate

4) count = data.frame containing the rbinded 1x2 tables of counts with an additional column for the
total (if rtn.table = TRUE). The colnames are 1. "0", 2. "1", 3. "total"

5) percent = data.frame containing the rbinded 1x2 tables of overall percentages with an additional
column for the total (if rtn.table = TRUE). The colnames are 1. "0", 2. "1", 3. "total"

See Also

prop.test the workhorse for prop_test, prop_test for a single dummy variables, props_diff
for chi-square tests of independence,

Examples

multiple variables
mtcars2 <- mtcars
mtcars2$"gear_dum" <- ifelse(mtcars2$"gear" > 3, yes = 1L, no = 0L)
mtcars2$"carb_dum" <- ifelse(mtcars2$"carb" > 3, yes = 1L, no = 0L)
vrb_nm <- c("am","gear_dum","carb_dum") # dummy variables
lapply(X = vrb_nm, FUN = function(nm) {

table(mtcars2[nm])
})
props_test(data = mtcars2, dum.nm = c("am","gear_dum","carb_dum"))
props_test(data = mtcars2, dum.nm = c("am","gear_dum","carb_dum"),

rtn.table = FALSE)

single variable
props_test(data = mtcars2, dum.nm = "am")
props_test(data = mtcars2, dum.nm = "am", rtn.table = FALSE)

prop_compare 157

error from non-dummy variables
Not run:
props_test(data = mtcars2, dum.nm = c("am","gear","carb"))

End(Not run)

prop_compare Proportion Comparisons for a Single Variable across 3+ Independent
Groups (Chi-square Test of Independence)

Description

prop_compare tests for proportion differences across 3+ independent groups with a chi-square test
of independence. The function also calculates the descriptive statistics for each group, Cramer’s V
and its confidence interval as a standardized effect size, and can provide the X by 2 contingency
tables. prop_compare is simply a wrapper for prop.test plus some extra calculations.

Usage

prop_compare(
x,
nom,
lvl = levels(as.factor(nom)),
yates = TRUE,
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

x numeric vector that only has values of 0 or 1 (or missing values), otherwise
known as a dummy variable.

nom atomic vector that takes on three or more unordered values (or missing values),
otherwise known as a nominal variable.

lvl character vector with length 2 specifying the unique values for the two groups.
If nom is a factor, then lvl should be the factor levels rather than the underlying
integer codes. This argument allows you to specify order of the proportions in
the return object.

yates logical vector of length 1 specifying whether the Yate’s continuity correction
should be applied for small samples. See chisq.test for details.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

158 prop_compare

rtn.table logical vector of lengh 1 specifying whether the return object should include the
X by 2 contingency table of counts with totals and the X by 2 overall percent-
ages table. If TRUE, then the last two elements of the return object are "count"
containing a matrix of counts and "percent" containing a matrix of overall per-
centages.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if nom has length different than the length of x.
This is a tradeoff between computational efficiency (FALSE) and more useful
error messages (TRUE).

Details

The confidence interval for Cramer’s V is calculated with fisher’s r to z transformation as Cramer’s
V is a kind of multiple correlation coefficient. Cramer’s V is transformed to fisher’s z units, a
symmetric confidence interval for fisher’s z is calculated, and then the lower and upper bounds are
back-transformed to Cramer’s V units.

Value

list of numeric vectors containing statistical information about the proportion comparisons: 1) nhst
= chi-square test of independence stat info in a numeric vector, 2) desc = descriptive statistics stat
info in a numeric vector, 3) std = standardized effect size and its confidence interval in a numeric
vector, 4) count = numeric matrix with dim = [X+1, 3] of the X by 2 contingency table of counts
with an additional row and column for totals (if rtn.table = TRUE), 5) percent = numeric matrix
with dim = [X+1, 3] of the X by 2 contingency table of overall percentages with an additional row
and column for totals (if rtn.table = TRUE).

1) nhst = chi-square test of independence stat info in a numeric vector

est average proportion difference absolute value (i.e., |group j - group i|)

se NA (to remind the user there is no standard error for the test)

X2 chi-square value

df degrees of freedom (of the nominal variable)

p two-sided p-value

2) desc = descriptive statistics stat info in a numeric vector (note there could be more than 3 groups
- groups i, j, and k are just provided as an example):

prop_‘lvl[k ‘] proportion of group k

prop_‘lvl[j ‘] proportion of group j

prop_‘lvl[i ‘] proportion of group i

sd_‘lvl[k ‘] standard deviation of group k

sd_‘lvl[j ‘] standard deviation of group j

sd_‘lvl[i ‘] standard deviation of group i

n_‘lvl[k ‘] sample size of group k

n_‘lvl[j ‘] sample size of group j

prop_compare 159

n_‘lvl[i ‘] sample size of group i

3) std = standardized effect size and its confidence interval in a numeric vector

cramer Cramer’s V estimate

lwr lower bound of Cramer’s V confidence interval

upr upper bound of Cramer’s V confidence interval

4) count = numeric matrix with dim = [X+1, 3] of the X by 2 contingency table of counts with an
additional row and column for totals (if rtn.table = TRUE).

The 3+ unique observed values of nom - plus the total - are the rows and the two unique observed
values of x (i.e., 0 and 1) - plus the total - are the columns. The dimlabels are "nom" for the rows and
"x" for the columns. The rownames are 1. ‘lvl[i]‘, 2. ‘lvl[j]‘, 3. ‘lvl[k]‘, 4. "total". The colnames
are 1. "0", 2. "1", 3. "total".

5) percent = numeric matrix with dim = [X+1, 3] of the X by 2 contingency table of overall per-
centages with an additional row and column for totals (if rtn.table = TRUE).

The 3+ unique observed values of nom - plus the total - are the rows and the two unique observed
values of x (i.e., 0 and 1) - plus the total - are the columns. The dimlabels are "nom" for the rows and
"x" for the columns. The rownames are 1. ‘lvl[i]‘, 2. ‘lvl[j]‘, 3. ‘lvl[k]‘, 4. "total". The rownames
are 1. "0", 2. "1", 3. "total".

See Also

prop.test the workhorse for prop_compare, props_compare for multiple dummy variables, prop_diff
for only 2 independent groups (aka binary variable),

Examples

tmp <- replicate(n = 10, expr = mtcars, simplify = FALSE)
mtcars2 <- str2str::ld2d(tmp)
mtcars2$"cyl_fct" <- car::recode(mtcars2$"cyl",

recodes = "4='four'; 6='six'; 8='eight'", as.factor = TRUE)
prop_compare(x = mtcars2$"am", nom = mtcars2$"cyl_fct")
prop_compare(x = mtcars2$"am", nom = mtcars2$"cyl_fct",

lvl = c("four","six","eight")) # specify order of levels in return object

more than 3 groups
prop_compare(x = ifelse(airquality$"Wind" >= 10, yes = 1, no = 0), nom = airquality$"Month")
prop_compare(x = ifelse(airquality$"Wind" >= 10, yes = 1, no = 0), nom = airquality$"Month",

rtn.table = FALSE) # no contingency tables

160 prop_diff

prop_diff Proportion Difference for a Single Variable across Two Independent
Groups (Chi-square Test of Independence)

Description

prop_diff tests for proportion differences across two independent groups with a chi-square test
of independence. The function also calculates the descriptive statistics for each group, various
standardized effect sizes (e.g., Cramer’s V), and can provide the 2x2 contingency tables. prop_diff
is simply a wrapper for prop.test plus some extra calculations.

Usage

prop_diff(
x,
bin,
lvl = levels(as.factor(bin)),
yates = TRUE,
zero.cell = 0.05,
smooth = TRUE,
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

x numeric vector that only has values of 0 or 1 (or missing values), otherwise
known as a dummy variable.

bin atomic vector that only takes on two values (or missing values), otherwise known
as a binary variable.

lvl character vector with length 2 specifying the unique values for the two groups.
If bin is a factor, then lvl should be the factor levels rather than the underlying
integer codes. This argument allows you to specify the direction of the prop
difference. prop_diff calculates the prop difference as x[bin == lvl[2]] -
x[bin == lvl[1]] such that it is group 2 - group 1. By changing which group
is group 1 vs. group 2, the direction of the prop difference can be changed. See
details.

yates logical vector of length 1 specifying whether the Yate’s continuity correction
should be applied for small samples. See chisq.test for details.

zero.cell numeric vector of length 1 specifying what value to impute for zero cell counts
in the 2x2 contingency table when computing the tetrachoric correlation. See
tetrachoric for details.

smooth logical vector of length 1 specifying whether a smoothing algorithm should be
applied when estimating the tetrachoric correlation. See tetrachoric for de-
tails.

prop_diff 161

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of lengh 1 specifying whether the return object should include
the 2x2 contingency table of counts with totals and the 2x2 overall percent-
ages table. If TRUE, then the last two elements of the return object are "count"
containing a matrix of counts and "percent" containing a matrix of overall per-
centages.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if bin has more than 2 unique values (other
than missing values) or if bin has length different than the length of x. This
is a tradeoff between computational efficiency (FALSE) and more useful error
messages (TRUE).

Value

list of numeric vectors containing statistical information about the mean difference: 1) nhst = chi-
square test of independence stat info in a numeric vector, 2) desc = descriptive statistics stat info
in a numeric vector, 3) std = various standardized effect sizes in a numeric vector, 4) count =
numeric matrix with dim = [3, 3] of the 2x2 contingency table of counts with an additional row
and column for totals (if rtn.table = TRUE), 5) percent = numeric matrix with dim = [3, 3] of
the 2x2 contingency table of overall percentages with an additional row and column for totals (if
rtn.table = TRUE)

1) nhst = chi-square test of independence stat info in a numeric vector

est mean difference estimate (i.e., group 2 - group 1)

se NA (to remind the user there is no standard error for the test)

X2 chi-square value

df degrees of freedom (will always be 1)

p two-sided p-value

lwr lower bound of the confidence interval

upr upper bound of the confidence interval

2) desc = descriptive statistics stat info in a numeric vector

prop_‘lvl[2 ‘] proportion of group 2

prop_‘lvl[1 ‘] proportion of group 1

sd_‘lvl[2 ‘] standard deviation of group 2

sd_‘lvl[1 ‘] standard deviation of group 1

n_‘lvl[2 ‘] sample size of group 2

n_‘lvl[1 ‘] sample size of group 1

3) std = various standardized effect sizes in a numeric vector

cramer Cramer’s V estimate

h Cohen’s h estimate

162 prop_diff

phi Phi coefficient estimate

yule Yule coefficient estimate

tetra Tetrachoric correlation estimate

OR odds ratio estimate

RR risk ratio estimate calculated as (i.e., group 2 / group 1). Note this value will often differ when
recoding variables (as it should).

4) count = numeric matrix with dim = [3, 3] of the 2x2 contingency table of counts with an addi-
tional row and column for totals (if rtn.table = TRUE).

The two unique observed values of x (i.e., 0 and 1) - plus the total - are the rows and the two unique
observed values of bin - plus the total - are the columns. The dimlabels are "bin" for the rows and
"x" for the columns. The rownames are 1. "0", 2. "1", 3. "total". The colnames are 1. ‘lvl[1]‘, 2.
‘lvl[2]‘, 3. "total"

5) percent = numeric matrix with dim = [3, 3] of the 2x2 contingency table of overall percentages
with an additional row and column for totals (if rtn.table = TRUE).

