Package 'qtlhot'

October 13, 2022

Version 1.0.4

Date 2018-04-05

Author Elias Chaibub Neto <echaibub@hotmail.com> and Brian S Yandell <brian.yandell@wisc.edu>

Title Inference for QTL Hotspots

Description Functions to infer co-mapping trait hotspots and causal models.

Chaibub Neto E, Keller MP, Broman AF, Attie AD, Jansen RC, Broman KW, Yandell BS (2012) Quantile-based permutation thresholds for QTL hotspots. Genetics 191 : 1355-1365. <doi:10.1534/genetics.112.139451>. Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS (2013)

Modeling causality for pairs of phenotypes in system genetics. Genetics 193 : 1003-1013. <doi:10.1534/genetics.112.147124>.

Maintainer Brian S. Yandell <brian.yandell@wisc.edu>

Depends stats,qtl,mnormt,utils,corpcor, R (>= 2.10)

LazyLoad yes

LazyData yes

License GPL (>= 2)

URL http://www.stat.wisc.edu/~yandell/statgen

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-04-05 21:50:55 UTC

R topics documented:

add.phenos	2
CMSTtests	3
filter.threshold	4
GetCandReg	6
GetCommonQtls	8
highlod	9

add.phenos

hotperm	10
hotsize	12
parallel.qtlhot	13
PrecTpFpMatrix	14
sim.hotspot	16
SimCrossCausal	18
ww.perm	19
	22

Index

add.phenos

Add phenotypes to cross object.

Description

Add phenotypes to cross object by checking index.

Usage

add.phenos(cross, newdata = NULL, index = NULL)

Arguments

cross	object of class cross; see read. cross
newdata	data frame with row names matching values of phenotype identified by index for object cross
index	character string name of phenotype in object cross; if NULL, then newdata must be of same size as cross with phenotypes in order

Details

The name index must be a phenotype in the cross object. The row names of newdata are matched with values of index.

Value

object of class cross with added phenotypes

Author(s)

Brian S. Yandell, <byandell@wisc.edu>

See Also

read.cross

CMST tests

Examples

```
## Not run:
data(hyper)
x <- data.frame(x = rnorm(nind(hyper)))
hyperx <- add.phenos(hyper, x)</pre>
```

End(Not run)

CMSTtests

Perform CMST Tests on cross object

Description

Performs 6 separate CMST tests (3 versions, 2 penalties).

Usage

```
CMSTtests(cross, pheno1, pheno2, Q.chr, Q.pos,
  addcov1 = NULL, addcov2 = NULL, intcov1 = NULL, intcov2 = NULL,
  method = c("par", "non.par", "joint", "all"),
  penalty = c("bic", "aic", "both"), verbose = FALSE)
CMSTtestsList(cross, pheno1, pheno2, Q.chr, Q.pos,
  addcov1 = NULL, addcov2 = NULL, intcov1 = NULL, intcov2 = NULL,
  method = c("par", "non.par", "joint", "all"),
  penalty = c("bic", "aic", "both"), verbose = TRUE)
```

Arguments

cross	object of class cross	
pheno1	first phenotype column number or character string name	
pheno2	second phenotype column number or character string name; if more than one then all phenotypes will be tested against pheno1	
Q.chr	QTL chromosome (number or label)	
Q.pos	QTL position in cM	
addcov1, addcov2		
	additive covariates for first and second phenotype, respectively	
intcov1, intcov2		
	interactive covariates for first and second phenotype, respectively	
method	test method; see details	
penalty	type of penalty; see details	
verbose	verbose printout if TRUE	

Details

Explain method and penalty here.

References

Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS, Causal model selection hypothesis tests in systems genetics. Genetics (in review).

