Package ‘qtl2’

June 2, 2025
Version 0.38
Date 2025-06-02
Title Quantitative Trait Locus Mapping in Experimental Crosses

Description Provides a set of tools to perform quantitative
trait locus (QTL) analysis in experimental crosses. It is a
reimplementation of the 'R/qtl' package to better handle
high-dimensional data and complex cross designs.
Broman et al. (2019) <doi:10.1534/genetics.118.301595>.

Author Karl W Broman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4914-6671>),
R Core Team [ctb]

Maintainer Karl W Broman <broman@wisc.edu>

Copyright Code for Brent's method for univariate function optimization
was taken from R 3.2.2 (Copyright 1995, 1996 Robert Gentleman
and Ross Thaka, Copyright 2003-2004 The R Foundation, Copyright
1998-2014 The R Core Team).

Depends R (>=3.1.0)

Imports Rcpp (>=1.0.7), yaml (>= 2.1.13), jsonlite (>= 0.9.17),
data.table (>= 1.10.4-3), parallel, stats, utils, graphics,
grDevices, RSQLite

Suggests testthat, devtools, roxygen2, vdiffr, qtl
License GPL-3

URL https://kbroman.org/qtl2/, https://github.com/rqtl/qtl2

BugReports https://github.com/rqtl/qtl2/issues
LazyData true

Encoding UTF-8

ByteCompile true

LinkingTo Rcpp, ReppEigen

RoxygenNote 7.3.2

NeedsCompilation yes

https://doi.org/10.1534/genetics.118.301595
https://orcid.org/0000-0002-4914-6671
https://kbroman.org/qtl2/
https://github.com/rqtl/qtl2
https://github.com/rqtl/qtl2/issues

2 Contents

Repository CRAN
Date/Publication 2025-06-02 13:00:02 UTC

Contents
add_threshold e 5
basic_summaries e e e e e e e e 6
batch_cols e 8
batch_vec e 9
bayes_int e e e e e 9
calc_entropy e e e e e 11
calc_errorlod e 12
calc_genoprob L. e 13
calc_geno_freq L 15
calc_grid 16
calc_het e e e e e 17
calc_kinship 18
calc_raw_founder_maf 19
calc_raw_geno_freq L. 20
calc_raw_het L e 21
calc_raw_maf e 21
cale_sdp e 22
cbind.calc_genoprob L 23
chind.scanl L e e e e 24
chbind.scanlperm 25
chind.SIM_@eNno L e 26
chind.viterbi L. e e e 27
chind_expand 27
CCeolOrs o e 28
check_cross2 e 29
chisq_colpairs L 29
chr_lengths e 30
clean L e e e e e 31
clean_genoprob L 31
clean_scanl e 33
compare_founder_geno e e e e e 34
COMPATE_ZENO« . v v e v v e e e e e e e e e e e e e 35
compare_genoprob e e 36
COMPATE_IMAPS + « v v v v v e e e e e e e e e e e e e e e e e e 37
CONVEIt2CIOSS2 . . . v v ot e e e e e e e e e e e e e 38
COUNE_XO & v v v v v e e e e e e e e e e e s 39
create_gene_query_func L 40
create_snpinfo L 41
create_variant_query_func Lo 42
decomp_kinship 44
drop_markers L 45

drop_nullmarkers 45

Contents

3
est_herit L e 46
ESELMAD e e e e e e e e 48
find_dup_markers 49
find_ibd_segments 50
find_index_snp L e 52
find_ map_gaps 53
find_marker e 54
find_markerpos e e 55
find_peaks e 56
fitl . . e 58
fread_CSV L e 61
fread_csv_numer e 62
genoprob_to_alleleprobo 63
genoprob_to_snpprob L. 64
get_common_ids e e e e 66
GEL X_COVAT . . v v v v v i e i e 67
gUESS_Phase 67
INEX_SNPS . . o o o e e e e e e e e e e e 68
insert_pseudomarkers L. Lo e e 70
Interp_genoprob L e e 71
INEIP_MAD .+« . o v v v e e e e e e e e 72
IVert_sdp e e e e e e 73
locate _XO e e 74
lod_Int e e 75
map_to_grid e e e e 76
Mat2Strata e e e e e e e e 77
maxlod 78
MAXMATE « o v v v e e e e e e e e e e e e e e e e e e 79
MAX_COMPATE_ZENO . .« « v v v v v e v e e e e e e e e e e e e e e e e 80
max_scanl e 81
N_MISSING . . . o o o o e e e 82
plot_coef e e e e e 83
plot_compare_genol 86
plot_genes 86
plot_genoprob L 88
plot_genoprobcomp e e e 90
plot_lodpeaks 92
plot_onegeno 93
plot_peaks e e e e 95
PIOLPXE . . . o e 97
plot_scanl 99
Plot_sdp e e e e 100
PIOL_SNPASSO o o i e e e e e e e e e e e e e 101
predict_snpgeno L e e e e e 104
PrINE.CTOSS2 o i e e e e e e e 105
print.summary.scanlperm L. Ll e e e e e 105
probs_to_grid e e e 106

pull_genoprobint 107

Index

Contents
pull_genoprobpos e e e 108
pull_markers e e 109
QU2VErsion e e e e e e e e e 110
rbind.calc_genoprob L. e 110
rbind.scanl oL 111
rbind.scanlperm. L. L e 112
rbind.simM_geno e e e e 113
rbind.viterbi Lo e 114
read_CroSs2 e e e e 115
read_pheno L 116
1eCOde_SNPS v o i e e e e e e 117
1educe_Map_ZaPS - « « .« « o v e e e e e e e e e e e e e e e e e e 118
reduce_markers L e e e 118
replace_ids L 120
scale_kinship 121
scanl ... e e 122
scanlblup L 125
scanlcoef L 127
scanlmax L e e e e 129
scanlperm e e e 131
SCANISNPS e 134
sdp2char L 137
SIM_ZENO . . v v v v e 137
SMOOth_gmap o e e e e e e e e e e 139
subset.calc_genoprob L e e e e 140
SUDSEL.CTOSS2 L e e e 141
SUDSEL.SIM_ZENO v v it e e e e e e e e e e e e e e e e e e 142
subset.viterbi 143
subset_scanl L. e 144
SUMMATY.CIOSS2 .« . v v v v v e e e e e e e e e e e e e e e e e e 145
SUMMAry_COMPAre_geNO o v v v et ettt e e e e e e 145
summary_scanlperm Lo e 146
TOP_SIPS o o e e 148
unsmooth_gmap e 150
viterbl L e e e e e e e 151
write_control_file L e 152
xpos_scanl . .o e 155
zip_datafiles 157

add_threshold

add_threshold

Add thresholds to genome scan plot

Description

Draw line segments at significance thresholds for a genome scan plot

Usage
add_threshold(map, thresholdA, thresholdX = NULL, chr = NULL, gap = NULL, ...)
Arguments
map Marker map used in the genome scan plot
thresholdA Autosomal threshold. Numeric or a list. (If a list, the "A" component is taken to
be thresholdA and the "X" component is taken to be thresholdX.)
thresholdX X chromosome threshold (if missing, assumed to be the same as thresholdA)
chr Chromosomes that were included in the plot
gap Gap between chromosomes in the plot. Default is 1% of the total genome length.
Additional arguments passed to graphics: :segments()
Value
None.
Examples
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

map <- insert_pseudomarkers(iron$gmap, step=5)

probs <- calc_genoprob(iron, map, error_prob=0.002)
Xcovar <- get_x_covar(iron)

out <- scanl(probs, iron$pheno[,1], Xcovar=Xcovar)

run just 3 permutations, as a fast illustration

operm <- scanlperm(probs, iron$pheno[,1], addcovar=Xcovar,

plot(out, map)

n_perm=3, perm_Xsp=TRUE, chr_lengths=chr_lengths(map))

add_threshold(map, summary(operm), col="violetred”, 1lty=2)

6 basic_summaries

basic_summaries Basic summaries of a cross2 object

Description

Basic summaries of a cross2 object.

Usage

n_ind(cross2)
n_ind_geno(cross2)
n_ind_pheno(cross2)
n_ind_covar(cross2)
n_ind_gnp(cross2)
ind_ids(cross2)
ind_ids_geno(cross2)
ind_ids_pheno(cross2)
ind_ids_covar(cross2)
ind_ids_gnp(cross2)
n_chr(cross2)
n_founders(cross?2)
founders(cross?2)
chr_names(cross2)
tot_mar(cross2)

n_mar (cross2)
marker_names(cross2)
n_pheno(cross?2)

pheno_names(cross2)

basic_summaries 7

n_covar(cross2)
covar_names(cross2)
n_phenocovar (cross2)

phenocovar_names(cross2)

Arguments
cross?2 An object of class "cross2”, as output by read_cross2(). For details, see the
R/qtl2 developer guide.
Value

Variously a number, vector of numbers, or vector of character strings.

Functions

* n_ind(): Number of individuals (either genotyped or phenotyped)
* n_ind_geno(): Number of genotyped individuals

* n_ind_pheno(): Number of phenotyped individuals

e n_ind_covar(): Number of individuals with covariate data

* n_ind_gnp(): Number of individuals with both genotype and phenotype data
e ind_ids(): IDs of individuals (either genotyped or phenotyped)

* ind_ids_geno(): IDs of genotyped individuals

* ind_ids_pheno(): IDs of phenotyped individuals

e ind_ids_covar(): IDs of individuals with covariate data

e ind_ids_gnp(): IDs of individuals with both genotype and phenotype data
¢ n_chr(): Number of chromosomes

¢ n_founders(): Number of founder strains

e founders(): Names of founder strains

¢ chr_names(): Chromosome names

e tot_mar(): Total number of markers

e n_mar (): Number of markers on each chromosome

e marker_names(): Marker names

* n_pheno(): Number of phenotypes

* pheno_names(): Phenotype names

¢ n_covar(): Number of covariates

e covar_names(): Covariate names

* n_phenocovar(): Number of phenotype covariates

* phenocovar_names(): Phenotype covariate names

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

8 batch_cols

See Also

summary.cross2()

batch_cols Batch columns by pattern of missing values

Description

Identify batches of columns of a matrix that have the same pattern of missing values.

Usage

batch_cols(mat, max_batch = NULL)

Arguments
mat A numeric matrix
max_batch Maximum batch size
Value

A list containing the batches, each with two components: cols containing numeric indices of the
columns in the corresponding batch, and omit containing a vector of row indices that have missing
values in this batch.

See Also

batch_vec()

Examples
x <= rbind(c(1, 2, 3, 13, 16),
c(4, 5, 6, 14, 17),
c(7, NA, 8, NA, 18),

c(NA, NA, NA, NA, 19),
c(1e, 11, 12, 15, 20))
batch_cols(x)

batch_vec 9

batch_vec Split vector into batches

Description
Split a vector into batches, each no longer than batch_size and creating at least n_cores batches,
for use in parallel calculations.

Usage

batch_vec(vec, batch_size = NULL, n_cores = 1)

Arguments

vec A vector to be split into batches

batch_size Maximum size for each batch

n_cores Number of compute cores, to be used as a minimum number of batches.
Value

A list of vectors, each no longer than batch_size, and with at least n_cores componenets.

See Also

batch_cols()

Examples

vec_split <- batch_vec(1:304, 50, 8)
vec_split2 <- batch_vec(1:304, 50)

bayes_int Calculate Bayes credible intervals

Description

Calculate Bayes credible intervals for a single LOD curve on a single chromosome, with the ability
to identify intervals for multiple LOD peaks.

10 bayes_int
Usage
bayes_int(
scanl1_output,
map,
chr = NULL,
lodcolumn = 1,
threshold = 0,
peakdrop = Inf,
prob = 0.95,
expand2markers = TRUE
)
Arguments
scanl_output An object of class "scan1” as returned by scan1().
map A list of vectors of marker positions, as produced by insert_pseudomarkers().
chr Chromosome ID to consider (must be a single value).
lodcolumn LOD score column to consider (must be a single value).
threshold Minimum LOD score for a peak.
peakdrop Amount that the LOD score must drop between peaks, if multiple peaks are to

be defined on a chromosome.

prob Nominal coverage for the interval.

expand2markers If TRUE, QTL intervals are expanded so that their endpoints are at genetic mark-

€rs.

Details

We identify a set of peaks defined as local maxima that exceed the specified threshold, with the
requirement that the LOD score must have dropped by at least peakdrop below the lowest of any

two adjacent peaks.

At a given peak, if there are ties, with multiple positions jointly achieving the maximum LOD score,

we take the average of these positions as the location of the peak.

The default is to use threshold=0, peakdrop=Inf, and prob=0.95. We then return results a single

peak, no matter the maximum LOD score, and give a 95% Bayes credible interval.

Value

A matrix with three columns:

e ci_lo - lower bound of interval
* pos - peak position

* ci_hi - upper bound of interval

Each row corresponds to a different peak.

calc_entropy 11

See Also
lod_int(), find_peaks(), scan1()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl(probs, pheno, addcovar=covar, Xcovar=Xcovar)

95% Bayes credible interval for QTL on chr 7, first phenotype
bayes_int(out, map, chr=7, lodcolum=1)

calc_entropy Calculate entropy of genotype probability distribution

Description
For each individual at each genomic position, calculate the entropy of the genotype probability
distribution, as a quantitative summary of the amount of missing information.

Usage

calc_entropy(probs, quiet = TRUE, cores = 1)

Arguments
probs Genotype probabilities, as calculated from calc_genoprob().
quiet IF FALSE, print progress messages.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Details

We calculate -sum(p log_2 p), where we take 0 log 0 = 0.

12 calc_errorlod

Value

A list of matrices (each matrix is a chromosome and is arranged as individuals x markers).

Examples
grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
probs <- calc_genoprob(grav2, error_prob=0.002)

e <- calc_entropy(probs)
e <- do.call("cbind”, e) # combine chromosomes into one big matrix

summarize by individual
mean_ind <- rowMeans(e)

summarize by marker
mean_marker <- colMeans(e)

calc_errorlod Calculate genotyping error LOD scores

Description
Use the genotype probabilities calculated with calc_genoprob() to calculate genotyping error
LOD scores, to help identify potential genotyping errors (and problem markers and/or individuals).
Usage

calc_errorlod(cross, probs, quiet = TRUE, cores = 1)

Arguments
Ccross Object of class "cross2”. For details, see the R/qtl2 developer guide.
probs Genotype probabilities as calculated from calc_genoprob().
quiet If FALSE, print progress messages.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Details

Let Oy denote the observed marker genotype at position k, and gj, denote the corresponding true
underlying genotype.

Following Lincoln and Lander (1992), we calculate LOD = log19[Pr(Ok|gr = Ok)/Pr(Ok|gr #
Ok)]
Value

A list of matrices of genotyping error LOD scores. Each matrix corresponds to a chromosome and
is arranged as individuals x markers.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

calc_genoprob

References

13

Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics

14:604-610.

See Also

calc_genoprob()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
probs <- calc_genoprob(iron, error_prob=0.002, map_function="c-f")
errorlod <- calc_errorlod(iron, probs)

combine into one matrix
errorlod <- do.call("cbind”, errorlod)

calc_genoprob

Calculate conditional genotype probabilities

Description

Uses a hidden Markov model to calculate the probabilities of the true underlying genotypes given
the observed multipoint marker data, with possible allowance for genotyping errors.

Usage

calc_genoprob(
cross,
map = NULL,
error_prob = 0.0001,

map_function = c("haldane”, "kosambi”, "c-f", "morgan"),
lowmem = FALSE,

quiet = TRUE,
1

cores =

Arguments

Cross

map

error_prob

map_function

Object of class "cross2”. For details, see the R/qtl2 developer guide.

Genetic map of markers. May include pseudomarker locations (that is, locations
that are not within the marker genotype data). If NULL, the genetic map in
cross is used.

Assumed genotyping error probability

Character string indicating the map function to use to convert genetic distances
to recombination fractions.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

14

lowmem

quiet

cores

Details

calc_genoprob

If FALSE, split individuals into groups with common sex and crossinfo and then
precalculate the transition matrices for a chromosome; potentially a lot faster
but using more memory.

If FALSE, print progress messages.

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Let Oy, denote the observed marker genotype at position k, and g denote the corresponding true
underlying genotype.

We use the forward-backward equations to calculate ag,, = log Pr(Ox, ..., O, gr, = v) and fi, =

10g P'/‘(Ok-_;rl, ..

. aOn‘gk = U)

We then obtain Pr(g;|O1,...,0y) = exp(ary + Bro)/s where s = >~ exp(aro + Bio)

Value

An object of class "calc_genoprob”: alist of three-dimensional arrays of probabilities, individuals
x genotypes x positions. (Note that the arrangement is different from R/qtl.) Also contains four

attributes:

* crosstype - The cross type of the input cross.

* is_x_chr - Logical vector indicating whether chromosomes are to be treated as the X chro-
mosome or not, from input cross.

e alleles - Vector of allele codes, from input cross.

* alleleprobs - Logical value (FALSE) that indicates whether the probabilities are compressed
to allele probabilities, as from genoprob_to_alleleprob().

See Also

insert_pseudomarkers()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
gmap_w_pmar <- insert_pseudomarkers(grav2$gmap, step=1)
probs <- calc_genoprob(grav2, gmap_w_pmar, error_prob=0.002)

calc_geno_freq 15

calc_geno_freq Calculate genotype frequencies

Description

Calculate genotype frequencies, by individual or by marker

Usage

calc_geno_freq(probs, by = c("individual”, "marker"), omit_x = TRUE)

Arguments
probs List of arrays of genotype probabilities, as calculated by calc_genoprob().
by Whether to summarize by individual or marker
omit_x If TRUE, results are just for the autosomes. If FALSE, results are a list of length
two, containing the results for the autosomes and those for the X chromosome.
Value

If omit_x=TRUE, the result is a matrix of genotype frequencies; columns are genotypes and rows
are either individuals or markers.

If necessary (that is, if omit_x=FALSE, the data include the X chromosome, and the set of genotypes
on the X chromosome are different than on the autosomes), the result is a list with two components
(for the autosomes and for the X chromosome), each being a matrix of genotype frequencies.

See Also

calc_raw_geno_freq(), calc_het()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
p <- calc_genoprob(iron, err=0.002)

genotype frequencies by marker
tab_g <- calc_geno_freq(p, "marker")

allele frequencies by marker
ap <- genoprob_to_alleleprob(p)
tab_a <- calc_geno_freq(ap, "marker")

16 calc_grid

calc_grid Calculate indicators of which marker/pseudomarker positions are
along a fixed grid

Description
Construct vectors of logical indicators that indicate which positions correspond to locations along a
grid

Usage
calc_grid(map, step = @, off_end = 0, tol = 0.01)

Arguments
map A list of numeric vectors; each vector gives marker positions for a single chro-
mosome.
step Distance between pseudomarkers and markers; if step=0 no pseudomarkers are
inserted.
off_end Distance beyond terminal markers in which to insert pseudomarkers.
tol Tolerance for determining whether a pseudomarker would duplicate a marker
position.
Details

The function insert_pseudomarkers(), with stepwidth="fixed", will insert a grid of pseudo-
markers, to a marker map. The present function gives a series of TRUE/FALSE vectors that indicate
which positions fall on the grid. This is for use with probs_to_grid(), for reducing genotype prob-
abilities, calculated with calc_genoprob(), to just the positions on the grid. The main value of this
is to speed up genome scan computations in the case of very dense markers, by focusing on just a
grid of positions rather than on all marker locations.

Value

A list of logical (TRUE/FALSE) vectors that indicate, for a marker/pseudomarker map created by
insert_pseudomarkers() with step>0 and stepwidth="fixed", which positions correspond to
he locations along the fixed grid.

See Also

insert_pseudomarkers(), probs_to_grid(), map_to_grid()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap_w_pmar <- insert_pseudomarkers(iron$gmap, step=1)
grid <- calc_grid(iron$gmap, step=1)

calc_het 17

calc_het Calculate heterozygosities

Description

Calculate heterozygosites, by individual or by marker

Usage

calc_het(probs, by = c("individual”, "marker"”), omit_x = TRUE, cores = 1)
Arguments

probs List of arrays of genotype probabilities, as calculated by calc_genoprob().

by Whether to summarize by individual or marker

omit_x If TRUE, omit the X chromosome.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details

calc_het () looks at the genotype names (the 2nd dimension of the dimnames of the input probs),
which must be two-letter names, and assumes that when the two letters are different it’s a heterozy-
gous genotype while if they’re the same it’s a homozygous genotype

Value

The result is a vector of estimated heterozygosities

See Also

calc_raw_het(), calc_geno_freq()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
p <- calc_genoprob(iron, err=0.002)

heterozygosities by individual
het_ind <- calc_het(p)

heterozygosities by marker
het_mar <- calc_het(p, "marker™)

18 calc_kinship

calc_kinship Calculate kinship matrix

Description

Calculate genetic similarity among individuals (kinship matrix) from conditional genotype proba-

bilities.
Usage
calc_kinship(
probs,
type = c("overall”, "loco"”, "chr"),

omit_x = FALSE,
use_allele_probs = TRUE,

quiet = TRUE,
cores = 1
)
Arguments
probs Genotype probabilities, as calculated from calc_genoprob().
type Indicates whether to calculate the overall kinship ("overall”, using all chro-
mosomes), the kinship matrix leaving out one chromosome at a time ("loco"),
or the kinship matrix for each chromosome ("chr").
omit_x If TRUE, only use the autosomes; ignored when type="chr".

use_allele_probs
If TRUE, assess similarity with allele probabilities (that is, first run genoprob_to_alleleprob());
otherwise use the genotype probabilities.

quiet IF FALSE, print progress messages.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details
If use_allele_probs=TRUE (the default), we first convert the genotype probabilities to allele prob-
abilities (using genoprob_to_alleleprob()).
We then calculate ki (pik:lpjkl) where k = position, [= allele, and ¢, j are two individuals.

For crosses with just two possible genotypes (e.g., backcross), we don’t convert to allele probabili-
ties but just use the original genotype probabilities.

Value

If type="overall” (the default), a matrix of proportion of matching alleles. Otherwise a list with
one matrix per chromosome.

calc_raw_founder_maf 19

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

probs <- calc_genoprob(grav2, map, error_prob=0.002)

K <- calc_kinship(probs)

using only markers/pseudomarkers on the grid
grid <- calc_grid(grav2$gmap, step=1)
probs_sub <- probs_to_grid(probs, grid)

K_grid <- calc_kinship(probs_sub)

calc_raw_founder_maf Calculate founder minor allele frequencies from raw SNP genotypes

Description
Calculate minor allele frequency from raw SNP genotypes in founders, by founder strain or by
marker

Usage

calc_raw_founder_maf(cross, by = c("individual”, "marker"))

Arguments

Ccross Object of class "cross2”. For details, see the R/qtl2 developer guide.

by Indicates whether to summarize by founder strain ("individual”) or by marker.

Value

A vector of minor allele frequencies, one for each founder strain or marker.

See Also

recode_snps(), calc_raw_maf ()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

DOex_maf <- calc_raw_founder_maf (DOex)

End(Not run)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

20 calc_raw_geno_freq

calc_raw_geno_freq Calculate genotype frequencies from raw SNP genotypes

Description

Calculate genotype frequencies from raw SNP genotypes, by individual or by marker

Usage

calc_raw_geno_freq(cross, by = c("individual”, "marker"), cores = 1)
Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

by Indicates whether to summarize by individual or by marker.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Value

A matrix of genotypes frequencies with 3 columns (AA, AB, and BB) and with rows being either
individuals or markers.

See Also

calc_raw_maf (), calc_raw_het(), recode_snps(), calc_geno_freq()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

gfreq <- calc_raw_geno_freq(DOex)

End(Not run)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

calc_raw_het 21

calc_raw_het Calculate estimated heterozygosity from raw SNP genotypes

Description

Calculate estimated heterozygosity for each individual from raw SNP genotypes

Usage

calc_raw_het(cross, by = c("individual”, "marker"))
Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

by Indicates whether to summarize by founder strain ("individual”) or by marker.
Value

A vector of heterozygosities, one for each individual or marker.

See Also

recode_snps(), calc_raw_maf (), calc_raw_founder_maf (), calc_raw_geno_freq(), calc_het()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gtl2data/main/DOex/D0Oex.zip")

DOex <- read_cross2(file)

DOex_het <- calc_raw_het(DOex)

End(Not run)

calc_raw_maf Calculate minor allele frequency from raw SNP genotypes

Description

Calculate minor allele frequency from raw SNP genotypes, by individual or by marker

Usage

calc_raw_maf(cross, by = c("individual”, "marker"))

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

22 calc_sdp

Arguments

Cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

by Indicates whether to summarize by founder strain ("individual”) or by marker.
Value

A vector of minor allele frequencies, one for each individual or marker.

See Also

recode_snps(), calc_raw_founder_maf (), calc_raw_het(), calc_raw_geno_freq()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

DOex_maf <- calc_raw_maf (DOex)

End(Not run)

calc_sdp Calculate strain distribution pattern from SNP genotypes

Description

Calculate the strain distribution patterns (SDPs) from the strain genotypes at a set of SNPs.