The two unique observed values of x (i.e., 0 and 1) - plus the total - are the rows and the two unique
observed values of bin - plus the total - are the columns. The dimlabels are "bin" for the rows and
"x" for the columns. The rownames are 1. "0", 2. "1", 3. "total". The colnames are 1. ‘lvl[1]‘, 2.
‘lvl[2]‘, 3. "total"

See Also

prop.test the workhorse for prop_diff, props_diff for multiple dummy variables, phi for an-
other phi coefficient function Yule for another yule coefficient function tetrachoric for another
tetrachoric coefficient function

Examples

chi-square test of independence
x = "am", bin = "vs"
mtcars2 <- mtcars
mtcars2$"vs_bin" <- ifelse(mtcars$"vs" == 1, yes = "yes", no = "no")
agg(mtcars2$"am", grp = mtcars2$"vs_bin", rep = FALSE, fun = mean)
prop_diff(x = mtcars2$"am", bin = mtcars2$"vs_bin")
prop_diff(x = mtcars2$"am", bin = mtcars2$"vs")

using \code{lvl} argument
prop_diff(x = mtcars2$"am", bin = mtcars2$"vs_bin")
prop_diff(x = mtcars2$"am", bin = mtcars2$"vs_bin",

lvl = c("yes","no")) # reverses the direction of the effect
prop_diff(x = mtcars2$"am", bin = mtcars2$"vs",

lvl = c(1, 0)) # levels don't have to be character

recoding the variables
prop_diff(x = mtcars2$"am", bin = ifelse(mtcars2$"vs_bin" == "yes",

yes = "no", no = "yes")) # reverses the direction of the effect
prop_diff(x = ifelse(mtcars2$"am" == 1, yes = 0, no = 1),

bin = mtcars2$"vs") # reverses the direction of the effect

prop_test 163

prop_diff(x = ifelse(mtcars2$"am" == 1, yes = 0, no = 1),
bin = ifelse(mtcars2$"vs_bin" == "yes",

yes = "no", no = "yes")) # double reverse means same direction of the effect

compare to stats::prop.test
x = "am", bin = "vs_bin" (binary as the rows; dummy as the columns)
tmp <- c("vs_bin","am") # b/c Roxygen2 will cause problems
table_obj <- table(mtcars2[tmp])
row_order <- nrow(table_obj):1
col_order <- ncol(table_obj):1
table_obj4prop <- table_obj[row_order, col_order]
prop.test(table_obj4prop)

compare to stats:chisq.test
chisq.test(x = mtcars2$"am", y = mtcars2$"vs_bin")

compare to psych::phi
cor(mtcars2$"am", mtcars$"vs")
psych::phi(table_obj, digits = 7)

compare to psych::yule()
psych::Yule(table_obj)

compare to psych::tetrachoric
psych::tetrachoric(table_obj)
Note, I couldn't find a case where psych::tetrachoric() failed to compute
psych::tetrachoric(table_obj4prop)

different than single logistic regression
summary(glm(am ~ vs, data = mtcars, family = binomial(link = "logit")))

prop_test Test for Sample Proportion Against Pi (chi-square test of goodness of
fit)

Description

prop_test tests for a sample proportion difference from a population proportion with a chi-square
test of goodness of fit. The default is that the goodness of fit is consistent with a population pro-
portion Pi of 0.50. The function also calculates the descriptive statistics, various standardized effect
sizes (e.g., Cramer’s V), and can provide the 1x2 contingency tables. prop_test is simply a wrap-
per for prop.test plus some extra calculations.

Usage

prop_test(
x,
pi = 0.5,

164 prop_test

yates = TRUE,
ci.level = 0.95,
rtn.table = TRUE,
check = TRUE

)

Arguments

x numeric vector that only has values of 0 or 1 (or missing values), otherwise
known as a dummy variable.

pi numeric vector of length 1 specifying the population proportion value to com-
pare the sample proportion against.

yates logical vector of length 1 specifying whether the Yate’s continuity correction
should be applied for small samples. See chisq.test for details.

ci.level numeric vector of length 1 specifying the confidence level. ci.level must
range from 0 to 1.

rtn.table logical vector of lengh 1 specifying whether the return object should include
the 1x2 contingency table of counts with totals and the 1x2 overall percent-
ages table. If TRUE, then the last two elements of the return object are "count"
containing a vector of counts and "percent" containing a vector of overall per-
centages.

check logical vector of length 1 specifying whether the input arguments should be
checked for errors. For example, if x is a dummy variable that only takes on
value of 0 or 1 (or missing values). This is a tradeoff between computational
efficiency (FALSE) and more useful error messages (TRUE).

Value

list of numeric vectors containing statistical information about the proportion difference from pi: 1)
nhst = chi-square test of goodness of fit stat info in a numeric vector, 2) desc = descriptive statistics
stat info in a numeric vector, 3) std = various standardized effect sizes in a numeric vector, 4)
count = numeric vector of length 3 with table of counts with an additional element for the total (if
rtn.table = TRUE), 5) percent = numeric vector of length 3 with table of overall percentages with
an element for the total (if rtn.table = TRUE)

1) nhst = chi-square test of goodness of fit stat info in a numeric vector

est proportion difference estimate (i.e., sample proportion - pi)

se NA (to remind the user there is no standard error for the test)

X2 chi-square value

df degrees of freedom (will always be 1)

p two-sided p-value

2) desc = descriptive statistics stat info in a numeric vector

prop sample proportion

pi popularion proportion provided by the user (or 0.50 by default)

recode2other 165

sd standard deviation
n sample size
lwr lower bound of the confidence interval of the sample proportion itself
upr upper bound of the confidence interval of the sample proportion itself

3) std = various standardized effect sizes in a numeric vector

cramer Cramer’s V estimate
h Cohen’s h estimate

4) count = numeric vector of length 3 with table of counts with an additional element for the total
(if rtn.table = TRUE). The names are 1. "0", 2. "1", 3. "total"

5) percent = numeric vector of length 3 with table of overall percentages with an element for the
total (if rtn.table = TRUE). The names are 1. "0", 2. "1", 3. "total"

See Also

prop.test the workhorse for prop_test, props_test for multiple dummy variables, prop_diff
for chi-square test of independence,

Examples

chi-square test of goodness of fit
table(mtcars$"am")
prop_test(mtcars$"am")
prop_test(ifelse(mtcars$"am" == 1, yes = 0, no = 1))

different than intercept only logistic regression
summary(glm(am ~ 1, data = mtcars, family = binomial(link = "logit")))

error from non-dummy variable
Not run:
prop_test(ifelse(mtcars$"am" == 1, yes = "1", no = "0"))
prop_test(ifelse(mtcars$"am" == 1, yes = 2, no = 1))

End(Not run)

recode2other Recode Unique Values in a Character Vector to 0ther (or NA)

Description

recode2other recodes multiple unique values in a character vector to the same new value (e.g.,
"other", NA_character_). It’s primary use is to recode based on the minimum frequency of the
unique values so that low frequency values can be combined into the same category; however, it
also allows for recoding particular unique values given by the user (see details). This function is a
wrapper for car::recode, which can handle general recoding of character vectors.

166 recode2other

Usage

recode2other(
x,
freq.min,
prop = FALSE,
inclusive = TRUE,
other.nm = "other",
extra.nm = NULL

)

Arguments

x character vector. If not a character vector, it will be coarced to one via as.character.

freq.min numeric vector of length 1 specifying the minimum frequency of a unique value
to keep it unchanged and consequentially recode any unique values with fre-
quencues less than (or equal to) it.

prop logical vector of length 1 specifying if freq.min provides the frequency as a
count (FALSE) or proportion (TRUE).

inclusive logical vector of length 1 specifying whether the frequency of a unique value ex-
actly equal to freq.min should be kept unchanged (and not recoded to other.nm).

other.nm character vector of length 1 specifying what value the other unique values should
be recoded to. This can be NA_character_ resulting in recoding to a missing
value.

extra.nm character vector specifying extra unique values that should be recoded to other.nm
that are not included based on the minimum frequency from the combination of
freq.min, prop, inclusive. The default is NULL, meaning no extra unique
values are recoded.

Details

The extra.nm argument allows for recode2other to be used as simpler function that just re-
codes particular unique values to the same new value (although arguably this is easier to do using
car::recode directly). To do so set freq.min = 0 and provide the unique values to extra.nm.
Note, that the current version of this function does not allow for NA_character_ to be included in
extra.nm as it will end up treating it as "NA" (see examples).

Value

character vector of the same length as x with unique values with frequency less than freq.nm
recoded to other.nm as well as any unique values in extra.nm. While the current version of the
function allows for recoding *to* NA values via other.nm, it does not allow for recoding *from*
NA values via extra.nm (see examples).

See Also

recode ifelse

recodes 167

Examples

based on minimum frequency unique values
state_region <- as.character(state.region)
recode2other(state_region, freq.min = 13) # freq.min as a count
recode2other(state_region, freq.min = 0.26, prop = TRUE) # freq.min as a proportion
recode2other(state_region, freq.min = 13, other.nm = "_blank_")
recode2other(state_region, freq.min = 13,

other.nm = NA) # allows for other.nm to be NA
recode2other(state_region, freq.min = 13,

extra.nm = "South") # add an extra unique value to recode
recode2other(state_region, freq.min = 13,

inclusive = FALSE) # recodes "West" to "other"

based on user given unique values
recode2other(state_region, freq.min = 0,

extra.nm = c("South","West")) # recodes manually rather than by freq.min
current version does NOT allow for NA to be a unique value that is converted to other
state_region2 <- c(NA, state_region, NA)
recode2other(state_region2, freq.min = 13) # NA remains in the character vector
recode2other(state_region2, freq.min = 0,

extra.nm = c("South","West",NA)) # NA remains in the character vector

recodes Recode Data

Description

recodes recodes data based on specified recodes using the car::recode function. This can be used
for numeric or character (including factors) data. See recode for details. The levels argument
from car::recode is excluded because there is no easy way to vectorize it when only a subset of
the variables are factors.

Usage

recodes(data, vrb.nm, recodes, suffix = "_r", as.factor, as.numeric = TRUE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

recodes character vector of length 1 specifying the recodes. See details of recode for
how to use this argument.

suffix character vector of length 1 specifying the string to add to the end of the col-
names in the return object.

168 renames

as.factor logical vector of length 1 specifying if the recoded columns should be returned
as factors. The default depends on the column in data[vrb.nm]. If the column
is a factor, then as.factor = TRUE for that column. If the column is not a
factor, then as.factor = FALSE for that column. Any non-default, specified
value for this argument will result in as.factor being universally applied to all
columns in data[vrb.nm].

as.numeric logical vector of length 1 specifying if the recoded columns should be returned
as numeric vectors when possible. This can be useful when having character
vectors converted to numeric, such that numbers with typeof character (e.g.,
"1") will be coerced to typeof numeric (e.g., 1). Note, this argument has no ef-
fect on columns in data[vrb.nm] which are typeof character and have letters in
their values (e.g., "1a"). Note, this argument is often not needed as you can di-
rectly recode to a numeric by excluding quotes from the number in the recodes
argument.

