Package ‘pso’

October 14, 2022
Version 1.0.4
Date 2022-04-12
Title Particle Swarm Optimization
Author Claus Bendtsen <papyrus.bendtsen@gmail . com>.
Maintainer Claus Bendtsen <papyrus.bendtsen@gmail.com>
Depends R (>=2.10.0), methods
Suggests numDeriv, stats

Description Provides an implementation of particle swarm optimisation consistent with the stan-
dard PSO 2007/2011 by Maurice Clerc. Additionally a number of ancillary routines are pro-
vided for easy testing and graphics.

License LGPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2022-04-12 16:10:06 UTC

R topics documented:

PSO-package e 2
getSuccessRate-methods 4
lines-methods L. 4
plot-methods 5
points-methods e e 5
PSOPHIM e 6
psoptim-methods 9
show-methods L 10
test.problemo e 10
test.problem-class L 11
testresult-class L 12
Index 14

2 pso-package

pso-package A Particle Swarm Optimizer

Description

The package provides an implementation of particle swarm optimization which is consistent with
the standard PSO 2007 and 2011 by Maurice Clerc et al. Additionally a number of ancillary routines
are provided for easy testing and graphics.

Details

Package: pso

Type: Package
Version: 1.0.4
Date: 2022-04-12

License: LGPL-3
Depends: methods

The core function in the package is psoptim which can be used as a drop in replacement for optim.
When used without additional control parameters the implementation is intended to be equivalent
to SPSO 2007 (by M. Clerc et al.).

Control parameters can be specified for SPSO 2011 (in its basic implementation), to clamp the
maximal velocity, provide restarting when the swarm converges to a region as well as using BFGS
as a local search strategy. See psoptim for details.

Author(s)

Maintainer: Claus Bendtsen <papyrus.bendtsen@ gmail.com>

See Also

optim.

Examples

Not run:
Some examples of using the functions in the package

Using basic "optim” interface to minimize a function

set.seed(1)

psoptim(rep(NA,2),function(x) 20+sum(x*2-10*cos(2*pi*x)),
lower=-5,upper=5,control=list(abstol=1e-8))

Parabola
p <- test.problem("”parabola”,10) # one local=global minimum
set.seed(1)

pso-package

ol <- psoptim(p,control=list(trace=1,REPORT=50))
show(o1)

set.seed(1)
02 <- psoptim(p,control=list(trace=1,REPORT=50,w=c(.7,.1)))
show(02)

set.seed(1)
03 <- psoptim(p,control=list(trace=1,REPORT=1,hybrid=TRUE))
show(o3) ## hybrid much faster

Griewank

set.seed(2)

p <- test.problem("griewank",10) # lots of local minima
ol <- psoptim(p,control=list(trace=1,REPORT=50))
show(o1)

The above sometimes get stuck in a local minima.

Adding a restart to increase robustness.

set.seed(2)

02 <- psoptim(p,control=list(trace=1,REPORT=50,reltol=1e-4))
show(02)

An then adding the hybrid

set.seed(2)

03 <- psoptim(p,control=list(trace=1,REPORT=50,reltol=1e-4,
hybrid=TRUE,hybrid.control=list(maxit=10)))

show(03)

Rosenbrock

set.seed(1)

p <- test.problem("rosenbrock”,1)

ol <- psoptim(p,control=list(trace=1,REPORT=50))
show(o1)

Change to fully informed

set.seed(1)

02 <- psoptim(p,control=list(trace=1,REPORT=50,p=1))
show(02)

Rastrigin

p <- test.problem("rastrigin”,10)

set.seed(1)

ol <- psoptim(p,control=list(trace=1,REPORT=50))
show(o1)

set.seed(1)

02 <- psoptim(p,control=list(trace=1,REPORT=50,hybrid=TRUE,
hybrid.control=1list(maxit=10)))

show(02) # better

plot(ol,xlim=c(@, pCmaxf),ylim=c(0,100))

lines(02,co0l=2) # and much faster convergence

4 lines-methods

Ackley

set.seed(1)

p <- test.problem("ackley”,10)

ol <- psoptim(p,control=list(trace=1,REPORT=50))
show(o1)

