Package 'qpmadr'

October 13, 2022

Type Package Title Interface to the 'qpmad' Quadratic Programming Solver Version 1.1.0-0 Date 2021-06-23 Description Efficiently solve quadratic problems with linear inequality, equality and box constraints. The method used is outlined in D. Goldfarb, and A. Idnani (1983) <doi:10.1007/BF02591962>. License GPL (>= 3) URL https://github.com/anderic1/qpmadr BugReports https://github.com/anderic1/qpmadr/issues **Depends** R (>= 3.0.2) Imports Rcpp, checkmate LinkingTo Rcpp, RcppEigen (>= 0.3.3.3.0) RoxygenNote 7.1.1 **Encoding** UTF-8 Suggests tinytest NeedsCompilation yes Author Eric Anderson [aut, cre], Alexander Sherikov [cph, ctb] Maintainer Eric Anderson <anderic1@gmx.com> **Repository** CRAN Date/Publication 2021-06-23 10:00:02 UTC

R topics documented:

qpmadParameters	 						 •									•	•	 						2
solveqp	 	 ·	•	 •	•	•	 •	•	•	•	 •	•	•	 •	•	•	•	 	•	•	•	•	•	3

5

Index

qpmadParameters Set q

Set qpmad parameters

Description

Conveniently set qpmad parameters. Please always use named arguments since parameters can change without notice between releases. In a future version specifying the argument names will be mandatory.

Usage

```
qpmadParameters(
    isFactorized = FALSE,
    maxIter = -1,
    tol = 1e-12,
    checkPD = TRUE,
    factorizationType = "NONE",
    withLagrMult = FALSE,
    returnInvCholFac = FALSE
)
```

Arguments

isFactorized	Deprecated, will be removed in a future version. Please use factorizationType instead. If TRUE then H is a lower Cholesky factor, overridden byfactorizationType.
maxIter	Maximum number of iterations, if not positive then no limit.
tol	Convergence tolerance.
checkPD	Deprecated. Ignored, will be removed in a future release.
factorizationTy	/pe
	IF "NONE" then H is a Hessian (default), if "CHOLESKY" then H is a (lower) cholesky factor. If "INV_CHOLESKY" then H is the inverse of a cholesky factor, i.e. such that the Hessian is given by inv(HH').
withLagrMult	If TRUE then the Lagrange multipliers of the inequality constraints, along with their indexes and an upper / lower side indicator, will be returned.
returnInvCholFa	ac
	If TOUE then also notion the income Chalaster factor of the Userian

If TRUE then also return the inverse Cholesky factor of the Hessian.

Value

a list suitable to be used as the pars-argument to solveqp

See Also

solveqp

solveqp

Examples

qpmadParameters(withLagrMult = TRUE)

solveqp

Quadratic Programming

Description

Solves

argmin0.5x'	Hx +	h'x
-------------	------	-----

s.t.

$lb_i \leq x_i \leq ub_i$

 $Alb_i \leq (Ax)_i \leq Aub_i$

Usage

```
solveqp(
  H,
  h = NULL,
  lb = NULL,
  ub = NULL,
  A = NULL,
  Alb = NULL,
  Aub = NULL,
  pars = list()
)
```

Arguments

Н	Symmetric positive definite matrix, n*n. Can also be a (inverse) Cholesky factor cf. qpmadParameters.
h	Optional, vector of length n.
lb, ub	<i>Optional</i> , lower/upper bounds of x. Will be repeated n times if length is one.
A	<i>Optional</i> , constraints matrix of dimension p*n, where each row corresponds to a constraint. For equality constraints let corresponding elements in Alb equal those in Aub
Alb, Aub	Optional, lower/upper bounds for Ax .
pars	Optional, qpmad-solver parameters, conveniently set with qpmadParameters

Value

At least one of 1b, ub or A must be specified. If A has been specified then also at least one of Alb or Aub. Returns a list with elements solution (the solution vector), status (a status code) and message (a human readable message). If status = 0 the algorithm has converged. Possible status codes:

- 0: Ok
- -1: Numerical issue, matrix (probably) not positive definite
- 1: Inconsistent
- 2: Infeasible equality
- 3: Infeasible inequality
- 4: Maximal number of iterations

See Also

qpmadParameters

Examples

```
## Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
                          A^T b >= b0
## under the constraints:
## with b0 = (-8, 2, 0)^T
## and
        (-4 2 0)
##
       A = (-3 \ 1 \ -2)
##
           (0 0 1)
## we can use solveqp as follows:
##
Dmat
          <- diag(3)
          <- c(0,-5,0)
dvec
           <- t(matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3))
Amat
bvec
           <- c(-8, 2, 0)
solveqp(Dmat,dvec,A=Amat,Alb=bvec)
```

4

Index

qpmadParameters, 2, 3, 4

solveqp, 2, 3