Value

data.frame of recoded variables with colnames specified by paste0(vrb.nm, suffix). In general,
the columns of the data.frame are the same typeof as those in data except for instances when
as.factor and/or as.numeric change the typeof.

See Also

recode reverses

Examples

recodes(data = psych::bfi, vrb.nm = c("A1","C4","C5","E1","E2","O2","O5"),
recodes = "1=6; 2=5; 3=4; 4=3; 5=2; 6=1")

re_codes <- "'Quebec' = 'canada'; 'Mississippi' = 'usa'; 'nonchilled' = 'no'; 'chilled' = 'yes'"
recodes(data = CO2, vrb.nm = c("Type","Treatment"), recodes = re_codes,

as.factor = FALSE) # convert from factors to characters

renames Rename Data Columns from a Codebook

Description

renames renames columns in a data.frame from a codebook. The codebook is assumed to be a
list of data.frames containing the old and new column names. See details for how the codebook
should be structured. The idea is that the codebook has been imported as an excel workbook with
different sets of column renaming information in different workbook sheets. This function is simply
a wrapper for plyr::rename.

renames 169

Usage

renames(
data,
codebook,
old = 1L,
new = 2L,
warn_missing = TRUE,
warn_duplicated = TRUE

)

Arguments

data data.frame of data.
codebook list of data.frames containing the old and new column names.
old numeric vector or character vector of length 1 specifying the position or name

of the column in the codebook data.frames that contains the old column names
present in data.

new numeric vector or character vector of length 1 specifying the position or name
of the column in the codebook data.frames that contains the new column names
to rename to in data.

warn_missing logical vector of length 1 specifying whether renames should return a warning
if any old names in codebook are not present in data.

warn_duplicated

logical vector of length 1 specifying whether renames should return a warning
if the renaming process results in duplicate column names in the return object.

Details

codebook is a list of data.frames where one column refers to the old names and another column
refers to the new names. Therefore, each row of the data.frames refers to a column in data. The
position or names of the columns in the codebook data.frames that contain the old (i.e., old) and
new (i.e., new) data columns must be the same for each data.frame in codebook.

Value

data.frame identical to data except that the old names in codebook have been replaced by the new
names in codebook.

See Also

rename

Examples

code_book <- list(
data.frame("old" = c("rating","complaints"), "new" = c("RATING","COMPLAINTS")),
data.frame("old" = c("privileges","learning"), "new" = c("PRIVILEGES","LEARNING"))

)
renames(data = attitude, codebook = code_book, old = "old", new = "new")

170 reorders

reorders Reorder Levels of Factor Data

Description

reorders re-orders the levels of factor data. The factors are columns in a data.frame where the same
reordering scheme is desired. This is often useful before using factor data in a statistical analysis
(e.g., lm) or a graph (e.g., ggplot). It is essentially a vectorized version of reorder.default.

Usage

reorders(data, fct.nm, ord.nm = NULL, fun, ..., suffix = "_r")

Arguments

data data.frame of data.

fct.nm character vector of colnames in data that specify the factor columns. If any of
the columns specified by fct.nm are not factors, then an error is returned.

ord.nm character vector of length 1 or NULL. If a character vector of length 1, it is a
colname in data specifying the column in data that will be used in conjunction
with fun to re-order the factor columns. If NULL (default), it is assumed that
each factor column itself will be used in conjunction with fun to re-order the
factor columns.

fun function that will be used to re-order the factor columns. The function is ex-
pected to input an atomic vector of length = nrow(data) and return an atomic
vector of length 1. fun is applied to data[[ord.nm]] if ord.nm is a character
vector of length 1 or applied to each column in data[fct.nm] if ord.nm = NULL.

... additional named arguments used by fun. For example, if fun is mean, the user
might specify an argument na.rm = TRUE to set the na.rm argument in the mean
function.

suffix character vector of length 1 specifying the string that will be appended to the
end of the colnames in the return object.

Value

data.frame of re-ordered factor columns with colnames = paste0(fct.nm, suffix).

See Also

reorder.default

revalid 171

Examples

factor vector
reorder(x = state.region, X = state.region,

FUN = length) # least frequent to most frequent
reorder(x = state.region, X = state.region,

FUN = function(vec) {-1 * length(vec)}) # most frequent to least frequent

data.frame of factors
infert_fct <- infert
fct_nm <- c("education","parity","induced","case","spontaneous")
infert_fct[fct_nm] <- lapply(X = infert[fct_nm], FUN = as.factor)
x <- reorders(data = infert_fct, fct.nm = fct_nm,

fun = length) # least frequent to most frequent
lapply(X = x, FUN = levels)
y <- reorders(data = infert_fct, fct.nm = fct_nm,

fun = function(vec) {-1 * length(vec)}) # most frequent to least frequent
lapply(X = y, FUN = levels)
ord.nm specified as a different column in data.frame
z <- reorders(data = infert_fct, fct.nm = fct_nm, ord.nm = "pooled.stratum",

fun = mean) # category with highest mean for pooled.stratum to
category with lowest mean for pooled.stratum

lapply(X = z, FUN = levels)

revalid Recode Invalid Values from a Vector

Description

revalid recodes invalid data to specified values. For example, sometimes invalid values are present
in a vector of data (e.g., age = -1). This function allows you to specify which values are possible
and will then recode any impossible values to undefined. This function is a useful wrapper for the
function car::recode, tailored for the specific use of recoding invalid values.

Usage

revalid(x, valid, undefined = NA)

Arguments

x atomic vector.

valid atomic vector of valid values for x.

undefined atomic vector of length 1 specifying what the invalid values should be recoded
to.

172 revalids

Value

atomic vector with the same typeof as x where any values not present in valid have been recoded
to undefined.

See Also

revalids valid_test valids_test

Examples

revalid(x = attitude[[1]], valid = 25:75, undefined = NA) # numeric vector
revalid(x = as.character(ToothGrowth[["supp"]]), valid = c('VC'),

undefined = NA) # character vector
revalid(x = ToothGrowth[["supp"]], valid = c('VC'),

undefined = NA) # factor

revalids Recode Invalid Values from Data

Description

revalids recodes invalid data to specified values. For example, sometimes invalid values are
present in a vector of data (e.g., age = -1). This function allows you to specify which values are
possible and will then recode any impossible values to undefined. revalids is simply a vectorized
version of revalid to more easily revalid multiple columns of a data.frame at the same time.

Usage

revalids(data, vrb.nm, valid, undefined = NA, suffix = "_v")

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

valid atomic vector of valid values for the data. Note, the valid values must be the
same for each variable.

undefined atomic vector of length 1 specifying what the invalid values should be recoded
to.

suffix character vector of length 1 specifying the string to add to the end of the col-
names in the return object.

Value

data.frame of recoded variables where any values not present in valid have been recoded to undefined
with colnames specified by paste0(vrb.nm, suffix).

reverse 173

See Also

revalid valids_test valid_test

Examples

revalids(data = attitude, vrb.nm = names(attitude),
valid = 25:75) # numeric data

revalids(data = as.data.frame(CO2), vrb.nm = c("Type","Treatment"),
valid = c('Quebec','nonchilled')) # factors

reverse Reverse Code a Numeric Vector

Description

reverse reverse codes a numeric vector based on minimum and maximum values. For example,
say numerical values of response options can range from 1 to 4. The function will change 1 to 4, 2
to 3, 3 to 2, and 4 to 1. If there are an odd number of response options, the middle in the sequence
will be unchanged.

Usage

reverse(x, mini, maxi)

Arguments

x numeric vector.

mini numeric vector of length 1 specifying the minimum numeric value.

maxi numeric vector of length 1 specifying the maximum numeric value.

Value

numeric vector that correlates exactly -1 with x.

See Also

reverses reverse.code recode

Examples

x <- psych::bfi[[1]]
head(x, n = 15)
y <- reverse(x = psych::bfi[[1]], min = 1, max = 6)
head(y, n = 15)
cor(x, y, use = "complete.obs")

174 reverses

reverses Reverse Code Numeric Data

Description

reverses reverse codes numeric data based on minimum and maximum values. For example, say
numerical values of response options can range from 1 to 4. The function will change 1 to 4, 2 to 3,
3 to 2, and 4 to 1. If there are an odd number of response options, the middle in the sequence will
be unchanged.

Usage

reverses(data, vrb.nm, mini, maxi, suffix = "_r")

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

mini numeric vector of length 1 specifying the minimum numeric value.

maxi numeric vector of length 1 specifying the maximum numeric value.

suffix character vector of length 1 specifying the string to add to the end of the col-
names in the return object.

Details

reverses is simply a vectorized version of reverse to more easily reverse code multiple columns
of a data.frame at the same time.

Value

data.frame of reverse coded variables with colnames specified by paste0(vrb.nm, suffix).

See Also

reverse reverse.code recodes

Examples

tmp <- !(is.element(el = names(psych::bfi) , set = c("gender","education","age")))
vrb_nm <- names(psych::bfi)[tmp]
reverses(data = psych::bfi, vrb.nm = vrb_nm, mini = 1, maxi = 6)

rowMeans_if 175

rowMeans_if Row Means Conditional on Frequency of Observed Values

Description

rowMean_if calculates the mean of every row in a numeric or logical matrix conditional on the
frequency of observed data. If the frequency of observed values in that row is less than (or equal to)
that specified by ov.min, then NA is returned for that row.

Usage

rowMeans_if(x, ov.min = 1, prop = TRUE, inclusive = TRUE)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and ncol(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the mean should be calculated if
the frequency of observed values in a row is exactly equal to ov.min.

Details

Conceptually this function does: apply(X = x, MARGIN = 1, FUN = mean_if, ov.min = ov.min, prop
= prop, inclusive = inclusive). But for computational efficiency purposes it does not because
then the observed values conditioning would not be vectorized. Instead, it uses rowMeans and then
inserts NAs for rows that have too few observed values

Value

numeric vector of length = nrow(x) with names = rownames(x) providing the mean of each row or
NA depending on the frequency of observed values.

See Also

rowSums_if colMeans_if colSums_if rowMeans

Examples

rowMeans_if(airquality)
rowMeans_if(x = airquality, ov.min = 5, prop = FALSE)

176 rowNA

rowNA Frequency of Missing Values by Row

Description

rowNA compute the frequency of missing values in a matrix by row. This function essentially does
apply(X = x, MARGIN = 1, FUN = vecNA). It is also used by other functions in the quest package
related to missing values (e.g., rowMeans_if).

Usage

rowNA(x, prop = FALSE, ov = FALSE)

Arguments

x matrix with any typeof. If not a matrix, it will be coerced to a matrix via
as.matrix. The argument rownames.force is set to TRUE to allow for row-
names to carry over for non-matrix objects (e.g., data.frames).

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length = nrow(x), and names = rownames(x), providing the frequency of missing
values (or observed values if ov = TRUE) per row. If prop = TRUE, the values will range from 0 to
1. If prop = FALSE, the values will range from 1 to ncol(x).