End(Not run)

getSuccessRate-methods
Methods for Function getSuccessRate

Description
Provides the success rate as the result of conducting a test. Only implemented method is for objects
of class "test.result”

Methods

Calculates the success rate from the number of successful tests conducted as a function of the
number of function evaluations used.

signature(object = "test.result") This method is used internally by the graphical functions.
Returns a list with components:

feval: The number of function evaluations.
rate: The corresponding success rate (between 0 and 1).

See Also

test.result.

lines-methods Methods for Function lines

Description

Graphical methods for adding line segments to existing plots.

Methods

signature(x = "test.result”) Add lines of the success rate versus the number of function eval-
uations for the test resulted provided as x to the current plot. Any additional arguments to the
method will be passed on to 1ines. Typically this method is used to add new test results to an
existing plot.

See Also

lines, test.result.

plot-methods 5

plot-methods Plot methods for test.result objects

Description

Graphical methods for plotting test results.

Methods

signature(x = "test.result”, y = "missing”) Produces a plot of the success rate versus the
number of function evaluations for the test result provided as x. Any additional arguments to
the method will be passed on to plot.

See Also

plot, test.result.

points-methods Methods for Function points

Description

Graphical methods for adding points to existing plots.

Methods

signature(x = "test.result”) Add points with the success rate versus the number of function
evaluations for the test resulted provided as x to the current plot. Any additional arguments to
the method will be passed on to points. Typically this method is used to add new test results
to an existing plot.

See Also

points, test.result.

6 psoptim

psoptim Farticle Swarm Optimizer

Description

General implementation of particle swarm optimization usable as a direct replacement for optim.

Usage
psoptim(par, fn, gr = NULL, ..., lower = -1, upper = 1, control = list())
Arguments
par Vector with length defining the dimensionality of the optimization problem. Pro-
viding actual values of par are not necessary (NA is just fine). Included primarily
for compatibility with optim but if values are provided within the lower and
upper bounds then the first particle will be initialized to the position provided
by par.
fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.
gr A function to return the gradient if local search is BFGS. If it is NULL, a finite-
difference approximation will be used.
Further arguments to be passed to fn and gr.
lower Lower bounds on the variables.
upper Upper bounds on the variables.
control A list of control parameters. See “Details”.
Details

By default this function performs minimization using a particle swarm algorithm, but it will maxi-
mize if control$fnscale is negative.

The default control arguments implies that the algorithm follows the Standard PSO 2007 implemen-
tation by Maurice Clerc, but the code also provides support for PSO 2011, clamping the maximal
velocity, restarting when all particles converge to a single area and using BFGS as the local search
direction.

The control argument is a list that can supply any of the following components:
trace: Non-negative integer. If positive, tracing information on the progress of the optimization is
produced. Defaults to @.

fnscale: An overall scaling to be applied to the value of fn and gr (if used) during optimization.
If negative, turns the problem into a maximization problem. Optimization is performed on
fn(par)/fnscale. Defaults to 1.

maxit: The maximum number of iterations. Defaults to 1000.

psoptim 7

maxf: The maximum number of function evaluations (not considering any performed during nu-
merical gradient computation). Defaults to Inf.

abstol: The absolute convergence tolerance. The method converges once the best fitness obtained
is less than or equal to abstol. Defaults to -Inf.

reltol: The tolerance for restarting. Once the maximal distance between the best particle and all
other particles is less than reltol*d the algorithm restarts. Defaults to @ which disables the
check for restarting.