See Also

CMSTCross, PrecTpFpMatrix, FitAllTests

Examples

```
data(CMSTCross)
nms <- names(CMSTCross$pheno)</pre>
out1 <- CMSTtests(CMSTCross,</pre>
                   pheno1 = nms[1],
                   pheno2 = nms[2],
                   Q.chr = 1,
                   Q.pos = 55,
                   addcov1 = NULL,
                   addcov2 = NULL,
                   intcov1 = NULL,
                   intcov2 = NULL,
                   method = "all",
                   penalty = "both")
out1[1:6]
out1[7]
out1[8:12]
out1[13:17]
## list of phenotypes
out2 <- CMSTtests(CMSTCross,</pre>
                   pheno1 = nms[1],
                   pheno2 = nms[-1],
                   Q.chr = 1,
                   Q.pos = 55,
                   addcov1 = NULL,
                   addcov2 = NULL,
                   intcov1 = NULL,
                   intcov2 = NULL,
                   method = "par",
                   penalty = "bic")
```

out2

filter.threshold Summary of threshold results

Description

Summary of threshold results.

filter.threshold

Usage

```
filter.threshold(cross, pheno.col, latent.eff, res.var, lod.thrs, drop.lod = 1.5,
    s.quant, n.perm, alpha.levels, qh.thrs, ww.thrs, addcovar = NULL,
    intcovar = NULL, verbose = FALSE, ...)
```

Arguments

cross	object of class cross; see read. cross
pheno.col	phenotype columns used for filtering thresholds
latent.eff	ratio of latent effect SD to residual SD
res.var	residual variance (=SD^2)
lod.thrs	LOD threshold values for range of significance (alpha) levels
drop.lod	LOD drop from max LOD to keep in analysis
s.quant	vector of $1:\!Nmax$ with $Nmax$ the maximum hotspot size to be considered
n.perm	number of permutations
alpha.levels	range of significance levels; same length as lod.thrs
qh.thrs	Results of call to hotperm
ww.thrs	Results of call to ww.perm
addcovar	additive covariates as vector or matrix; see scanone
intcovar	interactive covariates as vector or matrix; see scanone
verbose	verbose output if TRUE
	arguments passed along to scanone

Value

List with items

NL.thrs N.thrs WW.thrs NL N.counts WW.counts

References

Manichaikul A, Dupuis J, Sen S, Broman KW (2006) Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus. Genetics 174: 481-489.

See Also

hotperm, ww.perm, scanone

GetCandReg

Description

Get chromosome (phys.chr) and physical position in cM (phys.pos), along with the LOD score (peak.lod) at the peak position (peak.pos), and the chromosome where the peak is located (peak.chr). Some candidates may map to the same chromosome where they are physically located.

Usage

```
GetCandReg(highobj, annot, traits)
GetCisCandReg(highobj, cand.reg, lod.thr = NULL)
GetCoMappingTraits(highobj, cand.reg)
```

Arguments

highobj	data frame from highlod, which is sparse summary of high LODs in large scanone object
annot	data frame with annotation information; must have first column as unique iden- tifier, third column as chromosome, and fifth column as position in cM; typically column 2 has gene name, and column 4 has position in Mb
traits	names of traits to examine as candidate regulators; names must correspond to phenotypes in cross object
cand.reg	data frame with candidate regulator; see value section below
lod.thr	LOD threshold; restrict to intervals above this value if not NULL

Details

Traits that map to positions close to their physical locations are said to map in cis (local linkages). Traits that map to positions away from their physical locations are said to map in trans (distal linkages). There is no unambiguous way to determine how close a trait needs to map to its physical location in order to be classified as cis. Our choice is to classify a trait as cis if the 1.5-LOD support interval (Manichaikul et al. 2006) around the LOD peak contains the trait's physical location, and if the LOD score at its physical location is higher the the LOD threshold. The function GetCisCandReg determines which of the candidate regulators map in cis. The function GetCoMappingTraits returns a list with the putative targets of each trait. A trait is included in the putative target list of a trait when its LOD peak is greater than lod. thr and the drop LOD support interval around the peak contains the location of the trait's QTL. The function JoinTestOutputs currently relies on external files that contain results of FitAllTests. It needs to be rewritten to save space.