See Also

is.na vecNA colNA rowsNA

Examples

rowNA(as.matrix(airquality)) # count of missing values
rowNA(as.data.frame(airquality)) # with rownames
rowNA(as.matrix(airquality), prop = TRUE) # proportion of missing values
rowNA(as.matrix(airquality), ov = TRUE) # count of observed values
rowNA(as.data.frame(airquality), prop = TRUE, ov = TRUE) # proportion of observed values

rowsNA 177

rowsNA Frequency of Multiple Sets of Missing Values by Row

Description

rowsNA computes the frequency of missing values for multiple sets of columns from a data.frame.
The arguments prop and ov allow the user to specify if they want to sum or mean the missing values
as well as compute the frequency of observed values rather than missing values. This function is
essentially a vectorized version of rowNA that inputs and outputs a data.frame.

Usage

rowsNA(data, vrb.nm.list, prop = FALSE, ov = FALSE)

Arguments

data data.frame of data.

vrb.nm.list list where each element is a character vector of colnames in data specifying
the variables for that set of columns. The names of vrb.nm.list will be the
colnames of the return object.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

data.frame with the frequency of missing values (or observed values if ov = TRUE) for each set of
variables. The names are specified by names(vrb.nm.list); if vrb.nm.list does not have any
names, then the first element from vrb.nm.list[[i]] is used.

See Also

rowNA colNA vecNA is.na

Examples

vrb_list <- lapply(X = c("O","C","E","A","N"), FUN = function(chr) {
tmp <- grepl(pattern = chr, x = names(psych::bfi))
names(psych::bfi)[tmp]

})
rowsNA(data = psych::bfi,

vrb.nm.list = vrb_list) # names set to first elements in `vrb.nm.list`[[i]]
names(vrb_list) <- paste0(c("O","C","E","A","N"), "_m")
rowsNA(data = psych::bfi, vrb.nm.list = vrb_list) # names set to names(`vrb.nm.list`)

178 rowSums_if

rowSums_if Row Sums Conditional on Frequency of Observed Values

Description

rowSums_if calculates the sum of every row in a numeric or logical matrix conditional on the
frequency of observed data. If the frequency of observed values in that row is less than (or equal to)
that specified by ov.min, then NA is returned for that row. It also has the option to return a value
other than 0 (e.g., NA) when all rows are NA, which differs from rowSums(x, na.rm = TRUE).

Usage

rowSums_if(
x,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
allNA = NA_real_

)

Arguments

x numeric or logical matrix. If not a matrix, it will be coerced to one.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and ncol(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the sum should be calculated if the
frequency of observed values in a row is exactly equal to ov.min.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values of x[i,]. If TRUE (default), this will make sums
over the same columns with different amounts of observed data comparable.

allNA numeric vector of length 1 specifying what value should be returned for rows
that are all NA. This is most applicable when ov.min = 0 and inclusive =
TRUE. The default is NA, which differs from rowSums with na.rm = TRUE where
0 is returned. Note, the value is overwritten by NA if the frequency of observed
values in that row is less than (or equal to) that specified by ov.min.

Details

Conceptually this function is doing: apply(X = x, MARGIN = 1, FUN = sum_if, ov.min = ov.min,
prop = prop, inclusive = inclusive). But for computational efficiency purposes it does not
because then the observed values conditioning would not be vectorized. Instead, it uses rowSums
and then inserts NAs for rows that have too few observed values.

score 179

Value

numeric vector of length = nrow(x) with names = rownames(x) providing the sum of each row or
NA (or allNA) depending on the frequency of observed values.

See Also

rowMeans_if colSums_if colMeans_if rowSums

Examples

rowSums_if(airquality)
rowSums_if(x = airquality, ov.min = 5, prop = FALSE)
x <- data.frame("x" = c(1, 1, NA), "y" = c(2, NA, NA), "z" = c(NA, NA, NA))
rowSums_if(x)
rowSums_if(x, ov.min = 0)
rowSums_if(x, ov.min = 0, allNA = 0)
identical(x = rowSums(x, na.rm = TRUE),

y = unname(rowSums_if(x, impute = FALSE, ov.min = 0, allNA = 0))) # identical to
rowSums(x, na.rm = TRUE)

score Observed Unweighted Scoring of a Set of Variables/Items

Description

score calculates observed unweighted scores across a set of variables/items. If a row’s frequency
of observed data is less than (or equal to) ov.min, then NA is returned for that row. data[vrb.nm]
is coerced to a matrix before scoring. If the coercion leads to a character matrix, an error is returned.

Usage

score(
data,
vrb.nm,
avg = TRUE,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
std = FALSE,
std.data = std,
std.score = std

)

180 score

Arguments

data data.frame or numeric/logical matrix

vrb.nm character vector of colnames in data specifying the set of variables/items.

avg logical vector of length 1 specifying whether mean scores (TRUE) or sum scores
(FALSE) should be created.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the score should be calculated
(rather than NA) if the frequency of observed values in a row is exactly equal to
ov.min.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values from each row of data[vrb.nm] (i.e., row mean
imputation). If TRUE (default), this will make sums over the same rows with
different frequencies of missing values comparable. Note, this argument is only
used when avg = FALSE since when avg = TRUE row mean imputation is
always done implicitly.

std logical vector of length 1 specifying whether 1) data[vrb.nm] should be stan-
dardized before scoring and 2) the score standardized after creation. This argu-
ment is for convenience as these two standardization processes are often used
together. However, this argument will be overwritten by any non-default value
for std.data and std.score.

std.data logical vector of length 1 specifying whether data[vrb.nm] should be standard-
ized before scoring.

std.score logical vector of length 1 specifying whether the score should be standardized
after creation.

Value

numeric vector of the mean/sum of each row or NA if the frequency of observed values is less than
(or equal to) ov.min. The names are the rownames of data.

See Also

scores rowMeans_if rowSums_if scoreItems

Examples

score(data = attitude, vrb.nm = c("complaints","privileges","learning","raises"))
score(data = attitude, vrb.nm = c("complaints","privileges","learning","raises"),

std = TRUE) # standardized scoring
score(data = airquality, vrb.nm = c("Ozone","Solar.R","Temp"),

ov.min = 0.75) # conditional on observed values

scores 181

scores Observed Unweighted Scoring of Multiple Sets of Variables/Items

Description

scores calculates observed unweighted scores across multiple sets of variables/items. If a row’s
frequency of observed data is less than (or equal to) ov.min, then NA is returned for that row. Each
set of variables/items are coerced to a matrix before scoring. If the coercion leads to a character ma-
trix, an error is returned. This can be tested with lapply(X = vrb.nm.list, FUN = function(nm)
is.character(as.matrix(data[nm]))).

Usage

scores(
data,
vrb.nm.list,
avg = TRUE,
ov.min = 1,
prop = TRUE,
inclusive = TRUE,
impute = TRUE,
std = FALSE,
std.data = std,
std.score = std

)

Arguments

data data.frame or numeric/logical matrix

vrb.nm.list list where each element is a character vector of colnames in data specifying the
variables/items for that score. The names of vrb.nm.list will be the names of
the scores in the return object.

avg logical vector of length 1 specifying whether mean scores (TRUE) or sum scores
(FALSE) should be created.

ov.min minimum frequency of observed values required per row. If prop = TRUE,
then this is a decimal between 0 and 1. If prop = FALSE, then this is a integer
between 0 and length(vrb.nm.list[[i]]).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE). If the
multiple sets of variables/items contain different numbers of variables, it proba-
bly makes the most sense to use the proportion of observed values (TRUE).

inclusive logical vector of length 1 specifying whether the scores should be calculated
(rather than NA) if the frequency of observed values in a row is exactly equal to
ov.min.

182 shift

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values from each row of data[vrb.nm.list[[i]]] (i.e.,
row mean imputation). If TRUE (default), this will make sums over the same
rows with different frequencies of missing values comparable. Note, this ar-
gument is only used when avg = FALSE since when avg = TRUE row mean
imputation is always done implicitly.

std logical vector of length 1 specifying whether 1) the variables should be stan-
dardized before scoring and 2) the score standardized after creation. This argu-
ment is for convenience as these two standardization processes are often used
together. However, this argument will be overwritten by any non-default value
for std.data and std.score.

std.data logical vector of length 1 specifying whether the variables/items should be stan-
dardized before scoring.

std.score logical vector of length 1 specifying whether the scores should be standardized
after creation.

Value

data.frame of mean/sum scores with NA for any row with the frequency of observed values less
than (or equal to) ov.min. The colnames are specified by names(vrb.nm.list) and rownames by
row.names(data).

See Also

score rowMeans_if rowSums_if scoreItems

Examples

list_colnames <- list("first" = c("rating","complaints","privileges"),
"second" = c("learning","raises","critical"))

scores(data = attitude, vrb.nm.list = list_colnames)
list_colnames <- list("first" = c("Ozone","Wind"),

"second" = c("Solar.R","Temp"))
scores(data = airquality, vrb.nm.list = list_colnames, ov.min = .50,

inclusive = FALSE) # scoring conditional on observed values

shift Shift a Vector (i.e., lag/lead)

Description

shift shifts elements of a vector right (n < 0) for lags or left (n > 0) for leads replacing the undefined
data with a user-defined value (e.g., NA). The number of elements shifted is equal to abs(n). It is
assumed that x is already sorted by time such that the first element is earliest in time and the last
element is the latest in time.

shift 183

Usage

shift(x, n, undefined = NA)

Arguments

x atomic vector or list vector.

n integer vector with length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details.

Details

If n is negative, then shift inserts undefined into the first abs(n) elements of x, shifting all
other values of x to the right abs(n) positions, and then dropping the last abs(n) elements of x to
preserve the original length of x. If n is positive, then shift drops the first abs(n) elements of x,
shifting all other values of x left abs(n) positions, and then inserts undefined into the last abs(n)
elements of x to preserve the original length of x. If n is zero, then shift simply returns x.

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift tries to circumvent this issue by a call to round within shift if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shift truncates
rather than rounds.

Value

an atomic vector of the same length as x that is shifted. If x and undefined are different typeofs,
then the return will be coerced to the more complex typeof (i.e., complex to simple: character,
double, integer, logical).

See Also

shifts shift_by shifts_by

Examples

shift(x = attitude[[1]], n = -1L) # use L to prevent problems with floating point numbers
shift(x = attitude[[1]], n = -2L) # can specify any integer up to the length of `x`
shift(x = attitude[[1]], n = +1L) # can specify negative or positive integers
shift(x = attitude[[1]], n = +2L, undefined = -999) # user-specified indefined value
shift(x = setNames(object = letters, nm = LETTERS), n = 3L) # names are kept

184 shifts

shifts Shift Data (i.e., lag/lead)

Description

shifts shifts rows of data down (n < 0) for lags or up (n > 0) for leads replacing the undefined data
with a user-defined value (e.g., NA). The number of rows shifted is equal to abs(n). It is assumed
that data[vrb.nm] is already sorted by time such that the first row is earliest in time and the last
row is the latest in time.