Usage

calc_sdp(geno)

Arguments
geno Matrix of SNP genotypes, markers x strains, coded as 1 (AA) and 3 (BB). Mark-
ers with values other than 1 or 3 are omitted, and monomorphic markers, are
omitted.
Value

A vector of strain distribution patterns: integers between 1 and 2 — 2 where n is the number of
strains, whose binary representation indicates the strain genotypes.

See Also
invert_sdp(), sdp2char()

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

cbind.calc_genoprob 23

Examples

x <= rbind(ml=c(3, 1, 1 1, 1, 1
m2=c(1, 3, 3, 1, 1, 1, 1, 1),
m3=c(1, 1, 1 3, 3,3
calc_sdp(x)

cbind.calc_genoprob Join genotype probabilities for different chromosomes

Description

Join multiple genotype probability objects, as produced by calc_genoprob(), for the same set of
individuals but different chromosomes.

Usage
S3 method for class 'calc_genoprob'
cbind(...)
Arguments
Genotype probability objects as produced by calc_genoprob(). Must have the
same set of individuals.
Value

An object of class "calc_genoprob”, like the input; see calc_genoprob().

See Also

rbind.calc_genoprob()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

probsA <- calc_genoprob(grav2[1:5,1:2], map, error_prob=0.002)

probsB <- calc_genoprob(grav2[1:5,3:4], map, error_prob=0.002)

probs <- cbind(probsA, probsB)

24 cbind.scanl

cbind.scan1 Join genome scan results for different phenotypes.

Description

Join multiple scan1 () results for different phenotypes; must have the same map.

Usage
S3 method for class 'scanl'
cbind(...)
Arguments
Genome scan objects of class "scan1”, as produced by scan1(). Must have the
same map.
Details

If components addcovar(), Xcovar, intcovar, weights do not match between objects, we omit
this information.

If hsq present but has differing numbers of rows, we omit this information.

Value

An object of class ‘"scanl", like the inputs, but with the lod score columns from the inputs combined
as multiple columns in a single object.

See Also

rbind.scan1(), scan1()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip"”, package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

probs <- calc_genoprob(grav2, map, error_prob=0.002)

phel <- grav2$phenol[,1,drop=FALSE]

phe2 <- grav2$phenol,2,drop=FALSE]

outl <- scanl(probs, phel) # phenotype 1
out2 <- scanl(probs, phe2) # phenotype 2
out <- chind(outl, out2)

cbind.scanlperm 25

cbind.scanlperm Combine columns from multiple scanl permutation results

Description

Column-bind multiple scanlperm objects with the same numbers of rows.

Usage
S3 method for class 'scanlperm'
cbind(...)
Arguments
A set of permutation results from scanperm() (objects of class "scaniperm”.
If different numbers of permutation replicates were used, those columns with
fewer replicates are padded with missing values NA. However, if any include
autosome/X chromosome-specific permutations, they must all be such.
Details

The aim of this function is to concatenate the results from multiple runs of a permutation test
with scan1perm(), generally with different phenotypes and/or methods, to be used in parallel with
rbind.scanlperm().

Value

The combined column-binded input, as an object of class "scan1perm”; see scaniperm().

See Also

rbind.scanlperm(), scaniperm(), scan1()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

26 cbind.sim_geno

Xcovar <- get_x_covar(iron)
permutations with genome scan (just 3 replicates, for illustration)
operml <- scanlperm(probs, pheno[,1,drop=FALSE], addcovar=covar, Xcovar=Xcovar, n_perm=3)

operm2 <- scanlperm(probs, pheno[,2,drop=FALSE], addcovar=covar, Xcovar=Xcovar, n_perm=3)

operm <- cbind(operm1, operm2)

cbind.sim_geno Join genotype imputations for different chromosomes

Description

Join multiple genotype imputation objects, as produced by sim_geno(), for the same individuals
but different chromosomes.

Usage
S3 method for class 'sim_geno'
cbind(...)
Arguments
Genotype imputation objects as produced by sim_geno(). Must have the same
set of individuals.
Value

An object of class "sim_geno", like the input; see sim_geno().

See Also

rbind.sim_geno(), sim_geno()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

drawsA <- sim_geno(grav2[1:5,1:2], map, error_prob=0.002, n_draws=4)
drawsB <- sim_geno(grav2[1:5,3:4], map, error_prob=0.002, n_draws=4)
draws <- cbind(drawsA, drawsB)

cbind.viterbi 27

cbind.viterbi Join viterbi results for different chromosomes

Description

Join multiple viterbi objects, as produced by viterbi (), for the same set of individuals but different

chromosomes.
Usage
S3 method for class 'viterbi'
cbind(...)
Arguments
Imputed genotype objects as produced by viterbi(). Must have the same set
of individuals.
Value

An object of class "viterbi”, like the input; see viterbi().

See Also

rbind.viterbi(), viterbi()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

gA <- viterbi(grav2[1:5,1:2], map, error_prob=0.002)

gB <- viterbi(grav2[1:5,3:4], map, error_prob=0.002)

g <- cbind(gA, gB)

cbind_expand Combine matrices by columns, expanding and aligning rows

Description

This is like base: :cbind() but using row names to align the rows and expanding with missing
values if there are rows in some matrices but not others.

Usage
cbind_expand(...)

28 CCcolors

Arguments

A set of matrices or data frames

Value

The matrices combined by columns, using row names to align the rows, and expanding with missing
values if there are rows in some matrices but not others.

Examples

df1 <- data.frame(x=c(1,2,3,NA,4), y=c(5,8,9,10,11), row.names=c("A", "B", "C", "D", "E"))
df2 <- data.frame(w=c(7,8,0,9,10), z=c(6,NA,NA,9,10), row.names=c("A", "B", "F", "C", "D"))
cbind_expand(df1, df2)

CCcolors Collaborative Cross colors

Description

A vector of 8 colors for use with the mouse Collaborative Cross and Diversity Outbreds.

Details

CCorigcolors are the original eight colors for the Collaborative Cross founder strains. CCaltcolors
are a slightly modified version, but still not color-blind friendly. CCcolors are derived from the the
Okabe-Ito color blind friendly palette in Wong (2011) Nature Methods doi:10.1038/nmeth.1618.

Source

https://web.archive.org/web/20250215070655/https://csbio.unc.edu/CCstatus/index.
py?run=Availablelines.information

Examples

data(CCcolors)
data(CCaltcolors)
data(CCorigcolors)

https://doi.org/10.1038/nmeth.1618
https://web.archive.org/web/20250215070655/https://csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information
https://web.archive.org/web/20250215070655/https://csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information

check_cross2 29

check_cross2 Check a cross2 object

Description

Check the integrity of the data within a cross2 object.

Usage

check_cross2(cross2)

Arguments
cross2 An object of class "cross2”, as output by read_cross2(). For details, see the
R/qtl2 developer guide.
Details

Checks whether a cross2 object meets the specifications. Problems are issued as warnings.

Value

If everything is correct, returns TRUE; otherwise FALSE, with attributes that give the problems.

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
check_cross2(grav2)

chisqg_colpairs Chi-square test on all pairs of columns

Description

Perform a chi-square test for independence for all pairs of columns of a matrix.

Usage

chisqg_colpairs(x)

Arguments

X A matrix of positive integers. NAs and values <= 0 are treated as missing.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

30 chr_lengths

Value

A matrix of size p x p, where p is the number of columns in the input matrix x, containing the
chi-square test statistics for independence, applied to pairs of columns of x. The diagonal of the
result will be all NAs.

Examples

z <- matrix(sample(1:2, 500, replace=TRUE), ncol=5)
chisqg_colpairs(z)

chr_lengths Calculate chromosome lengths

Description

Calculate chromosome lengths for a map object

Usage

chr_lengths(map, collapse_to_AX = FALSE)

Arguments

map A list of vectors, each specifying locations of the markers.

collapse_to_AX If TRUE, collapse to the total lengths of the autosomes and X chromosome.

Details

We take diff(range(v)) for each vector, v.

Value
A vector of chromosome lengths. If collapse_to_AX=TRUE, the result is a vector of length 2
(autosomal and X chromosome lengths).

See Also

scanlperm()

clean 31

clean Clean an object

Description

Clean an object by removing messy values

Usage
clean(object, ...)
Arguments
object Object to be cleaned
Other arguments
Value

Input object with messy values cleaned up

See Also

clean.scan1(), clean.calc_genoprob()

clean_genoprob Clean genotype probabilities

Description

Clean up genotype probabilities by setting small values to 0 and for a genotype column where the
maximum value is rather small, set all values in that column to O.

Usage

clean_genoprob(
object,
value_threshold = 0.000001,
column_threshold = 0.01,
ind = NULL,
cores = 1,

)

S3 method for class 'calc_genoprob'
clean(

32

clean_genoprob

object,
value_threshold = 0.000001,
column_threshold = 0.01,

ind = NULL,
cores = 1,
)
Arguments
object Genotype probabilities as calculated by calc_genoprob().

value_threshold
Probabilities below this value will be set to 0.

column_threshold
For genotype columns where the maximum value is below this threshold, all
values will be set to 0. This must be less than 1/k where k is the number of
genotypes.

ind Optional vector of individuals (logical, numeric, or character). If provided, only
the genotype probabilities for these individuals will be cleaned, though the full
set will be returned.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Ignored at this point.

Details

In cases where a particular genotype is largely absent, scan1coef () and fit1() can give unstable
estimates of the genotype effects. Cleaning up the genotype probabilities by setting small values to
0 helps to ensure that such effects get set to NA.

At each position and for each genotype column, we find the maximum probability across individu-
als. If that maximum is < column_threshold, all values in that genotype column at that position
are set to 0.

In addition, any genotype probabilities that are < value_threshold (generally < column_threshold)
are set to 0.

The probabilities are then re-scaled so that the probabilities for each individual at each position sum
to 1.

If ind is provided, the function is applied only to the designated subset of individuals. This may
be useful when only a subset of individuals have been phenotyped, as you may want to zero out
genotype columns where that subset of individuals has only negligible probability values.

Value

A cleaned version of the input genotype probabilities object, object.

clean_scanl 33

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

calculate genotype probabilities
probs <- calc_genoprob(iron, error_prob=0.002)

clean the genotype probabilities
(doesn't really do anything in this case, because there are no small but non-zero values)
probs_clean <- clean(probs)

clean only the females' genotype probabilities
probs_cleanf <- clean(probs, ind=names(iron$is_female)[iron$is_female])

clean_scan1 Clean scanl output

Description

Clean scanl output by replacing negative values with NA and remove rows where all values are
NA.

Usage

clean_scanl(object, ...)

S3 method for class 'scanl'

clean(object, ...)
Arguments
object Output of scan1().

Ignored at present

Value

The input object with negative values replaced with NAs and then rows with all NAs removed.

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

pr <- calc_genoprob(iron)
out <- scanl(pr, iron$pheno)

out <- clean(out)

34 compare_founder_geno

compare_founder_geno Compare founders genotype data

Description

Count the number of matching genotypes between all pairs of founder lines.

Usage

compare_founder_geno(
cross,
omit_x = FALSE,
proportion = TRUE,

quiet = TRUE,
cores = 1
)
Arguments
cross Object of class "cross2”. For details, see the R/qtl2 developer guide.
omit_x If TRUE, only use autosomal genotypes
proportion If TRUE (the default), the upper triangle of the result contains the proportions of
matching genotypes. If FALSE, the upper triangle contains counts of matching
genotypes.
quiet IF FALSE, print progress messages.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Value

A square matrix; diagonal is number of observed genotypes for each founder line. The values in the
lower triangle are the numbers of markers where both of a pair were genotyped. The values in the
upper triangle are either proportions or counts of matching genotypes for each pair (depending on
whether proportion=TRUE or =FALSE). The object is given class "compare_geno".

Examples

Not run:

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gtl2data/main/DOex/D0Oex.zip")

DOex <- read_cross2(file)

cg <- compare_founder_geno(DOex)

summary(cg)

End(Not run)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

compare_geno

35

compare_geno

Compare individuals’ genotype data

Description

Count the number of matching genotypes between all pairs of individuals, to look for unusually
closely related individuals.

Usage

compare_geno(cross, omit_x = FALSE, proportion = TRUE, quiet = TRUE, cores = 1)

Arguments

cross
omit_x

proportion

quiet

cores

Value

Object of class "cross2”. For details, see the R/qtl2 developer guide.
If TRUE, only use autosomal genotypes

If TRUE (the default), the upper triangle of the result contains the proportions of
matching genotypes. If FALSE, the upper triangle contains counts of matching
genotypes.

IF FALSE, print progress messages.

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

A square matrix; diagonal is number of observed genotypes for each individual. The values in the
lower triangle are the numbers of markers where both of a pair were genotyped. The values in the
upper triangle are either proportions or counts of matching genotypes for each pair (depending on
whether proportion=TRUE or =FALSE). The object is given class "compare_geno".

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
cg <- compare_geno(grav2)

summary(cg)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

36

compare_genoprob

compare_genoprob

Compare two sets of genotype probabilities

Description

Compare two sets of genotype probabilities for one individual on a single chromosome.

Usage

compare_genoprob(

probs1,
probs2,
cross,

ind = 1,
chr = NULL,

minprob = 0.95,

minmarkers
minwidth =
annotate =

Arguments

probs1

probs2
cross

ind

chr
minprob
minmarkers
minwidth

annotate

Details

0
F

10,

ALSE

Genotype probabilities (as produced by calc_genoprob()) or allele dosages (as
produced by genoprob_to_alleleprob()).

A second set of genotype probabilities, just like probs1.

Object of class "cross2”. For details, see the R/qtl2 developer guide.
Individual to plot, either a numeric index or an ID.

Selected chromosome; a single character string.

Minimum probability for inferring genotypes (passed to maxmarg()).
Minimum number of markers in results.

Minimum width in results.

If TRUE, add some annotations to the geno1 and geno2 columns to indicate,
where they differ, which one matches what appears to be the best genotype. (*
= matches the best genotype; - = lower match).

The function does the following:

* Reduce the probabilities to a set of common locations that also appear in cross.

» Use maxmarg() to infer the genotype at every position using each set of probabilities.

* Identify intervals where the two inferred genotypes are constant.

* Within each segment, compare the observed SNP genotypes to the founders’ genotypes.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

compare_maps 37

Value

A data frame with each row corresponding to an interval over which probs1 and probs2 each have
a fixed inferred genotype. Columns include the two inferred genotypes, the start and end points and
width of the interval, and when founder genotypes are in cross, the proportions of SNPs where the
individual matches each possible genotypes.

See Also

plot_genoprobcomp()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
iron <- iron[1,"2"] # subset to first individual on chr 2
map <- insert_pseudomarkers(iron$gmap, step=1)

in presence of a genotyping error, how much does error_prob matter?
iron$geno[[1]1]1[1,3] <- 3

pr_e <- calc_genoprob(iron, map, error_prob=0.002)

pr_ne <- calc_genoprob(iron, map, error_prob=1e-15)

compare_genoprob(pr_e, pr_ne, iron, minmarkers=1, minprob=0.5)

compare_maps Compare two marker maps

Description

Compare two marker maps, identifying markers that are only in one of the two maps, or that are in
different orders on the two maps.

Usage

compare_maps(map1, map2)

Arguments

map1 A list of numeric vectors; each vector gives marker positions for a single chro-
mosome.

map2 A second map, in the same format as map1.

38 convert2cross2

Value

A data frame containing

* marker - marker name

e chr_map1 - chromosome ID on map1
* pos_map] - position on map1

¢ chr_map2 - chromosome ID on map2

* pos_map2 - position on map2

Examples

load some data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap <- iron$gmap
pmap <- iron$pmap

omit a marker from each map

gmap[[7]] <- gmap[[7]11[-3]

pmap[[8]] <- pmap[[8]1[-7]

swap order of a couple of markers on the physical map
names (pmapL[91]1)[3:4] <- names(pmap[[9]1)[4:3]

move a marker to a different chromosome

pmap[[10]] <- c(pmap[[101], pmapL[111[2]1)[c(1,3,2)]
pmap[[1]] <- pmap[[1]1[-2]

compare these messed-up maps
compare_maps(gmap, pmap)

convert2cross?2 Convert R/qtl cross object to new format

Description

Convert a cross object from the R/qtl format to the R/qtl2 format

Usage

convert2cross2(cross)

Arguments

Ccross An object of class "cross”; see qtl::read.cross() for details.

Value

Object of class "cross2”. For details, see the R/qtl2 developer guide.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

count_xo

39
See Also
read_cross2()
Examples
library(qtl)
data(hyper)
hyper2 <- convert2cross2(hyper)
count_xo Count numbers of crossovers
Description
Estimate the numbers of crossovers in each individual on each chromosome.
Usage
count_xo(geno, quiet = TRUE, cores = 1)
Arguments
geno List of matrices of genotypes (output of maxmarg() or viterbi()) or a list of
3d-arrays of genotypes (output of sim_geno()).
quiet If FALSE, print progress messages.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Value

A matrix of crossover counts, individuals x chromosomes, or (if the input was the output of sim_geno())
a 3d-array of crossover counts, individuals x chromosomes x imputations.

See Also

locate_xo()

Examples
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

map <- insert_pseudomarkers(iron$gmap, step=1)

pr <- calc_genoprob(iron, map, error_prob=0.002, map_function="c-f")
g <- maxmarg(pr)
n_xo <- count_xo(g)

imputations
imp <- sim_geno(iron, map, error_prob=0.002, map_function="c-f", n_draws=32)

40 create_gene_query_func

n_xo_imp <- count_xo(imp)

sums across chromosomes

tot_xo_imp <- apply(n_xo_imp, c(1,3), sum)

mean and SD across imputations

summary_xo <- cbind(mean=rowMeans(tot_xo_imp),
sd=apply(tot_xo_imp, 1, sd))

create_gene_query_func
Create a function to query genes

Description

Create a function that will connect to a SQLite database of gene information and return a data frame
with gene information for a selected region.

Usage

create_gene_query_func(
dbfile = NULL,
db = NULL,
table_name = "genes",
chr_field = "chr”,
start_field = "start”,
stop_field = "stop”,
name_field = "Name",
strand_field = "strand",
filter = NULL

)
Arguments
dbfile Name of database file
db Optional database connection (provide one of file and db).
table_name Name of table in the database
chr_field Name of chromosome field

start_field Name of field with start position (in basepairs)
stop_field Name of field with stop position (in basepairs)
name_field Name of field with gene name

strand_field Name of field with strand (+/-)

filter Additional SQL filter (as a character string).

create_snpinfo 41

Details

Note that this function assumes that the database has start and stop fields that are in basepairs,
but the selection uses positions in Mbp, and the output data frame should have start and stop
columns in Mbp.

Also note that a SQLite database of MGI mouse genes is available at figshare: doi:10.6084/m9.figshare.5286019.v7

Value

Function with three arguments, chr, start, and end, which returns a data frame with the genes
overlapping that region, with start and end being in Mbp. The output should contain at least the
columns Name, chr, start, and stop, the latter two being positions in Mbp.

Examples

create query function by connecting to file

dbfile <- system.file("extdata”, "mouse_genes_small.sqlite"”, package="qtl2")
query_genes <- create_gene_query_func(dbfile, filter="(source=='MGI')")

query_genes will connect and disconnect each time

genes <- query_genes("2", 97.0, 98.0)

connect and disconnect separately

library(RSQLite)

db <- dbConnect(SQLite(), dbfile)

query_genes <- create_gene_query_func(db=db, filter="(source=='MGI')")
genes <- query_genes("2", 97.0, 98.0)

dbDisconnect(db)

create_snpinfo Create snp information table for a cross

Description

Create a table of snp information from a cross, for use with scan1snps().

Usage

create_snpinfo(cross)

Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

https://doi.org/10.6084/m9.figshare.5286019.v7
https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

42 create_variant_query_func

Value
A data frame of SNP information with the following columns:

¢ chr - Character string or factor with chromosome
* pos - Position (in same units as in the "map” attribute in genoprobs.
* snp - Character string with SNP identifier (if missing, the rownames are used).

* sdp - Strain distribution pattern: an integer, between 1 and 2" — 2 where n is the number of
strains, whose binary encoding indicates the founder genotypes SNPs with missing founder
genotypes are omitted.

See Also

index_snps(), scanlsnps(), genoprob_to_snpprob()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gqtl2data/main/DO_Recla/recla.zip”)

recla <- read_cross2(file)

snpinfo <- create_snpinfo(recla)

calculate genotype probabilities
pr <- calc_genoprob(recla, error_prob=0.002, map_function="c-f")

index the snp information
snpinfo <- index_snps(recla$pmap, snpinfo)

sex covariate
sex <- setNames((recla$covar$Sex=="female")*1, rownames(recla$covar))

perform a SNP scan
out <- scanlsnps(pr, recla$pmap, recla$pheno[,"”bw"”], addcovar=sex, snpinfo=snpinfo)

plot the LOD scores
plot(out$lod, snpinfo, altcol="green3")

End(Not run)

create_variant_query_func
Create a function to query variants

Description

Create a function that will connect to a SQLite database of founder variant information and return
a data frame with variants for a selected region.

create_variant_query_func 43

Usage

create_variant_query_func(
dbfile = NULL,
db = NULL,
table_name = "variants”,
chr_field = "chr",
pos_field = "pos”,
id_field = "snp_id",
sdp_field = "sdp”,
filter = NULL

)
Arguments
dbfile Name of database file
db Optional database connection (provide one of file and db).
table_name Name of table in the database
chr_field Name of chromosome field
pos_field Name of position field
id_field Name of SNP/variant ID field
sdp_field Name of strain distribution pattern (SDP) field
filter Additional SQL filter (as a character string)
Details

Note that this function assumes that the database has a pos field that is in basepairs, but the selection
uses start and end positions in Mbp, and the output data frame should have pos in Mbp.

Also note that a SQLite database of variants in the founder strains of the mouse Collaborative Cross
is available at figshare: doi:10.6084/m9.figshare.5280229.v3

Value

Function with three arguments, chr, start, and end, which returns a data frame with the variants
in that region, with start and end being in Mbp. The output should contain at least the columns
chr and pos, the latter being position in Mbp.

Examples

create query function by connecting to file

dbfile <- system.file("extdata”, "cc_variants_small.sqlite"”, package="qtl2")
query_variants <- create_variant_query_func(dbfile)

query_variants will connect and disconnect each time

variants <- query_variants("2", 97.0, 98.0)

create query function to just grab SNPs
query_snps <- create_variant_query_func(dbfile, filter="type=='snp'")
query_variants will connect and disconnect each time

https://doi.org/10.6084/m9.figshare.5280229.v3

44 decomp_kinship

snps <- query_snps("2", 97.0, 98.0)

connect and disconnect separately
library(RSQLite)

db <- dbConnect(SQLite(), dbfile)

query_variants <- create_variant_query_func(db=db)
variants <- query_variants("2", 97.0, 98.0)
dbDisconnect(db)

decomp_kinship Calculate eigen decomposition of kinship matrix

Description

Calculate the eigen decomposition of a kinship matrix, or of a list of such matrices.

Usage

decomp_kinship(kinship, cores = 1)

Arguments
kinship A square matrix, or a list of square matrices.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Details

The result contains an attribute "eigen_decomp”.

Value
The eigen values and the transposed eigen vectors, as a list containing a vector values and a matrix
vectors.

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
map <- insert_pseudomarkers(iron$gmap, step=1)
probs <- calc_genoprob(iron, map, error_prob=0.002)

K <- calc_kinship(probs)

Ke <- decomp_kinship(K)

drop_markers 45

drop_markers Drop markers from a cross2 object

Description

Drop a vector of markers from a cross2 object.

Usage

drop_markers(cross, markers)

Arguments
Cross Object of class "cross2"”. For details, see the R/qtl2 developer guide.
markers A vector of marker names.

Value

The input cross with the specified markers removed.

See Also

pull_markers(), drop_nullmarkers(), reduce_markers(), find_dup_markers()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
markers2drop <- c("BH.342C/347L-Col"”, "GH.94L", "EG.357C/359L-Col”, "CD.245L", "ANL2")
grav2_rev <- drop_markers(grav2, markers2drop)

drop_nullmarkers Drop markers with no genotype data

Description

Drop markers with no genotype data (or no informative genotypes)

Usage

drop_nullmarkers(cross, quiet = FALSE)

Arguments

Ccross Object of class "cross2”. For details, see the R/qtl2 developer guide.

quiet If FALSE, print information about how many markers were dropped.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html
https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

46 est_herit

Details
We omit any markers that have completely missing data, or if founder genotypes are present (e.g.,
for Diversity Outbreds), the founder genotypes are missing or are all the same.

Value

The input cross with the uninformative markers removed.

See Also

drop_markers(), pull_markers()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
make a couple of markers missing

grav2$geno[[2]]1[,c(3,25)] <- 0@

grav2_rev <- drop_nullmarkers(grav2)

est_herit Estimate heritability with a linear mixed model

Description

Estimate the heritability of a set of traits via a linear mixed model, with possible allowance for
covariates.