GetCandReg

Value

GetCoMappingTraits returns a list with each element being the names of co-mapping traits for a particular name in traits. GetCandReg returns a data frame while GetCisCandReg returns a list with a similar candidate regulator data frame as the element cis.reg, and the index of trait names as the element cis.index. The elements of the candidate regulator data frame are as follows (peak.pos.lower and peak.pos.upper only for GetCisCandReg):

gene	name of trait, which might be a gene name	
phys.chr	chromosome on which gene physically resides	
phys.pos	physical position (in cM)	
peak.chr	chromosome where peak LOD is located	
peak.pos	position of peak (in cM)	
peak.lod	LOD value at peak	
<pre>peak.pos.lower,peak.pos.upper</pre>		
	lower and upper bounds of the 1.5-LOD support interval around peak.pos	

Author(s)

Elias Chaibub Neto

References

Manichaikul et al. (2006) Genetics

See Also

highlod, FitAllTests, scanone

Examples

```
## data(CMSTCross) is loaded lazily.
CMSTscan <- scanone(CMSTCross, pheno.col = 1:3, method = "hk")
CMSThigh <- highlod(CMSTscan)
traits <- names(CMSTCross$pheno)
annot <- data.frame(name = traits, traits = traits, chr = rep(1, 3),
Mb.pos = c(55,10,100))
annot$cM.pos <- annot$Mb.pos
cand.reg <- GetCandReg(CMSThigh, annot, traits)
cis.cand.reg <- GetCisCandReg(CMSThigh, cand.reg)
comap.targets <- GetCoMappingTraits(CMSThigh, cand.reg)</pre>
```

GetCommonQtls

Description

Perform joint QTL mapping for phenotypes with marginal LOD peak positions higher than LOD threshold and within set distance of each other

Usage

```
GetCommonQtls(cross, pheno1, pheno2, thr = 3, peak.dist = 5,
addcov1 = NULL, addcov2 = NULL, intcov1 = NULL, intcov2 = NULL)
```

Arguments

cross	object of class cross	
pheno1	first phenotype column number or character string name	
pheno2	second phenotype column number or character string name; if more than one, then all phenotypes will be tested against pheno1	
thr	LOD threshold	
peak.dist	maximal peak distance to be considered the same peak (in cM)	
addcov1, addcov2		
	additive covariates for first and second phenotype, respectively	
intcov1, intcov2		
	interactive covariates for first and second phenotype, respectively	

References

Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS, Causal model selection hypothesis tests in systems genetics. Genetics (in review).

See Also

CMSTCross

Examples

commqtls

highlod

Description

Pull high LOD values with chr and pos.

Usage

Arguments

scans	object of class scanone
lod.thr	LOD threshold
drop.lod	LOD drop from max to keep for support intervals
extend	extend support interval just past drop.lod; matches behavior of lodint when \ensuremath{TRUE}
restrict.lod	restrict to loci above LOD threshold if TRUE; matches behavior of lodint when FALSE (default)
chr	chromosome identifier
pos	position, or range of positions, in cM
x,object	object of class highlod
probs	probability levels for quantiles (should be > 0.5)
n.quant	maximum of s.quant
n.pheno	number of phenotypes considered
max.quantile	return only quantiles of max LOD across genome if TRUE
window	size of window for smoothing hotspot size
quant.level	vector of LOD levels for 1 up to length(quant.level) size hotspots
sliding	plot as sliding hotspot if TRUE
	arguments passed along

Details

The highlod condenses a scanone object to the peaks above a lod.thr and/or within drop.lod of such peaks. The pull.highlod pulls out the entries at a particular genomic location or interval of locations. Summary, print, plot, max and quantile methods provide ways to examine a highlod object.