Usage

shifts(data, vrb.nm, n, undefined = NA, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

n integer vector of length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector of length 1 (probably makes sense to be the same typeof as the
vectors in data[vrb.nm]). Specifies what to insert for undefined values after
the shifting takes place. See details.

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1) if n <
0, then suffix = paste0("_g", -n), 2) if n > 0, then suffix = paste0("_d",
+n), 3) if n = 0, then suffix = "".

Details

If n is negative, then shifts inserts undefined into the first abs(n) rows of data[vrb.nm], shifting
all other rows of x down abs(n) positions, and then dropping the last abs(n) row of data[vrb.nm]
to preserve the original nrow of data. If n is positive, then shifts drops the first abs(n) rows of
x, shifting all other rows of data[vrb.nm] up abs(n) positions, and then inserts undefined into
the last abs(n) rows of x to preserve the original length of data. If n is zero, then shifts simply
returns data[vrb.nm].

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts tries to circumvent this issue by a call to round within shifts if n is not an integer; however
that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts truncates
rather than rounds.

Value

data.frame of shifted data with colnames specified by suffix.

shifts_by 185

See Also

shift shifts_by shift_by

Examples

shifts(data = attitude, vrb.nm = colnames(attitude), n = -1L)
shifts(data = mtcars, vrb.nm = colnames(mtcars), n = 2L)

shifts_by Shift Data (i.e., lag/lead) by Group

Description

shifts_by shifts rows of data down (n < 0) for lags or up (n > 0) for leads replacing the undefined
data with a user-defined value (e.g., NA). The number of rows shifted is equal to abs(n). It is
assumed that data[vrb.nm] is already sorted within each group by time such that the first row for
that group is earliest in time and the last row for that group is the latest in time. The groups can
be specified by multiple columns in data (e.g., grp.nm with length > 1), and interaction will be
implicitly called to create the groups.

Usage

shifts_by(data, vrb.nm, grp.nm, n, undefined = NA, suffix)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

grp.nm character vector of colnames from data specifying the groups.

n integer vector of length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector of length 1 (probably makes sense to be the same typeof as the
vectors in data[vrb.nm]). Specifies what to insert for undefined values after
the shifting takes place. See details.

suffix character vector of length 1 specifying the string to append to the end of the
colnames of the return object. The default depends on the n argument: 1) if n < 0,
then suffix = paste0("_gw", -n), 2) if n > 0, then suffix = paste0("_dw",
+n), 3) if n = 0, then suffix = "".

Details

If n is negative, then shifts_by inserts undefined into the first abs(n) rows of data[vrb.nm] for
each group, shifting all other rows of x down abs(n) positions, and then dropping the last abs(n)
row of data[vrb.nm] to preserve the original nrow of each group. If n is positive, then shifts_by
drops the first abs(n) rows of x for each group, shifting all other rows of data[vrb.nm] up abs(n)

186 shift_by

positions, and then inserts undefined into the last abs(n) rows of x to preserve the original length
of each group. If n is zero, then shifts_by simply returns data[vrb.nm].

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shifts_by tries to circumvent this issue by a call to round within shifts_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shifts_by
truncates rather than rounds.

Value

data.frame of shifted data by group with colnames specified by suffix.

See Also

shift_by shifts shift

Examples

shifts_by(data = ChickWeight, vrb.nm = c("weight","Time"), grp.nm = "Chick", n = -1L)
shifts_by(data = mtcars, vrb.nm = c("disp","mpg"), grp.nm = c("vs","am"), n = 1L)
shifts_by(data = as.data.frame(CO2), vrb.nm = c("conc","uptake"),

grp.nm = c("Type","Treatment"), n = 2L) # multiple grouping columns

shift_by Shift a Vector (i.e., lag/lead) by Group

Description

shift_by shifts elements of a vector right (n < 0) for lags or left (n > 0) for leads by group, replacing
the undefined data with a user-defined value (e.g., NA). The number of elements shifted is equal to
abs(n). It is assumed that x is already sorted within each group by time such that the first element
for that group is earliest in time and the last element for that group is the latest in time.

Usage

shift_by(x, grp, n, undefined = NA)

Arguments

x atomic vector or list vector.

grp list of atomic vector(s) and/or factor(s) (e.g., data.frame), which each have same
length as x. It can also be an atomic vector or factor, which will then be made
the first element of a list internally.

n integer vector with length 1. Specifies the direction and magnitude of the shift.
See details.

undefined atomic vector with length 1 (probably makes sense to be the same typeof as x).
Specifies what to insert for undefined values after the shifting takes place. See
details.

summary_ucfa 187

Details

If n is negative, then shift_by inserts undefined into the first abs(n) elements of x for each
group, shifting all other values of x to the right abs(n) positions, and then dropping the last abs(n)
elements of x to preserve the original length of each group. If n is positive, then shift_by drops the
first abs(n) elements of x for each group, shifting all other values of x left abs(n) positions, and
then inserts undefined into the last abs(n) elements of x to preserve the original length of each
group. If n is zero, then shift_by simply returns x.

It is recommended to use L when specifying n to prevent problems with floating point numbers.
shift_by tries to circumvent this issue by a call to round within shift_by if n is not an integer;
however that is not a complete fail safe. The problem is that as.integer(n) implicit in shift_by
truncates rather than rounds.

Value

an atomic vector of the same length as x that is shifted by group. If x and undefined are differ-
ent typeofs, then the return will be coerced to the most complex typeof (i.e., complex to simple:
character, double, integer, logical).

See Also

shifts_by shift shifts

Examples

shift_by(x = ChickWeight[["Time"]], grp = ChickWeight[["Chick"]], n = -1L)
tmp_nm <- c("vs","am") # b/c Roxygen2 doesn't like c() in a []
shift_by(x = mtcars[["disp"]], grp = mtcars[tmp_nm], n = 1L)
tmp_nm <- c("Type","Treatment") # b/c Roxygen2 doesn't like c() in a []
shift_by(x = as.data.frame(CO2)[["uptake"]], grp = as.data.frame(CO2)[tmp_nm],

n = 2L) # multiple grouping vectors

summary_ucfa Summary of a Unidimensional Confirmatory Factor Analysis

Description

summary_ucfa provides a summary of a unidimensional confirmatory factor analysis on a set of
variables/items. Unidimensional meaning a one-factor model where all variables/items load on that
factor. The function is a wrapper for cfa and returns a list with four vectors/matrices: 1) model
info, 2) fit measures, 3) factor loadings, 4) covariance/correlation residuals. For details on all the
cfa arguments see lavOptions.

188 summary_ucfa

Usage

summary_ucfa(
data,
vrb.nm,
std.ov = FALSE,
std.lv = TRUE,
ordered = FALSE,
meanstructure = TRUE,
estimator = "ML",
se = "standard",
test = "standard",
missing = "fiml",
fit.measures = c("chisq", "df", "tli", "cfi", "rmsea", "srmr"),
std.load = TRUE,
resid.type = "cor.bollen",
add.class = TRUE,
...

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data providing the variables/items

std.ov logical vector of length 1 specifying if the variables/items should be standard-
ized

std.lv logical vector of length 1 specifying if the latent factor should be standardized
resulting in all factor loadings being estimated. If FALSE, then the first vari-
able/item in data[vrb.nm] is fixed to a factor loading of 1.

ordered logical vector of length 1 specifying if the variables/items should be treated as
ordered categorical items where polychoric correlations are used.

meanstructure logical vector of length 1 specifying if the mean structure of the factor model
should be estimated. This would be the variable/item intercepts (and latent fac-
tor mean if std.lv = FALSE). Note, this must be true to use Full Information
Maximum Likelihood (FIML) to handle missing data via missing = "fiml".

estimator character vector of length 1 specifying the estimator to use for parameter esti-
mation. Popular options are 1) "ML" = maximum likelihood estimation based
on the multivariate normal distribution, 2) "DWLS" = diagonally weighted least
squares which uses the diagnonal of the weight matrix, 3) "WLS" for weighted
least squares whiches uses the full weight matrix (often results in computational
problems), 4) "ULS" for unweighted least squares that doesn’t use a weight ma-
trix. "DWLS", "WLS", and "ULS" can each be used with ordered categorical
items when ordered = TRUE.

se character vector of length 1 specifying how standard errors should be calcu-
lated. Popular options are 1) "standard" for conventional standard errors from
inverting the information matrix, 2) "robust.sem" for robust standard errors, 3)
"robust.huber.white" for sandwich standard errors.

summary_ucfa 189

test character vector of length 1 specifying how the omnibus test statistic should
be calculated. Popular options are 1) "standard" for the conventional chi-square
statistic, 2) "Satorra-Bentler" for the Satorra-Bentler test statistic, 3) "Yaun.Bentler.Mplus"
for the version of the Yuan-Bentler test statistic that Mplus uses, 4) "mean.var.adjusted"
for a mean and variance adjusted test statistic, 5) "scaled.shifted" for the version
of the mean and variance adjusted test statistic Mplus uses.

missing character vector of length 1 specifying how to handle missing data. Popular
options are 1) "fiml" = Full Information Maximum Likelihood (FIML), 2) "pair-
wise" = pairwise deletion, 3) "listwise" = listwise deletion.

fit.measures character vector specifying which model fit indices to include in the return
object. The default option includes the chi-square test statistic ("chisq"), de-
grees of freedom ("df"), tucker-lewis index ("tli"), comparative fit index ("cfi"),
root mean square error of approximation ("rmsea"), and standardized root mean
residual ("srmr"). Note, if using robust corrections for se and test, you will
probably want to call the scaled versions of model fit indices (e.g., "chisq.scaled").
See fitMeasures for details.

std.load logical vector of length 1 specifying whether the factor loadings included in the
return object should be standardized (TRUE) or not (FALSE).

resid.type character vector of length 1 specifying the type of covariance/correlation residu-
als to include in the return object. Popular options are 1) "raw" for conventional
covariance residuals, 2) "cor.bollen" for conventional correlation residuals, 3)
"cor.bentler" for correlation residuals that standardizes the model-implied co-
variance matrix with the observed variances, 4) "standardized" for conventional
z-scores of the covariance residuals.

add.class logical vector of length 1 specifying whether the lavaan classes should be added
to the returned vectors/matrices (TRUE) or not (FALSE). These classes do not
change the underlying vector/matrix and only affect printing.

... any other named arguments available in the cfa function. See lavOptions for
the list of arguments.

Value

list of vectors/matrices providing statistical information about the unidimensional confirmatory fac-
tor analysis. If add.class = TRUE, then the elements have lavaan classes which affect printing
(except for the first "model_info" element which always is just an integer vector). The four ele-
ments are:

model_info integer vector providing model information. The first element "converged" is 1 if
the model converged and 0 if not. The second element "admissible" is 1 if the model is
admissible (e.g., no negative variances) and 0 if not. The third element "nobs" is the number
of observations used in the analysis. The fourth element "npar" is the number of parameter
estimates.

fit_measures double vector providing model fit indices. The number and names of the fit indices
is determined by the fit.measures argument.

factor_load 1-column double matrix providing factor loadings. The colname is "latent" and the
rownames are the vrb.nm argument.

cov_resid covariance/correlation residuals for the model. Note, even though the name has "cov" in
it, the residuals can be "cor" if the argument resid.type = "cor.bollen" or "cor.bentler".

