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1 Introduction

The R package qbld implements the Bayesian quantile regression model for binary longitudi-
nal data (QBLD) developed in Rahman and Vossmeyer (2019). The model handles both
fixed and random effects and implements both a blocked and an unblocked Gibbs sampler
for posterior inference.

2 Quantile Regression for Binary Longitudinal Data

Let yit be the response variable at time t for the ith case, , and zit be an unobserved latent
variable. The QBLD model can be conveniently expressed in the latent variable formulation
(Albert & Chib, 1993) as follows:

zit = x
′
itβ + s

′
itαi + εit, ∀i = 1, ..., n; t = 1, ..., Ti

yit =

{
1 if zit > 0

0 otherwise,

εit = witθ + τ
√
wituit ∀i = 1, ..., n; t = 1, ..., Ti ,

(1)

where xit is a k × 1 vector of fixed-effects covariates, β is a k × 1 vector of fixed-effects
parameters, sit is an l × 1 vector of covariates that have case-specific effects, αi is an l × 1

vector of case-specific parameters, and εit
iid∼ AL(0, 1, p) are the error terms where AL refers

to an asymmteric Laplace distribution with location, µ = 0, scale σ = 1, and skew parameter
p.
The error term is decomposed into a normal-exponential mixture representation of the AL
distribution, presented in Kozumi and Kobayashi (2011). Here, uit ∼ N(0, 1), is mutually
independent of wit ∼ Exp(1), where Exp(.) is the exponential distribution. Random samples
from the AL distribution are generated using raldmix function. (See Appendix)

Define, zi = (zi1, ..., ziTi)
′
, Xi = (xi1, ..., xiTi), Si = (si1, ..., siTi), wi = (wi1, ..., wiTi)

′
,

Dτ
√
wi

= diag(τ
√
wi1, ..., τ

√
wiTi)

′
, and ui = (ui1, ..., uiTi)

′
. Further, define:

θ =
1− 2p

p(1− p)
and τ =

√
2

p(1− p)
.

Building on Eq.(1), the following priors are assumed on the model:

αi|ϕ2 ∼ Nl(0, ϕ
2Il), wit ∼ Exp(1), uit ∼ N(0, 1)

β ∼ Nk(β0, B0), ϕ
2 ∼ IG(c1/2, d1/2)

(2)

IG(.) refers to the Inverse-Gamma distribution, Exp(.) refers to the exponential distribution.
The starting values for the sampler are sampled from the respective assumed priors, however,
one is free to tweak β0, B0, c1, and d1 values.

The resulting posterior of (α, β, ϕ2, w) is intractable and two Gibbs samplers are available to
sample from it. The unblocked Gibbs sampler is faster, but can demonstrate poor mixing
properties due to correlation between the covariates. We recommend using Unblock for larger
datasets. See Appendix for details of the sampler
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To avoid potential slow mixing, an alternative blocked algorithm is presented. This al-
gorithm is computationally involved but exhibits superior mixing properites. We would
recommend using Block for smaller datasets. See Appendix for details of the sampler

3 Using qbld package

Let us examine the dataset we will use to demonstrate the sample usage of the package.

3.1 Dataset:- Airpollution

This example datset is a subset of data from Six Cities study, a longitudinal study of the
health effects of air pollution. The dataset contains complete records on 537 children from
Ohio, each child was examined annually at ages 7 through 10. The repeated binary response
is the wheezing status (1 = “yes”, 0 = “no”) of a child at each occasion.
Each mother’s smoking pattern was also recorded at the time of the study. Although mother’s
smoking status could vary with time, it was determined in the first interview and was treated
as a time-independent covariate. Maternal smoking was categorized as 1 if the mother smoked
regularly and 0 otherwise.

set.seed(10)

library(qbld)

## qbld: Quantile Regression for Binary Longitudinal Data

## Version 1.0.3 created on 2022-01-05.

##

## For citation information, type citation("qbld").

## Type help("qbld-package") or help("model.qbld") to get started.

data(airpollution)

str(airpollution)

## ’data.frame’: 128 obs. of 5 variables:

## $ id : int 1 1 1 1 2 2 2 2 3 3 ...

## $ wheeze : int 0 0 0 0 0 0 0 1 0 0 ...

## $ age : num 7 8 9 10 7 8 9 10 7 8 ...

## $ smoking: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

## $ counts : num 237 237 237 237 10 10 10 10 15 15 ...

3.2 model.qbld: Running the QBLD sampler

model.qbld estimates the QBLD model as described in Section 1, and outputs a qbld class
object. In this example, we will model the wheezing status (wheeze) in terms of age and
smoking. We will not treat counts as a covariate of interest, and allow intercepts for both
fixed and random effects.