Value

Data frame with

row	row number in scanone object
phenos	phenotype column number
lod	LOD score for phenotype at locus indicated by row

Author(s)

Brian S Yandell and Elias Chaibub Neto

See Also

highlod, hotperm

Examples

```
example(include.hotspots)
scan1 <- scanone(cross1, pheno.col = 1:1000, method = "hk")
high1 <- highlod(scan1, lod.thr = 2.11, drop.lod = 1.5)
pull.highlod(high1, chr = 2, pos = 24)
summary(high1, lod.thr = 2.44)
max(high1, lod.thr = seq(2.11, 3.11, by = .1))</pre>
```

hotperm

Conduct NL and N permutation tests

Description

Conduct NL and N permutation tests.

Usage

```
hotperm(cross, n.quant, n.perm, lod.thrs, alpha.levels, drop.lod = 1.5,
window = NULL, verbose = FALSE, init.seed = 0,
addcovar = NULL, intcovar = NULL, ...)
data(hotperm1)
## S3 method for class 'hotperm'
print(x, ...)
## S3 method for class 'hotperm'
```

10

hotperm

```
summary(object, quant.levels, ...)
## S3 method for class 'hotperm'
quantile(x, probs, ..., lod.thr = NULL)
## S3 method for class 'summary.hotperm'
print(x, ...)
```

Arguments

cross	object of class cross
n.quant	maximum of s.quant
n.perm	number of permutations
lod.thrs	vector of LOD thresholds
alpha.levels	vector of significance levels
quant.levels	quantile levels, as number of traits, to show in summary; default is 1, 2, 5, 10, up to maximum recorded
drop.lod	LOD drop amount for support intervals
window	window size for smoothed hotspot size
verbose	verbose output if TRUE
init.seed	initial seed for pseudo-random number generation
x,object	object of class hotperm or summary.hotperm
probs	probability levels for quantiles (1-probs if all > 0.5); default is alpha.levels
lod.thr	restrict to values above this if not NULL
addcovar	additive covariates as vector or matrix; see scanone
intcovar	interactive covariates as vector or matrix; see scanone
	arguments passed along to scanone

Author(s)

Elias Chaibub Neto and Brian S Yandell

Examples

hotsize

```
verbose = FALSE)
save(hotperm1, file = "hotperm1.RData", compress = TRUE)
## End(Not run)
summary(hotperm1)
```

hotsize

Hotspot size routines.

Description

Determine hotspot sizes and display. Use individual threshold and quantile thresholds as provided.

Usage

```
hotsize(hotobject, ...)
## S3 method for class 'scanone'
hotsize(hotobject, lod.thr = NULL, drop.lod = 1.5, ...)
## S3 method for class 'highlod'
hotsize(hotobject, lod.thr = NULL, window = NULL,
    quant.level = NULL, ...)
## S3 method for class 'hotsize'
print(x, ...)
## S3 method for class 'hotsize'
summary(object, ...)
## S3 method for class 'hotsize'
plot(x, ylab = "counts", quant.axis = pretty(x$max.N),
    col = c("black", "red", "blue"), by.chr = FALSE, maps = NULL,
    title = "",...)
```

Arguments

hotobject	object of class scanone or highlod
lod.thr	LOD threshold
drop.lod	LOD drop from max to keep for support intervals
window	window width in cM for smoothing hotspot size; not used if 0 or NULL
quant.level	vector of LOD levels for 1 up to length(quant.level) size hotspots
x,object	object of class hotsize
ylab	label for vertical plot axis
quant.axis	hotspot sizes for quantile axis (vertical on right side of plot)
col	col of hotspot size, smoothed hotspot size, and sliding hotspot size
by.chr	separate plot by chromosome if TRUE
maps	if not NULL, list of objects of class map to use for rugs on top and bottom of plot
title	title for plot
	arguments passed along to scanone methods

12

parallel.qtlhot

Value

hotsize methods return an object of class hotsize, which is essentially an object of class summary.scanone with additional attributes for lod.thr, window, and quant.level.