190 sum_if

See Also

ucfa cfa lavaan

Examples

types of models
dat <- psych::bfi[1:250, 16:20] # nueroticism items
summary_ucfa(data = dat, vrb.nm = names(dat)) # default
summary_ucfa(data = dat, vrb.nm = names(dat), estimator = "ML", # MLR

se = "robust.huber.white", test = "yuan.bentler.mplus", missing = "fiml",
fit.measures = c("chisq.scaled","df.scaled","tli.scaled","cfi.scaled",

"rmsea.scaled","srmr"))
summary_ucfa(data = dat, vrb.nm = names(dat), estimator = "ML", # MLM

se = "robust.sem", test = "satorra.bentler", missing = "listwise",
fit.measures = c("chisq.scaled","df.scaled","tli.scaled","cfi.scaled",

"rmsea.scaled","srmr"))
summary_ucfa(data = dat, vrb.nm = names(dat), ordered = TRUE, estimator = "DWLS", # WLSMV

se = "robust", test = "scaled.shifted", missing = "listwise",
fit.measures = c("chisq.scaled","df.scaled","tli.scaled","cfi.scaled",

"rmsea.scaled","wrmr"))

types of info
dat <- psych::bfi[1:250, 16:20] # nueroticism items
w <- summary_ucfa(data = dat, vrb.nm = names(dat))
x <- summary_ucfa(data = dat, vrb.nm = names(dat), add.class = FALSE)
y <- summary_ucfa(data = dat, vrb.nm = names(dat),

std.load = FALSE, resid.type = "raw")
z <- summary_ucfa(data = dat, vrb.nm = names(dat),

std.load = FALSE, resid.type = "raw", add.class = FALSE)
lapply(w, class)
lapply(x, class)
lapply(y, class)
lapply(z, class)

sum_if Sum Conditional on Minimum Frequency of Observed Values

Description

sum_if calculates the sum of a numeric or logical vector conditional on a specified minimum fre-
quency of observed values. If the amount of observed data is less than (or equal to) ov.min, then
NA is returned rather than the sum.

Usage

sum_if(x, impute = TRUE, ov.min = 1, prop = TRUE, inclusive = TRUE)

tapply2 191

Arguments

x numeric or logical vector.

impute logical vector of length 1 specifying if missing values should be imputed with
the mean of observed values of x. If TRUE (default), this will make sums over
the same vectors with different amounts of missing data comparable.

ov.min minimum frequency of observed values required. If prop = TRUE, then this is
a decimal between 0 and 1. If prop = FALSE, then this is a integer between 0
and length(x).

prop logical vector of length 1 specifying whether ov.min should refer to the propor-
tion of observed values (TRUE) or the count of observed values (FALSE).

inclusive logical vector of length 1 specifying whether the sum should be calculated
(rather than NA) if the frequency of observed values is exactly equal to ov.min.

Value

numeric vector of length 1 providing the sum of x or NA conditional on if the frequency of observed
data is greater than (or equal to) ov.min.

See Also

sum mean_if make.fun_if

Examples

sum_if(x = airquality[[1]], ov.min = .75) # proportion of observed values
sum_if(x = airquality[[1]], ov.min = 116,

prop = FALSE) # count of observe values
sum_if(x = airquality[[1]], ov.min = 116, prop = FALSE,

inclusive = FALSE) # not include ov.min value itself
sum_if(x = c(TRUE, NA, FALSE, NA),

ov.min = .50) # works with logical vectors as well as numeric

tapply2 Apply a Function to a (Atomic) Vector by Group

Description

tapply2 applies a function to a (atomic) vector by group and is an alternative to the base R function
tapply. The function is apart of the split-apply-combine type of function discussed in the plyr
R package and is somewhat similar to dlply. It splits up one (atomic) vector .xinto a (atomic)
vector for each group in .grp, applies a function .fun to each (atomic) vector, and then returns
the results as a list with names equal to the group values unique(interaction(.grp.nm, sep =
.sep)). tapply2 is simply split.default + lapply. Similar to dlply, The arguments all start
with . so that they do not conflict with arguments from the function .fun. If you want to apply a
function a data.frame rather than a (atomic) vector, then use by2.

192 tapply2

Usage

tapply2(.x, .grp, .sep = ".", .fun, ...)

Arguments

.x atomic vector

.grp list of atomic vector(s) and/or factor(s) (e.g., data.frame) containing the groups.
They should each have same length as .x. It can also be an atomic vector or
factor, which will then be made the first element of a list internally.

.sep character vector of length 1 specifying the string to combine the group values
together with. .sep is only used if there are multiple grouping variables (i.e.,
.grp is a list with multiple elements).

.fun function to apply to .x for each group.

... additional named arguments to pass to .fun.

Value

list of objects containing the return object of .fun for each group. The names are the unique
combinations of the grouping variables (i.e., unique(interaction(.grp, sep = .sep))).

See Also

tapply by2 dlply

Examples

one grouping variable
tapply2(mtcars$"cyl", .grp = mtcars$"vs", .fun = median, na.rm = TRUE)

two grouping variables
grp_nm <- c("vs","am") # Roxygen runs the whole script if I put a c() in a []
x <- tapply2(mtcars$"cyl", .grp = mtcars[grp_nm], .fun = median, na.rm = TRUE)
print(x)
str(x)

compare to tapply
grp_nm <- c("vs","am") # Roxygen runs the whole script if I put a c() in a []
y <- tapply(mtcars$"cyl", INDEX = mtcars[grp_nm],

FUN = median, na.rm = TRUE, simplify = FALSE)
print(y)
str(y) # has dimnames rather than names

ucfa 193

ucfa Unidimensional Confirmatory Factor Analysis

Description

ucfa conducts a unidimensional confirmatory factor analysis on a set of variables/items. Unidi-
mensional meaning a one-factor model where all variables/items load on that factor. The function
is a wrapper for cfa and returns an object of class "lavaan": lavaan. This then allows the user to
extract statistical information from the object (e.g., lavInspect). For details on all the arguments
see lavOptions.

Usage

ucfa(
data,
vrb.nm,
std.ov = FALSE,
std.lv = TRUE,
ordered = FALSE,
meanstructure = TRUE,
estimator = "ML",
se = "standard",
test = "standard",
missing = "fiml",
...

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data providing the variables/items

std.ov logical vector of length 1 specifying if the variables/items should be standard-
ized

std.lv logical vector of length 1 specifying if the latent factor should be standardized
resulting in all factor loadings being estimated. If FALSE, then the first vari-
able/item in data[vrb.nm] is fixed to a factor loading of 1.

ordered logical vector of length 1 specifying if the variables/items should be treated as
ordered categorical items where polychoric correlations are used.

meanstructure logical vector of length 1 specifying if the mean structure of the factor model
should be estimated. This would be the variable/item intercepts (and latent fac-
tor mean if std.lv = FALSE). Note, this must be true to use Full Information
Maximum Likelihood (FIML) to handle missing data via missing = "fiml".

estimator character vector of length 1 specifying the estimator to use for parameter esti-
mation. Popular options are 1) "ML" = maximum likelihood estimation based
on the multivariate normal distribution, 2) "DWLS" = diagonally weighted least

194 ucfa

squares which uses the diagnonal of the weight matrix, 3) "WLS" for weighted
least squares whiches uses the full weight matrix (often results in computational
problems), 4) "ULS" for unweighted least squares that doesn’t use a weight ma-
trix. "DWLS", "WLS", and "ULS" can each be used with ordered categorical
items when ordered = TRUE.

se character vector of length 1 specifying how standard errors should be calcu-
lated. Popular options are 1) "standard" for conventional standard errors from
inverting the information matrix, 2) "robust.sem" for robust standard errors, 3)
"robust.huber.white" for sandwich standard errors.

test character vector of length 1 specifying how the omnibus test statistic should
be calculated. Popular options are 1) "standard" for the conventional chi-square
statistic, 2) "Satorra-Bentler" for the Satorra-Bentler test statistic, 3) "Yaun.Bentler.Mplus"
for the version of the Yuan-Bentler test statistic that Mplus uses, 4) "mean.var.adjusted"
for a mean and variance adjusted test statistic, 5) "scaled.shifted" for the version
of the mean and variance adjusted test statistic Mplus uses.

missing character vector of length 1 specifying how to handle missing data. Popular
options are 1) "fiml" = Full Information Maximum Likelihood (FIML), 2) "pair-
wise" = pairwise deletion, 3) "listwise" = listwise deletion.

... any other named arguments available in the cfa function. See lavOptions for
the list of arguments.

Value

object of class "lavaan" lavaan providing the return object from a call to cfa.

See Also

summary_ucfa cfa lavaan

Examples

dat <- psych::bfi[1:250, 16:20] # nueroticism items
ucfa(data = dat, vrb.nm = names(dat))
ucfa(data = dat, vrb.nm = names(dat), std.ov = TRUE)
ucfa(data = dat, vrb.nm = names(dat), meanstructure = FALSE, missing = "pairwise")
ucfa(data = dat, vrb.nm = names(dat), estimator = "ML", # MLR

se = "robust.huber.white", test = "yuan.bentler.mplus", missing = "fiml")
ucfa(data = dat, vrb.nm = names(dat), estimator = "ML", # MLM

se = "robust.sem", test = "satorra.bentler", missing = "listwise")
ucfa(data = dat, vrb.nm = names(dat), ordered = TRUE, estimator = "DWLS", # WLSMV

se = "robust", test = "scaled.shifted", missing = "listwise")

valids_test 195

valids_test Test for Invalid Elements in Data

Description

Valid.test tests whether data has any invalid elements. Valid values are specified by valid. Each
variable is tested independently. If the variable in data[vrb.nm] has any values other than valid,
then FALSE is returned for that variable; If the variable in data[vrb.nm] only has values in valid,
then TRUE is returned for that variable.

Usage

valids_test(data, vrb.nm, valid, na.rm = TRUE)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables

valid atomic vector or list vector of valid values.

na.rm logical vector of length 1 specifying whether NA should be ignored from the
validity test. If TRUE (default), then any NAs are treated as valid.

Value

logical vector with length = length(vrb.nm) and names = vrb.nm specifying whether all elements
in each variable of data[vrb.nm] are valid. If FALSE, then (at least one) invalid values are present
in that variable of data[vrb.nm].

See Also

valid_test revalids revalid

Examples

valids_test(data = psych::bfi, vrb.nm = names(psych::bfi)[1:25],
valid = 1:6) # return TRUE

valids_test(data = psych::bfi, vrb.nm = names(psych::bfi)[1:25],
valid = 0:5) # 6 is not present in `valid`

valids_test(data = psych::bfi, vrb.nm = names(psych::bfi)[1:25],
valid = 1:6, na.rm = FALSE) # NA is not present in `valid`

valids_test(data = ToothGrowth, vrb.nm = c("supp","dose"),
valid = list("VC", "OJ", 0.5, 1.0, 2.0)) # list vector as `valid` to allow for
elements of different typeof

196 valid_test

valid_test Test for Invalid Elements in a Vector

Description

valid_test tests whether a vector has any invalid elements. Valid values are specified by valid.
If the vector x has any values other than valid, then FALSE is returned; If the vector x only has
values in valid, then TRUE is returned. This function can be useful for checking data after manual
human entry.

