
Package ‘quadform’
May 14, 2024

Type Package

Title Efficient Evaluation of Quadratic Forms

Version 0.0-2

Depends R (>= 3.0.1)

Imports mathjaxr

Suggests testthat

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description A range of quadratic forms are evaluated, using efficient methods.
Unnecessary transposes are not performed. Complex values are handled
consistently.

License GPL

URL https://github.com/RobinHankin/quadform

BugReports https://github.com/RobinHankin/quadform/issues

RdMacros mathjaxr

R topics documented:

quad.form . 1

Index 5

quad.form Evaluate a quadratic form efficiently

Description

Given a square matrix M of size n × n, and a matrix x of size n × p (or a vector of length n),
evaluate various quadratic forms.

The archetype is quad.form(M,x) for real or complex square matrix M and vector or matrix x.
This evaluates Conj(t(x)) %*% M %*% x but using crossprod(crossprod(M,Conj(x)),x) thus
avoiding taking a needless transpose.

1

https://github.com/RobinHankin/quadform
https://github.com/RobinHankin/quadform/issues

2 quad.form

Usage

quad.form(M, x)
quad.form.inv(M, x)
quad.form.chol(chol,x)
quad.tform(M, x)
quad3.form(M,left,right)
quad3.tform(M,left,right)
quad.tform.inv(M,x)
quad.diag(M,x)
quad.tdiag(M,x)
quad3.diag(M,left,right)
quad3.tdiag(M,left,right)
cprod(x,y)
tcprod(x,y)
ht(x)

Arguments

M Square matrix of size n× n

x,y Matrix of size n× p, or vector of length n

chol Lower triangular Cholesky decomposition of the quadratic form, see details

left,right In function quad3.form(), matrices with n rows and arbitrary number of columns

Details

ht(x) x∗ = xT Conj(t(x)) ht(x)
cprod(x,y) x∗y ht(x) %*% y cp()
tcprod(x,y) xy∗ x %*% ht(y) tcp()
quad.form(M,x) x∗Mx ht(x) %*% M %*% x qf()
quad.form.inv(M,x) x∗M−1x ht(x) %*% solve(M) %*% x qfi()
quad.tform(M,x) xMx∗ x %*% A %*% ht(x) qt()
quad.tform.inv(M,x) xM−1x∗ x %*% solve(M) %*% ht(x) qti()
quad3.form(M,l,r) l∗Mr t(l) %*% M %*% r q3()
quad3.form.inv(M,l,r) l∗M−1r t(l) %*% solve(M) %*% r q3i()
quad3.tform(M,l,r) lMr∗ l %*% M %*% t(r) q3t()
quad.diag(M,x) diag(x∗Mx) diag(quad.form(M,x)) qd()
quad.tdiag(M,x) diag(xMx∗) diag(quad.tform(M,x)) qtd()
quad3.diag(M,l,r) diag(l∗Mr) diag(quad3.form(M,l,r)) q3d()
quad3.tdiag(M,l,r) diag(lMr∗) diag(quad3.tform(M,l,r)) q3td()
quad.trace(M,x) tr(x∗Mx) tr(quad.form(M,x)) qt()
quad.ttrace(M,x) tr(xMx∗) tr(quad.tform(M,x)) qtt()

In the above, x∗ denotes the complex conjugate of the transpose, also known as the Hermitian
transpose (this only matters when considering complex numbers).

These various functions generally avoid taking needless expensive transposes in favour of using
nested crossprod() and tcrossprod() calls. For example, the “meat” of quad.form() is just
crossprod(crossprod(M,Conj(x)),x).

Functions such as quad.form.inv() avoid taking a matrix inverse. The meat of quad.form.inv(),
for example, is cprod(x, solve(M, x)). Many people have stated things like “Never invert a

quad.form 3

matrix unless absolutely necessary”. But I have never seen a case where quad.form.inv(M,x) is
faster than quad.form(solve(M),x).

One motivation for the package is to return consistent results with complex arguments. Note, for
example, that base::crossprod(x,y) evaluates t(x) %*% y and not, as one would almost al-
ways want, Conj(t(x)) %*% y. Function cprod(), unlike crossprod(), is consistent and returns
Conj(t(x)) %*% y [or ht(x) %*% y]; internally it is essentially crossprod(Conj(x), y).