REPORT: The frequency for reports if control$trace is positive. Defaults to 10.

trace.stats: Logical; if TRUE statistics at every reporting step are collected and returned. Defaults
to FALSE.

s: The swarm size. Defaults to floor (10+2*sqrt(length(par))) unless type is “SPSO2011” in
which case the default is 40.

k: The exponent for calculating number of informants. Defaults to 3.

p: The average percentage of informants for each particle. A value of 1 implies that all particles
are fully informed. Defaults to 1-(1-1/s) k.

w: The exploitation constant. A vector of length 1 or 2. If the length is two, the actual constant
used is gradially changed from w[1] to w[2] as the number of iterations or function evaluations
approach the limit provided. Defaults to 1/(2*1og(2)).

c.p: The local exploration constant. Defaults to . 5+1og(2).
c.g: The global exploration constant. Defaults to . 5+1og(2).
d: The diameter of the search space. Defaults to the euclidean distance between upper and lower.

v.max: The maximal (euclidean) length of the velocity vector. Defaults to NA which disables clamp-
ing of the velocity. However, if specified the actual clamping of the length is v.max*d.

rand.order: Logical; if TRUE the particles are processed in random order. If vectorize is TRUE
then the value of rand.order does not matter. Defaults to TRUE.

max.restart: The maximum number of restarts. Defaults to Inf.
maxit.stagnate: The maximum number of iterations without improvement. Defaults to Inf.

vectorize: Logical; if TRUE the particles are processed in a vectorized manner. This reduces the
overhead associated with iterating over each particle and may be more time efficient for cheap
function evaluations. Defaults to FALSE.

hybrid: If true, each normal PSO position update is followed by an L-BFGS-B search with the
provided position as initial guess. This makes the implementation a hybrid approach. Defaults
to FALSE which disables BFGS for the local search. Note that no attempt is done to control
the maximal number of function evaluations within the local search step (this can be done
separately through hybrid. control) but the number of function evaluations used by the local
search method counts towards the limit provided by maxf AFTER the local search returns. To
support a broader class of hybrid approaches a character vector can also be supplied with
“off” being equivalent to false, “on” equivalent to true, and “improved” implying that the
local search will only be performed when the swarm finds an improvement.

hybrid.control: List with any additional control parameters to pass on to optim when using L-
BFGS-B for the local search. Defaults to NULL.

type: Character vector which describes which reference implementation of SPSO is followed. Can
take the value of “SPS0O2007” or “SPS02011”. Defaults to “SPS02007”.

8 psoptim

Value

A list, compatible with the output from optim, with components:

par The best set of parameters found.
value The value of fn corresponding to par.
counts A three-element vector containing the number of function evaluations, the num-

ber of iterations, and the number of restarts.

convergence An integer code. @ indicates that the algorithm terminated by reaching the abso-
lute tolerance; otherwise:
1: Maximal number of function evaluations reached.
2: Maximal number of iterations reached.
3: Maximal number of restarts reached.
4: Maximal number of iterations without improvement reached.

message A descriptive message of the reason for termination.
If trace is positive and trace. stats is TRUE additionally the component:

stats A list of statistics collected at every reporting step with the following compo-
nents:
it A vector with the iteration numbers
error A vector with the corresponding best fitness values obtained
f A list with the corresponding current swarm fitness values as a vector
x A list with the corresponding current swarm positions as a matrix

References

Default parameters follow:

Clerc, M. (2011) https://hal.archives-ouvertes.fr/hal-00764996/document. Notice that
the SPSO 2011 implementation does not include any of the bells and whistles from the implemen-
tation by M. Clerc et al. and effectively only differes from the SPSO 2007 implementation in the
default swarm size, how velocities are initiated and the update of velocities/positions which in the
SPSO 2011 implementation are invariant to rotation.

The gradual change of w and clamping the maximal velocity is described in:

Parsopoulos, K.E. and Vrahatis M.N. (2002) Recent approaches to global optimization problems
through Particle Swarm Optimization. Natural Computing 1: 235-306.