Usage

valid_test(x, valid, na.rm = TRUE)

Arguments

x atomic vector or list vector.

valid atomic vector or list vector of valid values.

na.rm logical vector of length 1 specifying whether NA should be ignored from the
validity test. If TRUE (default), then any NAs are treated as valid.

Value

logical vector of length 1 specifying whether all elements in x are valid values. If FALSE, then (at
least one) invalid values are present.

See Also

valids_test revalid revalids

Examples

valid_test(x = psych::bfi[[1]], valid = 1:6) # return TRUE
valid_test(x = psych::bfi[[1]], valid = 0:5) # 6 is not present in `valid`
valid_test(x = psych::bfi[[1]], valid = 1:6,

na.rm = FALSE) # NA is not present in `valid`

vecNA 197

vecNA Frequency of Missing Values in a Vector

Description

vecNA computes the frequency of missing values in an atomic vector. vecNA is essentially a wrapper
for sum or mean + is.na or !is.na and can be useful for functional programming (e.g., lapply(FUN
= vecNA)). It is also used by other functions in the quest package related to missing values (e.g.,
mean_if).

Usage

vecNA(x, prop = FALSE, ov = FALSE)

Arguments

x atomic vector or list vector. If not a vector, it will be coerced to a vector via
as.vector.

prop logical vector of length 1 specifying whether the frequency of missing values
should be returned as a proportion (TRUE) or a count (FALSE).

ov logical vector of length 1 specifying whether the frequency of observed val-
ues (TRUE) should be returned rather than the frequency of missing values
(FALSE).

Value

numeric vector of length 1 providing the frequency of missing values (or observed values if ov =
TRUE). If prop = TRUE, the value will range from 0 to 1. If prop = FALSE, the value will range
from 1 to length(x).

See Also

is.na rowNA colNA rowsNA

Examples

vecNA(airquality[[1]]) # count of missing values
vecNA(airquality[[1]], prop = TRUE) # proportion of missing values
vecNA(airquality[[1]], ov = TRUE) # count of observed values
vecNA(airquality[[1]], prop = TRUE, ov = TRUE) # proportion of observed values

198 wide2long

wide2long Reshape Multiple Sets of Variables From Wide to Long

Description

wide2long reshapes data from wide to long. This if often necessary to do with multilevel data where
multiple sets of variables in the wide format seek to be reshaped to multiple rows in the long format.
If only one set of variables needs to be reshaped, then you can use stack2 or melt.data.frame -
but that does not work for *multiple* sets of variables. See details for more information.

Usage

wide2long(
data,
vrb.nm.list,
grp.nm = NULL,
sep = ".",
rtn.obs.nm = "obs",
order.by.grp = TRUE,
keep.attr = FALSE

)

Arguments

data data.frame of multilevel data in the wide format.
vrb.nm.list A unique argument for the quest package such that it can take on different

types of inputs. The conventional use is to provide a list of character vectors
specifying each set of colnames to be reshaped. In longitudinal panel data, each
list element would contain a score with multiple timepoints. The advanced use
is to provide a single character vector specifying the colnames to be reshaped
(not organized by sets). See details.

grp.nm character vector specifying the colnames in data corresponding to the groups.
Because data is in the wide format, data[grp.nm] must have unique rows (aka
groups); if this is not the case, an error is returned. grp.nm can be NULL, in
which case the rownames of data will be used. In longitudinal panel data this
variable would be the participant ID variable.

sep character vector of length 1 specifying the string in the column names provided
by vrb.nm.list that separates out the name prefix from the number suffix. If
sep = "", then that implies there is no string separating the name prefix and the
number suffix (e.g., "outcome1").

rtn.obs.nm character vector of length 1 specifying the new colname in the return object
indicating which observation within each group the row refers to. In longitudinal
panel data, this would be the returned time variable.

order.by.grp logical vector of length 1 specifying whether to sort the return object first by
grp.nm and then obs.nm (TRUE) or by obs.nm and then grp.nm (FALSE).

keep.attr logical vector of length 1 specifying whether to keep the "reshapeLong" attribute
(from reshape) in the return object.

wide2long 199

Details

wide2long uses reshape(direction = "long") to reshape the data. It attempts to streamline the
task of reshaping wide to long as the reshape arguments can be confusing because the same argu-
ments are used for wide vs. long reshaping. See reshape if you are curious.

IF vrb.nm.list IS A LIST OF CHARACTER VECTORS: The conventional use of vrb.nm.list
is to provide a list of character vectors, which specify each set of variables to be reshaped. For
example, if data contains data from a longitudinal panel study with the same scores at different
waves, then there might be a column for each score at each wave. vrb.nm.list would then contain
an element for each score with each element containing a character vector of the colnames for that
score at each wave (see examples). The names of the list elements would then be the colnames in
the return object for those scores.

IF vrb.nm.list IS A CHARACTER VECTOR: The advanced use of vrb.nm.list is to provide
a single character vector, which specify the variables to be reshaped (not organized by sets). In
this case (i.e., if vrb.nm.list is not a list), then wide2long (really reshape) will attempt to guess
which colnames go together as a set. It is assumed the following column naming scheme has been
used: 1) have the same name prefix for columns within a set, 2) have the same number suffixes
for each set of columns, 3) use, *and only use*, sep in the colnames to separate the name prefix
and the number suffix. For example, the name prefixes might be "predictor" and "outcome" while
the number suffixes might be "0", "1", and "2", and the separator might be ".", resulting in column
names such as "outcome.1". The name prefix could include separators other than sep (e.g., "out-
come_item.1"), but it cannot include sep (e.g., "outcome.item.1"). So "outcome_item1.1" could be
acceptable, but "outcome.item1.1" would not.

Value

data.frame with nrow equal to nrow(data) * length(vrb.nm.list[[1]]) if vrb.nm.list is a
list (i.e., conventional use) or nrow(data) * number of unique number suffixes in vrb.nm.list
if vrb.nm.list is not a list (i.e., advanced use). The columns will be in the following order: 1)
grp.nm of the groups, 2) rtn.obs.nm of the observation labels, 3) the reshaped columns, 4) the
additional columns that were not reshaped and instead repeated. How the returned data.frame is
sorted depends on order.by.grp.

See Also

long2wide reshape stack2

Examples

SINGLE GROUPING VARIABLE
dat_wide <- data.frame(

x_1.1 = runif(5L),
x_2.1 = runif(5L),
x_3.1 = runif(5L),
x_4.1 = runif(5L),
x_1.2 = runif(5L),
x_2.2 = runif(5L),
x_3.2 = runif(5L),
x_4.2 = runif(5L),

200 wide2long

x_1.3 = runif(5L),
x_2.3 = runif(5L),
x_3.3 = runif(5L),
x_4.3 = runif(5L),
y_1.1 = runif(5L),
y_2.1 = runif(5L),
y_1.2 = runif(5L),
y_2.2 = runif(5L),
y_1.3 = runif(5L),
y_2.3 = runif(5L))

row.names(dat_wide) <- letters[1:5]
print(dat_wide)

vrb.nm.list = list of character vectors (conventional use)
vrb_pat <- c("x_1","x_2","x_3","x_4","y_1","y_2")
vrb_nm_list <- lapply(X = setNames(vrb_pat, nm = vrb_pat), FUN = function(pat) {

str2str::pick(x = names(dat_wide), val = pat, pat = TRUE)})
without `grp.nm`
z1 <- wide2long(dat_wide, vrb.nm = vrb_nm_list)
with `grp.nm`
dat_wide$"ID" <- letters[1:5]
z2 <- wide2long(dat_wide, vrb.nm = vrb_nm_list, grp.nm = "ID")
dat_wide$"ID" <- NULL

vrb.nm.list = character vector + guessing (advanced use)
vrb_nm <- str2str::pick(x = names(dat_wide), val = "ID", not = TRUE)
without `grp.nm`
z3 <- wide2long(dat_wide, vrb.nm.list = vrb_nm)
with `grp.nm`
dat_wide$"ID" <- letters[1:5]
z4 <- wide2long(dat_wide, vrb.nm = vrb_nm, grp.nm = "ID")
dat_wide$"ID" <- NULL

comparisons
head(z1); head(z3); head(z2); head(z4)
all.equal(z1, z3)
all.equal(z2, z4)
keeping the reshapeLong attributes
z7 <- wide2long(dat_wide, vrb.nm = vrb_nm_list, keep.attr = TRUE)
attributes(z7)

MULTIPLE GROUPING VARIABLES
bfi2 <- psych::bfi
bfi2$"person" <- unlist(lapply(X = 1:400, FUN = rep.int, times = 7))
bfi2$"day" <- rep.int(1:7, times = 400L)
head(bfi2, n = 15)

vrb.nm.list = list of character vectors (conventional use)
vrb_pat <- c("A","C","E","N","O")
vrb_nm_list <- lapply(X = setNames(vrb_pat, nm = vrb_pat), FUN = function(pat) {

str2str::pick(x = names(bfi2), val = pat, pat = TRUE)})
z5 <- wide2long(bfi2, vrb.nm.list = vrb_nm_list, grp = c("person","day"),

rtn.obs.nm = "item")

winsor 201

vrb.nm.list = character vector + guessing (advanced use)
vrb_nm <- str2str::pick(x = names(bfi2),

val = c("person","day","gender","education","age"), not = TRUE)
z6 <- wide2long(bfi2, vrb.nm.list = vrb_nm, grp = c("person","day"),

sep = "", rtn.obs.nm = "item") # need sep = "" because no character separating
scale name and item number

all.equal(z5, z6)

winsor Winsorize a Numeric Vector

Description

winsor winsorizes a numeric vector by recoding extreme values as a user-identified boundary value,
which is defined by z-score units. The to.na argument provides the option of recoding the extreme
values as missing.

Usage

winsor(x, z.min = -3, z.max = 3, rtn.int = FALSE, to.na = FALSE)

Arguments

x numeric vector

z.min numeric vector of length 1 specifying the lower boundary value in z-score units.

z.max numeric vector of length 1 specifying the upper boundary value in z-score units.

rtn.int logical vector of length 1 specifying whether the recoded values should be rounded
to the nearest integer. This can be useful when working with count data and dec-
imal values are impossible.

to.na logical vector of length 1 specifying whether the extreme values should be re-
coded to NA rather than winsorized to the boundary values.

Details

Note, the psych package also has a function called winsor, which offers the option to winsorize a
numeric vector by quantiles rather than z-scores. If you have both the quest package and the psych
package attached in your current R session (e.g., using library), depending on which package you
attached first, R might default to using the winsor function in either the quest package or the psych
package. One way to deal with this issue is to explicitly call which package you want to use the
winsor package from. You can do this using the :: function in base R where the package name
comes before the :: and the function names comes after it (e.g., quest::winsor).

Value

numeric vector of the same length as x with extreme values recoded as either the boundary values
or NA.