Usage

est_herit(
pheno,
kinship,
addcovar = NULL,
weights = NULL,

reml = TRUE,
cores = 1,
)
Arguments
pheno A numeric matrix of phenotypes, individuals x phenotypes.
kinship A kinship matrix.
addcovar An optional numeric matrix of additive covariates.
weights An optional numeric vector of positive weights for the individuals. As with the

other inputs, it must have names for individual identifiers.

est_herit

reml

cores

Details

47

If true, use REML; otherwise, use maximimum likelihood.

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Additional control parameters (see details).

We fit the model y = X 3 + € where ¢ is multivariate normal with mean 0 and covariance matrix
0?[h?(2K) + I] where K is the kinship matrix and [is the identity matrix.

If weights are provided, the covariance matrix becomes o2[h?(2K) + D] where D is a diagonal
matrix with the reciprocal of the weights.

For each of the inputs, the row names are used as individual identifiers, to align individuals.

If rem1=TRUE, restricted maximum likelihood (reml) is used to estimate the heritability, separately
for each phenotype.

Additional control parameters include tol for the tolerance for convergence, quiet for controlling
whether messages will be display, max_batch for the maximum number of phenotypes in a batch,
and check_boundary for whether the 0 and 1 boundary values for the estimated heritability will be
checked explicitly.

Value

A vector of estimated heritabilities, corresponding to the columns in pheno. The result has attributes
"sample_size", "log10lik" and "resid_sd".

Examples

read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

kinship matrix
kinship <- calc_kinship(probs)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

perform genome scan
hsq <- est_herit(pheno, kinship, covar)

48 est_map

est_map Estimate genetic maps

Description

Uses a hidden Markov model to re-estimate the genetic map for an experimental cross, with possible
allowance for genotyping errors.

Usage
est_map(
cross,
error_prob = 0.0001,
map_function = c("haldane”, "kosambi”, "c-f", "morgan"),

lowmem = FALSE,
maxit = 10000,
tol = 0.000001,

quiet = TRUE,
save_rf = FALSE,
cores = 1
)
Arguments
cross Object of class "cross2”. For details, see the R/qtl2 developer guide.
error_prob Assumed genotyping error probability

map_function Character string indicating the map function to use to convert genetic distances
to recombination fractions.

lowmem If FALSE, precalculate initial and emission probabilities, and at each iteration
calculate the transition matrices for a chromosome; potentially a lot faster but
using more memory. Needs to be tailored somewhat to cross type. For exam-
ple, multi-way RIL may need to reorder the transition matrix according to cross
order, and AIL and DO need separate transition matrices for each generation.

maxit Maximum number of iterations in EM algorithm.
tol Tolerance for determining convergence
quiet If FALSE, print progress messages.
save_rf If TRUE, save the estimated recombination fractions as an attribute ("rf") of the
result.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details

The map is estimated assuming no crossover interference, but a map function (by default, Haldane’s)
is used to derive the genetic distances.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

find_dup_markers 49

Value

A list of numeric vectors, with the estimated marker locations (in cM). The location of the initial
marker on each chromosome is kept the same as in the input cross.

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))

gmap <- est_map(grav2, error_prob=0.002)

find_dup_markers Find markers with identical genotype data

Description

Identify sets of markers with identical genotype data.

Usage

find_dup_markers(cross, chr, exact_only = TRUE, adjacent_only = FALSE)

Arguments
Cross Object of class "cross2”. For details, see the R/qtl2 developer guide.
chr Optional vector specifying which chromosomes to consider. This may be a log-
ical, numeric, or character string vector.
exact_only If TRUE, look only for markers that have matching genotypes and the same pat-

tern of missing data; if FALSE, also look for cases where the observed genotypes
at one marker match those at another, and where the first marker has missing
genotype whenever the genotype for the second marker is missing.

adjacent_only If TRUE, look only for sets of markers that are adjacent to each other.

Details

If exact.only=TRUE, we look only for groups of markers whose pattern of missing data and ob-
served genotypes match exactly. One marker (chosen at random) is selected as the name of the
group (in the output of the function).

If exact.only=FALSE, we look also for markers whose observed genotypes are contained in the
observed genotypes of another marker. We use a pair of nested loops, working from the markers
with the most observed genotypes to the markers with the fewest observed genotypes.

Value

A list of marker names; each component is a set of markers whose genotypes match one other
marker, and the name of the component is the name of the marker that they match.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

50 find_ibd_segments

See Also

drop_markers(), drop_nullmarkers(), reduce_markers()

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
dup <- find_dup_markers(grav2)
grav2_nodup <- drop_markers(grav2, unlist(dup))

find_ibd_segments Find IBD segments for a set of strains

Description

Find IBD segments (regions with a lot of shared SNP genotypes) for a set of strains

Usage

find_ibd_segments(geno, map, min_lod = 15, error_prob = 0.001, cores = 1)

Arguments
geno List of matrices of founder genotypes. The matrices correspond to the genotypes
on chromosomes and are arrayed as founders x markers.
map List of vectors of marker positions
min_lod Threshold for minimum LOD score for a segment
error_prob Genotyping error/mutation probability
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Details

For each strain pair on each chromosome, we consider all marker intervals and calculate a LOD
score comparing the two hypotheses: that the strains are IBD in the interval, vs. that they are not.
We assume that the two strains are homozygous at all markers, and use the model from Broman and
Weber (1999), which assumes linkage equilibrium between markers and uses a simple model for
genotype frequencies in the presence of genotyping errors or mutations.

Note that inference of IBD segments is heavily dependent on how SNPs were chosen to be geno-
typed. (For example, were the SNPs ascertained based on their polymorphism between a particular
strain pair?)

find_ibd_segments 51

Value

A data frame whose rows are IBD segments and whose columns are:

e Strain 1

e Strain 2

* Chromosome
 Left marker

* Right marker

e Left position

* Right position

* Left marker index
* Right marker index
* Interval length

* Number of markers
* Number of mismatches

e LOD score

References

Broman KW, Weber JL (1999) Long homozygous chromosomal segments in reference families
from the Centre d’Etude du Polymorphisme Humain. Am J Hum Genet 65:1493-1500.

Examples

Not run:
load DO data from Recla et al. (2014) Mamm Genome 25:211-222.
recla <- read_cross2("https://raw.githubusercontent.com/rqtl/qtl2data/main/DO_Recla/recla.zip")

grab founder genotypes and physical map
fg <- recla$founder_geno

pmap <- recla$pmap

find shared segments
(segs <- find_ibd_segments(fg, pmap, min_lod=10, error_prob=0.0001))

End(Not run)

52 find_index_snp

find_index_snp Find name of indexed snp

Description

For a particular SNP, find the name of the corresponding indexed SNP.

Usage

find_index_snp(snpinfo, snp)

Arguments
snpinfo Data frame with SNP information with the following columns:
e chr - Character string or factor with chromosome
* index - Numeric index of equivalent, indexed SNP, as produced by index_snps().
e snp - Character string with SNP identifier (if missing, the rownames are
used).
snp Name of snp to look for (can be a vector).
Value

A vector of SNP IDs (the corresponding indexed SNPs), with NA if a SNP is not found.

See Also
find_marker ()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DO_Recla/recla.zip")

recla <- read_cross2(file)

founder genotypes for a set of SNPs

snpgeno <- rbind(mi=c(3,1,1,3,1,1,1,1),
m2=c(3,1,1,3,1,1,1,1),
m3=c(1,1,1,1,3,3,3,3),
m4=c(1,3,1,3,1,3,1,3))

sdp <- calc_sdp(snpgeno)
snpinfo <- data.frame(chr=c(”19", "19", "X", "X"),
pos=c(40.36, 40.53, 110.91, 111.21),
sdp=sdp,
snp=c("m1", "m2", "m3", "m4"), stringsAsFactors=FALSE)

update snp info by adding the SNP index column

find_map_gaps 53

snpinfo <- index_snps(recla$pmap, snpinfo)

find indexed snp for a particular snp
find_index_snp(snpinfo, "m3")

End(Not run)

find_map_gaps Find gaps in a genetic map

Description

Find gaps between markers in a genetic map

Usage

find_map_gaps(map, min_gap = 50)

Arguments
map Genetic map as a list of vectors (each vector is a chromosome and contains the
marker positions).
min_gap Minimum gap length to return.
Value

Data frame with 6 columns: chromosome, marker to left of gap, numeric index of marker to left,
marker to right of gap, numeric index of marker to right, and the length of the gap.

See Also

reduce_map_gaps ()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
find_map_gaps(iron$gmap, 40)

54 find_marker

find_marker Find markers by chromosome position

Description

Find markers closest to specified set of positions, or within a specified interval.

Usage
find_marker(map, chr, pos = NULL, interval = NULL)

Arguments
map A map object: a list (corresponding to chromosomes) of vectors of marker po-
sitions. Can also be a snpinfo object (data frame with columns chr and pos;
marker names taken from column snp or if that doesn’t exist from the row
names)
chr A vector of chromosomes
pos A vector of positions
interval A pair of positions (provide either pos or interval but not both)
Details

If pos is provided, interval should not be, and vice versa.

If pos is provided, then chr and pos should either be the same length, or one of them should have
length 1 (to be expanded to the length of the other).

If interval is provided, then chr should have length 1.

Value
A vector of marker names, either closest to the positions specified by pos, or within the interval
defined by interval.

See Also

find_markerpos(), find_index_snp(), pull_genoprobpos(), pull_genoprobint()
Examples
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

find markers by their genetic map positions
find_marker(iron$gmap, c(8, 11), c(37.7, 56.9))

find markers by their physical map positions (two markers on chr 7)
find_marker(iron$pmap, 7, c(44.2, 108.9))

find_markerpos 55

find markers in an interval
find_marker(iron$pmap, 16, interval=c(35, 80))

find_markerpos Find positions of markers

Description

Find positions of markers within a cross object

Usage

find_markerpos(cross, markers, na.rm = TRUE)

Arguments
cross Object of class "cross2"”. For details, see the R/qtl2 developer guide. Can also
be a map (as a list of vectors of marker positions).
markers A vector of marker names.
na.rm If TRUE, don’t include not-found markers in the results (but issue a warning if
some markers weren’t found). If FALSE, include those markers with NA for chr
and position.
Value

A data frame with chromosome and genetic and physical positions (in columns "gmap” and "pmap"),
with markers as row names. If the input cross is not a cross2 object but rather a map, the output
contains chr and pos.

See Also

find_marker()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

find markers
find_markerpos(iron, c(”"D8Mit294", "D11Mit101"))

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

56

find_peaks

find_peaks

Find peaks in a set of LOD curves

Description

Find peaks in a set of LOD curves (output from scan1()

Usage
find_peaks(

scanl1_output,

map,

threshold =

3,

peakdrop = Inf,

drop = NULL,
prob = NULL,

thresholdX = NULL,
peakdropX = NULL,

dropX = NULL,
probX = NULL,
expand2markers = TRUE,
sort_by = c("column”, "pos”", "lod"),
cores =1
)
Arguments

scanl_output

map

threshold

peakdrop

drop

prob

thresholdX

An object of class "scan1" as returned by scan1().

A list of vectors of marker positions, as produced by insert_pseudomarkers().
Can also be an indexed SNP info table, as from index_snps() or scan1snps().

Minimum LOD score for a peak (can be a vector with separate thresholds for
each lod score column in scan1_output)

Amount that the LOD score must drop between peaks, if multiple peaks are to
be defined on a chromosome. (Can be a vector with separate values for each lod
score column in scan1_output.)

If provided, LOD support intervals are included in the results, and this indicates
the amount to drop in the support interval. (Can be a vector with separate values
for each lod score column in scan1_output.) Must be < peakdrop

If provided, Bayes credible intervals are included in the results, and this indi-
cates the nominal coverage. (Can be a vector with separate values for each lod
score column in scan1_output.) Provide just one of drop and prob.

Separate threshold for the X chromosome; if unspecified, the same threshold is
used for both autosomes and the X chromosome. (Like threshold, this can be
a vector with separate thresholds for each lod score column.)

find_peaks 57

peakdropX Like peakdrop, but for the X chromosome; if unspecified, the same value is
used for both autosomes and the X chromosome. (Can be a vector with separate
values for each lod score column in scan1_output.)

dropX Amount to drop for LOD support intervals on the X chromosome. Ignored if
drop is not provided. (Can be a vector with separate values for each lod score
column in scan1_output.)

probX Nominal coverage for Bayes intervals on the X chromosome. Ignored if prob is
not provided. (Can be a vector with separate values for each lod score column
in scanl_output.)

expand2markers If TRUE (and if drop or prob is provided, so that QTL intervals are calculated),
QTL intervals are expanded so that their endpoints are at genetic markers.

sort_by Indicates whether to sort the rows by lod column, genomic position, or LOD
score.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details

For each lod score column on each chromosome, we return a set of peaks defined as local maxima
that exceed the specified threshold, with the requirement that the LOD score must have dropped
by at least peakdrop below the lowest of any two adjacent peaks.

At a given peak, if there are ties, with multiple positions jointly achieving the maximum LOD score,
we take the average of these positions as the location of the peak.

Value

A data frame with each row being a single peak on a single chromosome for a single LOD score
column, and with columns

* lodindex - lod column index

* lodcolumn - lod column name

* chr - chromosome ID

* pos - peak position

* lod - lod score at peak

If drop or prob is provided, the results will include two additional columns: ci_lo and ci_hi, with
the endpoints of the LOD support intervals or Bayes credible wintervals.

See Also

scan1(), lod_int(), bayes_int()

58 fitl

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl(probs, pheno, addcovar=covar, Xcovar=Xcovar)

find just the highest peak on each chromosome
find_peaks(out, map, threshold=3)

possibly multiple peaks per chromosome
find_peaks(out, map, threshold=3, peakdrop=1)

possibly multiple peaks, also getting 1-LOD support intervals
find_peaks(out, map, threshold=3, peakdrop=1, drop=1)

possibly multiple peaks, also getting 90% Bayes intervals
find_peaks(out, map, threshold=3, peakdrop=1, prob=0.9)

fit1 Fit single-QTL model at a single position

Description

Fit a single-QTL model at a single putative QTL position and get detailed results about estimated
coefficients and individuals contributions to the LOD score.

Usage

fiti(
genoprobs,
pheno,
kinship = NULL,
addcovar = NULL,
nullcovar = NULL,
intcovar = NULL,

fitl

weights = NULL,
contrasts = NULL,

59

model = c("normal”, "binary"),
zerosum = TRUE,
se = TRUE,
hsq = NULL,
reml = TRUE,
blup = FALSE,
)
Arguments
genoprobs A matrix of genotype probabilities, individuals x genotypes. If NULL, we create
a single intercept column, matching the individual IDs in pheno.
pheno A numeric vector of phenotype values (just one phenotype, not a matrix of them)
kinship Optional kinship matrix.
addcovar An optional numeric matrix of additive covariates.
nullcovar An optional numeric matrix of additional additive covariates that are used under
the null hypothesis (of no QTL) but not under the alternative (with a QTL).
This is needed for the X chromosome, where we might need sex as a additive
covariate under the null hypothesis, but we wouldn’t want to include it under the
alternative as it would be collinear with the QTL effects.
intcovar An optional numeric matrix of interactive covariates.
weights An optional numeric vector of positive weights for the individuals. As with the
other inputs, it must have names for individual identifiers.
contrasts An optional numeric matrix of genotype contrasts, size genotypes X genotypes.
For an intercross, you might use cbind(mu=c(1,1,1), a=c(-1, @, 1), d=c(0,
1, @)) to get mean, additive effect, and dominance effect. The default is the
identity matrix.
model Indicates whether to use a normal model (least squares) or binary model (logistic
regression) for the phenotype. If model="binary", the phenotypes must have
values in [0, 1].
zerosum If TRUE, force the genotype or allele coefficients sum to 0 by subtracting their
mean and add another column with the mean. Ignored if contrasts is provided.
se If TRUE, calculate the standard errors.
hsq (Optional) residual heritability; used only if kinship provided.
reml If kinship provided: if rem1=TRUE, use REML; otherwise maximum likelihood.
blup If TRUE, fit a model with QTL effects being random, as in scan1blup().
Additional control parameters; see Details;
Details

For each of the inputs, the row names are used as individual identifiers, to align individuals.

60 fitl

If kinship is absent, Haley-Knott regression is performed. If kinship is provided, a linear mixed
model is used, with a polygenic effect estimated under the null hypothesis of no (major) QTL, and
then taken as fixed as known in the genome scan.

If contrasts is provided, the genotype probability matrix, P, is post-multiplied by the contrasts
matrix, A, prior to fitting the model. So we use P - A as the X matrix in the model. One might view
the rows of A~! as the set of contrasts, as the estimated effects are the estimated genotype effects
pre-multiplied by A~1.

The ... argument can contain several additional control parameters; suspended for simplicity (or
confusion, depending on your point of view). tol is used as a tolerance value for linear regression
by QR decomposition (in determining whether columns are linearly dependent on others and should
be omitted); default 1e-12. maxit is the maximum number of iterations for converence of the
iterative algorithm used when model=binary. bintol is used as a tolerance for converence for
the iterative algorithm used when model=binary. eta_max is the maximum value for the "linear
predictor" in the case model="binary" (a bit of a technicality to avoid fitted values exactly at O or

1.

Value
A list containing

e coef - Vector of estimated coefficients.
¢ SE - Vector of estimated standard errors (included if se=TRUE).
¢ lod - The overall lod score.

* ind_lod - Vector of individual contributions to the LOD score (not provided if kinship is
used).

» fitted - Fitted values.
* resid - Residuals. If blup==TRUE, only coef and SE are included at present.

References

Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69:315-324.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient
control of population structure in model organism association mapping. Genetics 178:1709-1723.

See Also
pull_genoprobpos(), find_marker()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=5)

fread_csv 61

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$phenol,1]

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

scan chromosome 7 to find peak
out <- scanl(probs[,"7"], pheno, addcovar=covar)

find peak position
max_pos <- max(out, map)

genoprobs at max position
pr_max <- pull_genoprobpos(probs, map, max_poschr, max_pospos)

fit QTL model just at that position
out_fit1 <- fit1(pr_max, pheno, addcovar=covar)

fread_csv Read a csv file

Description

Read a csv file via data. table: : fread() using a particular set of options, including the ability to
transpose the result.

Usage
fread_csv/(
filename,
sep = II’”,
na.strings = c("NA", "-"),
comment.char = "#",

transpose = FALSE,
rownames_included = TRUE

)

Arguments
filename Name of input file
sep Field separator
na.strings Missing value codes

comment.char Comment character; rest of line after this character is ignored
transpose If TRUE, transpose the result
rownames_included

If TRUE, the first column is taken to be row names.

62 fread_csv_numer

Details

Initial two lines can contain comments with number of rows and columns. Number of columns
includes an ID column; number of rows does not include the header row.

The first column is taken to be a set of row names

Value

Data frame

See Also

fread_csv_numer()

Examples

Not run: mydata <- fread_csv("myfile.csv", transpose=TRUE)

fread_csv_numer Read a csv file that has numeric columns

Description

Read a csv file via data.table::fread() using a particular set of options, including the ability
to transpose the result. This version assumes that the contents other than the first column and the
header row are strictly numeric.

Usage
fread_csv_numer(
filename,
sep = ",",
na.strings = c("NA", "-"),
comment.char = "#",

transpose = FALSE,
rownames_included = TRUE

)

Arguments
filename Name of input file
sep Field separator
na.strings Missing value codes

comment.char Comment character; rest of line after this character is ignored
transpose If TRUE, transpose the result

rownames_included
If TRUE, the first column is taken to be row names.

genoprob_to_alleleprob 63

Details

Initial two lines can contain comments with number of rows and columns. Number of columns
includes an ID column; number of rows does not include the header row.

The first column is taken to be a set of row names

Value

Data frame

See Also

fread_csv()

Examples

Not run: mydata <- fread_csv_numer("myfile.csv"”, transpose=TRUE)

genoprob_to_alleleprob
Convert genotype probabilities to allele probabilities

Description

Reduce genotype probabilities (as calculated by calc_genoprob()) to allele probabilities.

Usage

genoprob_to_alleleprob(probs, quiet = TRUE, cores = 1)

Arguments
probs Genotype probabilities, as calculated from calc_genoprob().
quiet IF FALSE, print progress messages.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Value

An object of class "calc_genoprob”, like the input probs, but with probabilities collapsed to
alleles rather than genotypes. See calc_genoprob().

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap_w_pmar <- insert_pseudomarkers(iron, step=1)

probs <- calc_genoprob(iron, gmap_w_pmar, error_prob=0.002)
allele_probs <- genoprob_to_alleleprob(probs)

64 genoprob_to_snpprob

genoprob_to_snpprob Convert genotype probabilities to SNP probabilities

Description

For multi-parent populations, convert use founder genotypes at a set of SNPs to convert founder-
based genotype probabilities to SNP genotype probabilities.

Usage

genoprob_to_snpprob(genoprobs, snpinfo)

Arguments

genoprobs Genotype probabilities as calculated by calc_genoprob().

snpinfo Data frame with SNP information with the following columns (the last three are
generally derived with index_snps()):

¢ chr - Character string or factor with chromosome
 pos - Position (in same units as in the "map"” attribute in genoprobs.

* sdp - Strain distribution pattern: an integer, between 1 and 2 — 2 where
n is the number of strains, whose binary encoding indicates the founder
genotypes

* snp - Character string with SNP identifier (if missing, the rownames are
used).

e index - Indices that indicate equivalent groups of SNPs, calculated by
index_snps().

e intervals - Indexes that indicate which marker intervals the SNPs reside.

¢ on_map - Indicate whether SNP coincides with a marker in the genoprobs

Alternatively, snpinfo can be a object of class "cross2”, as output by read_cross2(),
containing the data for a multi-parent population with founder genotypes, in

which case the SNP information for all markers with complete founder geno-

type data is calculated and then used. But, in this case, the genotype probabilities

must be at the markers in the cross.

Details

We first split the SNPs by chromosome and use snpinfo$index to subset to non-equivalent SNPs.
snpinfo$interval indicates the intervals in the genotype probabilities that contain each. For SNPs
contained within an interval, we use the average of the probabilities for the two endpoints. We then
collapse the probabilities according to the strain distribution pattern.

genoprob_to_snpprob 65

Value

An object of class "calc_genoprob”, like the input genoprobs, but with imputed genotype proba-
bilities at the selected SNPs indicated in snpinfo$index. See calc_genoprob().

If the input genoprobs is for allele probabilities, the probs output has just two probability columns
(for the two SNP alleles). If the input has a full set of n(n + 1)/2 probabilities for n strains, the
probs output has 3 probabilities (for the three SNP genotypes). If the input has full genotype prob-
abilities for the X chromosome (n(n + 1)/2 genotypes for the females followed by n hemizygous
genotypes for the males), the output has 5 probabilities: the 3 female SNP genotypes followed by
the two male hemizygous SNP genotypes.

See Also

index_snps(), calc_genoprob(), scanlsnps()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gtl2data/main/DO_Recla/recla.zip")

recla <- read_cross2(file)

recla <- reclalc(1:2,53:54), c("19","X")] # subset to 4 mice and 2 chromosomes

probs <- calc_genoprob(recla, error_prob=0.002)

founder genotypes for a set of SNPs

snpgeno <- rbind(mi=c(3,1,1,3,1,1,1,1),
m2=c(1,3,1,3,1,3,1,3),
m3=c(1,1,1,1,3,3,3,3),
m4=c(1,3,1,3,1,3,1,3))

sdp <- calc_sdp(snpgeno)
snpinfo <- data.frame(chr=c(”19", "19", "X", "X"),
pos=c(40.36, 40.53, 110.91, 111.21),
sdp=sdp,
snp=c("m1"”, "m2", "m3", "m4"), stringsAsFactors=FALSE)

identify groups of equivalent SNPs
snpinfo <- index_snps(recla$pmap, snpinfo)

collapse to SNP genotype probabilities
snpprobs <- genoprob_to_snpprob(probs, snpinfo)

could also first convert to allele probs
aprobs <- genoprob_to_alleleprob(probs)

snpaprobs <- genoprob_to_snpprob(aprobs, snpinfo)

End(Not run)

66 get_common_ids

get_common_ids Get common set of IDs from objects

Description

For a set objects with IDs as row names (or, for a vector, just names), find the IDs that are present
in all of the objects.

Usage

get_common_ids (..., complete.cases = FALSE)

Arguments

A set of objects: vectors, lists, matrices, data frames, and/or arrays. If one is a
character vector with no names attribute, it’s taken to be a set of IDs, itself.

complete.cases If TRUE, look at matrices and non-character vectors and keep only individuals
with no missing values.

Details

This is used (mostly internally) to align phenotypes, genotype probabilities, and covariates in prepa-
ration for a genome scan. The complete.cases argument is used to omit individuals with any
missing covariate values.

Value

A vector of character strings for the individuals that are in common.