Author(s)

Brian S Yandell and Elias Chaibub Neto

See Also

highlod, hotperm

Examples

```
example(highlod)
hots1 <- hotsize(high1)
summary(hots1)
plot(hots1)
```

parallel.qtlhot Code for parallelizing R/qtlhot.

Description

Code for parallelizing R/qtlhot. See installed parallel directory for proper use. There is apparently an S3 parallel method, so doc has to be as shown below, even though it is called as parallel.qtlhot.

Usage

```
## S3 method for class 'qtlhot'
parallel(x, data = 1, ..., dirpath = ".")
qtlhot.phase0(dirpath, init.seed = 92387475, len = rep(400,16), n.mar = 185, n.ind = 112,
    n.phe = 100, latent.eff = 0, res.var = 1, lod.thrs, ...)
big.phase0(dirpath, cross, trait.file, trait.matrix, droptrait.names = NULL,
    keeptrait.names = NULL, lod.thrs, sex = "Sex", trait.index,
    batch.effect = NULL, size.set = 250, offset = 0, subset.sex = NULL, verbose = TRUE)
```

Arguments

х	phase of parallel processing (1,2,3)
data	index for parallel processing (1,2,)
	additional arguments passed along
dirpath	directory path as character string
init.seed	initial seed for pseudorandom number generation
len	vector of chromosome lengths for simulated map
n.mar	number of markers for simulated map

	n.ind	number of individuals for simulated cross
	n.phe	number of phenotypes for simulated phenotypes
	latent.eff	size of latent effect
	res.var	magnitude of residual variance
	lod.thrs	vector of LOD thresholds to examine
	cross	object of class cross
	trait.file	character string name of trait file
	trait.matrix	character string name of trait matrix
droptrait.names		
		vector of character strings for traits to drop (none if NULL)
keeptrait.names		
		vector of character strings for traits to keep (keep all if $\ensuremath{NULL})$
	sex	character string name of phenotype for sex
	trait.index	vector of character strings for trait names
	batch.effect	character string for batch effect (none if NULL)
	size.set	maximum size of set of traits to scan at one time
	offset	offset for name of trait RData files
	subset.sex	string of sex to subset on (both sexes if NULL)
	verbose	verbose output if TRUE

Author(s)

Brian S Yandell and Elias Chaibub Neto

See Also

read.cross

PrecTpFpMatrix Determine false positive and true positive rates for known targets.

Description

Determine how well different tests do to predict candidates of regulation.

Usage

```
FitAllTests(cross, pheno1, pheno2, Q.chr, Q.pos, verbose = TRUE)
JoinTestOutputs(comap, tests, file)
PrecTpFpMatrix(alpha, val.targets, all.orfs, tests, cand.reg, cis.cand.reg)
p.adjust.np(tests, method = "BH")
```

PrecTpFpMatrix

Arguments

cross	object of class cross
pheno1	first phenotype column number or character string name
pheno2	second phenotype column number or character string name; if more than one, then all phenotypes will be tested against pheno1
Q.chr	QTL chromosome (number or label)
Q.pos	QTL position in cM
verbose	verbose printout if TRUE
comap	list result of GetComappingTraits
alpha	significance levels at which summaries are computed
val.targets	validated targets of candidate regulators
all.orfs	all trait names
tests	list object as list of FitAllTests results, or of joined output created by JoinTestsOutputs
file	prefix for file names when running FitAllTests in parallel and saving test re- sults in separate files
cand.reg	object from GetCandReg
cis.cand.reg	object from GetCisCandReg
method	method for p-value adjustment; see p.adjust

Details

FitAllTests invokes 7 tests. The hidden routine CitTests is invoked by call to FitAllTests; this is hidden because we do not recommend its use.