Function quad.form.chol() interprets argument chol as the lower triangular Cholesky decompo-
sition of the quadratic form. Remember that M.lower %*% M.upper == M, and chol() returns the
upper triangular matrix, so one needs to use the transpose t(chol(M)) in calls. If the Cholesky
decomposition of M is available, then using quad.form.chol() and supplying chol(M) should
generally be faster (for large matrices) than calling quad.form() and using M directly. The time
saving is negligible for matrices smaller than about 50× 50, even if the overhead of computing the
decomposition is ignored.

Functions quad3.foo() take three arguments: a matrix M and two other vectors l and r [or left
and right]. For these functions, M is not necessarily square although of course the matrices have to
be compatible.

Functions quad3.form_ab() and quad3.form_bc() are helper functions not really intended for the
end-user. They return mathematically identical results but differ in the bracketing order of their op-
erations: quad3.form_ab(M,l,r) returns (l∗M) r and quad3.form_bc(M,l,r) returns l∗ (Mr).
The mnemonic for their names is derived from the first multiplication when calculating (ab)c and
a(bc). Note that quad3.form_ab(M,l,r) returns crossprod(crossprod(M,Conj(l)),r) rather
than the mathematically equivalent cprod(cprod(M,l),r) on efficiency grounds (only a single
conjugate is taken).

Function quad3.form() dispatches to either quad3.form_ab() or quad3.form_bc() depending
on the dimensions of its argument as per the efficiency discussion at inst/quadform3test.Rmd.
Similar considerations apply to quad3.tform(), quad3.tform_ab(), and quad3.tform_bc().

Terse forms [qf() for quad.form(), qti() for quad.tform.inv(), etc] are provided for the perl
golfers among us.

Value

Generally, return a (dropped) matrix, real or complex as appropriate

Note

These functions are used extensively in the emulator and calibrator packages, primarily in the
interests of elegant code, but also speed. For the problems I usually consider, the speedup (of
quad.form(M,x) over t(x) %*% M %*% x, say) is marginal at best.

Author(s)

Robin K. S. Hankin

Examples

jj <- matrix(rnorm(80),20,4)
M <- crossprod(jj,jj)
M.lower <- t(chol(M))
x <- matrix(rnorm(8),4,2)

jj.1 <- t(x) %*% M %*% x
jj.2 <- quad.form(M,x)

https://CRAN.R-project.org/package=emulator
https://CRAN.R-project.org/package=calibrator

4 quad.form

jj.3 <- quad.form.chol(M.lower, x)
print(jj.1)
print(jj.2)
print(jj.3)

Make two Hermitian positive-definite matrices:
L <- matrix(c(1,0.1i,-0.1i,1),2,2)
LL <- diag(11)
LL[2,1] <- -(LL[1,2] <- 0.1i)

z <- matrix(rnorm(22) + 1i*rnorm(22),2,11)

quad.diag(L,z) # elements real because L is HPD
quad.tdiag(LL,z) # ditto

Now consider accuracy:
quad.form(solve(M),x) - quad.form.inv(M,x) # should be zero
quad.form(M,x) - quad.tform(M,t(x)) # should be zero
quad.diag(M,x) - diag(quad.form(M,x)) # should be zero
diag(quad.form(L,z)) - quad.diag(L,z) # should be zero
diag(quad.tform(LL,z)) - quad.tdiag(LL,z) # should be zero

Index

∗ array
quad.form, 1

cp (quad.form), 1
cprod (quad.form), 1

ht (quad.form), 1

q3 (quad.form), 1
q3d (quad.form), 1
q3i (quad.form), 1
q3t (quad.form), 1
q3td (quad.form), 1
qd (quad.form), 1
qf (quad.form), 1
qfi (quad.form), 1
qt (quad.form), 1
qtd (quad.form), 1
qti (quad.form), 1
qtr (quad.form), 1
qttr (quad.form), 1
quad.diag (quad.form), 1
quad.form, 1
quad.tdiag (quad.form), 1
quad.tform (quad.form), 1
quad.trace (quad.form), 1
quad.ttrace (quad.form), 1
quad3.diag (quad.form), 1
quad3.form (quad.form), 1
quad3.form_ab (quad.form), 1
quad3.form_bc (quad.form), 1
quad3.tdiag (quad.form), 1
quad3.tform (quad.form), 1
quad3.tform_ab (quad.form), 1
quad3.tform_bc (quad.form), 1
quadform (quad.form), 1

tcp (quad.form), 1
tcprod (quad.form), 1

5

	quad.form
	Index