Examples

x <- matrix(@, nrow=10, ncol=5); rownames(x) <- LETTERS[1:10]

y <- matrix(@, nrow=5, ncol=5); rownames(y) <- LETTERS[(1:5)+7]
z <- LETTERS[5:15]

get_common_ids(x, y, z)

x[8,1] <- NA
get_common_ids(x, y, z)
get_common_ids(x, y, z, complete.cases=TRUE)

get_x_covar 67

get_x_covar Get X chromosome covariates

Description

Get the matrix of covariates to be used for the null hypothesis when performing QTL analysis with
the X chromosome.

Usage

get_x_covar(cross)

Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

Details

For most crosses, the result is either NULL (indicating no additional covariates are needed) or a
matrix with a single column containing sex indicators (1 for males and O for females).

For an intercross, we also consider cross direction. There are four cases: (1) All male or all female
but just one direction: no covariate; (2) All female but both directions: covariate indicating cross
direction; (3) Both sexes, one direction: covariate indicating sex; (4) Both sexes, both directions:
a covariate indicating sex and a covariate that is 1 for females from the reverse direction and 0
otherwise.

Value

A matrix of size individuals x no. covariates.

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
xcovar <- get_x_covar(iron)

guess_phase Guess phase of imputed genotypes

Description
Turn imputed genotypes into phased genotypes along chromosomes by attempting to pick the phase
that leads to the fewest recombination events.

Usage

guess_phase(cross, geno, deterministic = FALSE, cores = 1)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

68 index_snps

Arguments
cross Object of class "cross2”. For details, see the R/qtl2 developer guide.
geno Imputed genotypes, as a list of matrices, as from maxmarg().

deterministic If TRUE, preferentially put smaller allele first when there’s uncertainty. If
FALSE, the order of alleles is random in such cases.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details

We randomly assign the pair of alleles at the first locus to two haplotypes, and then work left to
right, assigning alleles to haplotypes one locus at a time seeking the fewest recombination events.
The results are subject to arbitrary and random choices. For example, to the right of a homozygous
region, either orientation is equally reasonable.

Value

If input cross is phase-known (e.g., recombinant inbred lines), the output will be the input geno.
Otherwise, the output will be a list of three-dimensional arrays of imputed genotypes, individual x
position x haplotype (1/2).

See Also

maxmarg()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap <- insert_pseudomarkers(iron$gmap, step=1)

probs <- calc_genoprob(iron, gmap, error_prob=0.002)

imp_geno <- maxmarg(probs)

ph_geno <- guess_phase(iron, imp_geno)

index_snps Create index of equivalent SNPs

Description

For a set of SNPs and a map of marker/pseudomarkers, partition the SNPs into groups that are
contained within common intervals and have the same strain distribution pattern, and then create an
index to a set of distinct SNPs, one per partition.

Usage

index_snps(map, snpinfo, tol = 0.00000001)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

index_snps

Arguments

map

snpinfo

tol

Details

69

Physical map of markers and pseudomarkers; generally created from insert_pseudomarkers()
and used for a set of genotype probabilities (calculated with calc_genoprob())
that are to be used to interpolate SNP genotype probabilities (with genoprob_to_snpprob()).

Data frame with SNP information with the following columns:

e chr - Character string or factor with chromosome
¢ pos - Position (in same units as in the "map”).
* sdp - Strain distribution pattern: an integer, between 1 and 2 — 2 where
n is the number of strains, whose binary encoding indicates the founder
genotypes
* snp - Character string with SNP identifier (if missing, the rownames are
used).
Tolerance for determining whether a SNP is exactly at a position at which geno-
type probabilities were already calculated.

We split the SNPs by chromosome and identify the intervals in the map that contain each. For SNPs
within tol of a position at which the genotype probabilities were calculated, we take the SNP to be
at that position. For each marker position or interval, we then partition the SNPs into groups that
have distinct strain distribution patterns, and choose a single index SNP for each partition.

Value

A data frame containing the input snpinfo with three added columns: "index" (which indicates
the groups of equivalent SNPs), "interval” (which indicates the map interval containing the SNP,
with values starting at 0), and on_map (which indicates that the SNP is within tol of a position on
the map). The rows get reordered, so that they are ordered by chromosome and position, and the
values in the "index" column are by chromosome.

See Also

genoprob_to_snpprob(), scanlsnps(), find_index_snp()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DO_Recla/recla.zip”)

recla <- read_cross2(file)

founder genotypes for a set of SNPs

snpgeno <- rbind(mi=c(3,1,1,3,1,1,1,1),
m2=c(1,3,1,3,1,3,1,3),
m3=c(1,1,1,1,3,3,3,3),
m4=c(1,3,1,3,1,3,1,3))

sdp <- calc_sdp(snpgeno)
snpinfo <- data.frame(chr=c(”19", "19", "X", "X"),

70

insert_pseudomarkers

pos=c(40.36, 40.53, 110.91, 111.21),
sdp=sdp,
snp=c("m1"”, "m2", "m3", "m4"), stringsAsFactors=FALSE)

update snp info by adding the SNP index column
snpinfo <- index_snps(recla$pmap, snpinfo)

End(Not run)

insert_pseudomarkers Insert pseudomarkers into a marker map

Description

Insert pseudomarkers into a map of genetic markers

Usage

insert_pseudomarkers(
map,
step = 0,
off_end = 0,

stepwidth = c("fixed"”, "max"),
pseudomarker_map = NULL,

tol = 0.01,
cores = 1
)
Arguments
map A list of numeric vectors; each vector gives marker positions for a single chro-
mosome.
step Distance between pseudomarkers and markers; if step=0 no pseudomarkers are
inserted.
off_end Distance beyond terminal markers in which to insert pseudomarkers.
stepwidth Indicates whether to use a fixed grid (stepwidth="fixed") or to use the max-

imal distance between pseudomarkers to ensure that no two adjacent mark-
ers/pseudomarkers are more than step apart.

pseudomarker_map
A map of pseudomarker locations; if provided the step, of f_end, and stepwidth
arguments are ignored.

tol Tolerance for determining whether a pseudomarker would duplicate a marker
position.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

interp_genoprob 71

Details

If stepwidth="fixed", a grid of pseudomarkers is added to the marker map.

If stepwidth="max", a minimal set of pseudomarkers are added, so that the maximum distance
between adjacent markers or pseudomarkers is at least step. If two adjacent markers are separated
by less than step, no pseudomarkers will be added to the interval. If they are more then step apart,
a set of equally-spaced pseudomarkers will be added.

If pseudomarker_map is provided, then the step, of f_end, and stepwidth arguments are ignored,
and the input pseudomarker_map is taken to be the set of pseudomarker positions.

Value
A list like the input map with pseudomarkers inserted. Will also have an attribute "is_x_chr", taken
from the input map.

See Also

calc_genoprob(), calc_grid()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap_w_pmar <- insert_pseudomarkers(iron$gmap, step=1)

interp_genoprob Interpolate genotype probabilities

Description
Linear interpolation of genotype probabilities, mostly to get two sets onto the same map for com-
parison purposes.

Usage

interp_genoprob(probs, map, cores = 1)

Arguments
probs Genotype probabilities, as calculated from calc_genoprob().
map List of vectors of map positions.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

72 interp_map

Details

We reduce probs to the positions present in map and then interpolate the genotype probabilities at
additional positions in map by linear interpolation using the two adjacent positions. Off the ends,
we just copy over the first or last value unchanged.

In general, it’s better to use insert_pseudomarkers() and calc_genoprob() to get genotype
probabilities at additional positions along a chromosome. This function is a very crude alternative
that was implemented in order to compare genotype probabilities derived by different methods,
where we first need to get them onto a common set of positions.

Value

An object of class "calc_genoprob”, like the input, but with additional positions present in map.
See calc_genoprob().

See Also

calc_genoprob()

Examples
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
probs <- calc_genoprob(iron, iron$gmap, error_prob=0.002)

you generally wouldn't want to do this, but this is an illustration
map <- insert_pseudomarkers(iron$gmap, step=1)
probs_map <- interp_genoprob(probs, map)

interp_map Interpolate between maps

Description

Use interpolate to convert from one map to another

Usage

interp_map(map, oldmap, newmap)

Arguments
map The map to be interpolated; a list of vectors.
oldmap Map with positions in the original scale, as in map.

newmap Map with positions in the new scale.

invert_sdp 73

Value

Object of same form as input map but in the units as in newmap.

Examples

load example data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

positions to interpolate from cM to Mbp
tointerp <- list("7" = c(pos7.1= 5, pos7.2=15, pos7.3=25),
"9" = c(pos9.1=20, pos9.2=40))

interp_map(tointerp, iron$gmap, iron$pmap)

invert_sdp Calculate SNP genotype matrix from strain distribution patterns

Description

Calculate the matrix of SNP genotypes from a vector of strain distribution patterns (SDPs).

Usage

invert_sdp(sdp, n_strains)

Arguments
sdp Vector of strain distribution patterns (integers between 1 and 2" — 2 where n is
the number of strains.
n_strains Number of strains
Value

Matrix of SNP genotypes, markers x strains, coded as 1 (AA) and 3 (BB). Markers with values
other than 1 or 3 are omitted, and monomorphic markers, are omitted.

See Also
sdp2char (), calc_sdp()

Examples

sdp <- c(m1=1, m2=12, m3=240)
invert_sdp(sdp, 8)

74

locate_xo

locate_xo

Locate crossovers

Description

Estimate the locations of crossovers in each individual on each chromosome.

Usage

locate_xo(geno, map, quiet = TRUE, cores = 1)

Arguments
geno
map
quiet

cores

Value

List of matrices of genotypes (output of maxmarg() or viterbi()).
List of vectors with the map positions of the markers.
If FALSE, print progress messages.

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

A list of lists of estimated crossover locations, with crossovers placed at the midpoint of the intervals

that contain them.

See Also
count_xo()
Examples
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

map <- insert_pseudomarkers(iron$gmap, step=1)
pr <- calc_genoprob(iron, map, error_prob=0.002, map_function="c-f")

g <- maxmarg(pr)

pos <- locate_xo(g, iron$gmap)

lod_int 75

lod_int Calculate LOD support intervals

Description

Calculate LOD support intervals for a single LOD curve on a single chromosome, with the ability
to identify intervals for multiple LOD peaks.

Usage

lod_int(
scan1_output,
map,
chr = NULL,
lodcolumn = 1,
threshold = 0,
peakdrop = Inf,
drop = 1.5,
expand2markers = TRUE

Arguments

scanl_output An object of class "scan1” as returned by scan1().

map A list of vectors of marker positions, as produced by insert_pseudomarkers().
chr Chromosome ID to consider (must be a single value).

lodcolumn LOD score column to consider (must be a single value).

threshold Minimum LOD score for a peak.

peakdrop Amount that the LOD score must drop between peaks, if multiple peaks are to

be defined on a chromosome.
drop Amount to drop in the support interval. Must be < peakdrop

expand2markers If TRUE, QTL intervals are expanded so that their endpoints are at genetic mark-
ers.

Details

We identify a set of peaks defined as local maxima that exceed the specified threshold, with the
requirement that the LOD score must have dropped by at least peakdrop below the lowest of any
two adjacent peaks.

At a given peak, if there are ties, with multiple positions jointly achieving the maximum LOD score,
we take the average of these positions as the location of the peak.

The default is to use threshold=0, peakdrop=Inf, and drop=1.5. We then return results a single
peak, no matter the maximum LOD score, and give a 1.5-LOD support interval.

76 map_to_grid

Value

A matrix with three columns:

e ci_lo - lower bound of interval
* pos - peak position

e ci_hi - upper bound of interval

Each row corresponds to a different peak.

See Also

bayes_int(), find_peaks(), scan1()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

1.5-LOD support interval for QTL on chr 7, first phenotype
lod_int(out, map, chr=7, lodcolum=1)

map_to_grid Subset a map to positions on a grid

Description

Subset a map object to the locations on some grid.

Usage

map_to_grid(map, grid)

mat2strata 77

Arguments
map A list of vectors of marker positions.
grid A list of logical vectors (aligned with map), with TRUE indicating the position
is on the grid.
Details

This is generally for the case of a map created with insert_pseudomarkers() with step>0 and
stepwidth="fixed", so that the pseudomarkers form a grid along each chromosome.

Value

Same list as input, but subset to just include pseudomarkers along a grid.

See Also
calc_grid(), probs_to_grid()

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map_w_pmar <- insert_pseudomarkers(grav2$gmap, step=1)

sapply(map_w_pmar, length)

grid <- calc_grid(grav2$gmap, step=1)

map_sub <- map_to_grid(map_w_pmar, grid)

sapply(map_sub, length)

mat2strata Define strata based on rows of a matrix

Description

Use the rows of a matrix to define a set of strata for a stratified permutation test

Usage

mat2strata(mat)

Arguments

mat A covariate matrix, as individuals x covariates

Value

A vector of character strings: for each row of mat, we use base: :paste() with collapse="|".

See Also

get_x_covar(), scanlperm()

78 maxlod

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

Xcovar <- get_x_covar(iron)
perm_strata <- mat2strata(Xcovar)

maxlod Overall maximum LOD score

Description

Find overall maximum LOD score in genome scan results, across all positions and columns.

Usage

maxlod(scanl_output, map = NULL, chr = NULL, lodcolumn = NULL)

Arguments

scanl_output An object of class "scan1" as returned by scan1().

map A list of vectors of marker positions, as produced by insert_pseudomarkers().
chr Optional vector of chromosomes to consider.
lodcolumn An integer or character string indicating the LOD score column, either as a nu-

meric index or column name. If NULL, return maximum for all columns.

Value

A single number: the maximum LOD score across all columns and positions for the selected chro-
mosomes.

Examples

read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

maxmarg

perform genome
out <- scanl(prob

overall maximum
maxlod(out)

79

scan
s, pheno, addcovar=covar, Xcovar=Xcovar)

maximum on chromosome 2

maxlod(out, map,

npny

maxmarg

Find genotypes with maximum marginal probabilities

Description

For each individual at each position, find the genotype with the maximum marginal probability.

Usage

maxmarg (
probs,
map = NULL,

minprob = 0.95,

chr = NULL,
pos = NULL,
return_char =
quiet = TRUE,
cores = 1,

FALSE,

tol = 0.0000000000001

Arguments

probs
map

minprob

chr

pos
return_char
quiet

cores

tol

Genotype probabilities, as calculated from calc_genoprob().
Map of pseudomarkers in probs. Used only if chr and pos are provided.

Minimum probability for making a call. If maximum probability is less then this
value, give NA.

If provided (along with pos), consider only the single specified position.
If provided (along with chr), consider only the single specified position.
If TRUE, return genotype names as character strings.

IF FALSE, print progress messages.

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Tolerance value; genotypes with probability that are within tol of each other
are treated as equivalent.

80 max_compare_geno

Details

If multiple genotypes share the maximum probability, one is chosen at random.

Value

If chr and pos are provided, a vector of genotypes is returned. In this case, map is needed.
Otherwise, the result is a object like that returned by viterbi(), A list of two-dimensional arrays
of imputed genotypes, individuals x positions. Also includes these attributes:

* crosstype - The cross type of the input cross.

* is_x_chr - Logical vector indicating whether chromosomes are to be treated as the X chro-
mosome or not, from input cross.

e alleles - Vector of allele codes, from input cross.

See Also

sim_geno(), viterbi()

Examples

load data and calculate genotype probabilities
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
pr <- calc_genoprob(iron, error_prob=0.002)

full set of imputed genotypes
ginf <- maxmarg(pr)

imputed genotypes at a fixed position
g <- maxmarg(pr, iron$gmap, chr=8, pos=45.5)

return genotype names rather than integers
g <- maxmarg(pr, iron$gmap, chr=8, pos=45.5, return_char=TRUE)

max_compare_geno Find pair with most similar genotypes

Description

From results of compare_geno(), show the pair with most similar genotypes.
Usage
max_compare_geno(object, ...)

S3 method for class 'compare_geno'
max(object, ...)

max_scanl 81

Arguments
object A square matrix with genotype comparisons for pairs of individuals, as output
by compare_geno().
Ignored
Value

Data frame with individual pair, proportion matches, number of mismatches, number of matches,
and total markers genotyped.

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
cg <- compare_geno(grav2)
max(cg)

max_scan1 Find position with maximum LOD score

Description

Return data frame with the positions having maximum LOD score for a particular LOD score col-
umn

Usage

max_scan1(
scanl1_output,
map = NULL,
lodcolumn = 1,
chr = NULL,
na.rm = TRUE,

S3 method for class 'scanl'
max(scanl_output, map = NULL, lodcolumn = 1, chr = NULL, na.rm = TRUE, ...)

Arguments

scan1_output An object of class "scan1” as returned by scan1().

map A list of vectors of marker positions, as produced by insert_pseudomarkers().
Can also be an indexed SNP info table, as from index_snps() or scan1snps().

lodcolumn An integer or character string indicating the LOD score column, either as a nu-
meric index or column name. If NULL, return maximum for all columns.

chr Optional vector of chromosomes to consider.

na.rm Ignored (take to be TRUE)

Ignored

82 n_missing

Value

If map is NULL, the genome-wide maximum LOD score for the selected column is returned. If also
lodcolumn is NULL, you get a vector with the maximum LOD for each column.

If map is provided, the return value is a data.frame with three columns: chr, pos, and lod score. But
if lodcolumn is NULL, you get the maximum for each lod score column, in the format provided by
find_peaks(), so a data.frame with five columns: lodindex, lodcolumn, chr, pos, and lod.

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covar$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

maximum of first column
max(out, map)

maximum of spleen column
max(out, map, lodcolumn="spleen")

maximum of first column on chr 2
max(out, map, chr="2")

n_missing Count missing genotypes

Description

Number (or proportion) of missing (or non-missing) genotypes by individual or marker

Usage

n_missing(
cross,
by = c("individual”, "marker"),

plot_coef 83
summary = c("count”, "proportion”)
)
n_typed(
cross,
by = c("individual”, "marker"),
summary = c("count”, "proportion")
)
Arguments
Ccross An object of class "cross2”, as output by read_cross2(). For details, see the
R/qtl2 developer guide.
by Whether to summarize by individual or marker
summary Whether to take count or proportion
Value

Vector of counts (or proportions) of missing (or non-missing) genotypes.

Functions

* n_missing(): Count missing genotypes

* n_typed(): Count genotypes

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
nmis_ind <- n_missing(iron)

pmis_mar <- n_typed(iron, "mar

n

, "proportion")

plot(nmis_ind, xlab="Individual”, ylab="No. missing genotypes"”)
plot(pmis_mar, xlab="Markers"”, ylab="Prop. genotyped")

plot_coef

Plot QTL effects along chromosome

Description

Plot estimated QTL effects along a chromosomes.

Usage

plot_coef/(

X!
map,

columns
col = NULL,

NULL,

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

84 plot_coef

scanl_output = NULL,
add = FALSE,

gap = NULL,
top_panel_prop = 0.65,
legend = NULL,

)

plot_coefCC(
X,
map,
columns = 1:8,
col = qtl2::CCcolors,
scan1_output = NULL,
add = FALSE,
gap = NULL,
top_panel_prop = 0.65,
legend = NULL,

)...

S3 method for class 'scanlcoef'
plot(

X,

map,

columns = 1,

col = NULL,

scanl_output = NULL,

add = FALSE,

gap = NULL,

top_panel_prop = 0.65,
legend = NULL,

Arguments
X Estimated QTL effects ("coefficients") as obtained from scanlcoef ().
map A list of vectors of marker positions, as produced by insert_pseudomarkers().
columns Vector of columns to plot
col Vector of colors, same length as columns. If NULL, some default choices are

made.

scanl_output If provided, we make a two-panel plot with coefficients on top and LOD scores
below. Should have just one LOD score column; if multiple, only the first is
used.

add If TRUE, add to current plot (must have same map and chromosomes).

gap Gap between chromosomes. The default is 1% of the total genome length.

plot_coef 85

top_panel_prop If scani_output provided, this gives the proportion of the plot that is devoted
to the top panel.

legend Location of legend, such as "bottomleft” or "topright” (NULL for no leg-
end)

Additional graphics parameters.

Details
plot_coefCC() is the same as plot_coef (), but forcing columns=1:8 and using the Collaborative
Cross colors, CCcolors.

Value

None.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the
background color, and things like ylab and ylim. These are not included as formal parameters in
order to avoid cluttering the function definition.

In the case that scan1_output is provided, col, ylab, and ylim all control the panel with estimated
QTL effects, while col_lod, ylab_lod, and ylim_lod control the LOD curve panel.

If legend is indicated so that a legend is shown, legend_lab controls the labels in the legend, and
legend_ncol indicates the number of columns in the legend.

See Also

CCcolors, plot_scan1(), plot_snpasso()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$phenol,1]

covar <- match(iron$covar$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

calculate coefficients for chromosome 7
coef <- scanlcoef(probs[,7], pheno, addcovar=covar)

plot QTL effects (note the need to subset the map object, for chromosome 7)
plot(coef, map[7], columns=1:3, col=c("slateblue”, "violetred”, "green3"))

86 plot_genes

plot_compare_geno Plot of compare_geno object.

Description

From results of compare_geno(), plot histogram of

Usage

plot_compare_geno(x, rug = TRUE, ...)

S3 method for class 'compare_geno'

plot(x, rug = TRUE, ...)
Arguments
X A square matrix with genotype comparisons for pairs of individuals, as output

by compare_geno().
rug If true, use rug() to plot tick marks at observed values below the histogram.

Additional graphics parameters passed to hist()

Value

None.

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
cg <- compare_geno(grav2)
plot(cg)

plot_genes Plot gene locations for a genomic interval

Description

Plot gene locations for a genomic interval, as rectangles with gene symbol (and arrow indicating
strand/direction) below.

plot_genes

Usage

plot_genes(

genes,

minrow = 4
padding =
colors = ¢
scale_pos
start_field
stop_field =
strand_field
name_field =

0
(u

Arguments

genes

minrow
padding
colors
scale_pos
start_field
stop_field
strand_field

name_field

Value

None.

87

2,
lack”, "red3", "green4", "blue3", "orange"),
1,

= "start”,
"stop”,
= "strand”,
"Name",

Data frame containing start and stop in Mbp, strand (as "-", "+", or NA),
and Name.

Minimum number of rows of genes in the plot

Proportion to pad with white space around the genes

Vectors of colors, used sequentially and then re-used.

Factor by which to scale position (for example, to convert basepairs to Mbp)
Character string with name of column containing the genes’ start positions.
Character string with name of column containing the genes’ stop positions.

Character string with name of column containing the genes’ strands. (The values
of the corresponding field can be character strings "+" or "-", or numeric +1 or
-1)

Character string with name of column containing the genes’ names.

Optional arguments passed to plot().

Hidden graphics parameters

Graphics parameters can be passed via For example, x1im to control the x-axis limits. These
are not included as formal

Examples

genes <- data.frame(chr - C(NGHy "6”, ”6", "6", "6", "6", "6”, ”6"),

start = c(139988753, 140680185, 141708118, 142234227, 142587862,
143232344, 144398099, 144993835),

stop = c(140041457, 140826797, 141773810, 142322981, 142702315,
143260627, 144399821, 145076184),

88

plot_genoprob

strand = c("=", "+", "=r,or=roonoMOONA, M M"Y

Name = c("Plcz1”, "Gm3@215", "Gm5724", "Slcola5", "Abcc9”,
"4930407102Rik", "Gm31777", "Bcatl"),

stringsAsFactors=FALSE)

use scale_pos=le-6 because data in bp but we want the plot in Mbp
plot_genes(genes, xlim=c(140, 146), scale_pos=1e-6)

plot_genoprob Plot genotype probabilities for one individual on one chromosome.

Description

Plot the genotype probabilities for one individual on one chromosome, as a heat map.

Usage

plot_genoprob(
probs,
map,
ind = 1,
chr = NULL,
geno = NULL,
color_scheme = c("gray”, "viridis"),
col = NULL,
threshold = 0,

swap_axes = FALSE,

)
S3 method for class 'calc_genoprob'
plot(x, ...)
Arguments
probs Genotype probabilities (as produced by calc_genoprob()) or allele dosages (as
produced by genoprob_to_alleleprob()).
map Marker map (a list of vectors of marker positions).
ind Individual to plot, either a numeric index or an ID.
chr Selected chromosome to plot; a single character string.
geno Optional vector of genotypes or alleles to be shown (vector of integers or char-

acter strings)
color_scheme Color scheme for the heatmap (ignored if col is provided).
col Optional vector of colors for the heatmap.

threshold Threshold for genotype probabilities; only genotypes that achieve this value
somewhere on the chromosome will be shown.

plot_genoprob 89

swap_axes If TRUE, swap the axes, so that the genotypes are on the x-axis and the chromo-
some position is on the y-axis.

Additional graphics parameters passed to graphics: :image().

X Genotype probabilities (as produced by calc_genoprob()) or allele dosages (as
produced by genoprob_to_alleleprob()). (For the S3 type plot function, this
has to be called x.)

Value

None.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, hlines, hlines_col,
hlines_lwd, and hlines_1ty to control the horizontal grid lines. (Use hlines=NA to avoid plotting
horizontal grid lines.) Similarly vlines, vlines_col, vlines_lwd, and vlines_1ty for vertical
grid lines. You can also use many standard graphics parameters like x1ab and x1im. These are not
included as formal parameters in order to avoid cluttering the function definition.