##modelling the output :- Blocked

#no burn, no verbose, no summary
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output.block <- model.qbld(fixed_formula = wheeze~smoking+I(age^2),

data = airpollution, id="id",

random_formula = ~1, p=0.25,

nsim=1000, method="block", burn=0,

summarize=FALSE, verbose=FALSE)

� fixed_formula: A description of the model to be fitted of the form response ∼ fixed
effects predictors i.e Xi in the model (2). Response variable is mandatory, and empty
formula will throw error.

In this example, wheeze ∼ smoking+I(age2) translates to response variable, yi =
wheeze, and xi as smoking, age2, and Intercept.

� id: An identifier variable in the dataset that specifies individual profile. Every row
needs to contain an id value that maps the data point to the individual. By default, id
= “id”, and hence, data is expected to contain an id variable. Note that this is not a
covariate, and is omitted while modelling.

� data: Data are contained in a data.frame. Each element of the data argument must
be identifiable by a name. All subjects need to be observed at the same number of time
points. Using datasets with different time points is not allowed. NAs are not allowed
and should throw errors. All factor variables are auto-converted to numeric levels.

� random_formula: A description of the model to be fitted of the form response ∼
random effects predictors i.e Si in the model. Response variable is not required, and is
ignored. This defaults to Si being only an intercept.

In this example, ∼ 1 translates to si as Intercept.

� p: Quantile for the AL distribution on the error term, p = 0.25 by default. For very
low (≤ 0.025) or very high (≥ 0.970) values of p, sampler forces to unblock version to
avoid errors in the block procedure.

� nsim: No. of simulations to run the sampler.

� b0, B0: Prior model parameters for Beta as in the model (2). These are defaulted
to 0 vector, and Identity matrix of appropriate dimensions. Full Gibbs Sampler is not
affected by starting values, and need not be specified.

� c1, d1: Prior model parameters for Varphi2 as in the model (2). These are defaulted
to 9, 10 (arbitrary) respectively. Full Gibbs Sampler is not affected by starting values,
and need not be specified.

� method: Choose between the“Block” vs “Unblock” sampler, Block is slower, but pro-
duces lower correlation. Check section 3 for a detailed comparsion. I would recommend
using “Unblock” for larger datasets. The code uses regex and is impervious to alphabet
case related errors.

� burn: Burn in percentage, number between (0,1). Burn-in values are discarded while
outputting and are not used for summary statistical calculations. No. of simulations
are adjusted for burn-in before ESS calculations.
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� summarize: False by default. Outputs a summary table (same as summary(output)).
In addition to this, also prints Model fit diagonstics such as AIC, BIC, and Log-
likelihood values. This is a bit unusual for a Bayesian analysis; however, useful to
check alignment with the classical models or choose among quantile p values.

� verbose: False by default. If True, spits out progress reports while the sampler is run-
ning. This will print simulation progress for 10 times. i.e prints every 100th simulation
if nsim = 1000.

3.3 qbld class object

The output of model.qbld function is a qbld class object.

str(output.block)

## List of 3

## $ Beta : num [1:1000, 1:3] 0 -0.122 -0.816 -1.816 -1.176 ...

## $ Alpha : num [1, 1:32, 1:1000] 0.0754 -1.9479 -0.6658 1.7591 -0.1183 ...

## $ Varphi2: num [1:1000, 1] 1 0.627 0.86 1.015 1.693 ...

## - attr(*, "burn")= logi FALSE

## - attr(*, "nsim")= num 1000

## - attr(*, "which")= chr "block"

## - attr(*, "varnames")= chr [1:4] "(Intercept)" "smoking" "I(age^2)" "Varphi2"

## - attr(*, "class")= chr "qbld"

## - attr(*, "quantile")= num 0.25

qbld class object contains the following attributes:

� Beta: Matrix of MCMC samples of fixed-effects parameters.