The restart (provided through reltol) is similar to:

Evers G.I. and Ghalia M.B. Regrouping Particle Swarm Optimization: A New Global Optimization
Algorithm with Improved Performance Consistency Across Benchmarks. https://bee22.com/
resources/Evers%202009.pdf

The hybrid approach is similar to:

Qin J., Yin Y. and Ban X. (2010) A Hybrid of Particle Swarm Optimization and Local Search for
Multimodal Functions. Lecture Notes in Computer Science, Volume 6145/2010, 589-596, DOI:
10.1007/978-3-642-13495-1_72

https://hal.archives-ouvertes.fr/hal-00764996/document
https://bee22.com/resources/Evers%202009.pdf
https://bee22.com/resources/Evers%202009.pdf

psoptim-methods 9

See Also

optim, test.problem.

Examples

set.seed(1)

Rastrigin function

psoptim(rep(NA,2),function(x) 20+sum(x*2-10*cos(2*pi*x)),
lower=-5,upper=5,control=1list(abstol=1e-8))

set.seed(1)

Rastrigin function - local refinement with L-BFGS-B on improvements

psoptim(rep(NA,2),function(x) 20+sum(x*2-10*cos(2*pi*x)),
lower=-5,upper=5,control=1list(abstol=1e-8,hybrid="improved"))

Griewank function
psoptim(rep(NA,2), function(x) sum(x*x)/4000-prod(cos(x/sqrt(1:2)))+1,
lower=-100,upper=100,control=1ist(abstol=1e-2))

set.seed(1)

Rastrigin function with reporting

o <- psoptim(rep(NA,2),function(x) 20+sum(x*2-10*cos(2*pi*x)),
lower=-5,upper=5,control=1list(abstol=1e-8, trace=1,REPORT=1,
trace.stats=TRUE))

Not run:

plot(o$stats$it,o$stats$error,log="y", xlab="1t", ylab="Error")

points(o$stats$it,sapply(o$stats$f,min),col="blue",pch=2)

End(Not run)

psoptim-methods Methods for function psoptim (Particle Swarm Optimization)

Description

General implementation of particle swarm optimization usable as a direct replacement for optim.

Methods

signature(par = "ANY", fn="ANY", gr = "ANY", lower = "ANY", upper = "ANY"):

This is the standard replacement for optim without S4 object usage.

signature(par = "test.problem”, fn="missing"”, gr = "missing”,

lower = "missing”, upper = "missing"):

This is for running PSO on a specific test problem. Typically this is invoked on repetitive runs
of a test problem and used to assess the choice of parameters for the underlying PSO algorithm.

The function is essentially a wrapper function for psoptim but returns an instance of test.result
containing summary results.

10 test.problem

show-methods Methods for Function show

Description

Displays descriptive information of the object provided as argument.

Methods

signature(object = "test.problem”) Provide information on test problem. This includes: prob-
lem name, dimension, objective value, maximal number of function evaluations, and the num-
ber of test repetitions to perform.

signature(object = "test.result") Provide summary statistics for the test. This includes in-
formation on the mean, s.d., min and max obtained for the value over all conducted repetitions
as well as the overall success rate (percentage of test runs for which the target objective was
reached) and a measure of efficiency (the area under the success-rate curve normalized to the
maximal area possible). Additionally displays the timing information for the test conducted.

test.problem Convenience constructor for the test.problem class.

Description

The method enables creating of objects of class "test.problem” for a few standard test problems.

Usage

test.problem(name, n.test = 100, dim, maxf, objective, lower, upper)

Arguments
name The name of the test problem. Currently supports one of "parabola”, "griewank”,
"rosenbrock”, "rastrigin”, or "ackley".
n.test The number of tests to perform.
dim Override the default dimension of the problem.
maxf Override the default maximal number of function evaluations for the problem.
objective Override the default objective for the function.
lower Override the default lower bounds for the problem.
upper Override the default upper bounds for the problem.
Value

An object of class "test.problem"”.

test.problem-class 11

See Also

test.problem.

Examples
test.problem("rast")
test.problem("rast”,dim=4,n.test=10)

test.problem("grie")

test.problem-class Class "test.problem”

Description

The class contains a test problem including domain definition and reference solution. Generally
objects from the class facilitate easy testing of PSO with various parameters.