See Also

plot_genoprobcomp()

Examples

load data and calculate genotype probabilities

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
iron <- iron[,"2"] # subset to chr 2

map <- insert_pseudomarkers(iron$gmap, step=1)

pr <- calc_genoprob(iron, map, error_prob=0.002)

plot the probabilities for the individual labeled "262"
(white = 0, black = 1)
plot_genoprob(pr, map, ind="262")

change the x-axis label
plot_genoprob(pr, map, ind="262", xlab="Position (cM)")

swap the axes so that the chromosome runs vertically
plot_genoprob(pr, map, ind="262", swap_axes=TRUE, ylab="Position (cM)")

This is more interesting for a Diversity Outbred mouse example

Not run:

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

subset to chr 2 and X and individuals labeled "232" and "256"

DOex <- DOex[c("232", "256"), c("2", "X")]

pr <- calc_genoprob(DOex, error_prob=0.002)

plot individual "256" on chr 2 (default is to pick first chr in the probs)

plot_genoprob(pr, DOex$pmap, ind="256")

90 plot_genoprobcomp

omit states that never have probability >= 0.5
plot_genoprob(pr, DOex$pmap, ind="256", threshold=0.05)

X chr male 232: just show the AY-HY genotype probabilities

plot_genoprob(pr, DOex$pmap, ind="232", chr="X", geno=paste@(LETTERS[1:81, "Y"))
could also indicate genotypes by number

plot_genoprob(pr, DOex$pmap, ind="232", chr="X", geno=37:44)

and can use negative indexes

plot_genoprob(pr, DOex$pmap, ind="232", chr="X", geno=-(1:36))

X chr female 256: just show the first 36 genotype probabilities
plot_genoprob(pr, DOex$pmap, ind="256", chr="X", geno=1:36)

again, can give threshold to omit genotypes whose probabilities never reach that threshold
plot_genoprob(pr, DOex$pmap, ind="256", chr="X", geno=1:36, threshold=0.5)

can also look at the allele dosages
apr <- genoprob_to_alleleprob(pr)
plot_genoprob(apr, DOex$pmap, ind="232")

End(Not run)

plot_genoprobcomp Plot comparison of two sets of genotype probabilities

Description

Plot a comparison of two sets of genotype probabilities for one individual on one chromosome, as
a heat map.

Usage

plot_genoprobcomp(
probs1,
probs2,
map,
ind = 1,
chr = NULL,
geno = NULL,
threshold = 0,
n_colors = 256,
swap_axes = FALSE,

plot_genoprobcomp

Arguments

probs1

probs2
map
ind
chr

geno

threshold

n_colors

swap_axes

Details

91

Genotype probabilities (as produced by calc_genoprob()) or allele dosages (as
produced by genoprob_to_alleleprob()).

A second set of genotype probabilities, just like probs1.
Marker map (a list of vectors of marker positions).
Individual to plot, either a numeric index or an ID.
Selected chromosome to plot; a single character string.

Optional vector of genotypes or alleles to be shown (vector of integers or char-
acter strings)

Threshold for genotype probabilities; only genotypes that achieve this value
somewhere on the chromosome (in one or the other set of probabilities) will
be shown.

Number of colors in each color scale.

If TRUE, swap the axes, so that the genotypes are on the x-axis and the chromo-
some position is on the y-axis.

Additional graphics parameters passed to graphics: :image().

We plot the first set of probabilities in the range white to blue and the second set in the range white
to red and attempt to combine them, for colors that are white, some amount of blue or red, or where
both are large something like blackish purple.

Value

None.

See Also

plot_genoprob()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
iron <- iron[228,"1"] # subset to one individual on chr 1
map <- insert_pseudomarkers(iron$gmap, step=5)

introduce genotype error and look at difference in genotype probabilities
pr_ne <- calc_genoprob(iron, map, error_prob=0.002)

iron$geno[[1]1[1,2] <- 3

pr_e <- calc_genoprob(iron, map, error_prob=0.002)

image of probabilities + comparison

par(mfrow=c(3,1))

plot_genoprob(pr_ne, map, main="No error")
plot_genoprob(pr_e, map, main="With an error")

92 plot_lodpeaks

plot_genoprobcomp(pr_ne, pr_e, map, main="Comparison")

plot_lodpeaks Plot LOD scores vs QTL peak locations

Description

Create a scatterplot of LOD scores vs QTL peak locations (possibly with intervals) for multiple

traits.
Usage
plot_lodpeaks(peaks, map, chr = NULL, gap = NULL, intervals = FALSE, ...)
Arguments
peaks Data frame such as that produced by find_peaks()) containing columns chr,
pos, lodindex, and lodcolumn. May also contain columns ci_lo and ci_hi,
in which case intervals will be plotted.
map Marker map, used to get chromosome lengths (and start and end positions).
chr Selected chromosomes to plot; a vector of character strings.
gap Gap between chromosomes. The default is 1% of the total genome length.
intervals If TRUE and peaks contains QTL intervals, plot the intervals.
Additional graphics parameters
Value
None.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the back-
ground color and altbgcolor to control the background color on alternate chromosomes. These
are not included as formal parameters in order to avoid cluttering the function definition.

See Also

find_peaks(), plot_peaks()

plot_onegeno 93

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

find peaks above lod=3.5 (and calculate 1.5-LOD support intervals)
peaks <- find_peaks(out, map, threshold=3.5, drop=1.5)

plot_lodpeaks(peaks, map)

plot_onegeno Plot one individual’s genome-wide genotypes

Description

Plot one individual’s genome-wide genotypes

Usage

plot_onegeno(
geno,
map,
ind = 1,
chr = NULL,
col = NULL,
na_col = "white",

swap_axes = FALSE,
border = "black”,
shift = FALSE,
chrwidth = 0.5,

94

plot_onegeno

Arguments
geno Imputed phase-known genotypes, as a list of matrices (as produced by maxmarg())
or a list of three-dimensional arrays (as produced by guess_phase()).
map Marker map (a list of vectors of marker positions).
ind Individual to plot, either a numeric index or an ID.
chr Selected chromosomes to plot; a vector of character strings.
col Vector of colors for the different genotypes.
na_col Color for missing segments.
swap_axes If TRUE, swap the axes, so that the chromosomes run horizontally.
border Color of outer border around chromosome rectangles.
shift If TRUE, shift the chromosomes so they all start at 0.
chrwidth Total width of rectangles for each chromosome, as a fraction of the distance
between them.
Additional graphics parameters
Value
None.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the
background color. These are not included as formal parameters in order to avoid cluttering the
function definition.

Examples

load data and calculate genotype probabilities

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
iron <- iron["146",] # subset to individual 146

map <- insert_pseudomarkers(iron$gmap, step=1)

pr <- calc_genoprob(iron, map, error_prob=0.002)

infer genotypes, as those with maximal marginal probability
m <- maxmarg(pr)

guess phase
ph <- guess_phase(iron, m)

plot phased genotypes
plot_onegeno(ph, map, shift=TRUE, col=c("slateblue”, "Orchid"))

this is more interesting for Diversity Outbred mouse data

Not run:

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gqtl2data/main/D0Oex/D0Oex.zip")

DOex <- read_cross2(file)

plot_peaks 95
subset to individuals labeled "232" and "256"
DOex <- DOex[c(”232", "256"),]
pr <- calc_genoprob(DOex, error_prob=0.002)
infer genotypes, as those with maximal marginal probability
m <- maxmarg(pr, minprob=0.5)
guess phase
ph <- guess_phase(DOex, m)
plot phased genotypes
plot_onegeno(ph, DOex$gmap, shift=TRUE)
plot_onegeno(ph, DOex$gmap, ind="256", shift=TRUE)
End(Not run)
plot_peaks Plot QTL peak locations
Description
Plot QTL peak locations (possibly with intervals) for multiple traits.
Usage
plot_peaks(
peaks,
map,
chr = NULL,
tick_height = 0.3,
gap = NULL,
lod_labels = FALSE,
)
Arguments
peaks Data frame such as that produced by find_peaks()) containing columns chr,
pos, lodindex, and lodcolumn. May also contain columns ci_lo and ci_hi,
in which case intervals will be plotted.
map Marker map, used to get chromosome lengths (and start and end positions).
chr Selected chromosomes to plot; a vector of character strings.

tick_height

gap

Height of tick marks at the peaks (a number between 0 and 1).

Gap between chromosomes. The default is 1% of the total genome length.

96 plot_peaks

lod_labels If TRUE, plot LOD scores near the intervals. Uses three hidden graphics param-
eters, label_gap (distance between CI and LOD text label), label_left (vec-
tor that indicates whether the labels should go on the left side; TRUE=on left,
FALSE=on right, NA=put into larger gap on that chromosome), and label_cex
that controls the size of these labels

Additional graphics parameters

Value

None.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the back-
ground color and altbgcolor to control the background color on alternate chromosomes. These
are not included as formal parameters in order to avoid cluttering the function definition.

See Also

find_peaks(), plot_lodpeaks()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl(probs, pheno, addcovar=covar, Xcovar=Xcovar)

find peaks above lod=3.5 (and calculate 1.5-LOD support intervals)
peaks <- find_peaks(out, map, threshold=3.5, drop=1.5)

plot_peaks(peaks, map)

show LOD scores
plot_peaks(peaks, map, lod_labels=TRUE)

show LOD scores, controlling whether they go on the left or right

plot_pxg

97

plot_peaks(peaks, map, lod_labels=TRUE,
label_left=c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE))

plot_pxg

Plot phenotype vs genotype

Description

Plot phenotype vs genotype for a single putative QTL and a single phenotype.

Usage

plot_pxg(
geno,
pheno,

sort = TRUE,

SEmult = NULL,
pooledSD = TRUE,
swap_axes = FALSE,

jitter = 0.2,

force_labels = TRUE,
alternate_labels = FALSE,
omit_points = FALSE,

Arguments

geno

pheno
sort
SEmult

pooledSD
swap_axes
jitter

force_labels

Vector of genotypes, for example as produced by maxmarg() with specific chr
and pos.

Vector of phenotypes.
If TRUE, sort genotypes from largest to smallest.

If specified, interval estimates of the within-group averages will be displayed,
asmean +/- SE * SEmult.

If TRUE and SEmult is specified, calculated a pooled within-group SD. Other-
wise, get separate estimates of the within-group SD for each group.

If TRUE, swap the axes, so that the genotypes are on the y-axis and the pheno-
type is on the x-axis.

Amount to jitter the points horizontally, if a vector of length > 0, it is taken to
be the actual jitter amounts (with values between -0.5 and 0.5).

If TRUE, force all genotype labels to be shown.

alternate_labels

omit_points

If TRUE, place genotype labels in two rows

If TRUE, omit the points, just plotting the averages (and, potentially, the +/- SE
intervals).

Additional graphics parameters, passed to plot().

98 plot_pxg

Value

(Invisibly) A matrix with rows being the genotype groups and columns for the means and (if SEmult
is specified) the SEs.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the
background color, and seg_width, seg_lwd, and seg_col to control the lines at the confidence
intervals. Further, hlines, hlines_col, hlines_1lwd, and hlines_1ty to control the horizontal
grid lines. (Use hlines=NA to avoid plotting horizontal grid lines.) Similarly vlines, vlines_col,
vlines_lwd, and vlines_1ty for vertical grid lines. These are not included as formal parameters
in order to avoid cluttering the function definition.

See Also

plot_coef ()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

inferred genotype at a 28.6 cM on chr 16
geno <- maxmarg(probs, map, chr=16, pos=28.6, return_char=TRUE)

plot phenotype vs genotype
plot_pxg(geno, logl@(iron$pheno[,1]), ylab=expression(log[10](Liver)))

include +/- 2 SE intervals
plot_pxg(geno, logl@(iron$pheno[,1]), ylab=expression(log[10@](Liver)),
SEmult=2)

plot just the means
plot_pxg(geno, logl@(iron$phenol,1]), ylab=expression(log[10](Liver)),
omit_points=TRUE)

plot just the means +/- 2 SEs
plot_pxg(geno, logl@(iron$pheno[,1]), ylab=expression(log[10@](Liver)),
omit_points=TRUE, SEmult=2)

plot_scanl 99

plot_scant Plot a genome scan

Description

Plot LOD curves for a genome scan

Usage

plot_scan1(x, map, lodcolumn = 1, chr = NULL, add = FALSE, gap = NULL, ...)

S3 method for class 'scanl'

plot(x, map, lodcolumn = 1, chr = NULL, add = FALSE, gap = NULL, ...)
Arguments
X An object of class "scan1"”, as output by scan1().
map A list of vectors of marker positions, as produced by insert_pseudomarkers().
lodcolumn LOD score column to plot (a numeric index, or a character string for a column

name). Only one value allowed.

chr Selected chromosomes to plot; a vector of character strings.
add If TRUE, add to current plot (must have same map and chromosomes).
gap Gap between chromosomes. The default is 1% of the total genome length.

Additional graphics parameters.

Value

None.

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the
background color and altbgcolor to control the background color on alternate chromosomes. col
controls the color of lines/curves; altcol can be used if you want alternative chromosomes in
different colors. These are not included as formal parameters in order to avoid cluttering the function
definition.

See Also

plot_coef (), plot_coefCC(), plot_snpasso()

100 plot_sdp

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covar$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

plot the results for selected chromosomes

ylim <- c(@, maxlod(out)*1.02) # need to strip class to get overall max LOD

chr <- ¢(2,7,8,9,15,16)

plot(out, map, chr=chr, ylim=ylim)

plot(out, map, lodcolumn=2, chr=chr, col="violetred”, add=TRUE)

legend("topleft”, lwd=2, col=c("darkslateblue”, "violetred"), colnames(out),
bg="gray90")

plot just one chromosome
plot(out, map, chr=8, ylim=ylim)
plot(out, map, chr=8, lodcolumn=2, col="violetred”, add=TRUE)

lodcolumn can also be a column name
plot(out, map, lodcolumn="liver", ylim=ylim)
plot(out, map, lodcolumn="spleen", col="violetred”, add=TRUE)

plot_sdp plot strain distribution patterns for SNPs

Description

plot the strain distribution patterns of SNPs using tracks of tick-marks for each founder strain

Usage

plot_sdp(pos, sdp, strain_labels = names(qgtl2::CCcolors), ...)

Arguments

pos vector of SNP positions

plot_snpasso 101

sdp vector of strain distribution patterns (as integers)
strain_labels names of the strains

additional graphic arguments

Details

Additional arguments, such as xlab, ylab, x1im, and main, are passed via . . .; also bgcolor to
control the color of the background, and col and 1wd to control the color and thickness of the tick
marks.

Value

None.

See Also

calc_sdp(), invert_sdp()

Examples

n_tick <- 50
plot_sdp(runif(n_tick, @, 100), sample(@:255, n_tick, replace=TRUE))

plot_snpasso Plot SNP associations

Description

Plot SNP associations, with possible expansion from distinct snps to all snps.

Usage

plot_snpasso(
scanloutput,
snpinfo,
genes = NULL,
lodcolumn = 1,
show_all_snps = TRUE,

chr = NULL,

add = FALSE,

drop_hilit = NA,
col_hilit = "violetred”,
col = "darkslateblue”,
gap = NULL,

minlod = 0,

sdp_panel = FALSE,
strain_labels = names(qtl2::CCcolors),

Arguments

scanloutput

snpinfo

genes

lodcolumn

show_all_snps

chr

add
drop_hilit
col_hilit
col

gap

minlod
sdp_panel

strain_labels

Value

None.

plot_snpasso

Output of scan1 () using SNP probabilities derived by genoprob_to_snpprob().

Data frame with SNP information with the following columns (the last three are
generally derived from with index_snps()):

* chr - Character string or factor with chromosome

e pos - Position (in same units as in the "map” attribute in genoprobs.

* sdp - Strain distribution pattern: an integer, between 1 and 2" — 2 where
n is the number of strains, whose binary encoding indicates the founder
genotypes

* snp - Character string with SNP identifier (if missing, the rownames are
used).

* index - Indices that indicate equivalent groups of SNPs.
e intervals - Indexes that indicate which marker intervals the SNPs reside.

e on_map - Indicate whether SNP coincides with a marker in the genoprobs

Optional data frame containing gene information for the region, with columns
start and stop in Mbp, strand (as "-", "+", or NA), and Name. If included,
a two-panel plot is produced, with SNP associations above and gene locations
below.

LOD score column to plot (a numeric index, or a character string for a column
name). Only one value allowed.

If TRUE, expand to show all SNPs.
Vector of character strings with chromosome IDs to plot.
If TRUE, add to current plot (must have same map and chromosomes).

SNPs with LOD score within this amount of the maximum SNP association will
be highlighted.

Color of highlighted points
Color of other points
Gap between chromosomes. The default is 1% of the total genome length.

Minimum LOD to display. (Mostly for GWAS, in which case using minlod=1
will greatly increase the plotting speed, since the vast majority of points would
be omittted.

Include a panel with the strain distribution patterns for the highlighted SNPs
Labels for the strains, if sdp_panel=TRUE.

Additional graphics parameters.

plot_snpasso 103

Hidden graphics parameters

A number of graphics parameters can be passed via For example, bgcolor to control the
background color,altbgcolor to control the background color on alternate chromosomes, altcol
to control the point color on alternate chromosomes, cex for character expansion for the points
(default 0.5), pch for the plotting character for the points (default 16), and ylim for y-axis limits. If
you are including genes and/or SDP panels, you can use panel_prop to control the relative heights
of the panels, from top to bottom.

See Also

plot_scani(), plot_coef (), plot_coefCC()

Examples

Not run:

load example DO data from web

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gqtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

subset to chr 2
DOex <- DOex[,"2"]

calculate genotype probabilities and convert to allele probabilities
pr <- calc_genoprob(DOex, error_prob=0.002)
apr <- genoprob_to_alleleprob(pr)

query function for grabbing info about variants in region
snp_dbfile <- system.file("extdata”, "cc_variants_small.sqlite”, package="qtl2")
query_variants <- create_variant_query_func(snp_dbfile)

SNP association scan
out_snps <- scanlsnps(apr, DOex$pmap, DOex$pheno, query_func=query_variants,
chr=2, start=97, end=98, keep_all_snps=TRUE)

plot results
plot_snpasso(out_snpslod, out_snpssnpinfo)

can also just type plot()
plot(out_snpslod, out_snpssnpinfo)

plot just subset of distinct SNPs
plot(out_snpslod, out_snpssnpinfo, show_all_snps=FALSE)

highlight the top snps (with LOD within 1.5 of max)
plot(out_snpslod, out_snpssnpinfo, drop_hilit=1.5)

query function for finding genes in region

gene_dbfile <- system.file("extdata”, "mouse_genes_small.sqlite"”, package="qtl2")
query_genes <- create_gene_query_func(gene_dbfile)

genes <- query_genes(2, 97, 98)

104 predict_snpgeno

plot SNP association results with gene locations
plot(out_snpslod, out_snpssnpinfo, drop_hilit=1.5, genes=genes)

plot SNP asso results with genes plus SDPs of highlighted SNPs
plot(out_snpslod, out_snpssnpinfo, drop_hilit=2, genes=genes, sdp_panel=TRUE)

End(Not run)

predict_snpgeno Predict SNP genotypes

Description
Predict SNP genotypes in a multiparent population from inferred genotypes plus founder strains’
SNP alleles.

Usage

predict_snpgeno(cross, geno, cores = 1)

Arguments
cross Object of class "cross2”. For details, see the R/qtl2 developer guide.
geno Imputed genotypes, as a list of matrices, as from maxmarg().
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Value

A list of matrices with inferred SNP genotypes, coded 1/2/3.

See Also

maxmarg(), viterbi(), calc_errorlod()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

probs <- calc_genoprob(DOex, error_prob=0.002)

inferred genotypes
m <- maxmarg(probs, minprob=0.5)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

print.cross2 105

inferred SNP genotypes
inferg <- predict_snpgeno(DOex, m)

End(Not run)

print.cross2 Print a cross2 object

Description

Print a summary of a cross2 object

Usage
S3 method for class 'cross2'
print(x, ...)
Arguments
X An object of class "cross2”, as output by read_cross2(). For details, see the
R/qt12 developer guide.
Ignored.
Value
None.

print.summary.scanlperm
Print summary of scanlperm permutations

Description

Print summary of scanlperm permutations

Usage
S3 method for class 'summary.scanlperm'
print(x, digits =3, ...)
Arguments
X Object of class "summary.scan1perm”, as produced by summary_scaniperm().
digits Number of digits in printing significance thresholds; passed to base: :print().

Ignored.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

106 probs_to_grid

Details

This is to go with summary_scanliperm(), so that the summary output is printed in a nice format.
Generally not called directly, but it can be in order to control the number of digits that appear.

Value

Invisibly returns the input, x.

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covar$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

permutations with genome scan (just 3 replicates, for illustration)
operm <- scanlperm(probs, pheno, addcovar=covar, Xcovar=Xcovar,

n_perm=3)

print(summary(operm, alpha=c(0.20, 0.05)), digits=8)

probs_to_grid Subset genotype probability array to pseudomarkers on a grid

Description
Subset genotype probability array (from calc_genoprob() to a grid of pseudomarkers along each
chromosome.

Usage

probs_to_grid(probs, grid)

Arguments
probs Genotype probabilities as output from calc_genoprob () with stepwidth="fixed".
grid List of logical vectors that indicate which positions are on the grid and should

be retained.

pull_genoprobint 107

Details

This only works if calc_genoprob() was run with stepwidth="fixed", so that the genotype
probabilities were calculated at a grid of markers/pseudomarkers. When this is the case, we omit
all but the probabilities on this grid. Use calc_grid() to find the grid positions.

Value

An object of class "calc_genoprob”, like the input, subset to just include pseudomarkers along a
grid. See calc_genoprob().

See Also

calc_grid(), map_to_grid()

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map_w_pmar <- insert_pseudomarkers(grav2$gmap, step=1)

probs <- calc_genoprob(grav2, map_w_pmar, error_prob=0.002)

sapply(probs, dim)

grid <- calc_grid(grav2$gmap, step=1)

probs_sub <- probs_to_grid(probs, grid)

sapply(probs_sub, dim)

pull_genoprobint Pull genotype probabilities for an interval

Description

Pull out the genotype probabilities for a given genomic interval

Usage

pull_genoprobint(genoprobs, map, chr, interval)

Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().
map The marker map for the genotype probabilities
chr Chromosome ID (single character sting)
interval Interval (pair of numbers)
Value

A list containing a single 3d array of genotype probabilities, like the input genoprobs but for the
designated interval.

108 pull_genoprobpos

See Also

find_marker(), pull_genoprobpos()
Examples
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

gmap <- insert_pseudomarkers(iron$gmap, step=1)
pr <- calc_genoprob(iron, gmap, error_prob=0.002)

pr_sub <- pull_genoprobint(pr, gmap, "8", c(25, 35))

pull_genoprobpos Pull genotype probabilities for a particular position

Description

Pull out the genotype probabilities for a particular position (by name)

Usage
pull_genoprobpos(genoprobs, map = NULL, chr = NULL, pos = NULL, marker = NULL)

Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().
map A map object: a list (corresponding to chromosomes) of vectors of marker po-
sitions. Can also be a snpinfo object (data frame with columns chr and pos;
marker names taken from column snp or if that doesn’t exist from the row
names)
chr A chromosome ID
pos A numeric position
marker A single character string with the name of the position to pull out.
Details

Provide either a marker/pseudomarker name (with the argument marker) or all of map, chr, and
pos.

Value

A matrix of genotype probabilities for the specified position.

See Also
find_marker(), fit1(), pull_genoprobint()

pull_markers 109

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

gmap <- insert_pseudomarkers(iron$gmap, step=1)
pr <- calc_genoprob(iron, gmap, error_prob=0.002)

pmar <- find_marker(gmap, 8, 40)
pr_8_40 <- pull_genoprobpos(pr, pmar)

pr_8_40_alt <- pull_genoprobpos(pr, gmap, 8, 40)

pull_markers Drop all but a specified set of markers

Description

Drop all markers from a cross2 object expect those in a specified vector.

Usage

pull_markers(cross, markers)

Arguments
Ccross Object of class "cross2”. For details, see the R/qtl2 developer guide.
markers A vector of marker names.

Value

The input cross with only the specified markers.

See Also

drop_markers(), drop_nullmarkers()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip"”, package="qtl2"))
markers2drop <- c("BH.342C/347L-Col”, "GH.94L", "EG.357C/359L-Col”, "CD.245L", "ANL2")
grav2_rev <- pull_markers(grav2, markers2drop)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

110 rbind.calc_genoprob

gtl2version Installed version of R/qtl2

Description

Get installed version of R/qtl2

Usage

gtl2version()

Value

A character string with the installed version of the R/qtl2 package.

Examples

gtl2version()

rbind.calc_genoprob Join genotype probabilities for different individuals

Description

Join multiple genotype probability objects, as produced by calc_genoprob(), for the same set of
markers and genotypes but for different individuals.