� Alpha: 3-dimensional matrix (of the form Rk×l×m) of MCMC samples of random-effects
parameters.

� Varphi2: Matrix of MCMC samples for ϕ2.

� nsim: numeric; No. of simulations of MCMC.

� burn: logical; Whether or not burn-in used.

� which: Attribute; block or unblock sampler used

3.4 summary.qbld: Summarizing the qbld output

One way of summarizing the model is to use the summarize argument. Continuing with
the example in the previous subsection, let us have a look at the unblocked sampler and
understand the output.
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##modelling the output :- Unblocked

#Using burn, no verbose, and summary

# p = 0.50 i.e 50th quantile

output.unblock <- model.qbld(fixed_formula = wheeze~smoking+I(age^2)+age,

data = airpollution, id="id",

random_formula = ~1, p=0.50,

nsim=5000, method="Unblock", burn=0.2,

summarize=TRUE, verbose=FALSE)

## Please wait while we’re processing your request.

## I recommend listening to Vienna by Billy Joel while you wait.

## https://music.apple.com/in/album/vienna/158617952?i=158618071

##

## Quantile used = 0.5

##

## No. of Iterations = 4000 samples

## Type of Sampler = unblock

## Burn-in Used? = TRUE

##

## 1. Statistics for each variable,

## Mean SD MCSE ESS Gelman-Rubin

## (Intercept) 0.017 0.98 0.016 4000 1.000000 *

## smoking -0.036 0.51 0.023 503 1.000869

## I(age^2) 0.001 0.03 0.001 516 1.000844

## age -0.003 0.36 0.014 665 1.000627

## Varphi2 1.063 0.45 0.021 477 1.000923

##

## MultiESS value = 682.1899

## Multi Gelman-Rubin = 1.000608

## Note : * indicates enough samples for the covariate

## *** indicates enough samples for the whole sampler.

##

## 2. Quantiles for each variable,

## 2.5% 25% 50% 75% 97.5%

## (Intercept) -1.865 -0.675 0.033 0.666 1.930

## smoking -1.037 -0.389 -0.033 0.308 0.985

## I(age^2) -0.059 -0.020 0.001 0.022 0.061

## age -0.705 -0.254 -0.005 0.240 0.714

## Varphi2 0.478 0.759 0.965 1.257 2.208

##

##

## 3. Model Selection Criterion

## Log likelihood = -77.49967

## AIC = 164.9993

## BIC = 181.3389

Note: that we are missing significance stars on the Multi Gelman-Rubin level as described
in the output above. This is indicative of a lack of enough samples for MCMC. We will
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increase nsim to 20000 for the next run and try to achieve the significance level.

Let us also explore the second way of summarizing a qbld object through summmary S3
method, which produces a qbld.summmary class object.

##modelling the output :- Unblocked

#Using burn, no verbose, and summary

output.unblock2 <- model.qbld(fixed_formula = wheeze~smoking+I(age^2)+age,

data = airpollution, id="id",

random_formula = ~1, p=0.50,

nsim=20000, method="Unblock", burn=0.2,

summarize=FALSE, verbose=FALSE)

summary.unblock2 = summary(output.unblock2,

quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975),

epsilon=0.10)

print(summary.unblock2)

##

## Quantile used = 0.5

##

## No. of Iterations = 16000 samples

## Type of Sampler = unblock

## Burn-in Used? = TRUE

##

## 1. Statistics for each variable,

## Mean SD MCSE ESS Gelman-Rubin

## (Intercept) -0.002 0.970 0.008 16000 1.000000 *

## smoking 0.014 0.520 0.012 2022 1.000216 *

## I(age^2) 0.001 0.030 0.001 2176 1.000199 *

## age -0.007 0.360 0.007 2892 1.000142 *

## Varphi2 1.064 0.452 0.010 2049 1.000213 *

##

## MultiESS value = 3062.974

## Multi Gelman-Rubin = 1.000132 ***

## Note : * indicates enough samples for the covariate

## *** indicates enough samples for the whole sampler.

##

## 2. Quantiles for each variable,

## 2.5% 25% 50% 75% 97.5%

## (Intercept) -1.914 -0.655 -0.001 0.648 1.919

## smoking -1.011 -0.340 0.010 0.365 1.049

## I(age^2) -0.058 -0.019 0.001 0.021 0.060

## age -0.718 -0.244 -0.006 0.237 0.697

## Varphi2 0.480 0.750 0.968 1.274 2.200

str(summary.unblock2)
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## List of 9