JoinTestOutputs joins results of FitAllTests, either from a list tests or from a collection of files prefixed by file. The joined tests from JoinTestOutputs are summarized with PrecTpFpMatrix using the biologically validated true positives, false positives and precision, for the inferred causal relations. We define a true positive as a statistically significant causal relation between a gene and a putative target gene when the putative target gene belongs to the known signature of the gene. Similarly, we define a false positive as a statistically significant causal relation between a gene and a putative target gene when the target gene does not belong to the signature. (For the AIC and BIC methods that do not provide a p-value measuring the significance of the causal call, we simply use the detected causal relations in the computation of true and false positives). The validated precision is computed as the ratio of true positives by the sum of true and false positives. The PrecTpFpMatrix computes these measures to both all genes, and to cis genes only. Simulations suggest only non-parametric tests need to be adjusted using Benjamini-Hochberg via p.adjust.np.

Value

List containing

Prec1,Prec2	matrix of precision with rows for significance level and columns for test; first is for all, second is for cis candidates only
Tp1,Tp2	matrix of true positive rate with rows for significance level and columns for test; first is for all, second is for cis candidates only
Fp1,Fp2	matrix of false positive rate with rows for significance level and columns for test; first is for all, second is for cis candidates only

Author(s)

Elias Chaibub Neto

See Also

GetCandReg, CMSTtests, p.adjust

Examples

sim.hotspot

Wrapper routine for simulations.

Description

Wrapper routine for simulations

Usage

```
sim.hotspot(nSim, cross, n.pheno, latent.eff, res.var = 1, n.quant, n.perm,
alpha.levels, lod.thrs, drop.lod = 1.5, verbose = FALSE)
mySimulations(...)
sim.null.cross(chr.len = rep(400, 16), n.mar = 185, n.ind = 112,
type = "bc", n.pheno = 6000, latent.eff = 1.5, res.var = 1,
init.seed = 92387475)
sim.null.pheno.data(cross, n.pheno, latent.eff, res.var)
include.hotspots(cross, hchr, hpos, hsize, Q.eff, latent.eff,
lod.range.1, lod.range.2, lod.range.3, res.var=1, n.pheno, init.seed)
```

16

sim.hotspot

Arguments

nSim	Number of simulated sets of phenotypes to create. See details.
cross	Object of class cross. See read. cross.
n.pheno	Number of traits, or phenotypes, to simulate for cross object.
latent.eff	Strength of latent effect, which is included in all traits. See sim.null.cross.
res.var	Residual variance for traits. Should not affect results.
n.quant	maximum size of hotspots examined; ideally large enough to exceed the largest Breitling alpha critical value.
n.perm	Number of permutations to perform per realization. Good idea to do 1000, but this takes time.
alpha.levels	Vector of significance levels.
lod.thrs	Vector of LOD thresholds, typically single-trait permutation thresholds for var- ious significance levels.
drop.lod	Drop in LOD score examined. LODs below this drop from the maximum for a chromosome will not be scored.
init.seed	initial seed for pseudo-random number generation
chr.len	vector of chromosome lengths
n.mar	number of markers
n.ind	number of individuals
type	type of cross
hchr,hpos,hsize	
	vectors for hotspot chromosomes, positions, and sizes
Q.eff	QTL effect
lod.range.1,loo	d.range.2,lod.range.3
	2-vectors of LOD ranges for multiple purposes
verbose	Verbose output if TRUE. More detailed output if 2.
	Arguments passed directly to sim.hotspot.

Details

Simulate nSim realizations of cross object with n.pheno phenotypes with correlation latent.eff. All simulations use the same genotypes in the cross object.

Value

sim.null.cross simulates an object of class cross. sim.null.pheno.data simulates a data frame of phenotypes. sim.hotspot uses these other routines to simulate a hotspot, returning an list object.

Author(s)

Elias Chaibub Neto and Brian S. Yandell

See Also

sim.null.cross, read.cross.