Usage
S3 method for class 'calc_genoprob'
rbind(...)
Arguments
Genotype probability objects as produced by calc_genoprob(). Must have the
same set of markers and genotypes.
Value

An object of class "calc_genoprob”, like the input; see calc_genoprob().

See Also

cbind.calc_genoprob()

rbind.scanl 111

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip”, package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

probsA <- calc_genoprob(grav2[1:5,]1, map, error_prob=0.002)

probsB <- calc_genoprob(grav2[6:12,], map, error_prob=0.002)

probs <- rbind(probsA, probsB)

rbind.scani Join genome scan results for different chromosomes.

Description

Join multiple scan1() results for different chromosomes; must have the same set of lod score

column.
Usage
S3 method for class 'scanl'
rbind(...)
Arguments
Genome scan objects of class "scan1”, as produced by scan1(). Must have the
same lod score columns.
Details

If components addcovar, Xcovar, intcovar, weights, sample_size do not match between ob-
jects, we omit this information.

If hsq present, we simply rbind() the contents.

Value
An object of class ‘"scanl", like the inputs, but with the results for different sets of chromosomes
combined.

See Also

cbind.scan1(), scan1()

112 rbind.scanlperm

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip”, package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

probs <- calc_genoprob(grav2, map, error_prob=0.002)

phe <- grav2$phenol,1,drop=FALSE]

out1l <- scanl(probs[,1], phe) # chr 1
out2 <- scanl(probs[,5], phe) # chr 5
out <- rbind(outl, out2)

rbind.scanlperm Combine data from scanlperm objects

Description

Row-bind multiple scanlperm objects with the same set of columns

Usage

S3 method for class 'scanlperm'
rbind(...)

S3 method for class 'scanlperm'

c(...)
Arguments
A set of permutation results from scan1perm() (objects of class "scan1perm”).
They must have the same set of columns. If any include autosome/X chromosome-
specific permutations, they must all be such.
Details

The aim of this function is to concatenate the results from multiple runs of a permutation test
with scanTperm(), to assist in the case that such permutations are done on multiple processors in
parallel.

Value

The combined row-binded input, as an object of class "scan1perm”; see scan1perm().

See Also

cbind.scanlperm(), scanlperm(), scan1()

rbind.sim_geno 113

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

permutations with genome scan (just 3 replicates, for illustration)
operml <- scanlperm(probs, pheno, addcovar=covar, Xcovar=Xcovar, n_perm=3)

operm2 <- scanlperm(probs, pheno, addcovar=covar, Xcovar=Xcovar, n_perm=3)

operm <- rbind(operm1, operm2)

rbind.sim_geno Join genotype imputations for different individuals

Description

Join multiple genotype imputation objects, as produced by sim_geno(), for the same set of markers
but for different individuals.

Usage
S3 method for class 'sim_geno'
rbind(...)
Arguments
Genotype imputation objects as produced by sim_geno(). Must have the same
set of markers and genotypes.
Value

An object of class "sim_geno", like the input; see sim_geno().

See Also

cbind.sim_geno(), sim_geno()

114 rbind.viterbi

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

drawsA <- sim_geno(grav2[1:5,], map, error_prob=0.002, n_draws=4)

drawsB <- sim_geno(grav2[6:12,], map, error_prob=0.002, n_draws=4)

draws <- rbind(drawsA, drawsB)

rbind.viterbi Join Viterbi results for different individuals

Description

Join multiple imputed genotype objects, as produced by viterbi (), for the same set of markers but
for different individuals.

Usage
S3 method for class 'viterbi'
rbind(...)
Arguments
Imputed genotype objects as produced by viterbi(). Must have the same set
of markers.
Value

An object of class "viterbi”, like the input; see viterbi().

See Also

cbind.viterbi(), viterbi()

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

gA <- viterbi(grav2[1:5,], map, error_prob=0.002)

gB <- viterbi(grav2[6:12,]1, map, error_prob=0.002)

g <- rbind(gA, gB)

read_cross2 115

read_cross?2 Read QTL data from files

Description

Read QTL data from a set of files

Usage

read_cross2(file, quiet = TRUE)

Arguments
file Character string with path to the YAML or JSON file containing all of the control
information. This could instead be a zip file containing all of the data files, in
which case the contents are unzipped to a temporary directory and then read.
quiet If FALSE, print progress messages.
Details

A control file in YAML or JSON format contains information about basic parameters as well as the
names of the series of data files to be read. See the sample data files and the vignette describing the
input file format.

Value

Object of class "cross2”. For details, see the R/qtl2 developer guide.

See Also

read_pheno(),write_control_file(), sample data files athttps://kbroman.org/qtl2/pages/
sampledata.html and https://github.com/rqtl/qtl2data

Examples

Not run:
yaml_file <- "https://kbroman.org/qtl2/assets/sampledata/grav2/grav2.yaml”
grav2 <- read_cross2(yaml_file)

End(Not run)
zip_file <- system.file("extdata”, "grav2.zip"”, package="qtl2")
grav2 <- read_cross2(zip_file)

https://yaml.org
https://json.org
https://yaml.org
https://json.org
https://kbroman.org/qtl2/pages/sampledata.html
https://kbroman.org/qtl2/assets/vignettes/input_files.html
https://kbroman.org/qtl2/assets/vignettes/input_files.html
https://kbroman.org/qtl2/assets/vignettes/developer_guide.html
https://kbroman.org/qtl2/pages/sampledata.html
https://kbroman.org/qtl2/pages/sampledata.html
https://github.com/rqtl/qtl2data

116

read_pheno

read_pheno

Read phenotype data

Description

Read phenotype data from a CSV file (and, optionally, phenotype covariate data from a separate
CSV file). The CSV files may be contained in zip files, separately or together.

Usage
read_pheno(
file,
phenocovarfile = NULL,
sep = n) n s
na.strings = c("-", "NA"),
comment.char = "#",
transpose = FALSE,
quiet = TRUE
)
Arguments
file Character string with path to the phenotype data file (or a zip file containing both
the phenotype and phenotype covariate files).
phenocovarfile Character string with path to the phenotype covariate file. This can be a separate
CSV or zip file; if a zip file, it must contain exactly one CSV file. Alternatively,
if the file argument indicates a zip file that contains two files (phenotypes and
phenotype covariates), then this phenocovarfile argument must indicate the
base name for the phenotype covariate file.
sep the field separator character

na.strings

comment.char

transpose

quiet

Value

a character vector of strings which are to be interpreted as NA values.

A character vector of length one containing a single character to denote com-
ments within the CSV files.

If TRUE, the phenotype data will be transposed. The phenotype covariate infor-
mation is never transposed.

If FALSE, print progress messages.

Either a matrix of phenotype data, or a list containing pheno (phenotype matrix) and phenocovar
(phenotype covariate matrix).

See Also

read_cross2(), sample data files at https: //kbroman.org/qtl2/pages/sampledata.html and
https://github.com/rqtl/qtl2data

https://kbroman.org/qtl2/pages/sampledata.html
https://github.com/rqtl/qtl2data

recode_snps 117

Examples

Not run:

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gtl2data/main/Gough/gough_pheno.csv")

phe <- read_pheno(file)

phecovfile <- paste@("https://raw.githubusercontent.com/rqtl/",
"gqtl2data/main/Gough/gough_phenocovar.csv")
phe_list <- read_pheno(file, phecovfile)

End(Not run)

recode_snps Recode SNPs by major allele

Description
For multi-parent populations with founder genotypes, recode the raw SNP genotypes so that 1
means homozygous for the major allele in the founders.

Usage

recode_snps(cross)

Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

Value

The input cross object with the raw SNP genotypes recoded so that 1 is homozygous for the major
alleles in the founders.

See Also

calc_raw_founder_maf (), calc_raw_maf ()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gqtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

DOex <- recode_snps(DOex)

End(Not run)

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

118 reduce_markers

reduce_map_gaps Reduce the lengths of gaps in a map

Description

Reduce the lengths of gaps in a map

Usage

reduce_map_gaps(map, min_gap = 50)

Arguments
map Genetic map as a list of vectors (each vector is a chromosome and contains the
marker positions).
min_gap Minimum gap length to return.
Value

Input map with any gaps greater than min_gap reduced to min_gap.

See Also

find_map_gaps()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
rev_map <- reduce_map_gaps(iron$gmap, 30)

reduce_markers Reduce markers to a subset of more-evenly-spaced ones

Description

Find the largest subset of markers such that no two adjacent markers are separated by less than some
distance.

reduce_markers 119

Usage

reduce_markers(
map,
min_distance = 1,
weights = NULL,
max_batch = 10000,
batch_distance_mult = 1,
cores =1

Arguments

map A list with each component being a vector with the marker positions for a chro-
mosome.

min_distance Minimum distance between markers.
weights A (optional) list of weights on the markers; same size as map.

max_batch Maximum number of markers to consider in a batch
batch_distance_mult
If working with batches of markers, reduce min_distance by this multiple.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details

Uses a dynamic programming algorithm to find, for each chromosome, the subset of markers for
with max(weights) is maximal, subject to the constraint that no two adjacent markers may be
separated by more than min_distance.

The computation time for the algorithm grows with like the square of the number of markers, like
1 sec for 10k markers but 30 sec for 50k markers. If the number of markers on a chromosome is
greater than max_batch, the markers are split into batches and the algorithm applied to each batch
with min_distance smaller by a factor min_distance_mult, and then merged together for one last
pass.

Value

A list like the input map, but with the selected subset of markers.

References
Broman KW, Weber JL (1999) Method for constructing confidently ordered linkage maps. Genet
Epidemiol 16:337-343

See Also

find_dup_markers(), drop_markers()

120 replace_ids

Examples

read data
grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))

grab genetic map
gmap <- grav2$gmap

subset to markers that are >= 1 cM apart
gmap_sub <- reduce_markers(gmap, 1)

drop all of the other markers from the cross
markers2keep <- unlist(lapply(gmap_sub, names))
grav2_sub <- pull_markers(grav2, markers2keep)

replace_ids Replace individual IDs

Description

Replace the individual IDs in an object with new ones
Usage
replace_ids(x, ids)

S3 method for class 'cross2'
replace_ids(x, ids)

S3 method for class 'calc_genoprob'
replace_ids(x, ids)

S3 method for class 'viterbi'
replace_ids(x, ids)

S3 method for class 'sim_geno'
replace_ids(x, ids)

S3 method for class 'matrix'
replace_ids(x, ids)

S3 method for class 'data.frame'
replace_ids(x, ids)

Arguments
X Object whose IDs will be replaced
ids Vector of character strings with the new individual IDs, with the names being

the original IDs.

scale_kinship 121

Value

The input x object, but with individual IDs replaced.

Methods (by class)

* replace_ids(cross2): Replace IDs in a "cross2” object

* replace_ids(calc_genoprob): Replace IDs in output from calc_genoprob()
* replace_ids(viterbi): Replace IDs in output from viterbi()

* replace_ids(sim_geno): Replace IDs in output from sim_geno()

* replace_ids(matrix): Replace IDs in a matrix

* replace_ids(data. frame): Replace IDs in a data frame

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
ids <- as.numeric(ind_ids(iron))

replace the numeric IDs with IDs like "mouse@@3”
new_ids <- setNames(sprintf("mouse%03d"”, as.numeric(ids)), ids)

iron <- replace_ids(iron, new_ids)

scale_kinship Scale kinship matrix

Description

Scale kinship matrix to be like a correlation matrix.

Usage

scale_kinship(kinship)

Arguments
kinship A kinship matrix, or a list of such in the case of the "leave one chromosome out"
method, as calculated by calc_kinship().
Details

We take Cij = kij/ kiik‘jj

Value

A matrix or list of matrices, as with the input, but with the matrices scaled to be like correlation
matrices.

122

Examples

scanl

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map <- insert_pseudomarkers(grav2$gmap, step=1)

probs <- calc_genoprob(grav2, map, error_prob=0.002)

K <- calc_kinship(probs)

Ka <- scale_kinship(K)

scanl

Genome scan with a single-QTL model

Description

Genome scan with a single-QTL model by Haley-Knott regression or a linear mixed model, with
possible allowance for covariates.

Usage

scan(

genoprobs,
pheno,

kinship = NULL,
addcovar = NULL,
Xcovar = NULL,
intcovar = NULL,
weights = NULL,

reml = TRUE,
model = c("normal”, "binary"),
hsq = NULL,
cores = 1,
)
Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().
pheno A numeric matrix of phenotypes, individuals x phenotypes.
kinship Optional kinship matrix, or a list of kinship matrices (one per chromosome), in
order to use the LOCO (leave one chromosome out) method.
addcovar An optional numeric matrix of additive covariates.
Xcovar An optional numeric matrix with additional additive covariates used for null
hypothesis when scanning the X chromosome.
intcovar An numeric optional matrix of interactive covariates.
weights An optional numeric vector of positive weights for the individuals. As with the

other inputs, it must have names for individual identifiers.

reml Ifkinship provided: if rem1=TRUE, use REML,; otherwise maximum likelihood.

scanl

model

hsq

cores

Details

123

Indicates whether to use a normal model (least squares) or binary model (logistic
regression) for the phenotype. If model="binary", the phenotypes must have

values in [0, 1].

Considered only if kinship is provided, in which case this is taken as the as-

sumed value for the residual heritability. It should be a vector with length corre-
sponding to the number of columns in pheno, or (if kinship corresponds to a list

of LOCO kinship matrices) a matrix with dimension length(kinship) x ncol(pheno).

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Additional control parameters; see Details.

We first fit the model y = X3 + € where X is a matrix of covariates (or just an intercept) and ¢
is multivariate normal with mean 0 and covariance matrix o2[h?(2K) + I] where K is the kinship
matrix and I is the identity matrix.

We then take h? as fixed and then scan the genome, at each genomic position fitting the model
y = Pa+ X 3+¢€ where P is a matrix of genotype probabilities for the current position and again X
is a matrix of covariates ¢ is multivariate normal with mean 0 and covariance matrix o?[h?(2K) +1],
taking h? to be known.

Note that if weights are provided, the covariance matrix becomes o2[h?(2K) + D] where D is a
diagonal matrix with the reciprocal of the weights.

For each of the inputs, the row names are used as individual identifiers, to align individuals. The
genoprobs object should have a component "is_x_chr” that indicates which of the chromosomes
is the X chromosome, if any.

The ...

argument can contain several additional control parameters; suspended for simplicity (or

confusion, depending on your point of view). tol is used as a tolerance value for linear regres-
sion by QR decomposition (in determining whether columns are linearly dependent on others and
should be omitted); default 1e-12. intcovar_method indicates whether to use a high-memory (but
potentially faster) method or a low-memory (and possibly slower) method, with values "highmem”
or "lowmem"”; default "lowmem”. max_batch indicates the maximum number of phenotypes to run
together; default is unlimited. maxit is the maximum number of iterations for converence of the
iterative algorithm used when model=binary. bintol is used as a tolerance for converence for
the iterative algorithm used when model=binary. eta_max is the maximum value for the "linear
predictor" in the case model="binary" (a bit of a technicality to avoid fitted values exactly at O or

1.

If kinship is absent, Haley-Knott regression is performed. If kinship is provided, a linear mixed
model is used, with a polygenic effect estimated under the null hypothesis of no (major) QTL, and
then taken as fixed as known in the genome scan.

If kinship is a single matrix, then the hsq in the results is a vector of heritabilities (one value
for each phenotype). If kinship is a list (one matrix per chromosome), then hsqg is a matrix,
chromosomes x phenotypes.

Value

An object of class "scan1": a matrix of LOD scores, positions x phenotypes. Also contains one or
more of the following attributes:

124 scanl

* sample_size - Vector of sample sizes used for each phenotype

* hsq - Included if kinship provided: A matrix of estimated heritabilities under the null hy-
pothesis of no QTL. Columns are the phenotypes. If the "loco” method was used with
calc_kinship() to calculate a list of kinship matrices, one per chromosome, the rows of
hsq will be the heritabilities for the different chromosomes (well, leaving out each one). If
Xcovar was not NULL, there will at least be an autosome and X chromosome row.

References

Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69:315-324.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient
control of population structure in model organism association mapping. Genetics 178:1709-1723.

See Also

scaniperm(), scanlcoef (), cbind.scan1(), rbind.scan1(), scanimax()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl(probs, pheno, addcovar=covar, Xcovar=Xcovar)

leave-one-chromosome-out kinship matrices
kinship <- calc_kinship(probs, "loco")

genome scan with a linear mixed model
out_lmm <- scanl1(probs, pheno, kinship, covar, Xcovar)

scanlblup

125

scanlblup Calculate BLUPs of QTL effects in scan along one chromosome
Description
Calculate BLUPs of QTL effects in scan along one chromosome, with a single-QTL model treating
the QTL effects as random, with possible allowance for covariates and for a residual polygenic
effect.
Usage
scan1blup(
genoprobs,
pheno,
kinship = NULL,
addcovar = NULL,
nullcovar = NULL,
contrasts = NULL,
se = FALSE,
reml = TRUE,
tol = 0.000000000001,
cores = 1,
quiet = TRUE
)
Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().
pheno A numeric vector of phenotype values (just one phenotype, not a matrix of them)
kinship Optional kinship matrix, or a list of kinship matrices (one per chromosome), in
order to use the LOCO (leave one chromosome out) method.
addcovar An optional numeric matrix of additive covariates.
nullcovar An optional numeric matrix of additional additive covariates that are used under
the null hypothesis (of no QTL) but not under the alternative (with a QTL).
This is needed for the X chromosome, where we might need sex as a additive
covariate under the null hypothesis, but we wouldn’t want to include it under the
alternative as it would be collinear with the QTL effects. Only used if kinship
is provided but hsq is not, to get estimate of residual heritability.
contrasts An optional numeric matrix of genotype contrasts, size genotypes X genotypes.
For an intercross, you might use cbind(mu=c(1,0,0), a=c(-1, @, 1), d=c(9,
1, @)) to get mean, additive effect, and dominance effect. The default is the
identity matrix.
se If TRUE, also calculate the standard errors.
reml If rem1=TRUE, use REML to estimate variance components; otherwise maximum

likelihood.

126

tol

cores

quiet

Details

scanlblup

Tolerance value for convergence of linear mixed model fit.

Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

If FALSE, print message about number of cores used when multi-core.

For each of the inputs, the row names are used as individual identifiers, to align individuals.

If kinship is provided, the linear mixed model accounts for a residual polygenic effect, with a the
polygenic variance estimated under the null hypothesis of no (major) QTL, and then taken as fixed
as known in the scan to estimate QTL effects.

If contrasts is provided, the genotype probability matrix, P, is post-multiplied by the contrasts
matrix, A, prior to fitting the model. So we use P - A as the X matrix in the model. One might view
the rows of A~ as the set of contrasts, as the estimated effects are the estimated genotype effects
pre-multiplied by A~!.

Value

An object of class "scanlcoef”: a matrix of estimated regression coefficients, of dimension posi-
tions x number of effects. The number of effects is n_genotypes + n_addcovar. May also contain
the following attributes:

e SE - Present if se=TRUE: a matrix of estimated standard errors, of same dimension as coef.

* sample_size - Vector of sample sizes used for each phenotype

References

Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69:315-324.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient
control of population structure in model organism association mapping. Genetics 178:1709-1723.

Robinson GK (1991) That BLUP is a good thing: The estimation of random effects. Statist Sci

6:15-32.

Examples

read data

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

convert to allele probabilities
aprobs <- genoprob_to_alleleprob(probs)

scanlcoef 127

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$phenol,1]

covar <- match(iron$covar$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

calculate BLUPs of coefficients for chromosome 7
blup <- scanlblup(aprobs[,"”7"]1, pheno, addcovar=covar)

leave-one-chromosome-out kinship matrix for chr 7
kinship7 <- calc_kinship(probs, "loco")[["7"1]

calculate BLUPs of coefficients for chromosome 7, adjusting for residual polygenic effect
blup_pg <- scanlblup(aprobs[,”7"], pheno, kinship7, addcovar=covar)

scanlcoef Calculate QTL effects in scan along one chromosome

Description

Calculate QTL effects in scan along one chromosome with a single-QTL model using Haley-Knott
regression or a linear mixed model (the latter to account for a residual polygenic effect), with pos-
sible allowance for covariates.

Usage

scanlcoef/(
genoprobs,
pheno,
kinship = NULL,
addcovar = NULL,
nullcovar = NULL,
intcovar = NULL,
weights = NULL,
contrasts = NULL,

model = c("normal”, "binary"),
zerosum = TRUE,
se = FALSE,
hsq = NULL,
reml = TRUE,

)

Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().

pheno A numeric vector of phenotype values (just one phenotype, not a matrix of them)

128 scanlcoef

kinship Optional kinship matrix, or a list of kinship matrices (one per chromosome), in
order to use the LOCO (leave one chromosome out) method.

addcovar An optional numeric matrix of additive covariates.

nullcovar An optional numeric matrix of additional additive covariates that are used under

the null hypothesis (of no QTL) but not under the alternative (with a QTL).
This is needed for the X chromosome, where we might need sex as a additive
covariate under the null hypothesis, but we wouldn’t want to include it under the
alternative as it would be collinear with the QTL effects. Only used if kinship
is provided but hsq is not, to get estimate of residual heritability.

intcovar An optional numeric matrix of interactive covariates.

weights An optional numeric vector of positive weights for the individuals. As with the
other inputs, it must have names for individual identifiers.

contrasts An optional numeric matrix of genotype contrasts, size genotypes X genotypes.
For an intercross, you might use cbind(mu=c(1,1,1), a=c(-1, 0, 1), d=c(0,
1, @)) to get mean, additive effect, and dominance effect. The default is the
identity matrix.

model Indicates whether to use a normal model (least squares) or binary model (logistic
regression) for the phenotype. If model="binary", the phenotypes must have
values in [0, 1].

zerosum If TRUE, force the genotype or allele coefficients sum to 0 by subtracting their
mean and add another column with the mean. Ignored if contrasts is provided.

se If TRUE, also calculate the standard errors.

hsq (Optional) residual heritability; used only if kinship provided.

reml If kinship provided: if rem1=TRUE, use REML; otherwise maximum likelihood.

Additional control parameters; see Details;

Details

For each of the inputs, the row names are used as individual identifiers, to align individuals.

If kinship is absent, Haley-Knott regression is performed. If kinship is provided, a linear mixed
model is used, with a polygenic effect estimated under the null hypothesis of no (major) QTL, and
then taken as fixed as known in the genome scan.

If contrasts is provided, the genotype probability matrix, P, is post-multiplied by the contrasts
matrix, A, prior to fitting the model. So we use P - A as the X matrix in the model. One might view
the rows of A~! as the set of contrasts, as the estimated effects are the estimated genotype effects
pre-multiplied by A~!.

The ... argument can contain several additional control parameters; suspended for simplicity (or
confusion, depending on your point of view). tol is used as a tolerance value for linear regression
by QR decomposition (in determining whether columns are linearly dependent on others and should
be omitted); default 1e-12. maxit is the maximum number of iterations for converence of the
iterative algorithm used when model=binary. bintol is used as a tolerance for converence for
the iterative algorithm used when model=binary. eta_max is the maximum value for the "linear
predictor” in the case model="binary" (a bit of a technicality to avoid fitted values exactly at O or

1.

scanlmax 129

Value

An object of class "scanlcoef”: a matrix of estimated regression coefficients, of dimension posi-
tions x number of effects. The number of effects is n_genotypes + n_addcovar + (n_genotypes-1)*n_intcovar.
May also contain the following attributes:

e SE - Present if se=TRUE: a matrix of estimated standard errors, of same dimension as coef.

* sample_size - Vector of sample sizes used for each phenotype

References

Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69:315-324.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient
control of population structure in model organism association mapping. Genetics 178:1709-1723.

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$phenol,1]

covar <- match(iron$covar$sex, c(”"f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

calculate coefficients for chromosome 7
coef <- scanlcoef(probs[,”7"], pheno, addcovar=covar)

leave-one-chromosome-out kinship matrix for chr 7
kinship7 <- calc_kinship(probs, "loco")[["7"1]

calculate coefficients for chromosome 7, adjusting for residual polygenic effect
coef_pg <- scanlcoef(probs[,"”7"], pheno, kinship7, addcovar=covar)

scanimax Maximum LOD score from genome scan with a single-QTL model

Description

Maximum LOD score from genome scan with a single-QTL model by Haley-Knott regression or a
linear mixed model, with possible allowance for covariates.