## $ statistics :’data.frame’: 5 obs. of 6 variables:

## ..$ Mean : num [1:5] -0.002 0.014 0.001 -0.007 1.064

## ..$ SD : num [1:5] 0.97 0.52 0.03 0.36 0.452

## ..$ MCSE : num [1:5] 0.008 0.012 0.001 0.007 0.01

## ..$ ESS : num [1:5] 16000 2022 2176 2892 2049

## ..$ Gelman-Rubin: num [1:5] 1 1 1 1 1

## ..$ : chr [1:5] "*" "*" "*" "*" ...

## $ quantiles : num [1:5, 1:5] -1.914 -1.011 -0.058 -0.718 0.48 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:5] "(Intercept)" "smoking" "I(age^2)" "age" ...

## .. ..$ : chr [1:5] "2.5%" "25%" "50%" "75%" ...

## $ nsim : num 16000

## $ burn : logi TRUE

## $ which : chr "unblock"

## $ p : num 0.5

## $ multiess : num 3063

## $ multigelman: num 1

## $ foo : logi TRUE

## - attr(*, "class")= chr "summary.qbld"

Note that the foo attribute is now TRUE, which means the significance on the Multi

Gelman-Rubin level have been reached. Note that, in such a case, the summary table for
this run will contain the stars unlike the last run. The summary function has the following
arguments:

� quantiles: Vector of quantiles for summary of the covariates, defaulted to c(0.025,
0.25, 0.5, 0.75, 0.975)

� epsilon: 0.05 by default. Epsilon value is used for calculating the target ESS and
Gelman-Rubin criteria. The default value is recommended for producing reliable esti-
mates of posterior quantities.

qbld.summary class object contains the following attributes:

� statistics: Contains the mean, sd, MC std error, ess and Gelman-Rubin diagnostic

� quantiles: Contains quantile estimates for each variable

� nsim: No. of simulations run, adjusted for burn-in

� burn: Burn-in used or not

� which: Block, or Unblock version of sampler

� p: quantile for the AL distribution on the error term

� multiess: multiess value for the sample

� multigelman: multivariate version of Gelman-Rubin
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3.5 plot.qbld: Creating plots

Let us now try and create some diagnostic plots to understand the density spread of the
covariate, as well as trace of the MCMC run.

par(mfrow=c(4,2))

plot(output.block, trace = TRUE, density = TRUE,

auto.layout = FALSE, ask = NULL)
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Plot function has the following arguments:

� trace: Whether or not to plot trace plots for covariates, TRUE by default
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� density: Whether or not to plot density for covariates, TRUE by default.

� auto.layout: Auto set layout or not, TRUE as default. Plots according to the local
settings if false.

A Appendix

A.1 Asymmetric Laplace Distribution

The error term as described in (1) is a random variable from the AL distribution. For the sake
of completeness, random generation and a few other AL functions have been made available
to the user. For help using the functions, use ?aldmix.
The asymmetric Laplace distribution (ALD), has the following pdf:

f(x;µ, σ, p) =
p(1− p)

σ
exp{−(x− µ)

σ
(p− I(x ≤ µ))} (3)

where µ is the location paramter, σ is the scale parameter, and p is the skew paramter.

#generate 1e4 samples

ald.sample <- raldmix(n = 5e4, mu = 0, sigma = 1, p = 0.5)

plot(density(ald.sample), main="AL(0,1,0.5)")
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## additional functions

ald.density <- daldmix(c(4,5),mu = 0,sigma = 1,p = 0.5)

ald.cdf <- paldmix(c(1,4),mu = 0,sigma = 1,p = 0.5,lower.tail=TRUE)

ald.quantile <- qaldmix(0.5,mu = 0,sigma = 1,p = 0.5,lower.tail=TRUE)
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A.2 Generalized Inverse Gaussian Distribution

Gibbs sampler used in the model requires random sampling from Generalized Inverse Gaus-
sian(GIG) distribution. For the sake of completeness, the random generation function rgig,
and the density function, dgig are made available to the user. For help using the functions,
use ?gig.
The Generalised Inverse Gaussian distrubtion(GIG), which has the following pdf:

f(a, b, p) =
(a/b)p/2

2Kp(
√
ab)

exp{−ax+ b/x

2
}, x > 0 (4)

where a, b > 0 and p ∈ R are the parameters, and Kp is a modified Bessel function of the
second kind.