Examples

```
ncross1 <- sim.null.cross(chr.len = rep(100, 4),</pre>
                           n.mar = 51,
                           n.ind = 100,
                           type = "bc",
                           n.phe = 1000,
                           latent.eff = 3,
                           res.var = 1,
                           init.seed = 123457)
cross1 <- include.hotspots(cross = ncross1,</pre>
                            hchr = c(2, 3, 4),
                            hpos = c(25, 75, 50),
                            hsize = c(100, 50, 20),
                            Q.eff = 2,
                            latent.eff = 3,
                            lod.range.1 = c(2.5, 2.5),
                            lod.range.2 = c(5, 8),
                            lod.range.3 = c(10, 15),
                            res.var = 1,
                            n.phe = 1000,
                            init.seed = 12345)
```

SimCrossCausal Simulate Cross for Causal Tests

Description

Creates cross with certain pattern of dependence across phenotypes.

Usage

```
SimCrossCausal(n.ind, len, n.mar, beta, add.eff, dom.eff,
sig2.1 = 1, sig2.2 = 1, eq.spacing = FALSE,
cross.type = c("bc", "f2"), normalize = FALSE)
SimCrossIndep(n.ind, len, n.mar, beta, add.eff.1, dom.eff.1,
add.eff.h, dom.eff.h, sig2.1 = 1, sig2.2 = 1, sig2.h = 1,
eq.spacing = FALSE, cross.type = "f2", normalize = FALSE)
data(CMSTCross)
```

Arguments

n.ind	number of individuals to simulate
len	vector specifying the chromosome lengths (in cM)
n.mar	vector specifying the number of markers per chromosome

ww.perm

beta	causal effect (slope) of first phenotype on others	
add.eff, add.eff.1, add.eff.h		
additive genetic effect		
dom.eff, dom.eff.1, dom.eff.h		
	dominance genetic effect	
sig2.1	residual variance for first phenotype	
sig2.2, sig2.h	residual variance for all other phenotypes	
eq.spacing	if TRUE, markers will be equally spaced	
cross.type	type of cross (bc and f2 for now)	
normalize	normalize values if TRUE	

References

Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS, Causal model selection hypothesis tests in systems genetics. Genetics (in review).

Examples

```
set.seed(987654321)
CMSTCross <- SimCrossCausal(n.ind = 100,
    len = rep(100, 3), n.mar = 101,
    beta = rep(0.5, 2), add.eff = 1, dom.eff = 0,
    sig2.1 = 0.4, sig2.2 = 0.1, eq.spacing = FALSE,
    cross.type = "bc", normalize = TRUE)
CMSTCross <- calc.genoprob(CMSTCross, step = 1)
## Not run:
    save(CMSTCross, file = "CMSTCross.RData", compress = TRUE)
## End(Not run)
```

ww.perm

Conduct West-Wu (Q) permutation tests

Description

Conduct West-Wu (Q) permutation tests.

Usage

```
ww.perm(highobj, n.perm, lod.thrs, alpha.levels, verbose = FALSE)
## S3 method for class 'ww.perm'
print(x, ...)
## S3 method for class 'ww.perm'
summary(object, alpha.levels, ...)
```

ww.perm

Arguments

highobj	object of class highlod
n.perm	number of permutations
lod.thrs	vector of LOD thresholds
alpha.levels	vector of significance levels
x,object	object of class ww.perm
	ignored
verbose	verbose output if TRUE