Usage

scanTmax(
genoprobs,
pheno,
kinship = NULL,
addcovar = NULL,
Xcovar = NULL,
intcovar = NULL,
weights = NULL,

scanlmax

reml = TRUE,
model = c("normal”, "binary"),
hsq = NULL,
by_chr = FALSE,
cores =
)
Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().
pheno A numeric matrix of phenotypes, individuals x phenotypes.
kinship Optional kinship matrix, or a list of kinship matrices (one per chromosome), in
order to use the LOCO (leave one chromosome out) method.
addcovar An optional numeric matrix of additive covariates.
Xcovar An optional numeric matrix with additional additive covariates used for null
hypothesis when scanning the X chromosome.
intcovar An numeric optional matrix of interactive covariates.
weights An optional numeric vector of positive weights for the individuals. As with the
other inputs, it must have names for individual identifiers.
reml If kinship provided: if rem1=TRUE, use REML,; otherwise maximum likelihood.
model Indicates whether to use a normal model (least squares) or binary model (logistic
regression) for the phenotype. If model="binary", the phenotypes must have
values in [0, 1].
hsq Considered only if kinship is provided, in which case this is taken as the as-
sumed value for the residual heritability. It should be a vector with length corre-
sponding to the number of columns in pheno, or (if kinship corresponds to a list
of LOCO kinship matrices) a matrix with dimension length(kinship) x ncol(pheno).
by_chr If TRUE, save the individual chromosome maxima.
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Additional control parameters; see Details.
Details

Equivalent to running scan1() and then saving the column maxima, with some savings in memory

usage.

scanIperm 131

Value

Either a vector of genome-wide maximum LOD scores, or if by_chr is TRUE, a matrix with the
chromosome-specific maxima, with the rows being the chromosomes and the columns being the
phenotypes.

See Also

scan1(), scanlperm()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanlimax(probs, pheno, addcovar=covar, Xcovar=Xcovar)

scaniperm Permutation test for genome scan with a single-QTL model

Description

Permutation test for a enome scan with a single-QTL model by Haley-Knott regression or a linear
mixed model, with possible allowance for covariates.

Usage

scan1perm(
genoprobs,
pheno,
kinship = NULL,
addcovar = NULL,
Xcovar = NULL,
intcovar = NULL,

132 scanlperm
weights = NULL,
reml = TRUE,
model = c("normal”, "binary"),
n_perm = 1,
perm_Xsp = FALSE,
perm_strata = NULL,
chr_lengths = NULL,
cores = 1,
)
Arguments
genoprobs Genotype probabilities as calculated by calc_genoprob().
pheno A numeric matrix of phenotypes, individuals x phenotypes.
kinship Optional kinship matrix, or a list of kinship matrices (one per chromosome), in
order to use the LOCO (leave one chromosome out) method.
addcovar An optional numeric matrix of additive covariates.
Xcovar An optional numeric matrix with additional additive covariates used for null
hypothesis when scanning the X chromosome.
intcovar An optional numeric matrix of interactive covariates.
weights An optional numeric vector of positive weights for the individuals. As with the
other inputs, it must have names for individual identifiers.
reml If kinship provided: if rem1=TRUE, use REML; otherwise maximum likelihood.
model Indicates whether to use a normal model (least squares) or binary model (logistic
regression) for the phenotype. If model="binary", the phenotypes must have
values in [0, 1].
n_perm Number of permutation replicates.
perm_Xsp If TRUE, do separate permutations for the autosomes and the X chromosome.
perm_strata Vector of strata, for a stratified permutation test. Should be named in the same
way as the rows of pheno. The unique values define the strata.
chr_lengths Lengths of the chromosomes; needed only if perm_Xsp=TRUE. See chr_lengths().
cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Additional control parameters; see Details.
Details

If kinship is not provided, so that analysis proceeds by Haley-Knott regression, we permute the
rows of the phenotype data; the same permutations are also applied to the rows of the covariates
(addcovar, Xcovar, and intcovar) are permuted.

If kinship is provided, we instead permute the rows of the genotype data and fit an LMM with the
same residual heritability (estimated under the null hypothesis of no QTL).

scanIperm 133

If Xcovar is provided and perm_strata=NULL, we do a stratified permutation test with the strata
defined by the rows of Xcovar. If a simple permutation test is desired, provide perm_strata that is
a vector containing a single repeated value.

The ... argument can contain several additional control parameters; suspended for simplicity (or
confusion, depending on your point of view). tol is used as a tolerance value for linear regression
by QR decomposition (in determining whether columns are linearly dependent on others and should
be omitted); default 1e-12. maxit is the maximum number of iterations for converence of the
iterative algorithm used when model=binary. bintol is used as a tolerance for converence for
the iterative algorithm used when model=binary. eta_max is the maximum value for the "linear
predictor” in the case model="binary" (a bit of a technicality to avoid fitted values exactly at O or

1.

Value

If perm_Xsp=FALSE, the result is matrix of genome-wide maximum LOD scores, permutation repli-
cates X phenotypes. If perm_Xsp=TRUE, the result is a list of two matrices, one for the autosomes
and one for the X chromosome. The object is given class "scan1perm”.

References

Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genet-
ics 138:963-971.

Manichaikul A, Palmer AA, Sen S, Broman KW (2007) Significance thresholds for quantitative
trait locus mapping under selective genotyping. Genetics 177:1963-1966.

Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69:315-324.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient
control of population structure in model organism association mapping. Genetics 178:1709-1723.

See Also

scan1(), chr_lengths(), mat2strata()

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

134 scanlsnps

Xcovar <- get_x_covar(iron)

strata for permutations
perm_strata <- mat2strata(Xcovar)

permutations with genome scan (just 3 replicates, for illustration)

operm <- scaniperm(probs, pheno, addcovar=covar, Xcovar=Xcovar,
n_perm=3, perm_strata=perm_strata)

summary (operm)

leave-one-chromosome-out kinship matrices
kinship <- calc_kinship(probs, "loco”)

permutations of genome scan with a linear mixed model

operm_lmm <- scaniperm(probs, pheno, kinship, covar, Xcovar, n_perm=3,
perm_Xsp=TRUE, perm_strata=perm_strata,
chr_lengths=chr_lengths(map))

summary (operm_lmm)

scanlsnps Single-QTL genome scan at imputed SNPs

Description

Perform a single-QTL scan across the genome or a defined region at SNPs genotyped in the founders,
by Haley-Knott regression or a liear mixed model, with possible allowance for covariates.

Usage

scanlsnps(
genoprobs,
map,
pheno,
kinship = NULL,
addcovar = NULL,
Xcovar = NULL,
intcovar = NULL,
weights = NULL,
reml = TRUE,
model = c("normal”, "binary"),
query_func = NULL,
chr = NULL,
start = NULL,
end = NULL,
snpinfo = NULL,
batch_length = 20,

scanlsnps

135

keep_all_snps = FALSE,

cores =

Arguments

genoprobs

map

pheno

kinship

addcovar

Xcovar

intcovar

weights
reml

model

query_func

chr

start

end

snpinfo

batch_length

Genotype probabilities as calculated by calc_genoprob().

Physical map for the positions in the genoprobs object: A list of numeric vec-
tors; each vector gives marker positions for a single chromosome.

A numeric matrix of phenotypes, individuals x phenotypes.

Optional kinship matrix, or a list of kinship matrices (one per chromosome), in
order to use the LOCO (leave one chromosome out) method.

An optional numeric matrix of additive covariates.

An optional numeric matrix with additional additive covariates used for null
hypothesis when scanning the X chromosome.

An optional numeric matrix of interactive covariates.

An optional numeric vector of positive weights for the individuals. As with the
other inputs, it must have names for individual identifiers.

Ifkinship provided: if rem1=TRUE, use REML,; otherwise maximum likelihood.

Indicates whether to use a normal model (least squares) or binary model (logistic
regression) for the phenotype. If model="binary", the phenotypes must have
values in [0, 1].

Function for querying SNP information; see create_variant_query_func()).
Takes arguments chr, start, end, (with start and end in the units in map,
generally Mbp), and returns a data frame containing the columns snp, chr, pos,
and sdp. (See snpinfo below.)

Chromosome or chromosomes to scan

Position defining the start of an interval to scan. Should be a single number, and
if provided, chr should also have length 1.

Position defining the end of an interval to scan. Should be a single number, and
if provided, chr should also have length 1.

Optional data frame of SNPs to scan; if provided, query_func, chr, start, and
end are ignored. Should contain the following columns:
* chr - Character string or factor with chromosome
¢ pos - Position (in same units as in the "map”).
 sdp - Strain distribution pattern: an integer, between 1 and 2" — 2 where
n is the number of strains, whose binary encoding indicates the founder
genotypes
* snp - Character string with SNP identifier (if missing, the rownames are
used).

Interval length (in units of map, generally Mbp) to scan at one time.

136 scanlsnps

keep_all_snps SNPs are grouped into equivalence classes based on position and founder geno-
types; if keep_all_snps=FALSE, the return value will contain information only
on the indexed SNPs (one per equivalence class).

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel::detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Additional control parameters passed to scan1()

Details

The analysis proceeds as follows:

* Call query_func() to grab all SNPs over a region.
» Use index_snps() to group SNPs into equivalence classes.
» Use genoprob_to_snpprob() to convert genoprobs to SNP probabilities.

* Use scan1() to do a single-QTL scan at the SNPs.

Value

A list with two components: lod (matrix of LOD scores) and snpinfo (a data frame of SNPs that
were scanned, including columns index which indicates groups of equivalent SNPs)

See Also

scan1(), genoprob_to_snpprob(), index_snps(), create_variant_query_func(), plot_snpasso()

Examples

Not run:

load example data and calculate genotype probabilities

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"gqtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

probs <- calc_genoprob(DOex, error_prob=0.002)

snpdb_file <- system.file("extdata”, "cc_variants_small.sqlite”, package="qtl2")
queryf <- create_variant_query_func(snpdb_file)

out <- scanlsnps(probs, DOex$pmap, DOex$pheno, query_func=queryf, chr=2, start=97, end=98)

End(Not run)

sdp2char 137

sdp2char Convert strain distribution patterns to character strings

Description

Convert a vector of numeric codes for strain distribution patterns to character strings.

Usage

sdp2char(sdp, n_strains = NULL, strains = NULL)

Arguments
sdp Vector of strain distribution patterns (integers between 1 and 2™ — 2 where n is
the number of strains.
n_strains Number of founder strains (if missing but strains is provided, we use the
length of strains)
strains Vector of single-letter codes for the strains
Value

Vector of character strings with the two groups of alleles separated by a vertical bar (I).

See Also

invert_sdp(), calc_sdp()

Examples

sdp <- c(m1=1, m2=12, m3=240)
sdp2char(sdp, 8)
SdeChar(Sdp, strains:c(lIAH’ IIBVI, II‘III’ IIDII, IIZII’ IICH’ IIPVI, IIWII))

sim_geno Simulate genotypes given observed marker data

Description

Uses a hidden Markov model to simulate from the joint distribution Pr(g | O) where g is the un-
derlying sequence of true genotypes and O is the observed multipoint marker data, with possible
allowance for genotyping errors.

138 sim_geno

Usage

sim_geno(
cross,
map = NULL,
n_draws = 1,
error_prob = 0.0001,
map_function = c("haldane”, "kosambi”, "c-f", "morgan"),
lowmem = FALSE,
quiet = TRUE,
1

cores =
)
Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

map Genetic map of markers. May include pseudomarker locations (that is, locations
that are not within the marker genotype data). If NULL, the genetic map in
cross is used.

n_draws Number of simulations to perform.

error_prob Assumed genotyping error probability

map_function Character string indicating the map function to use to convert genetic distances
to recombination fractions.

lowmem If FALSE, split individuals into groups with common sex and crossinfo and then
precalculate the transition matrices for a chromosome; potentially a lot faster
but using more memory.

quiet If FALSE, print progress messages.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().
Details
After performing the backward equations, we draw from Pr(g; = v|O) and then Pr(gx+1 =
U‘O7 9k = U)
Value

An object of class "sim_geno”: alist of three-dimensional arrays of imputed genotypes, individuals
X positions x draws. Also contains three attributes:

* crosstype - The cross type of the input cross.

* is_x_chr - Logical vector indicating whether chromosomes are to be treated as the X chro-
mosome or not, from input cross.

e alleles - Vector of allele codes, from input cross.

See Also

cbind.sim_geno(), rbind.sim_geno()

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

smooth_gmap 139

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map_w_pmar <- insert_pseudomarkers(grav2$gmap, step=1)
draws <- sim_geno(grav2, map_w_pmar, n_draws=4, error_prob=0.002)

smooth_gmap Smooth genetic map

Description

Smooth a genetic map by mixing it with a bit of constant recombination (using a separate recombi-
nation rate for each chromosome), to eliminate intervals that have exactly 0 recombination.

Usage

smooth_gmap(gmap, pmap, alpha = 0.02)

Arguments
gmap Genetic map, as a list of numeric vectors; each vector gives marker positions for
a single chromosome.
pmap Physical map, as a list of numeric vectors; each vector gives marker positions
for a single chromosome, with the same chromosomes and markers as gmap.
alpha Proportion of mixture to take from constant recombination.
Details

An interval of genetic length d,; and physical length d,, is changed to have length (1 — o)d, + ad,r
where r = L, /L, is the chromosome-specific recombination rate.

Value
A genetic map like the input gmap, but smoothed by mixing it with a proportion alpha of constant
recombination on each chromosome.

See Also

unsmooth_gmap ()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap_adj <- smooth_gmap(iron$gmap, iron$pmap)

140 subset.calc_genoprob

subset.calc_genoprob Subsetting genotype probabilities

Description

Pull out a specified set of individuals and/or chromosomes from the results of calc_genoprob().

Usage

S3 method for class 'calc_genoprob'
subset(x, ind = NULL, chr = NULL, ...)

S3 method for class 'calc_genoprob'
x[ind = NULL, chr = NULL]

Arguments
X Genotype probabilities as output from calc_genoprob().
ind A vector of individuals: numeric indices, logical values, or character string IDs
chr A vector of chromosomes: logical values, or character string IDs. Numbers are
interpreted as character string IDs.
Ignored.
Value

An object of class "calc_genoprob”, like the input, with the selected individuals and/or chrom-
somes; see calc_genoprob().

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))

pr <- calc_genoprob(grav2)

keep just individuals 1:5, chromosome 2
prsub <- pr[1:5,2]

keep just chromosome 2

prsub2 <- pr[,2]

subset.cross2 141

subset.cross?2 Subsetting data for a QTL experiment

Description

Pull out a specified set of individuals and/or chromosomes from a cross2 object.

Usage

S3 method for class 'cross2'
subset(x, ind = NULL, chr = NULL, ...)

S3 method for class 'cross2'
x[ind = NULL, chr = NULL]

Arguments
X An object of class "cross2”, as output by read_cross2(). For details, see the
R/qtl2 developer guide.
ind A vector of individuals: numeric indices, logical values, or character string IDs.
chr A vector of chromosomes: numeric indices, logical values, or character string
IDs
Ignored.
Details

When subsetting by individual, if ind is numeric, they’re assumed to be numeric indices; if character
strings, they’re assumed to be individual IDs. ind can be numeric or logical only if the genotype,
phenotype, and covariate data all have the same individuals in the same order.

When subsetting by chromosome, chr is always converted to character strings and treated as chro-
mosome IDs. So if there are three chromosomes with IDs "18", 19", and "X", mycross[, 18] will
give the first of the chromosomes (labeled "18") and mycross[, 3] will give an error.

When using character string IDs for ind or chr, you can use "negative" subscripts to indicate
exclusions, for example mycross[,c(”-18", "-X")] or mycross["-Mouse2501",]. But you can’t
mix "positive" and "negative" subscripts, and if any of the individuals has an ID that begins with
"-"_you can’t use negative subscripts like this.

Value

The input cross2 object, with the selected individuals and/or chromsomes.

Warning

The order of the two arguments is reversed relative to the related function in R/qtl.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html
https://rqtl.org

142 subset.sim_geno

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
keep individuals 1-20 and chromosomes 3 and 4

grav2sub <- grav2[1:20, c(3,4)]

keep just chromosome 1

grav2_cl <- grav2[,1]

subset.sim_geno Subsetting imputed genotypes

Description

Pull out a specified set of individuals and/or chromosomes from the results of sim_geno().

Usage
S3 method for class 'sim_geno'
subset(x, ind = NULL, chr = NULL, ...)

S3 method for class 'sim_geno'
x[ind = NULL, chr = NULL]

Arguments
X Imputed genotypes as output from sim_geno().
ind A vector of individuals: numeric indices, logical values, or character string IDs
chr A vector of chromosomes: logical values, or character string IDs. Numbers are
interpreted as character string IDs.
Ignored.
Value

An object of class "sim_geno"”, like the input with the selected individuals and/or chromsomes; see

sim_geno().

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))

dr <- sim_geno(grav2, n_draws=4)

keep just individuals 1:5, chromosome 2
drsub <- dr[1:5,2]

keep just chromosome 2

drsub2 <- dr[,?2]

subset.viterbi 143

subset.viterbi Subsetting Viterbi results

Description

Pull out a specified set of individuals and/or chromosomes from the results of viterbi()

Usage

S3 method for class 'viterbi'
subset(x, ind = NULL, chr = NULL, ...)

S3 method for class 'viterbi'
x[ind = NULL, chr = NULL]

Arguments
X Imputed genotypes as output from viterbi().
ind A vector of individuals: numeric indices, logical values, or character string IDs
chr A vector of chromosomes: logical values, or character string IDs. Numbers are
interpreted as character string IDs.
Ignored.
Value

An object of class "viterbi”, like the input, with the selected individuals and/or chromosomes;
see viterbi().

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))

g <- viterbi(grav2)

keep just individuals 1:5, chromosome 2
gsub <- g[1:5,2]

keep just chromosome 2

gsub2 <- g[,2]

144 subset_scanl

subset_scan1 Subset scanl output

Description

Subset the output of scan1() by chromosome or column

Usage
subset_scanl1(x, map = NULL, chr = NULL, lodcolumn = NULL, ...)

S3 method for class 'scanl'

subset(x, map = NULL, chr = NULL, lodcolumn = NULL, ...)
Arguments
X An object of class "scan1" as returned by scan1().
map A list of vectors of marker positions, as produced by insert_pseudomarkers().
chr Vector of chromosomes.
lodcolumn Vector of integers or character strings indicating the LOD score columns, either

as a numeric indexes or column names.

Ignored

Value

Object of class "scan1”, like the input, but subset by chromosome and/or column. See scan1().

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covars$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl(probs, pheno, addcovar=covar, Xcovar=Xcovar)

pull out chromosome 8

summary.cross2 145

out_c8 <- subset(out, map, chr="8")

just the second column on chromosome 2
out_c2_spleen <- subset(out, map, "2", "spleen")

all positions, but just the "liver” column
out_spleen <- subset(out, map, lodcolumn="spleen")

summary.cross2 Summary of cross2 object

Description

Summarize a cross2 object

Usage
S3 method for class 'cross2'
summary (object, ...)
Arguments
object An object of class "cross2”, as output by read_cross2(). For details, see the
R/qtl2 developer guide.
Ignored.
Value
None.
See Also

basic_summaries

summary_compare_geno Basic summary of compare_geno object

Description

From results of compare_geno(), show pairs of individuals with similar genotypes.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

146 summary_scanlperm
Usage
summary_compare_geno(object, threshold = 0.9, ...)

S3 method for class 'compare_geno'
summary(object, threshold = 0.9, ...)

S3 method for class 'summary.compare_geno'

print(x, digits =2, ...)
Arguments
object A square matrix with genotype comparisons for pairs of individuals, as output
by compare_geno().
threshold Minimum proportion matches for a pair of individuals to be shown.
Ignored
X Results of summary . compare_geno()
digits Number of digits to print
Value

Data frame with names of individuals in pair, proportion matches, number of mismatches, num-
ber of matches, and total markers genotyped. Last two columns are the numeric indexes of the
individuals in the pair.

Examples

grav2 <- read_cross2(system.file("extdata”, "grav2.zip", package="qtl2"))
cg <- compare_geno(grav2)
summary (cg)

summary_scaniperm Summarize scanlperm results

Description

Summarize permutation test results from scaniperm(), as significance thresholds.

Usage

summary_scaniperm(object, alpha = 0.05)

S3 method for class 'scanlperm'
summary(object, alpha = 0.05, ...)

summary_scanlperm 147

Arguments
object An object of class "scanoneperm”, as output by scaniperm()
alpha Vector of significance levels
Ignored
Details

In the case of X-chromosome-specific permutations (when scan1perm() was run with perm_Xsp=TRUE,
we follow the approach of Broman et al. (2006) to get separate thresholds for the autosomes and X
chromosome, using

Let L 4 and Lx be total the genetic lengths of the autosomes and X chromosome, respectively, and
let Ly = L4 + Lx Then in place of a, we use

ap=1-(1—a)ka/lr
as the significance level for the autosomes and
ax =1—(1—a)kx/Er

as the significance level for the X chromosome.

Value

An object of class summary.scaniperm. If scan1perm() was run with perm_Xsp=FALSE, this is a
single matrix of significance thresholds, with rows being signicance levels and columns being the
columns in the input. If scan1perm() was run with perm_Xsp=TRUE, this is a list of two matrices,
with the significance thresholds for the autosomes and X chromosome, respectively.

The result has an attribute "n_perm” that has the numbers of permutation replicates (either a matrix
or a list of two matrices).

References

Broman KW, Sen S, Owens SE, Manichaikul A, Southard-Smith EM, Churchill GA (2006) The X
chromosome in quantitative trait locus mapping. Genetics 174:2151-2158

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

148

top_snps

covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)
Xcovar <- get_x_covar(iron)

permutations with genome scan (just 3 replicates, for illustration)
operm <- scanlperm(probs, pheno, addcovar=covar, Xcovar=Xcovar,

n_perm=3)

summary (operm, alpha=c(0.20, 0.05))

top_snps

Create table of top snp associations

Description

Create a table of the top snp associations

Usage

top_snps(

scanl1_output,
snpinfo,

lodcolumn = 1,

chr = NULL,

drop = 1.5,
show_all_snps = TRUE

Arguments

scanl1_output

snpinfo

Output of scan1(). Should contain a component "snpinfo”, as when scan1()
is run with SNP probabilities produced by genoprob_to_snpprob().

Data frame with SNP information with the following columns (the last three are
generally derived with index_snps()):

¢ chr - Character string or factor with chromosome

* pos - Position (in same units as in the "map” attribute in genoprobs.

* sdp - Strain distribution pattern: an integer, between 1 and 2 — 2 where
n is the number of strains, whose binary encoding indicates the founder
genotypes

* snp - Character string with SNP identifier (if missing, the rownames are
used).

* index - Indices that indicate equivalent groups of SNPs, calculated by
index_snps().

e intervals - Indexes that indicate which marker intervals the SNPs reside.
¢ on_map - Indicate whether SNP coincides with a marker in the genoprobs

top_snps 149

lodcolumn Selected LOD score column to (a numeric index, or a character string for a
column name). Only one value allowed.

chr Selected chromosome; only one value allowed.

drop Show all SNPs with LOD score within this amount of the maximum SNP asso-
ciation.

show_all_snps If TRUE, expand to show all SNPs.

Value

Data frame like the input snpinfo with just the selected subset of rows, and with an added column
with the LOD score.

See Also

index_snps(), genoprob_to_snpprob(), scanlsnps(), plot_snpasso()

Examples

Not run:

load example DO data from web

file <- paste@("https://raw.githubusercontent.com/rqtl/",
"qtl2data/main/DOex/DOex.zip")

DOex <- read_cross2(file)

subset to chr 2
DOex <- DOex[,"2"]

calculate genotype probabilities and convert to allele probabilities
pr <- calc_genoprob(DOex, error_prob=0.002)
apr <- genoprob_to_alleleprob(pr)

query function for grabbing info about variants in region
dbfile <- system.file("extdata”, "cc_variants_small.sqlite”, package="qtl2")
query_variants <- create_variant_query_func(dbfile)

SNP association scan, keep information on all SNPs
out_snps <- scanlsnps(apr, DOex$pmap, DOex$pheno, query_func=query_variants,

chr=2, start=97, end=98, keep_all_snps=TRUE)

table with top SNPs
top_snps(out_snpslod, out_snpssnpinfo)

top SNPs among the distinct subset at which calculations were performed
top_snps(out_snpslod, out_snpssnpinfo, show_all_snps=FALSE)

top SNPs within ©.5 LOD of max
top_snps(out_snpslod, out_snpssnpinfo, drop=0.5)

End(Not run)

150 unsmooth_gmap

unsmooth_gmap Unsmooth genetic map

Description

Performs the reverse operation of smooth_gmap(), in case one wants to go back to the original
genetic map.

Usage

unsmooth_gmap(gmap, pmap, alpha = 0.02)

Arguments
gmap Genetic map, as a list of numeric vectors; each vector gives marker positions for
a single chromosome.
pmap Physical map, as a list of numeric vectors; each vector gives marker positions
for a single chromosome, with the same chromosomes and markers as gmap.
alpha Proportion of mixture to take from constant recombination.
Details

An interval of genetic length d, and physical length d,, is changed to have length (d, — ad,r) /(1 —
«) where r = L,/ L, is the chromosome-specific recombination rate.

Value

A genetic map like the input gmap, but with the reverse operation of smooth_gmap() applied, pro-
vided that exactly the same physical map and alpha are used.