# random generation

gig.sample <- rgig(n = 5e4, lambda = 0.5, a = 1, b = 2)

plot(density(gig.sample),main="GIG(1,2,0.5)")
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# density

gig.density <- dgig(x = 1, a = 1, b = 2, p = 0.5, log_density = FALSE)

A.3 Blocked Sampling

� Sample (β, zi) in one block. These are sampled in following two substeps.
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– Sample β

β|z, w, ϕ2 ∼ N(β̃, B̃),

where, B̃−1 = (
n∑
i=1

X
′
iΩ
−1
i Xi +B−10 ),

β̃ = B̃(
n∑
i=1

X
′
iΩ
−1
i (zi − wiθ) +B−10 β0),

Ωi = (ϕ2SiS
′
i +D2

τ
√
wi

).

(5)

– Sample the vector zi|yi, β, wi, ϕ2 ∼ TMVNBi(Xiβ + wiθ,Ωi) for all i = 1, ..., n,
where Bi = (Bi1 ∗ Bi2 ∗ ... ∗ BiTi) and Bit are interval (0,∞) if yit = 1, and the
interval (−∞, 0] if yit = 0. This is done by sampling zi at the jth pass of the
MCMC iteration using a series of conditional posteriors:

zjit|z
j
i1, ...z

j
i(t−1), z

j−1
i(t+1), ..., z

j−1
iTi
∼ TNBi(µt|−t,Σt|−t), t = 1, ..., Ti.

where, µt|−t = x
′
itβ + witθ + Σt,−tΣ

−1
−t,−t(z

j
i,−t − (Xiβ + wiθ)−t),

Σt|−t = Σt,t − Σt,−tΣ
−1
−t,−tΣ−t,t,

(6)

where zji,−t = (zji1, ...z
j
i(t−1), z

j−1
i(t+1), ..., z

j−1
iTi

), (Xiβ + wiθ)−t is column vector with

tth element removed, Σt,t,Σt,−t,Σ−t,−t are (t, t)th element, tth row with tth element
removed, and tth row and column removed respectively.

� Sample α

αi|z, β, w, ϕ2 ∼ N(ã, Ã), ∀i = 1, ..., n

where, ˜A−1 = (S
′
iD
−2
τ
√
wi
Si +

1

ϕ2
Il),

ã = Ã(S
′
iD
−2
τ
√
wi

(zi −Xiβ − wiθ)).

(7)

� Sample w

wit|zit, β, αi ∼ GIG(0.5, λ̃it, η̃) ∀i = 1, ..., n; t = 1, ..., Ti,

where, λ̃it = (
zit − x

′
itβ − s

′
itαi

τ
)2

η̃ = (
θ2

τ2
+ 2).

(8)

� Sample ϕ2

ϕ2|α ∼ IG(c̃1/2, d̃1/2),

where, c̃1 = (nl + c1),

d̃1 = (

n∑
i=1

α
′
iαi + d1).

(9)

.
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A.4 Unblocked Sampling

� Sample β

β|z, w, ϕ2 ∼ N(β̃, B̃),

where, B̃−1 = (

n∑
i=1

X
′
iΨ
−1
i Xi +B−10 ),

β̃ = B̃(
n∑
i=1

X
′
iΨ
−1
i (zi − wiθ − Siαi) +B−10 β0),

Ψi = D2
τ
√
wi
.

(10)

� Sample α as in (7).

� Sample w as in (8).

� Sample ϕ2 as in (9).

� Sample z|y, α, w ∀i = 1, ..., n; t = 1, ..., Ti, from univariate truncated normal as:

zit|y, β, w =

{
TN(−∞,0](x

′
itβ + s

′
itαi + witθ, τ

2wit) if yit = 0

TN(0,∞)(x
′
itβ + s

′
itαi + witθ, τ

2wit) if yit = 1
(11)
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