Details

Perform permutation tests to assess the statistical significance of the hotspots detected using the West-Wu Q-method permutations. The ww.perm function implements the Q-method's permutation scheme (see the Method's section of Chaibub Neto et a. 2012, for details). The n.perm parameter specifies the number of simulations. Here we set it to 100 in order to save time. In practice, we recommend at least 1,000 permutations. The function's output is a matrix with 100 rows representing the permutations, and 10 columns representing the QTL mapping thresholds. Each entry ij, represents the maximum number of significant linkages across the entire genome detected at permutation i, using the LOD threshold j. The ww.summary function computes the Q-method's hotspot size permutation thresholds, that is, the 1-alpha quantiles for each one of the QTL mapping LOD thrsholds in lod.thrs. For instance, the entry at row 10 and column 1 of the Q.1.thr matrix tells us that the 99% percentile of the permutation distribution of genome wide maximum hotspot size based on a QTL mapping threshold of 2.11 is 27.00. In other words, any hotspot greater than 27 is considered statistically significant at a 0.01 significance level when QTL mapping is done using a 2.11 LOD threshold. In general, we are often interested in using the same error rates for the QTL mapping and hotspot analysis. That is, if we adopt a QTL mapping threshold that controls GWER at a 1% level (in our case, 3.11) we will also want to consider alpha = 0.01 for the hotspot analysis, leading to a hotspot threshold of 12.00. Therefore, we are usually more interested in the diagonal of Q.1.thr. We adopted a GWER of 5%, and the corresponding Q-method's permutation threshold is 18. According to this threshold, all hotspots are significant.

Author(s)

Elias Chaibub Neto and Brian S Yandell

Examples

```
## Not run:
## All unspecified objects come from vignette qtlhot.
set.seed(12345)
Q.1 <- ww.perm(high1, n.perm = 100, lod.thrs, alphas)
Q.1.thr <- summary(Q.1, alphas)
Q.1.thr
diag(Q.1.thr)
set.seed(12345)
Q.2 <- ww.perm(high2, 100, lod.thrs, alphas)
Q.2.thr <- summary(Q.2, alphas)</pre>
```

20

ww.perm

End(Not run)

Index

* utilities add.phenos, 2 CMSTtests, 3 filter.threshold, 4 GetCandReg, 6 GetCommonQtls, 8 highlod, 9 hotperm, 10 hotsize, 12 parallel.qtlhot, 13 PrecTpFpMatrix, 14 sim.hotspot, 16 SimCrossCausal, 18 ww.perm, 19

add.phenos, 2

big.phase0(parallel.qtlhot), 13

CitTests (PrecTpFpMatrix), 14 CMSTCross, 4, 8 CMSTCross (SimCrossCausal), 18 CMSTtests, 3, 16 CMSTtestsList (CMSTtests), 3

filter.threshold,4
FitAllTests,4,6,7,15
FitAllTests(PrecTpFpMatrix),14

GetCandReg, 6, 15, 16 GetCisCandReg, 15 GetCisCandReg (GetCandReg), 6 GetCoMappingTraits (GetCandReg), 6 GetCommonQtls, 8

highlod, 6, 7, 9, 10, 12, 13, 20 hotperm, 5, 10, 10, 13 hotperm1 (hotperm), 10 hotsize, 12

include.hotspots (sim.hotspot), 16

JoinTestOutputs (PrecTpFpMatrix), 14 lodint, 9 max.highlod(highlod), 9 mySimulations (sim.hotspot), 16 p.adjust, 15, 16 p.adjust.np (PrecTpFpMatrix), 14 parallel.qtlhot, 13 plot.highlod(highlod), 9 plot.hotsize(hotsize), 12 PrecTpFpMatrix, 4, 14 print.highlod(highlod), 9 print.hotperm(hotperm), 10 print.hotsize(hotsize), 12 print.summary.hotperm(hotperm), 10 print.ww.perm(ww.perm), 19 pull.highlod (highlod), 9 qtlhot.phase0(parallel.qtlhot), 13 quantile.highlod (highlod), 9 quantile.hotperm(hotperm), 10 read.cross, 2, 5, 14, 17, 18 scanone, 5–7, 9–12 sim.hotspot, 16 sim.null.cross, 17, 18 sim.null.cross(sim.hotspot), 16 sim.null.pheno.data(sim.hotspot), 16 SimCrossCausal, 18 SimCrossIndep (SimCrossCausal), 18 summary.highlod(highlod), 9 summary.hotperm(hotperm), 10 summary.hotsize(hotsize), 12 summary.scanone, 13 summary.ww.perm(ww.perm), 19

ww.perm, 5, 19