See Also

smooth_gmap ()

Examples

iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))
gmap_adj <- smooth_gmap(iron$gmap, iron$pmap)
gmap_back <- unsmooth_gmap(gmap_adj, iron$pmap)

viterbi 151

viterbi Calculate most probable sequence of genotypes

Description

Uses a hidden Markov model to calculate arg max Pr(g | O) where g is the underlying sequence of
true genotypes and O is the observed multipoint marker data, with possible allowance for genotyp-
ing errors.

Usage

viterbi(
cross,
map = NULL,
error_prob = 0.0001,
map_function = c("haldane”, "kosambi”, "c-f", "morgan"),
lowmem = FALSE,
quiet = TRUE,
1

cores =
)
Arguments

cross Object of class "cross2”. For details, see the R/qtl2 developer guide.

map Genetic map of markers. May include pseudomarker locations (that is, locations
that are not within the marker genotype data). If NULL, the genetic map in
cross is used.

error_prob Assumed genotyping error probability

map_function Character string indicating the map function to use to convert genetic distances
to recombination fractions.

lowmem If FALSE, split individuals into groups with common sex and crossinfo and then
precalculate the transition matrices for a chromosome; potentially a lot faster
but using more memory.

quiet If FALSE, print progress messages.

cores Number of CPU cores to use, for parallel calculations. (If @, use parallel: :detectCores().)
Alternatively, this can be links to a set of cluster sockets, as produced by parallel: :makeCluster().

Details
We use a hidden Markov model to find, for each individual on each chromosome, the most probable
sequence of underlying genotypes given the observed marker data.
Note that we break ties at random, and our method for doing this may introduce some bias.

Consider the results with caution; the most probable sequence can have very low probability, and
can have features that are quite unusual (for example, the number of recombination events can be
too small). In most cases, the results of a single imputation with sim_geno() will be more realistic.

https://kbroman.org/qtl2/assets/vignettes/developer_guide.html

152 write_control_file

Value

An object of class "viterbi”: alist of two-dimensional arrays of imputed genotypes, individuals
X positions. Also contains three attributes:

* crosstype - The cross type of the input cross.

* is_x_chr - Logical vector indicating whether chromosomes are to be treated as the X chro-
mosome or not, from input cross.

* alleles - Vector of allele codes, from input cross.

See Also

sim_geno(), maxmarg(), cbind.viterbi(), rbind.viterbi()

Examples

grav2 <- read_cross2(system.file("extdata"”, "grav2.zip"”, package="qtl2"))
map_w_pmar <- insert_pseudomarkers(grav2$gmap, step=1)
g <- viterbi(grav2, map_w_pmar, error_prob=0.002)

write_control_file Write a control file for QTL data

Description

Write the control file (in YAML or JSON) needed by read_cross2() for a set of QTL data.

Usage

write_control_file(
output_file,
crosstype = NULL,
geno_file = NULL,
founder_geno_file = NULL,
gmap_file = NULL,
pmap_file = NULL,
pheno_file = NULL,
covar_file = NULL,
phenocovar_file = NULL,
sex_file = NULL,
sex_covar = NULL,
sex_codes = NULL,
crossinfo_file = NULL,
crossinfo_covar = NULL,
crossinfo_codes = NULL,
geno_codes = NULL,
alleles = NULL,
xchr = NULL,

https://yaml.org
https://json.org

write_control_file

n o n

sep = 7,7,
na.strings =

153

C(H_H, HNAH),

comment.char = "#",
geno_transposed = FALSE,
founder_geno_transposed = FALSE,
pheno_transposed = FALSE,
covar_transposed = FALSE,
phenocovar_transposed = FALSE,

description =

NULL,

comments = NULL,
overwrite = FALSE

Arguments

output_file

crosstype

geno_file

File name (with path) of the YAML or JSON file to be created, as a character
string. If extension is . json, JSON format is used; otherwise, YAML is used.

Character string with the cross type.

File name for genotype data.

founder_geno_file

gmap_file
pmap_file
pheno_file

covar_file
phenocovar_file

sex_file

sex_covar

sex_codes

crossinfo_file

crossinfo_covar

crossinfo_codes

File name for the founder genotype data.
File name for genetic map.

File name for the physical map.

File name for the phenotype data.

File name for the covariate data.

File name for the phenotype covariate data (i.e., metadata about the phenotypes).
File name for the individuals’ sex. (Specify just one of sex_file or sex_covar.)

Column name in the covariate data that corresponds to sex. (Specify just one of
sex_file or sex_covar.)

Named vector of character strings specifying the encoding of sex. The names
attribute should be the codes used in the data files; the values within the vector
should be "female” and "male”.

File name for the cross_info data. (Specify just one of crossinfo_file or
crossinfo_covar.)

Column name in the covariate data that corresponds to the cross_info data.
(Specify just one of crossinfo_file or crossinfo_covar.)

In the case that there is a single cross info column (whether in a file or as a
covariate), you can provide a named vector of character strings specifying the
encoding of cross_info. The names attribute should be the codes used; the
values within the vector should be the codes to which they will be converted
(for example, @ and 1 for an intercross).

https://yaml.org
https://json.org

154

geno_codes

alleles
xchr

sep
na.strings

comment.char

geno_transposed

write_control_file

Named vector specifying the encoding of genotypes. The names attribute has
the codes used within the genotype and founder genotype data files; the values
within the vector should be the integers to which the genotypes will be con-
verted.

Vector of single-character codes for the founder alleles.

Character string with the ID for the X chromosome.

Character string that separates columns in the data files.

Vector of character strings with codes to be treated as missing values.

Character string that is used as initial character in a set of leading comment lines
in the data files.

If TRUE, genotype file is transposed (with markers as rows).

founder_geno_transposed

If TRUE, founder genotype file is transposed (with markers as rows).

pheno_transposed

If TRUE, phenotype file is transposed (with phenotypes as rows).

covar_transposed

If TRUE, covariate file is transposed (with covariates as rows).

phenocovar_transposed

description

comments

overwrite

Details

If TRUE, phenotype covariate file is transposed (with phenotype covariates as
TrOwWS).

Optional character string describing the data.

Vector of character strings to be inserted as comments at the top of the file (in
the case of YAML), with each string as a line. For JSON, the comments are
instead included within the control object.

If TRUE, overwrite file if it exists. If FALSE (the default) and the file exists,
stop with an error.

This function takes a set of parameters and creates the control file (in YAML or JSON format)
needed for the new input data file format for R/qtl2. See the sample data files and the vignette
describing the input file format.

Value

(Invisibly) The data structure that was written.

See Also

read_cross2(), sample data files at https://kbroman.org/qtl2/pages/sampledata.html

https://yaml.org
https://json.org
https://kbroman.org/qtl2/
https://kbroman.org/qtl2/pages/sampledata.html
https://kbroman.org/qtl2/assets/vignettes/input_files.html
https://kbroman.org/qtl2/assets/vignettes/input_files.html
https://kbroman.org/qtl2/pages/sampledata.html

Xpos_scan| 155

Examples

Control file for the sample dataset, grav2

grav2_control_file <- file.path(tempdir(), "grav2.yaml")

write_control_file(grav2_control_file,
crosstype="riself"”,
geno_file="grav2_geno.csv",
gmap_file="grav2_gmap.csv”,
pheno_file="grav2_pheno.csv",
phenocovar_file="grav2_phenocovar.csv",
geno_codes=c(L=1L, C=2L),
alleles=c("L", "C"),
na.strings=c(”-", "NA"))

Control file for the sample dataset, iron
iron_control_file <- file.path(tempdir(), "iron.yaml")
write_control_file(iron_control_file,
crosstype="f2",
geno_file="iron_geno.csv",
gmap_file="iron_gmap.csv",
pheno_file="iron_pheno.csv"”,
covar_file="iron_covar.csv",
phenocovar_file="iron_phenocovar.csv",
geno_codes=c(SS=1L, SB=2L, BB=3L),
sex_covar="sex",
sex_codes=c(f="female"”, m="male"),
crossinfo_covar="cross_direction”,
crossinfo_codes=c("(SxB)x(SxB)"=0L, "(BxS)x(BxS)"=1L),
xchr="X",
alleles=c("Ss", "B"),
na.strings=c("-", "NA"))

Remove these files, to clean up temporary directory
unlink(c(grav2_control_file, iron_control_file))

Xpos_scanT Get x-axis position for genomic location

Description
For a plot of scan1() results, get the x-axis location that corresponds to a particular genomic
location (chromosome ID and position).

Usage

xpos_scanl(map, chr = NULL, gap = NULL, thechr, thepos)

Arguments

map A list of vectors of marker positions, as produced by insert_pseudomarkers().

156 xpos_scanl

chr Selected chromosomes that were plotted (if used in the call to plot_scan1().
gap The gap between chromosomes used in the call to plot_scan1().
thechr Vector of chromosome IDs
thepos Vector of chromosomal positions
Details

thechr and thepos should be the same length, or should have length 1 (in which case they are
expanded to the length of the other vector).

Value

A vector of x-axis locations.

Examples
read data
iron <- read_cross2(system.file("extdata”, "iron.zip", package="qtl2"))

insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno

covar <- match(iron$covar$sex, c("f", "m")) # make numeric

names(covar) <- rownames(iron$covar)

Xcovar <- get_x_covar(iron)

perform genome scan
out <- scanl1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

plot the results for selected chromosomes

ylim <- c(@, maxlod(out)*1.02) # need to strip class to get overall max LOD

chr <- ¢(2,7,8,9,15,16)

plot(out, map, chr=chr, ylim=ylim)

plot(out, map, lodcolumn=2, chr=chr, col="violetred”, add=TRUE)

legend("topleft”, lwd=2, col=c("darkslateblue”, "violetred"), colnames(out),
bg="gray9%0")

Use xpos_scanl to add points at the peaks
first find the peaks with LOD > 3
peaks <- find_peaks(out, map)

keep just the peaks for chromosomes that were plotted
peaks <- peaks[peaks$chr %in% chr,]

find x-axis positions
xpos <- xpos_scanl(map, chr=chr, thechr=peaks$chr, thepos=peaks$pos)

zip_datafiles 157

point colors
ptcolor <- c("darkslateblue”, "violetred"”)[match(peaks$lodcolumn, c("liver”, "spleen"”))]

plot points
points(xpos, peaks$lod, pch=21, bg=ptcolor)

zip_datafiles Zip a set of data files

Description

Zip a set of data files (in format read by read_cross2()).

Usage

zip_datafiles(control_file, zip_file = NULL, overwrite = FALSE, quiet = TRUE)

Arguments

control_file Character string with path to the control file (YAML or JSON) containing all of
the control information.

zip_file Name of zip file to use. If NULL, we use the stem of control_file but with a
.zip extension.
overwrite If TRUE, overwrite file if it exists. If FALSE (the default) and the file exists, stop
with an error.
quiet If FALSE, print progress messages.
Details

The input control_f1ile is the control file (in YAML or JSON format) to be read by read_cross2().
(See the sample data files and the vignette describing the input file format.)

The utils::zip() function is used to do the zipping.

The files should all be contained within the directory where the control_file sits, or in a subdi-
rectory of that directory. If file paths use . ., these get stripped by zip, and so the resulting zip file
may not work with read_cross2().

Value

Character string with the file name of the zip file that was created.

See Also

read_cross2(), sample data files at https://kbroman.org/qtl2/pages/sampledata.html

https://yaml.org
https://json.org
https://yaml.org
https://json.org
https://kbroman.org/qtl2/pages/sampledata.html
https://kbroman.org/qtl2/assets/vignettes/input_files.html
https://kbroman.org/qtl2/pages/sampledata.html

158 zip_datafiles

Examples

Not run:
zipfile <- file.path(tempdir(), "grav2.zip")
zip_datafiles("grav2.yaml”, zipfile)

End(Not run)

Index

* 10
read_cross2, 115
read_pheno, 116
zip_datafiles, 157

+ datasets
CCcolors, 28

* graphics
plot_compare_geno, 86

* hgraphics
plot_genes, 86
plot_sdp, 100

* htest
chisqg_colpairs, 29

« utilities
basic_summaries, 6
calc_entropy, 11
calc_errorlod, 12
calc_genoprob, 13
calc_grid, 16
calc_kinship, 18
calc_raw_founder_maf, 19
calc_raw_geno_freq, 20
calc_raw_het, 21
calc_raw_maf, 21
compare_founder_geno, 34
compare_geno, 35
convert2crossz2, 38
est_map, 48
find_dup_markers, 49
genoprob_to_alleleprob, 63
get_x_covar, 67
guess_phase, 67
insert_pseudomarkers, 70
map_to_grid, 76
max_compare_geno, 80
predict_snpgeno, 104
print.cross2, 105
probs_to_grid, 106
recode_snps, 117

scale_kinship, 121
sim_geno, 137
smooth_gmap, 139
subset.calc_genoprob, 140
subset.cross2, 141
subset.sim_geno, 142
subset.viterbi, 143
summary.cross2, 145
summary_compare_geno, 145
unsmooth_gmap, 150
write_control_file, 152
[.calc_genoprob (subset.calc_genoprob),
140
[.cross2 (subset.cross2), 141
[.sim_geno (subset.sim_geno), 142
[.viterbi (subset.viterbi), 143

add_threshold, 5

base::cbind(), 27
base: :paste(), 77
base: :print(), 105
basic_summaries, 6, 145
batch_cols, 8
batch_cols(), 9
batch_vec, 9
batch_vec(), 8
bayes_int, 9
bayes_int(), 57,76

c.scanlperm(rbind.scanlperm), 112

calc_entropy, 11

calc_errorlod, 12

calc_errorlod(), 104

calc_geno_freq, 15

calc_geno_freq(), 17, 20

calc_genoprob, 13

calc_genoprob(), 11-13, 15-18, 23, 32, 36,
63-65,69,71,72,79,88, 89,91,

160

106-108, 110, 121, 122, 125, 127,

130, 132, 135, 140
calc_grid, 16
calc_grid(), 71,77, 107
calc_het, 17
calc_het(), 15,21
calc_kinship, 18
calc_kinship(), 121, 124
calc_raw_founder_maf, 19
calc_raw_founder_maf (), 21, 22, 117
calc_raw_geno_freq, 20
calc_raw_geno_freq(), 15, 21, 22
calc_raw_het, 21
calc_raw_het(), 17, 20, 22
calc_raw_maf, 21
calc_raw_maf (), 19-21, 117
calc_sdp, 22
calc_sdp(), 73, 101, 137
cbind.calc_genoprob, 23
cbind.calc_genoprob(), 110
cbind.scanl, 24
cbind.scan1(), 111, 124
cbind.scanlperm, 25
cbind.scanlperm(), 112
cbind.sim_geno, 26
cbind.sim_geno(), 113, 138
cbind.viterbi, 27
cbind.viterbi(), 114, 152
cbind_expand, 27
CCaltcolors (CCcolors), 28
CCcolors, 28, 85
CCorigcolors (CCcolors), 28
check_cross2, 29
chisqg_colpairs, 29
chr_lengths, 30
chr_lengths(), 132, 133
chr_names (basic_summaries), 6
clean, 31
clean.calc_genoprob (clean_genoprob), 31
clean.calc_genoprob(), 31
clean.scan1 (clean_scan1), 33
clean.scan1(), 31
clean_genoprob, 31
clean_scanl, 33
compare_founder_geno, 34
compare_geno, 35
compare_geno(), 80, 81, 86, 145, 146
compare_genoprob, 36

INDEX

compare_maps, 37

convert2cross?2, 38

count_xo, 39

count_xo(), 74

covar_names (basic_summaries), 6
create_gene_query_func, 40
create_snpinfo, 41
create_variant_query_func, 42
create_variant_query_func(), 135, 136

data.table::fread(), 61, 62
decomp_kinship, 44
drop_markers, 45
drop_markers(), 46, 50, 109, 119
drop_nullmarkers, 45
drop_nullmarkers(), 45, 50, 109

est_herit, 46
est_map, 48

find_dup_markers, 49
find_dup_markers(), 45, 119
find_ibd_segments, 50
find_index_snp, 52
find_index_snp(), 54, 69
find_map_gaps, 53
find_map_gaps(), 118
find_marker, 54
find_marker(), 52, 55, 60, 108
find_markerpos, 55
find_markerpos(), 54
find_peaks, 56
find_peaks(), 11, 76, 82, 92, 95, 96
fit1,58

fit1(), 108

founders (basic_summaries), 6
fread_csv, 61

fread_csv(), 63
fread_csv_numer, 62
fread_csv_numer(), 62

genoprob_to_alleleprob, 63

genoprob_to_alleleprob(), 14, 18, 36, 88,
89, 91

genoprob_to_snpprob, 64

genoprob_to_snpprob(), 42, 69, 102, 136,
148, 149

get_common_ids, 66

get_x_covar, 67

INDEX

get_x_covar(), 77
graphics::image(), 89, 91
graphics::segments(), 5
guess_phase, 67
guess_phase(), 94

hist(), 86

ind_ids (basic_summaries), 6
ind_ids_covar (basic_summaries), 6
ind_ids_geno (basic_summaries), 6
ind_ids_gnp (basic_summaries), 6
ind_ids_pheno (basic_summaries), 6
index_snps, 68
index_snps(), 42, 52, 56, 64, 65, 81, 102,
136, 148, 149
insert_pseudomarkers, 70
insert_pseudomarkers(), 10, 14, 16, 56, 69,
72,75,77, 78,81, 84, 99, 144, 155
interp_genoprob, 71
interp_map, 72
invert_sdp, 73
invert_sdp(), 22, 101, 137

locate_xo, 74
locate_xo(), 39
lod_int, 75
lod_int(), 11,57

map_to_grid, 76

map_to_grid(), 16, 107

marker_names (basic_summaries), 6
mat2strata, 77

mat2strata(), 133

max.compare_geno (max_compare_geno), 80
max.scanl (max_scan1), 81
max_compare_geno, 80

max_scanl, 81

maxlod, 78

maxmarg, 79
maxmarg(), 36, 39, 68, 74, 94, 97, 104, 152

n_chr (basic_summaries), 6
n_covar (basic_summaries), 6
n_founders (basic_summaries), 6
n_ind (basic_summaries), 6
n_ind_covar (basic_summaries), 6
n_ind_geno (basic_summaries), 6
n_ind_gnp (basic_summaries), 6

161

n_ind_pheno (basic_summaries), 6
n_mar (basic_summaries), 6
n_missing, 82

n_pheno (basic_summaries), 6
n_phenocovar (basic_summaries), 6
n_typed (n_missing), 82

parallel::detectCores(), 11, 12, 14, 17,
18, 20, 32, 34, 35, 39, 44,47, 48, 50,
57,63,68,70,71,74,79, 104, 119,
123,126, 130, 132, 136, 138, 151

parallel::makeCluster(), 11, 12, 14,17,
18, 20, 32, 34, 35, 39, 44,47, 48, 50,
57,63,68,70,71,74,79, 104, 119,
123,126, 130, 132, 136, 138, 151

pheno_names (basic_summaries), 6

phenocovar_names (basic_summaries), 6

plot.calc_genoprob (plot_genoprob), 88

plot.compare_geno (plot_compare_geno),
86

plot.scani (plot_scanl), 99

plot.scanlcoef (plot_coef), 83

plot_coef, 83

plot_coef (), 98, 99, 103

plot_coefCC (plot_coef), 83

plot_coefCC(), 99, 103

plot_compare_geno, 86

plot_genes, 86

plot_genoprob, 88

plot_genoprob(), 91

plot_genoprobcomp, 90

plot_genoprobcomp(), 37, 89

plot_lodpeaks, 92

plot_lodpeaks(), 96

plot_onegeno, 93

plot_peaks, 95

plot_peaks(), 92

plot_pxg, 97

plot_scan1, 99

plot_scan1(), 85, 103, 156

plot_sdp, 100

plot_snpasso, 101

plot_snpasso(), 85, 99, 136, 149

predict_snpgeno, 104

print.cross2, 105

print.summary.compare_geno
(summary_compare_geno), 145

print.summary.scanlperm, 105

probs_to_grid, 106

162

probs_to_grid(), 16, 77
pull_genoprobint, 107
pull_genoprobint(), 54, 108
pull_genoprobpos, 108
pull_genoprobpos(), 54, 60, 108
pull_markers, 109
pull_markers(), 45, 46

gtl2version, 110
gtl::read.cross(), 38

rbind.calc_genoprob, 110
rbind.calc_genoprob(), 23
rbind.scant, 111
rbind.scan1(), 24, 124
rbind.scanlperm, 112
rbind.scanlperm(), 25
rbind.sim_geno, 113
rbind.sim_geno(), 26, 138
rbind.viterbi, 114
rbind.viterbi(), 27, 152
read_cross2, 115
read_cross2(), 7, 29, 39, 64, 83, 105, 116,
141, 145, 152, 154, 157
read_pheno, 116
read_pheno(), 115
recode_snps, 117
recode_snps(), 19-22
reduce_map_gaps, 118
reduce_map_gaps(), 53
reduce_markers, 118
reduce_markers(), 45, 50
replace_ids, 120
rug(), 86

scale_kinship, 121

scanl, 122

scan1(), 10, 11, 24, 25, 33, 56, 57,75, 76, 78,
81,99,102,111, 112,131, 133, 136,
144, 148, 155

scan1blup, 125

scan1blup(), 59

scanlcoef, 127

scanlcoef (), 84, 124

scanlmax, 129

scanimax(), 124

scaniperm, 131

scaniperm(), 25, 30, 77, 112, 124, 131, 146,
147

INDEX

scanlsnps, 134
scanlsnps(), 41, 42, 56, 65, 69, 81, 149
sdp2char, 137
sdp2char(), 22,73
sim_geno, 137
sim_geno(), 26, 39,80, 113, 121, 142, 151,
152
smooth_gmap, 139
smooth_gmap(), 150
subset.calc_genoprob, 140
subset.cross?2, 141
subset.scanl (subset_scanl), 144
subset.sim_geno, 142
subset.viterbi, 143
subset_scanl, 144
summary . compare_geno
(summary_compare_geno), 145
summary . compare_geno(), 146
summary.cross2, 145
summary.cross2(), 8
summary.scanlperm (summary_scaniperm),
146
summary_compare_geno, 145
summary_scanlperm, 146
summary_scanlperm(), 105, 106

top_snps, 148
tot_mar (basic_summaries), 6

unsmooth_gmap, 150
unsmooth_gmap(), 139
utils::zip(Q), 157

viterbi, 151
viterbi(), 27, 39, 74, 80, 104, 114, 121, 143

write_control_file, 152
write_control_file(), 115

xpos_scanl, 155

zip_datafiles, 157

	add_threshold
	basic_summaries
	batch_cols
	batch_vec
	bayes_int
	calc_entropy
	calc_errorlod
	calc_genoprob
	calc_geno_freq
	calc_grid
	calc_het
	calc_kinship
	calc_raw_founder_maf
	calc_raw_geno_freq
	calc_raw_het
	calc_raw_maf
	calc_sdp
	cbind.calc_genoprob
	cbind.scan1
	cbind.scan1perm
	cbind.sim_geno
	cbind.viterbi
	cbind_expand
	CCcolors
	check_cross2
	chisq_colpairs
	chr_lengths
	clean
	clean_genoprob
	clean_scan1
	compare_founder_geno
	compare_geno
	compare_genoprob
	compare_maps
	convert2cross2
	count_xo
	create_gene_query_func
	create_snpinfo
	create_variant_query_func
	decomp_kinship
	drop_markers
	drop_nullmarkers
	est_herit
	est_map
	find_dup_markers
	find_ibd_segments
	find_index_snp
	find_map_gaps
	find_marker
	find_markerpos
	find_peaks
	fit1
	fread_csv
	fread_csv_numer
	genoprob_to_alleleprob
	genoprob_to_snpprob
	get_common_ids
	get_x_covar
	guess_phase
	index_snps
	insert_pseudomarkers
	interp_genoprob
	interp_map
	invert_sdp
	locate_xo
	lod_int
	map_to_grid
	mat2strata
	maxlod
	maxmarg
	max_compare_geno
	max_scan1
	n_missing
	plot_coef
	plot_compare_geno
	plot_genes
	plot_genoprob
	plot_genoprobcomp
	plot_lodpeaks
	plot_onegeno
	plot_peaks
	plot_pxg
	plot_scan1
	plot_sdp
	plot_snpasso
	predict_snpgeno
	print.cross2
	print.summary.scan1perm
	probs_to_grid
	pull_genoprobint
	pull_genoprobpos
	pull_markers
	qtl2version
	rbind.calc_genoprob
	rbind.scan1
	rbind.scan1perm
	rbind.sim_geno
	rbind.viterbi
	read_cross2
	read_pheno
	recode_snps
	reduce_map_gaps
	reduce_markers
	replace_ids
	scale_kinship
	scan1
	scan1blup
	scan1coef
	scan1max
	scan1perm
	scan1snps
	sdp2char
	sim_geno
	smooth_gmap
	subset.calc_genoprob
	subset.cross2
	subset.sim_geno
	subset.viterbi
	subset_scan1
	summary.cross2
	summary_compare_geno
	summary_scan1perm
	top_snps
	unsmooth_gmap
	viterbi
	write_control_file
	xpos_scan1
	zip_datafiles
	Index