Objects from the Class

Objects can be created by calls of the form new("test.problem”, ...), but the convenience con-
structer test.problem is the usual approach.

Slots

name: The name of the test problem. Object of class "character”.

f: Function to be minimized. Object of class "function”.

grad: Gradient of f. Only used with BFGS for the local search. Object of class "function”.
n: Problem dimensionality. Object of class "integer".

maxf: Maximal number of function evaluations to use. Object of class "integer”
objective: The absolute tolerance when running PSO. Object of class "numeric”.

ntest: The number of tests to perform. Object of class "integer”.

lower: The lower bounds. Object of class "numeric”.

upper: The upper bounds. Object of class "numeric”.

Methods

n

psoptim signature(par = "test.problem”, fn="missing”,gr = "missing”,
lower = "missing”, upper = "missing"”): for running PSO on the test problem. See psoptim-methods
for details.

show signature(object = "test.problem”): descriptive information of the test problem. See
show-methods for details.

12 test.result-class

See Also

test.problem.

Examples

test.problem("rast")
test.problem("rast”,10) # modified for 10 repetitions.

test.problem("para”)

test.result-class Class "test.result"

Description

A container class with results from executing a (repetition of) test problem(s).

Objects from the Class

Objects can be created by calls of the form new("test.result”, ...), but the object is normally
provided as the result of executing psoptim on an object of class "test.problem”.

Slots

problem: Object of class "test.problem”.
result: A list with each of the results from repetitive invocation of psoptim on problem.

time: The overall time taken for executing the test. Object of class "numeric”.

Methods

getSuccessRate signature(object = "test.result”): internal method used to calculate the
success rate for a series of test results. See getSuccessRate-methods for details.

lines signature(x = "test.result”): add lines with the test result to an existing plot. See
lines-methods for details.

plot signature(x = "test.result”, y = "missing"): plot the test result. See plot-methods for
details.

points signature(x = "test.result”): add points with the test result to an existing plot. See
points-methods for details.

show signature(object = "test.result”): summary statistics of the test. See show-methods
for details.

test.result-class

Examples

showClass("test.result")
set.seed(1)
t <- test.problem("rastrigin”,10)

o <- psoptim(t)
show(o)

Not run:
plot (o)

End(Not run)

13

Index

* classes
test.problem-class, 11
test.result-class, 12

+ datagen
test.problem, 10

* manip
getSuccessRate-methods, 4

+ methods
getSuccessRate-methods, 4
lines-methods, 4
plot-methods, 5
points-methods, 5
psoptim-methods, 9
show-methods, 10

* optimize
pso-package, 2
psoptim, 6
psoptim-methods, 9

* package
pso-package, 2

getSuccessRate
(getSuccessRate-methods), 4

getSuccessRate, test.result-method
(getSuccessRate-methods), 4

getSuccessRate-methods, 4

lines, 4

lines, test.result-method
(lines-methods), 4

lines-methods, 4

optim, 2, 6-9

plot, 5
plot,test.result,missing-method
(plot-methods), 5

plot-methods, 5

points, 5

points,test.result-method
(points-methods), 5

14

points-methods, 5

pso (pso-package), 2

pso-package, 2

psoptim, 2,6, 9, 12

psoptim, ANY,ANY,ANY,ANY,ANY-method
(psoptim-methods), 9

psoptim,test.problem,missing,missing,missing,missing-metho

(psoptim-methods), 9
psoptim-methods, 9

show, test.problem-method
(show-methods), 10

show, test.result-method (show-methods),
10

show-methods, 10

test.problem, 9, 10, 11, 12
test.problem-class, 11
test.result, 4, 5,9
test.result-class, 12

	pso-package
	getSuccessRate-methods
	lines-methods
	plot-methods
	points-methods
	psoptim
	psoptim-methods
	show-methods
	test.problem
	test.problem-class
	test.result-class
	Index