202 winsors

See Also

winsors winsor # psych package

Examples

winsorize
table(quakes$"stations")
new <- winsor(quakes$"stations")
table(new)

recode as NA
vecNA(quakes$"stations")
new <- winsor(quakes$"stations", to.na = TRUE)
vecNA(new)

rtn.int = TRUE
winsor(x = cars[[1]], z.min = -2, z.max = 2, rtn.int = FALSE)
winsor(x = cars[[1]], z.min = -2, z.max = 2, rtn.int = TRUE)

winsors Winsorize Numeric Data

Description

winsors winsorizes numeric data by recoding extreme values as a user identified boundary value,
which is defined by z-score units. The to.na argument provides the option of recoding the extreme
values as missing.

Usage

winsors(
data,
vrb.nm,
z.min = -3,
z.max = 3,
rtn.int = FALSE,
to.na = FALSE,
suffix = "_win"

)

Arguments

data data.frame of data.

vrb.nm character vector of colnames from data specifying the variables.

z.min numeric vector of length 1 specifying the lower boundary value in z-score units.

z.max numeric vector of length 1 specifying the upper boundary value in z-score units.

winsors 203

rtn.int logical vector of length 1 specifying whether the recoded values should be rounded
to the nearest integer. This can be useful when working with count data and dec-
imal values are impossible.

to.na logical vector of length 1 specifying whether the extreme values should be re-
coded to NA rather than winsorized to the boundary values.

suffix character vector of length 1 specifying the string to append to the end of the
colnames in the return object.

Value

data.frame of winsorized data with extreme values recoded as either the boundary values or NA and
colnames = paste0(vrb.nm, suffix).

See Also

winsor winsor # psych package

Examples

winsorize
lapply(X = quakes[c("mag","stations")], FUN = table)
new <- winsors(quakes, vrb.nm = names(quakes))
lapply(X = new, FUN = table)

recode as NA
vecNA(quakes)
new <- winsors(quakes, vrb.nm = names(quakes), to.na = TRUE)
vecNA(new)

rtn.int = TRUE
winsors(data = cars, vrb.nm = names(cars), z.min = -2, z.max = 2, rtn.int = FALSE)
winsors(data = cars, vrb.nm = names(cars), z.min = -2, z.max = 2, rtn.int = TRUE)

Index

.cronbach, 6

.cronbachs, 6

.gtheory, 7, 9

.gtheorys, 8, 8

add_sig, 9, 52
add_sig_cor, 11, 52, 56, 58
agg, 13, 16, 18, 69, 90, 98
agg_dfm, 14, 16, 16, 26, 133, 142
aggregate, 14, 16
aggs, 4, 14, 15, 18, 71, 88
alpha, 64–67
alpha.ci, 65, 67
amd_bi, 19, 20–22
amd_multi, 20, 20, 22
amd_uni, 21, 21
aov, 71, 73, 92–94
as.vector, 77, 197
auto_by, 22
ave, 14, 16, 25, 26
ave_dfm, 25

boot, 6–8, 47
boot.ci, 27, 47, 48, 65, 67, 85, 86
boot_ci, 26
by, 27, 28
by2, 18, 27, 95, 191, 192

cast, 99
center, 29, 30, 32, 33
center_by, 29, 30, 32, 32, 69, 90
centers, 4, 29, 30, 32, 33
centers_by, 29, 30, 31, 33, 71, 88
cfa, 42, 45, 104, 187, 189, 190, 193, 194
change, 33, 34–37
change_by, 34–36, 37
changes, 34, 34, 36, 37
changes_by, 34, 35, 35, 37
chisq.test, 143, 144, 149, 152, 155, 157,

160, 164

ci.R2, 112, 124
cohen.d, 114, 115, 126, 127
cohen.d.ci, 114, 117, 125, 129
colMeans, 38
colMeans_if, 38, 39, 41, 175, 179
colNA, 21, 39, 97, 176, 177, 197
colSums, 41
colSums_if, 38, 40, 175, 179
complete.cases, 144, 145
composite, 41, 46, 65
composites, 43, 44, 68
confint, 46
confint.boot, 27
confint2, 46, 47, 49
confint2.boot, 46, 47, 47, 49, 65, 67, 85, 86
confint2.default, 46, 47, 49, 140
cor, 23, 51–55, 59, 60, 62
cor_by, 54, 58, 62
cor_miss, 60
cor_ml, 56, 58, 61, 89, 91
corp, 9, 11, 50, 54, 59
corp_by, 5, 9, 11, 52, 58, 59
corp_miss, 54
corp_ml, 9, 11, 56, 62
corr.test, 50, 52, 63
cov, 63, 65, 67
covs_test, 62
cronbach, 6, 43, 64, 68, 85
cronbachs, 46, 65, 66, 87

daply, 18
ddply, 18
decompose, 68, 71
decomposes, 69, 69
deff, 71, 73
deffs, 72, 72
describe, 74, 75, 136
describe_ml, 74
dlply, 27, 28, 191, 192
dum2nom, 75, 141

204

INDEX 205

fitMeasures, 42, 45, 189
freq, 77, 80, 83, 131
freq_by, 78, 80, 81, 82, 83
freqs, 78, 79, 81
freqs_by, 78, 80, 80, 81, 83

gtheory, 7, 8, 84, 87, 91
gtheory_ml, 85, 89, 90
gtheorys, 8, 9, 85, 86, 89
gtheorys_ml, 87, 88, 91

hist.boot, 47, 48

ICC, 84–87, 95, 96
icc_11, 72, 93
icc_all_by, 93, 94, 94
iccs_11, 73, 92, 94
ifelse, 166
is.dummy, 155
is.na, 39, 176, 177, 197

lavaan, 104, 190, 193, 194
lavInspect, 193
lavOptions, 42, 45, 187, 189, 193, 194
length, 97, 98
length_by, 97, 98
lengths_by, 97, 98
lme, 23, 71, 73, 92–94
lmeControl, 23
lmer, 23, 71, 73, 92–96
lmerControl, 23
long2wide, 89, 99, 199

make.dummy, 101, 102
make.dumNA, 60, 101, 102
make.fun_if, 103, 128, 191
make.latent, 104
make.product, 105
mean.default, 128
mean_change, 107, 109, 110, 119, 122, 127,

130
mean_compare, 112, 121
mean_diff, 110, 121, 122, 124, 124, 130
mean_if, 104, 127, 191, 197
mean_test, 118, 121, 127, 129
means_change, 107, 115, 118, 121
means_compare, 110, 124
means_diff, 5, 109, 112, 113, 115, 118, 127
means_test, 109, 115, 116, 130

melt.data.frame, 198
mlr, 88, 90, 91
mode, 131
mode2, 131
model.matrix.default, 141

n_compare, 143
ncases, 132, 133, 145
ncases_by, 133, 136–138, 142, 143
ncases_desc, 134
ncases_ml, 136, 138, 143
ngrp, 138, 143
nhst, 49, 139
nom2dum, 5, 76, 140
nrow, 132, 142
nrow_by, 133, 138, 141, 143
nrow_ml, 136–138, 142

oneway.test, 110, 112, 121, 124

parameterEstimates, 42, 45
partial.cases, 132, 137, 144
phi, 154, 162
pomp, 145, 148
pomps, 146, 146
prop.test, 148, 150, 151, 154, 156, 157, 159,

160, 162, 163, 165
prop_compare, 150, 157
prop_diff, 144, 152, 154, 159, 160, 165
prop_test, 156, 163
props_compare, 148, 159
props_diff, 150, 151, 156, 162
props_test, 144, 154, 165

quantile, 27
quest (quest-package), 4
quest-package, 4

recode, 166–168, 173
recode2other, 165
recodes, 4, 167, 174
rename, 169
renames, 168
reorder.default, 170
reorders, 170
reshape, 100, 198, 199
revalid, 171, 173, 195, 196
revalids, 4, 172, 172, 195, 196
reverse, 173, 174

206 INDEX

reverse.code, 173, 174
reverses, 5, 168, 173, 174
rowMeans, 175
rowMeans_if, 38, 41, 175, 176, 179, 180, 182
rowNA, 4, 39, 145, 176, 177, 197
rowsNA, 39, 176, 177, 197
rowSums, 179
rowSums_if, 38, 41, 175, 178, 180, 182

scale.default, 29, 30, 32, 33
score, 179, 182
scoreItems, 180, 182
scores, 4, 180, 181
sem, 104
shift, 33, 34, 182, 185–187
shift_by, 37, 69, 183, 185, 186, 186
shifts, 4, 34, 35, 183, 184, 186, 187
shifts_by, 36, 71, 183, 185, 185, 187
stack, 96
stack2, 198, 199
statsBy, 56, 58, 61, 62, 89, 91
str2str, 5
sum, 191
sum_if, 104, 128, 190
summary_ucfa, 187, 194

t.test, 107, 109, 113, 115, 116, 118, 119,
121, 124, 127, 129, 130

table, 77, 78, 80–83, 131
tapply, 191, 192
tapply2, 28, 191
tetrachoric, 152, 154, 160, 162
try_fun, 95

ucfa, 190, 193
unstack2, 91, 99, 100

valid_test, 172, 173, 195, 196
valids_test, 172, 173, 195, 196
vecNA, 5, 39, 176, 177, 197

wide2long, 4, 100, 198
winsor, 201, 202, 203
winsors, 202, 202

Yule, 154, 162

	quest-package
	.cronbach
	.cronbachs
	.gtheory
	.gtheorys
	add_sig
	add_sig_cor
	agg
	aggs
	agg_dfm
	amd_bi
	amd_multi
	amd_uni
	auto_by
	ave_dfm
	boot_ci
	by2
	center
	centers
	centers_by
	center_by
	change
	changes
	changes_by
	change_by
	colMeans_if
	colNA
	colSums_if
	composite
	composites
	confint2
	confint2.boot
	confint2.default
	corp
	corp_by
	corp_miss
	corp_ml
	cor_by
	cor_miss
	cor_ml
	covs_test
	cronbach
	cronbachs
	decompose
	decomposes
	deff
	deffs
	describe_ml
	dum2nom
	freq
	freqs
	freqs_by
	freq_by
	gtheory
	gtheorys
	gtheorys_ml
	gtheory_ml
	iccs_11
	icc_11
	icc_all_by
	lengths_by
	length_by
	long2wide
	make.dummy
	make.dumNA
	make.fun_if
	make.latent
	make.product
	means_change
	means_compare
	means_diff
	means_test
	mean_change
	mean_compare
	mean_diff
	mean_if
	mean_test
	mode2
	ncases
	ncases_by
	ncases_desc
	ncases_ml
	ngrp
	nhst
	nom2dum
	nrow_by
	nrow_ml
	n_compare
	partial.cases
	pomp
	pomps
	props_compare
	props_diff
	props_test
	prop_compare
	prop_diff
	prop_test
	recode2other
	recodes
	renames
	reorders
	revalid
	revalids
	reverse
	reverses
	rowMeans_if
	rowNA
	rowsNA
	rowSums_if
	score
	scores
	shift
	shifts
	shifts_by
	shift_by
	summary_ucfa
	sum_if
	tapply2
	ucfa
	valids_test
	valid_test
	vecNA
	wide2long
	winsor
	winsors
	Index

